The Effect of Anticoagulant Therapy on Survival and Outcome of Venous Thrombosis in Children, Teenagers, and Young Adults with Acute Lymphoblastic Leukemia Treated According to ALL-MB-2008 and ALL-MB-2015 Protocols

VV Dmitriev, NV Migal, OI Bydanov, NV Lipai, EV Dmitriev

Republican National Applied Research Center of Pediatric Oncology, Hematology and Immunology, 43 Frunzenskaya, Borovlyany, Minskii district, Republic of Belarus, 223053

For correspondence: Vyacheslav Vasil’evich Dmitriev, MD, PhD, 43 Frunzenskaya str., Borovlyany, Minskii district, Republic of Belarus, 223053; Tel.: +375(17)265-42-22; e-mail: dmitrievhaematol@mail.ru

For citation: Dmitriev VV, Migal NV, Bydanov OI, et al. The Effect of Anticoagulant Therapy on Survival and Outcome of Venous Thrombosis in Children, Teenagers, and Young Adults with Acute Lymphoblastic Leukemia Treated According to ALL-MB-2008 and ALL-MB-2015 Protocols. Clinical oncohematology. 2019;12(3):338–43 (In Russ).

doi: 10.21320/2500-2139-2019-12-3-338-343


ABSTRACT

Aim. To assess the effect of anticoagulant therapy on survival and outcome of venous thrombosis in children, teenagers, and young adults with acute lymphoblastic leukemia (ALL).

Materials & Methods. Venous thrombosis was diagnosed in 42 out of 592 ALL patients treated according to ALL-MB-2008 and ALL-MB-2015 protocols from 2008 to 2017.

Results. A daily dose of 150–200 IU/kg low molecular weight heparin (LMWH) was administered to 30 patients. Duration of anticoagulant treatment was up to 1 month in 4 patients, 2–3 months in 8 patients, 4–6 months in 12 patients, and 7–12 months in 4 patients. To 2 patients anticoagulants were administered for more than 24 months. Complete recanalization of thrombosed vessel was achieved in 19 patients, partial recanalization was achieved in 6 patients, obliteration of predominantly internal jugular vein was found in 5 patients. During thrombocytopenia (100 to 35 × 109/L) 12 patients received reduced doses of LMWH for 1–4 weeks. In the period of chemotherapy-induced thrombocytopenia the daily LMWH dose was reduced in proportion to thrombocyte level. After thrombocyte recovery up to more than 100 × 109/L antithrombotic treatment was continued with LMWH daily dose of 150–200 anti-Xa IU/kg. The duration of anticoagulant treatment among 12 patients who received reduced doses of LMWH was up to 1 month in 3 patients, 2–3 months in 4 patients, 4–6 months in 3 patients, and 7–12 months in 2 patients. Complete recanalization of thrombosed vessel was achieved in 8 patients, partial recanalization was achieved in 2 patients, vein obliteration was found in 2 patients. No correlation between LMWH dosage and thrombosis outcome was observed (χ2 = 0.494; = 0.78). Maintenance (accompanying) therapy was completed in 38 out of 42 ALL patients with venous thrombosis. Event-free survival was 83 ± 8 %, that was similar to the one (81 ± 2 %) in patients without thrombosis (= 0.654).

Conclusion. Anticoagulant treatment of venous thrombosis complicating ALL in children, teenagers, and young adults did not yield a decrease of either overall or event-free survival. Reduction of LMWH doses in the period of chemotherapy-induced thrombocytopenia did not affect the outcome of venous thrombosis.

Keywords: venous thrombosis, coagulation, acute lymphoblastic leukemia, children, teenagers, young adults, anticoagulant therapy, low molecular weight heparin.

Received: October 30, 2018

Accepted: June 5, 2019

Read in PDF 


REFERENCES

  1. Жарков П.А., Румянцев А.Г., Новичкова Г.А. Венозные тромбозы у детей со злокачественными новообразованиями (обзор литературы). Российский журнал детской гематологии и онкологии. 2015;2(1):66–74. doi: 10.17650/2311-1267-2015-1-66-74.

    [Zharkov PA, Rumyantsev AG, Novichkova GA. Venous thromboembolism in children with cancer. Russian Journal of Pediatric Hematology and Oncology. 2015;2(1):66–74. doi: 10.17650/2311-1267-2015-1-66-74. (In Russ)]

  2. Raetz EA, Salzer WL. Tolerability and efficacy of L-asparaginase therapy in pediatric patients with acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2010;32(7):554–63. doi: 10.1097/mph.0b013e3181e6f003.

  3. Payne JH, Vora AJ. Thrombosis and acute lymphoblastic leukemia. Br J Haematol. 2007;138(4):430–45. doi: 10.1111/j.1365-2141.2007.06677.x.

  4. Athale UH, Laverdiere C, Nayiager T, et al. Evaluation for inherited and acquired prothrombotic defects predisposing to symptomatic thromboembolism in children with acute lymphoblastic leukemia: a protocol for a prospective, observational, cohort study. BMC Cancer. 2017;17(1):313. doi: 10.1186/s12885-017-3306-5.

  5. Tuckuviene R, Ranta S, Albertsen BK, et al. Prospective study of thromboembolism in 1038 children with acute lymphoblastic leukemia: a Nordic Society of Pediatric Hematology and Oncology (NOPHO) study. J Thromb Haemost. 2016;14(3):485–94. doi: 10.1111/jth.13236.

  6. Caruso V, Iacoviello L, Di Castelnuovo A, et al. Thrombotic complications in childhood acute lymphoblastic leukemia: a meta-analysis of 17 prospective studies comprising 1752 pediatric patients. Blood, 2006;108(7):2216–22. doi: 10.1182/blood-2006-04-015511.

  7. Mitchell L, Lambers M, Flege S, et al. Validation of a predictive model for identifying an increased risk for thromboembolism in children with acute lymphoblastic leukemia: results of a multicenter cohort study. 2010;115(24):4999–5004. doi: 10.1182/blood-2010-01-263012.

  8. Appel IM, Hop WCJ, van Kessel-Bakvis C, et al. L-Asparaginase and the effect of age on coagulation and fibrinolysis in childhood acute lymphoblastic leukemia. Thromb Haemost. 2008;100(08):330–7. doi: 10.1160/th07-10-0620.

  9. Kearon С, Akl E, Ornelas J, et al. Antithrombotic Therapy for VTE Disease. CHEST Guideline and Expert Panel Report. CHEST. 2016;149 (2):315–52. doi: 10.1016/j.chest.2015.11.026.

  10. Carrier M, Khorana AA, Zwicker JI, et al. Management of challenging cases of patients with cancer-associated thrombosis including recurrent thrombosis and bleeding: guidance from the SSC of the ISTH. J Thromb Haemost. 2013;11(9):1760–5. doi: 10.1111/jth.12338.

  11. Saccullo G, Malato A, Raso S, et al. Cancer patients requiring interruption of long-term warfarin because of surgery or chemotherapy induced thrombocytopenia: the use of fixed subtherapeutic doses of low molecular weight heparin. Am J Hematol. 2012;87(4):388–91. doi: 10.1002/ajh.23122.

  12. Kerlin B, Stephens J, Hogan M, et al. Development of a Pediatric-Specific Clinical Probability Tool for Diagnosis of Venous Thromboembolism: A Feasibility Study. Pediatr Res. 2014;77(3):463–71. doi: 10.1038/pr.2014.198.

  13. Babilonia KM, Golightly LK, Gutman JA, et al. Antithrombotic Therapy in Patients With Thrombocytopenic Cancer: Outcomes Associated With Reduced-Dose, Low-Molecular-Weight Heparin During Hospitalization. Clin Appl Thromb Hemost. 2014;20(8):799–806. doi: 10.1177/1076029614543140.

  14. Dmitriev Nadroparin and dalteparin pharmacokinetics in thromboses complicated the treatment of children with oncological diseases. The Book of Abstracts The Congress on Open Issues in Thrombosis and Hemostasis 2018 jointly with the 9th Russian Conference on Clinical Hemostasiology and Hemorheology, Saint Petersburg, Russia October 4–6, 2018. pp 60.