TL Gindina, NN Mamaev, SN Bondarenko, ES Nikolaeva, OA Slesarchuk, AS Borovkova, OV Paina, SV Razumova, AL Alyanskii, LS Zubarovskaya, BV Afanas’ev
R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022
For correspondence: Tat’yana Leonidovna Gindina, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)233-12-43; e-mail: cytogenetics.bmt.lab@gmail.com
For citation: Gindina TL, Mamaev NN, Bondarenko SN, et al. Results of Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Acute Myeloid Leukemia with t(8;21)(q22;q22)/RUNX1-RUNX1T1 and Additional Cytogenetic Abnormalities. Clinical oncohematology. 2016;9(2):148–54 (In Russ).
DOI: 10.21320/2500-2139-2016-9-2-148-154
ABSTRACT
Aim. To evaluate the impact of additional chromosomal aberrations on outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML) with t(8;21)(q22;q22)/RUNX1-RUNX1T1 translocation.
Methods. Twenty-five AML patients with t(8;21)(q22;q22)/RUNX1-RUNX1T1 translocation (10 women and 15 men, aged from 2 to 58 years; median 20.2) were examined. Analysis of overall (OS) and event-free survival (EFS) predictors after allo-HSCT in patients with different clinical, transplant and cytogenetic characteristics was performed.
Results. The additional cytogenetic abnormalities were found in 13 (52 %) patients before the transplantation, at that, complex karyotype with three or more chromosomal abnormalities were registered in 9 (69 %) patients. The univariate analysis showed that OS and EFS after allo-HSCT differed in patients with different characteristics such as age (p = 0.03; p = 0.0006), clinical status at transplantation (p = 0.0002; p = 0,006), donor type (p = 0.0003; p = 0.002), the interval from diagnosis of leukemia to allo-HSCT (p = 0,008, for OS only), additional cytogenetic abnormalities (p = 0.03; p = 0.009) and complex karyotype (p = 0.004; p = 0.0003), respectively. In multivariate analysis, independent predictors of OS were donor type (p = 0.01), the interval from diagnosis of leukemia to allo-HSCT (p = 0.01), and additional cytogenetic abnormalities in karyotype (p = 0.04), as well as donor type (p = 0.04) and patient’s age (p = 0.004) for EFS.
Conclusion. AML with t(8;21)(q22;q22)/RUNX1-RUNX1T1 translocation is a heterogeneous disease. The prognosis in patients with the additional cytogenetic abnormalities, especially in those with the complex karyotype, is worse both after the standard chemotherapy (i.e. before allo-HSCT), and after allo-HSCT.
Keywords: AML with t(8;21) translocation, allo-HSCT, cytogenetic abnormalities.
Received: February 6, 2016
Accepted: February 15, 2016
REFERENCES
- Mrozek K, Bloomfield CD. Chromosomal abnormalities in acute leukemia and their clinical importance. In: Rowley JD, et al, eds. Chromosomal translocations and genome rearrangements in cancer. Switzerland: Springer International Publishing; 2015. pp. 275–306. doi: 10.1007/978-3-319-19983-2_13.
- Klein K, Kaspers G, Harrison CJ, et al. Clinical impact of additional cytogenetic aberrations, cKIT and RAS mutations, and treatment elements in pediatric t(8;21)-AML: results from an international retrospective study by the international Berlin-Frankfurt-Munster study group. J Clin Oncol. 2015;33(36):4247. doi: 10.1200/jco.2015.61.1947.
- Krauth MT, Eder C, Alpermann T, et al. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia. 2014;28(7):1449–58. doi:10.1038/leu.2014.4.
- Byrd JC, Dodge RK, Carroll A, et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol. 1999;17:3767–75.
- Numata A, Fujimaki K, Aoshima T, et al. Retrospective analysis of treatment outcomes in 70 patients with t(8;21) acute myeloid leukemia. Jpn J Clin Oncol. 2012;53(7):698–704.
- Kuwatsuka Y, Miyamura K, Suzuki R, et al. Hematopoietic cell transplantation for core binding factor acute myeloid leukemia: t(8;21) and inv(16) represent different clinical outcomes. Blood. 2009;113(9):2096–103. doi: 10.1182/blood-2008-03-145862/
- Shlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol. 2004;22(18):3741–50. doi: 10.1200/JCO.2004.03.012.
- Shlenk RF, Pasquini MC, Perez WS, et al. HLA-identical sibling allogeneic transplant versus chemotherapy in acute myelogenous leukemia with t(8;21) in first complete remission: collaborative study between the German AML Intergroup and CIBMTR. Biol Blood Marrow Transplant. 2008;14(2):187–96. doi: 10.1016/j.bbmt.2007.10.006.
- Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Трансплантация гемопоэтических стволовых клеток при остром миелоидном лейкозе с транслокацией t(8;21)(q22;q22). Клиническая онкогематология. 2013;6(4):439–50.
[Mamaev NN, Gorbunova AV, Gindina TL, et al. Hematopoietic stem cell transplantation in AML patients with t(8;21) (q22;q22) translocation. Klinicheskaya onkogematologiya. 2013;6(4):439–50. (In Russ)] - Appelbaum FR, Kopecky KJ, Tallman MS, et al. The clinical spectrum of adult acute myeloid leukemia associated with core binding factor translocations. Br J Haematol. 2006;135(2):165–73. doi: 10.1111/j.1365-2141.2006.06276.x.
- Yoon JH, Kim HJ, Kim JW, et al. Identification of molecular and cytogenetic risk factors for unfavorable core-binding factor-positive adult AML with post-remission treatment outcome analysis including transplantation. Bone Marrow Transplant. 2014;49(12):1466–74. doi: 10.1038/bmt.2014.180.
- Marcucci G, Mrozek K, Ruppert AS, et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B Study. J Clin Oncol. 2005;23(24):5705–17. doi: 10.1200/jco.2005.15.610.
- Qin YZ, Zhu HH, Jiang Q, et al. Prevalence and prognostic significance of c-KIT mutations in core binding factor acute myeloid leukemia: a comprehensive large-scale study from a single Chinese center. Leuk Res. 2016;38(12):1435–40. doi: 10.1016/j.leukres.2014.09.017.
- Mosna F, Papayannidis C, Martinelli G, et al. Complex karyotype, older age, and reduced first-line dose intensity determine poor survival in core binding factor acute myeloid leukemia patients with long-term follow-up. Am J Hematol. 2015;90(6):515–23. doi: 10.1002/ajh.24000.
- Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;8:61–6.
[Gindina TL, Mamaev NN, Barhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;8:61–6. (In Russ)] - Schaffer L, McGovan-Jordan J, Schmid M. ISCN. An international System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013.
- Gindina T, Mamaev N, Nikolaeva E, et al. Jumping translocations in a 13-year-old child with RUNX1/RUNX1T1-positive acute myeloid leukemia. 10th European Cytogenetics Conference 2015. Chromosome Res. 2015;23(Suppl 1):88. doi: 10.1007/s10577-015-9476-6.
- Мамаев Н.Н., Горбунова А.В., Бархатов И.М. и др. Молекулярный мониторинг течения острых миелоидных лейкозов по уровню экспрессии гена WT1 после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология. 2015;8(3):309–20.
[Mamaev NN, Gorbunova AV, Barkhatov IM, et al. Molecular Monitoring of WT1 Gene Expression Degree in Acute Myeloid Leukemias after Allogeneic Hematopoietic Stem Cell Transplantation. Klinicheskaya onkogematologiya. 2015;8(3):309–20. (In Russ)] - Mamaev N, Mamaeva S. Two cases of acute myeloblastic leukemia (M2-type) with karyotypes 45X,-X,t(6;8)(q27;q22),inv(9) and 46,XY, t(8;21)(q22;q22),del(9)(q22). Cancer Genet Cytogenet. 1985;18(2):105–11. doi: 10.1016/0165-4608(85)90060-3.