Mixed-Phenotype Acute Leukemia: Clinical and Laboratory Features, and Prognosis

AS Antipova1, OYu Baranova1, MA Frenkel’1, NN Tupitsyn1, NA Kupryshina1, TN Obukhova2, AD Shirin1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Ol’ga Yur’evna Baranova, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-28-64; e-mail: baranova-crc@mail.ru

For citation: Antipova AS, Baranova OYu, Frenkel’ MA, et al. Mixed-Phenotype Acute Leukemia: Clinical and Laboratory Features, and Prognosis. Clinical oncohematology. 2015;8(2):136–50 (In Russ).


ABSTRACT

Objective. To determine clinical and laboratory features and prognosis of mixed-phenotype acute leukemia (MPAL).

Methods. Of 208 AL patients treated in the N.N. Blokhin Russian Cancer Research Center over past 14 years, MPAL was diagnosed in 5 cases (2.4 %). In total 13 patients were enrolled in this study; these patients were hospitalized in the N.N. Blokhin Russian Cancer Research Center (n = 5) and in four other hematological hospitals of Moscow (n = 8). The disease was diagnosed in accordance with the 2008 WHO classification. The median age was 48 years (ranged from 20 to 75 years).

Results. В/М-phenotype was diagnosed in most patients (n = 11) and Т/М only in 2 patients. Translocation t(9;22)(q34;q11) was the most common chromosome aberration diagnosed in 5 (55.5 %) patients. BCR-ABL chimeric gene was in 8 of 9 patients. Treatment strategy was determined by molecular biological and cytogenetic MPAL profiles. Patients with t(9;22)(q34;q11) and/or BCR-ABL chimeric gene treated with imatinib combined with ALL-regimes (n = 8). Patients with Ph-negative MPAL (n = 1) or unknown molecular biological and cytogenetic MPAL profiles (n = 4) received AML-directed therapy or combined regimes for the treatment of ALL and AML. Complete remission (CR) was obtained in most patients (83.3 %) with low rate of early mortality (8.3 %). 3-year OS was 18.2 % (median 14 months), 3-year RFS was 12.8 % (median 16 months). CRs were induced in all Ph+ MPAL patients.

Conclusion. There are no specific clinical and laboratory predictors of MPAL. Tyrosine kinase inhibitors (TKI) play the key role in the treatment of Ph+ MPAL. TKI combined with low intensity ALL regimes seem more promising. The problem of treatment of Ph-negative MPAL patients remains unsolved.


Keywords: mixed-phenotype acute leukemia, acute leukemia of ambiguous lineage, bilineage leukemia, biphenotypic leukemia.

Received: January 10, 2015

Accepted: January 29, 2015

Read in  PDF (RUS)pdficon


REFERENCES

  1. Gale RP, Ben Bassat IB. Hybrid acute leukaemia. Br J Haematol. 1987;65(3):261–4. doi: 10.1111/j.1365-2141.1987.tb06851.x.
  2. Xu XQ, Wang JM, Lu SQ, et al. Clinical and biological characteristics of adult biphenotypic acute leukemia in comparison with that of acute myeloid leukemia and acute lymphoblastic leukemia: a case series of a Chinese population. Haematologica. 2009;94(7):919–27. doi: 10.3324/haematol.2008.003202.
  3. Mirro J, Zipf TF, Pui CH, et al. Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood. 1985;66(5):1115–23.
  4. Серебрякова И.Н., Купрышина Н.А., Матвеева И.И. Острые лейкозы неоднозначной линейности у детей. Детская онкология. 2008;1:65–71.
    [Serebryakova IN, Kupryshina NA, Matveeva II. Acute leukemias of ambigious lineage in children. Detskaya onkologiya. 2008;1:65–71. (In Russ)]
  5. Rubnitz JE, Onciu M, Pounds S, et al. Acute mixed lineage leukemia in children: the experience of St Jude Children’s Research Hospital. Blood. 2009;113(21):5083–9. doi: 10.1182/blood-2008-10-187351.
  6. Тупицын Н.Н. Острые смешанно-линейные лейкозы человека. Гематология и трансфузиология. 1990;9:18–20.
    [Tupitsyn NN. Acute leaukemias of ambigious lineage. Gematologiya i transfuziologiya. 1990;9:18–20. (In Russ)]
  7. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.
  8. Catovsky D, Matutes E, Buccheri V, et al. A classification of acute leukaemia for the 1990s. Ann Hematol. 1991;62(1):16–21. doi: 10.1007/bf01714978.
  9. Bene MC, Bernier M, Casasnovas RO, et al. The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. The European Group for the Immunological Classification of Leukemias (EGIL). Blood. 1998;92(2):596–9.
  10. Brunning RD, Matutes E, Borowitz M, et al. Acute leukemias of ambiguous lineage. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001. pp. 106–7.
  11. Borowitz MJ, Bene MC, Harris NL, et al. Acute leukemias of ambiguous lineage. In: Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 150–5.
  12. Pane F, Frigeri F, Camera A, et al. Complete phenotypic and genotypic lineage switch in a Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 1996;10(4):741–5.
  13. Ye L, Lin D, Mi YC, et al. Comparison of EGIL 1998 and WHO 2008 criteria for the diagnosis of mixed phenotype acute leukemia. Chin J Hematol. (Chin.) 2012;33(4):286–90.
  14. Manola KN. Cytogenetic abnormalities in acute leukaemia of ambiguous lineage: an overview. Br J Haematol. 2013;163(1):24–39. doi: 10.1111/bjh.12484.
  15. Weir EG, Ali Ansari-Lari M, Batista DA, et al. Acute bilineal leukemia: a rare disease with poor outcome. Leukemia. 2007;21(11):2264–70. doi: 10.1038/sj.leu.2404848.
  16. Matutes E, Pickl WF, Van’T VM, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood. 2011;117(11):3163–71. doi: 10.1182/blood-2010-10-314682.
  17. Legrand O, Perrot JY, Simonin G, et al. Adult biphenotypic acute leukaemia: an entity with poor prognosis which is related to unfavourable cytogenetics and p-glycoprotein over-expression. Br J Haematol. 1998;100(1):147–55. doi: 10.1046/j.1365-2141.1998.00523.x.
  18. Atfy M, Al Azizi NM, Elnaggar AM. Incidence of Philadelphia-chromosome in acute myelogenous leukemia and biphenotypic acute leukemia patients: And its role in their outcome. Leuk Res. 2011;35(10):1339–44. doi: 10.1016/j.leukres.2011.04.011.
  19. Park JA, Ghim TT, Bae K, et al. Stem cell transplant in the treatment of childhood biphenotypic acute leukemia. Pediatr Blood Cancer. 2009;53(3):444–52. doi: 10.1002/pbc.22105.
  20. Yan L, Ping N, Zhu M, et al. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica. 2012;97(11):1708–12. doi: 10.3324/haematol.2012.064485.
  21. Wang SJ, Wang X, Ge CW, et al. Analysis of twelve patients with hybrid acute leukemia. J Leuk Lymphoma. (Chin.) 2005;14:201–4.
  22. Killick S, Matutes E, Powles RL, et al. Outcome of biphenotypic acute leukemia. Hematologica. 1999;84(8):699–706.
  23. Kalashetty M, Dalal BI, Roland KJ, et al. Improved Survival In Adults With Mixed-Phenotype Acute Leukemia Following Stem Cell Transplantation (SCT): A Single Centre Experience. Blood. 2013;122(21):5540.
  24. Aribi A, Bueso-Ramos C, Estey E, et al. Biphenotypic acute leukaemia: a case series. Br J Haematol. 2007;138(2):213–6. doi: 10.1111/j.1365-2141.2007.06634.x.
  25. Deffis-Court M, Alvarado-Ibarra M, Ruiz-Arguelles GJ, et al. Diagnosing and treating mixed phenotype acute leukemia: a multicenter 10-year experience in Mexico. Ann Hematol. 2014;93(4):595–601. doi: 10.1007/s00277-013-1919-6.
  26. Yan LZ, Chen SN, Ping NN, et al. Clinical and laboratorial analysis for 15 adult cases of mixed phenotypic acute leukemia with Ph chromosome and/or positive BCR-ABL. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2013;21(5):1116–20. doi: 10.7534/j.issn.1009-2137.2013.05.006.
  27. Nagasawa F, Nakamura Y, Tokita K, et al. Detection of BCR-ABL1 chimeric gene-positive neutrophils in a patient with mixed phenotype acute leukemia. Rinsho Ketsueki. 2013;54(11):2074–8.
  28. Shimizu H, Yokohama A, Hatsumi N, et al. Philadelphia chromosome-positive mixed phenotype acute leukemia in the imatinib era. Eur J Haematol. 2014;93(4):297–301. doi: 10.1111/ejh.12343.
  29. Matutes E, Catovsky D. The value of scoring systems for the diagnosis of biphenotypic leukemia and mature B-cell disorders. Leuk Lymphoma. 1994;13(Suppl 1):11–4. doi: 10.3109/10428199409052666.
  30. Ying Wang, Min Gu, Yingchang Mi, et al. Clinical characteristics and outcomes of mixed phenotype acute leukemia with Philadelphia chromosome positive and/or bcr-abl positive in adult. Int J Hematol. 2011;94(6):552–5. doi: 10.1007/s12185-011-0953-1.