Erythroferron: Modern Concepts of Its Role in Iron Metabolism Regulation

VT Sakhin1, NV Kremneva1, AV Gordienko2, OA Rukavitsyn3

1 Military Clinical Hospital No. 1586 under the Ministry of Defense of Russia, 4 Mashtakova str., Podol’sk, Moscow Oblast, Russian Federation, 142110

2 SM Kirov Military Medical Academy, 6 Akademika Lebedeva str., Saint Petersburg, Russian Federation, 194044

3 NN Burdenko Principal Military Clinical Hospital under the Ministry of Defense of Russia, 3 Gospital’naya pl., Moscow, Russian Federation, 105229

For correspondence: Valerii Timofeevich Sakhin, PhD, 4 Mashtakova str., Podol’sk, Moscow Oblast, Russian Federation, 142110; Tel: +7(916)314-31-11; e-mail: SahinVT@yandex.ru

For citation: Sakhin VT, Kremneva NV, Gordienko AV, Rukavitsyn OA. Erythroferron: Modern Concepts of Its Role in Iron Metabolism Regulation. Clinical oncohematology. 2017;10(1):25–8 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-25-28


ABSTRACT

The article presents the results of experimental and clinical studies evaluating the importance of supposed erythroid regulators of hepcidin levels and mechanism of their action. It demonstrates that the role of growth differentiation factor 15 and twisted gastrulation protein homolog 1 in regulation of hepcidin levels in humans has not been confirmed yet. The data confirming the importance of erythroferron in the pathogenesis of anemia related to blood loss, hemolysis, and hereditary anemias with ineffective erythropoiesis are presented. The studies demonstrated that erythroferron plays the greatest role in the regulation of hepcidin levels in pathological conditions and at stress and does not play a leading role in erythropoiesis under normal conditions. Erythroferron suppresses the hepcidin synthesis by affecting the liver cells directly through an unknown receptor cellular pathway.

Keywords: anemia of chronic disease, hepcidin, erythroferron.

Received: September 14, 2016

Accepted: November 13, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Гематология: национальное руководство. Под ред. О.А. Рукавицына. М.: ГЭОТАР-Медиа, 2015. С. 143–9.
    [Rukavitsyn OA, ed. Gematologiya: natsional’noe rukovodstvo. (Hematology: national guidelines.) Moscow: GEOTAR-Media Publ.; 2015. pp. 143–9. (In Russ)]
  2. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434–43. doi: 10.1016/j.bbamcr.2012.01.014.
  3. Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidinis regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110(7):1037–44. doi: 10.1172/jci0215686.
  4. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest. 2007;117(7):1926–32. doi: 10.1172/jci31370.
  5. Pinto JP, Ribeiro S, Pontes H, et al. Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBP alpha. Blood. 2008;111(12):5727–33. doi: 10.1182/blood-2007-08-106195.
  6. Liu Q, Davidoff O, Niss K, et al. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J Clin Invest. 2012;122(12):4635–44. doi: 10.1172/jci63924.
  7. Pak M, Lopez MA, Gabayan V, et al. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108(12):3730–5. doi: 10.1182/blood-2006-06-028787.
  8. Vokurka M, Krijt J, Sulc K, Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Phys Res. 2006;55(6):667–74.
  9. Tanno T, Bhanu NV, Oneal PA, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 2007;13(9):1096–101. doi: 10.1038/nm1629.
  10. Tanno T, Porayette P, Sripichai O, et al. Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood. 2009;114(1):181–6. doi: 10.1182/blood-2008-12-195503.
  11. Unsicker K, Spittau B, Krieglstein K. The multiple facets of the TGF-b family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cyt Growth Factor Rev. 2013;24(4):373–84. doi: 10.1016/j.cytogfr.2013.05.003.
  12. Forsman CL, Ng BC, Heinze RK, et al. BMP-binding protein twisted gastrulation is required in mammary gland epithelium for normal ductal elongation and myoepithelial compartmentalization. Devel Biol. 2013;373(1):95–106. doi: 10.1016/j.ydbio.2012.10.007.
  13. Frazer DM, Wilkins SJ, Darshan D, et al. Stimulated erythropoiesis with secondary iron loading leads to a decrease in hepcidin despite an increase in bone morphogenetic protein 6 expression. Br J Haematol. 2012;157(5):615–26. doi: 10.1111/j.1365-2141.2012.09104.x.
  14. Casanovas G, Spasic MV, Casu C, et al. The murine growth differentiation factor 15 is not essential for systemic iron homeostasis in phlebotomized mice. Haematologica. 2013;98(3):444–7. doi: 10.3324/haematol.2012.069807.
  15. Tamary H, Shalev H, Perez-Avraham G, et al. Elevated growth differentiation factor 15 expression in patients with congenital dyserythropoietic anemia type I. Blood. 2008;112(13):5241–4. doi: 10.1182/blood-2008-06-165738.
  16. An X, Schulz VP, Li J, et al. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood. 2014;123(22):3466–77. doi: 10.1182/blood-2014-01-548305.
  17. Tanno T, Rabel A, Lee YT, et al. Expression of growth differentiation factor 15 is not elevated in individuals with iron deficiency secondary to volunteer blood donation. Transfusion. 2010;50(7):1532–5. doi: 10.1111/j.1537-2995.2010.02601.x.
  18. Theurl I, Finkenstedt A, Schroll A, et al. Growth differentiation factor 15 in anaemia of chronic disease, iron deficiency anaemia and mixed type anaemia. Br J Haematol. 2010;148(3):449–55. doi: 10.1111/j.1365-2141.2009.07961.x.
  19. Waalen J, von Lohneysen K, Lee P, et al. Erythropoietin, GDF15, IL6, hepcidin and testosterone levels in a large cohort of elderly individuals with anaemia of known and unknown cause. Eur J Haematol. 2011;87(2):107–16. doi: 10.1111/j.1600-0609.2011.01631.x.
  20. Kautz L, Jung G, Valore EV, et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678–84. doi: 10.1038/ng.2996.
  21. Merryweather-Clarke AT, Atzberger A, Soneji S, et al. Global gene expression analysis of human erythroid progenitors. Blood. 2011;118(26):e96–108. doi: 10.1182/blood-2010-07-290825.
  22. Diaz V, Gammella E, Recalcati S, et al. Liver iron modulates hepcidin expression during chronically elevated erythropoiesis in mice. Hepatology. 2013;58(6):2122–32. doi: 10.1002/hep.26550.
  23. Pippard MJ, Warner GT, Callender ST, Weatherall DJ. Iron absorption and loading in b-thalassaemia intermedia. Lancet. 1979;314(8147):819–21. doi: 10.1016/s0140-6736(79)92175-5.
  24. Papanikolaou G, Tzilianos M, Christakis JI, et al. Hepcidin in iron overload disorders. Blood. 2005;105(10):4103–5. doi: 10.1182/blood-2004-12-4844.
  25. Centis F, Tabellini L, Lucarelli G, et al. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with b-thalassemia major. Blood. 2000;96(10):3624–9.
  26. Kattamis A, Papassotiriou I, Palaiologou D, et al. The effects of erythropoetic activity and iron burden on hepcidin expression in patients with thalassemia major. Haematologica. 2006;91(6):809–12.
  27. Origa R, Galanello R, Ganz T, et al. Liver iron concentrations and urinary hepcidin in beta-thalassemia. Haematologica. 2007;92(5):583–8. doi: 10.3324/haematol.10842.
  28. Nai A, Pagani A, Mandelli G, et al. Deletion of TMPRSS6 attenuates the phenotype in a mouse model of beta-thalassemia. Blood. 2012;119(21):5021–9. doi: 10.1182/blood-2012-01-401885.
  29. Guo S, Casu C, Gardenghi S, et al. Reducing TMPRSS6 ameliorates hemochromatosis and beta-thalassemia in mice. J Clin Invest. 2013;123(4):1531–41. doi: 10.1172/JCI66969.
  30. Schmidt PJ, Toudjarska I, Sendamarai AK, et al. An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe–/– mice and ameliorates anemia and iron overload in murine beta-thalassemia intermedia. Blood. 2013;121(7):1200–8. doi: 10.1182/blood-2012-09-453977.
  31. Goodnough LT, Nemeth E, Ganz T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood. 2010;116(23):4754–61. doi: 10.1182/blood-2010-05-286260.

 

Iron Metabolism in Normal and Pathological Conditions

E.A. Lukina, A.V. Dezhenkova

Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Elena Alekseevna Lukina, DSci, Professor, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-09-23; e-mail: elenalukina02@gmail.com

For citation: Lukina EA, Dezhenkova AV. Iron Metabolism in Normal and Pathological Conditions. Clinical oncohematology. 2015;8(4):355–361 (In Russ).

DOI: 10.21320/2500-2139-2015-8-4-362-367


ABSTRACT

This review describes modern conceptions of the physiological and pathological roles of iron, as well as the main mechanisms of iron metabolism regulation. In recent years, it has been shown that both deficiency and excess of iron can have damaging effects on the body, and the existence of homeostatic mechanisms controlling the total iron content of the body has been proved. The body of an average healthy adult human contains 3 to 5 g iron, most of which is contained in blood cells, bone marrow and liver; it is bound to proteins and this is important for prevention of cytotoxic effects of free iron ions. This review summarizes data on the main proteins involved in iron metabolism and their role in iron homeostasis. The processes of iron recirculation and the functional role of hepcidin, the key protein regulating extracellular iron concentration, are emphasized. The review provides brief data on pathogenic mechanisms of functional iron deficiency development and its role in anemia of chronic disease, as well as the pathogenesis, diagnostics and management of secondary iron overload.


Keywords: iron metabolism, ferritin, hepcidin, iron recirculation, anemia of chronic disease, iron overload.

Received: July 1, 2015

Accepted: November 9, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Петров В.Н. Физиология и патология обмена железа. Львов: Наука, 1982. 224 c.
    [Petrov VN. Fiziologiya i patologiya obmena zheleza. (Physiology and pathology of iron metabolism.) L’vov: Nauka Publ.; 1982. 224 p. (In Russ)]
  2. Finch CA, Huebers HA. Iron metabolism. Clin Physiol Biochem. 1986;4:5–15.
  3. Richardson DR. Role of iron in cell cycle progression and cellular proliferation. Book of Abstracts. BioIron; 2005:7.
  4. Roetto A, Camaschella C. New insights into iron homeostasis through the study of non-HFE hereditary haemochromatosis. Best Pract Res Clin Haematol. 2005;18:235–50. doi: 10.1016/j.beha.2004.09.004.
  5. Sussman HH. Iron in cancer. Pathobiology. 1992;60:2–9. doi: 10.1159/000163690.
  6. Идельсон Л.И., Воробьев А.И. Железодефицитная анемия. Руководство по гематологии. Под ред. А.И. Воробьева. В 3 томах. М.: Ньюдиамед, 2005. Т. 2. С. 171–90.
    [Idel’son LI, Vorob’ev AI. Iron-deficiency anemia. In: Vorob’ev AI, ed. Rukovodstvo po gematologii. (Manual of Hematology.) In 3 vol. Moscow: Newdiamed Publ.; 2005. Vol. 2. p. 171–90. (In Russ)]
  7. Porter JB. Monitoring and treatment of iron overload: state of the art and new approaches. Sem Hematol. 2005;42(2 Suppl. 1):14–8. doi: 10.1053/j.seminhematol.2005.01.004.
  8. Kuntz E, Kuntz H-D. Haemochromatosis. In: Hepatology – Principles and Practice. Berlin: Springer-Verlag; 2002. p. 556–65.
  9. Ilickstein H, El RB, Shvartsman M, Cabantchik ZY. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood. 2005;106:3242–50. doi: 10.1182/blood-2005-02-0460.
  10. Corce V, Renaud St, Cannie I, et al. Tumoral vectorization of new iron chelators for antiproliferative activity: biological properties of polyaminoquinolines. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #230.
  11. Guyader CD, Thirouard A-S, Erdtmann L, et al. Liver iron is surrogate marker of severe fibrosis in chronic hepatitis. J Hepatol. 2007;46:587–96. doi: 10.1016/j.jhep.2006.09.021.
  12. Camaschella C. Iron and hepcidin: a story of recycling and balance. Hematol Am Soc Hematol Educ Program. 2013;2013:1–8. doi: 10.1182/asheducation-2013.1.1.
  13. Sikorska K, Romanowski T, Stalke P, et al. Association of Hepcidin mRNA Expression With Hepatocyte Iron Accumulation and Effects of Antiviral Therapy in Chronic Hepatitis C Infection. Hepat Mon. 2014;14(11):e21184. doi:10.5812/hepatmon.21184.
  14. Raha AA, Vaishnav RA, Friedland RP, et al. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. BMC Neuroscience. 2015;16(1):24. doi: 10.1186/2051-5960-1-55.
  15. Xu X, Pin S, Gathinji M, et al. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostais. Ann N Y Acad Sci. 2004;1012:299–305. doi: 10.1196/annals.1306.024.
  16. Moreau C, Devedjian J, Kluza J, et al. Targeting brain chelatable iron as therapeutic strategy for parkinson’s disease. Translational and clinical studies. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #52.
  17. Collingwood J, Finnegan M, Visanji N, et al. Brain iron and MRI in Alzheimer’s disease, Parkinson’s disease, and Multiple System Atrophy. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #67.
  18. Долгов В.В., Луговская С.А., Почтарь М.Е. Лабораторная диагностика нарушений метаболизма железа. СПб.: Vital Diagnostics, 2002. 51 c.
    [Dolgov VV, Lugovskaya SA, Pochtar’ ME. Laboratornaya diagnostika narushenii metabolizma zheleza. (Laboratory diagnosis of impaired iron metabolism.) Saint Petersburg: Vital Diagnostics Publ.; 2002. 51 p. (In Russ)]
  19. Cabantchik ZY, Brener W, Zanninelili G. LPI-labile plasma iron in iron overload. Best Pract Res Clin Haematol. 2005;18:277–87. doi: 10.1016/j.beha.2004.10.003.
  20. Cheng Y, Zak O, Aisen P, et al. Structure of the human transferring receptor-transferrin complex. Cell. 2004;116:483–5. doi: 10.1016/s0092-8674(04)00130-8.
  21. Левина А.А., Андреева А.П., Замчий А.А. Определение концентрации ферритина в сыворотке крови радиоиммунным методом. Гематология и трансфузиология. 1984;5:57–60.
    [Levina AA, Andreeva AP, Zamchii AA. Evaluation of serum ferritin levels using radioimmunoassay technique. Gematologiya i transfuziologiya. 1984;5:57–60. (In Russ)]
  22. Lukina EA, Levina AA, Mokeeva NA. The diagnostic significance of serum ferritin indices in patients with malignant and reactive histiocytoses. Br J Haematol. 1993;83:326–9. doi: 10.1111/j.1365-2141.1993.tb08289.x.
  23. Denz H, Orth B, Huber P, et al. Immune activation and anemia of chronic disorders. Blood. 1993;81:1404–9.
  24. Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of mammalian proton-coupled metal-ion transporter gene. Nature. 1997;388:482–8. doi: 10.1038/41343.
  25. Mims MP, Guan Y, Pospisilova D, et al. Identification of a human mutation of DMT1 in a patient with microcytic anemia and iron overload. Blood. 2005;105(3):1337–42. doi: 10.1182/blood-2004-07-2966.
  26. Napier I, Ponka P, Richardson DR. Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood. 2005;105:1867–974. doi: 10.1182/blood-2004-10-3856.
  27. D’Angelo G. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res. 2013;48(1):10–5. doi: 10.5045/br.2013.48.1.10.
  28. Hellman N, Gitlin JD. Ceruloplasmin metabolism and function. Ann Rev Nutr. 2002;22:439–58. doi: 10.1146/annurev.nutr.22.012502.114457.
  29. Fuqua B, Darshan D, Frazer D, et al. Severe defects in iron metabolism in mice with double knockout of the multicopper ferroxidases hephaestin and ceruloplasmin. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #24.
  30. Krause A, Neitz S, Magert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibit antimicrobial activity. FEBS Lett. 2000;480(2):147–50. doi: 10.1016/s0014-5793(00)01920-7.
  31. Park CH, Valore EV, Waring AJ, et al. Hepcidin: a urinary antibacterial peptide synthesized in the liver. J Biol Chem. 2001;276:7806–10. doi: 10.1074/jbc.m008922200.
  32. Ganz T. Hepcidin – a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol. 2005;18:171–82. doi: 10.1016/j.beha.2004.08.020.
  33. Pigeon C, Ilyin G, Courselaud B, et al. A new mouseт liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276(4):7811–9. doi: 10.1074/jbc.m008923200.
  34. Hunter HN, Fulton DB, Vogel HJ. The solution structure of human hepcidin, a antibicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem. 2002;277:37597–603. doi: 10.1074/jbc.m205305200.
  35. Harrison-Findik D, Lu S, Zmijewski E. Regulation of hepcidin transcription by reactive oxygen species and hypoxia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #6.
  36. Luo Q, Cheng Ch, Wang D, et al. Regulation of intracellular iron homeostasis under hypoxia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #166.
  37. Means RT, Krantz SB. Progress in understanding the pathogenesis of anemia of chronic disease. Blood. 1992;80:1639–44.
  38. Gardenghi S, Casu C, Renaud T, et al. Investigating the role of cytokines and hepcidin in anemia of inflammation. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #138.
  39. Nairz M, Ferring-Appel D, Schroll A, et al. Iron regulatory proteins mediate macrophage innate immunity against salmonella. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #34.
  40. Kautz L, Nemeth E, Ganz T. The erythroid factor erythroferrone and its role in iron homeostasis. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #30.
  41. Frazer D, Wilkins S, Whitelaw N, et al. Hepcidin-independent iron recycling in a mouse model of haemolytic anaemia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #32.
  42. Gerhard G, Still Ch, Wood C, et al. Primary hepatic iron overload in extreme obesity is common and not associated with metabolic abnormalities. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #58.
  43. Miyanishi K, Tanaka Sh, Kobune M, et al. Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #227.
  44. Kobune M, Kikuchi S, Iyama S, et al. Iron chelation therapy improves oxidative DNA damage in hematopoietic cells derived from transfusion-dependent myelodysplastic syndrome. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #93.
  45. Jones E, Allen A, Evans P, et al. Differences in hepcidin regulation distinguish mild and severe phenotypes of e-beta thalassaemia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #27.