Antithrombotic Therapy in Patients with Malignant Lymphoproliferative Disorders Treated with Ibrutinib

EI Emelina, GE Gendlin, IG Nikitin

NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Elena Ivanovna Emelina, MD, PhD, 1 Ostrovityanova str., Moscow, Russian Federation, 117997; e-mail: eei1210@mail.ru

For citation: Emelina EI, Gendlin GE, Nikitin IG. Antithrombotic Therapy in Patients with Malignant Lymphoproliferative Disorders Treated with Ibrutinib. Clinical oncohematology. 2019;12(4):449–60 (In Russ).

DOI: 10.21320/2500-2139-2019-12-4-449-460


ABSTRACT

Background. Antithrombotic therapy in chronic lymphocytic leukemia (CLL) patients is challenging, as this category of patients is initially characterized by high risk of hemorrhagic complications. The use of ibrutinib influencing the platelet function constitutes an additional bleeding risk. A crucial task consists in risk minimization of both hemorrhagic complications and thrombosis while sticking to ibrutinib treatment.

Aim. To assess the feasibility of antithrombotic therapy in CLL patients receiving ibrutinib and having indications for this therapy, as well as the use of dual antiplatelet and dual antithrombotic therapies.

Materials & Methods. The trial included 197 patients with CLL (n = 190), mantle cell lymphoma (n = 5), and Waldenstrom macroglobulinemia (n = 2) aged 32 to 91 years (median 66 years). The number of female patients was 70, aged 39 to 83 years (median 64 years) and the number of male patients was 127, aged 32 to 91 years (median 66 years). The patients were at different stages of ibrutinib treatment within 5 to 56 months. In this work methods of nonparametric statistics were used. All data are shown in the form of median and interquartile range or absolute numbers and percentages.

Results. Antithrombotic therapy during ibrutinib administration was used in 29 (14,7 %) patients. The new oral anticoagulants (NOAC) had to be prescribed to 26 patients with atrial fibrillation (AF). Dual antiplatelet therapy was used in 3 patients who underwent percutaneous coronary intervention with subsequent revascularization. In 2 patients with AF who underwent coronary stenting the dual antithrombotic therapy instead of the triple one was administered according to the management algorithm for patients with high risk of hemorrhagic complications. In 6 patients out of those who had AF and received NOAC the drug was withdrawn because of thrombocytopenia. Hemorrhagic manifestations which were the reason of NOAC withdrawal were observed in 1 female patient in the form of gross hematuria recurring when anticoagulant treatment was switched to the minimal effective doses and also when the administered anticoagulant was replaced with another one used in the minimal dose effective for stroke prevention in patients with AF. Hemorrhagic manifestations which were the reason of anticoagulant dose reduction emerged in 4 patients, and 3 patients required another anticoagulant for the same reason. In 5 patients there was no need to change the anticoagulant treatment. In 10 NOAC recipients no hemorrhagic syndrome was observed. None of 5 patients receiving dual antithrombotic therapy showed hemorrhagic complications within 3 to 14 months. The incidence of them in women is more than twice as high as in men.

Conclusion. Hemorrhagic manifestations in patients receiving ibrutinib and antithrombotic therapy were not life threatening and, in most cases, did not require drug withdrawal. Thrombocytopenia was the main reason for NOAC withdrawal. A thorough follow-up of patients receiving ibrutinib and antithrombotic therapy allows for timely correction of it if necessary. It involves dose reduction, anticoagulant replacement, and in rare cases the withdrawal of antithrombotic therapy with subsequent consideration of the feasibility of its resumption. As a rule, the need for different variants of antithrombotic therapy is not an obstacle to either assignment or continuation of antineoplastic treatment with ibrutinib.

Keywords: ibrutinib, chronic lymphocytic leukemia, antithrombotic therapy, dual antiplatelet therapy, atrial fibrillation, coronary stenting on ibrutinib therapy, new oral anticoagulants, rivaroxaban, dabigatran, apixaban.

Received: February 25, 2019

Accepted: July 31, 2019

Read in PDF


REFERENCES

  1. Chang H-M, Okwuosa TM, Scarabelli T, et al. Cardiovascular Complications of Cancer Therapy Best Practices in Diagnosis, Prevention, and Management: Part 2. J Am Coll Cardiol. 2017;70(2):2552–65. doi: 10.1016/j.jacc.2017.09.1095.

  2. Mulligan SP, Ward CM, Whalley D, et al. Atrial fibrillation, anticoagulant stroke prophylaxis and bleeding risk with ibrutinib therapy for chronic lymphocytic leukaemia and lymphoproliferative disorders. Br J Haematol. 2016;175(3):359–64. doi: 10.1111/bjh.14321.

  3. Short NJ, Connors JM. New Oral Anticoagulants and the Cancer Patient. Oncologist. 2014;19(1):82–93. doi: 10.1634/theoncologist.2013-0239.

  4. Levine GN, Bates ER, Bittl JA, et al. 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: An Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention, 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease, 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction, 2014 AHA/ACC Guideline for the Management of Patients With Non–ST-Elevation Acute Coronary Syndromes, and 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. Circulation. 2016;134(10):e123–e155. doi: 10.1161/CIR.0000000000000404.

  5. Gribben JG, Bosch F, Cymbalista F, et al. Optimising outcomes for patients with chronic lymphocytic leukaemia on ibrutinib therapy: European recommendations for clinical practice. Br J Haematol. 2018;180(5):666–79. doi: 10.1111/bjh.15080.

  6. Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2017;39(3):213–60. doi: 10.1093/eurheartj/ehx419.

  7. Lopez-Fernandez T, Garcia AM, Beltran AS, et al. Cardio-Onco-Hematology in Clinical Practice. Position Paper and Recommendations. Rev Esp Cardiol. 2017;70(6):474–86. doi: 10.1016/j.rec.2016.12.041.

  8. Шахматова О.О. Специфические антидоты к новым пероральным антикоагулянтам. Атеротромбоз. 2016;(1):81–94. doi: 10.21518/2307-1109-2016-1-81-94.

    [Shakhmatova OO. Specific antidotes to new oral anticoagulants. Atherothrombosis Journal. 2016;(1):81–94. doi: 10.21518/2307-1109-2016-1-81-94. (In Russ)]

  9. Shatzel JJ, Olson SR, Tao DL, et al. Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies. J Thromb Haemost. 2017;15(5):835–47. doi: 10.1111/jth.13651.

  10. Levy JH, Ageno W, Chan NC, et al. When and how to use antidotes for the reversal of direct oral anticoagulants: guidance from the SSC of the ISTH. J Thromb Haemost. 2016;14(3):623–7. doi: 10.1111/jth.13227.

  11. Crowther M, Crowther MA. Antidotes for novel oral anticoagulants: current status and future potential. Arterioscler Thromb Vasc Biol. 2015;35(8):1736–45. doi: 10.1161/ATVBAHA.114.303402.

  12. Клинические рекомендации: «диагностика и лечение фибрилляции предсердий». Под ред. А.Ш. Ревишвили, Ф.Г. Рзаева и др. [электронный документ]. Доступно по: http://webmed.irkutsk.ru/doc/pdf/af.pdf. Ссылка активна на 11.07.2019. [Revishvili ASh, Rzaev FG, et al, eds. Klinicheskie rekomendatsii: “diagnostika i lechenie fibrillyatsii predserdii”. (Clinical guidelines: “Diagnosis and treatment of atrial fibrillation”.) [Internet]. Available from: http://webmed.irkutsk.ru/doc/pdf/af.pdf. (accessed 11.07.2019) (In Russ)]

  13. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–962. doi: 10.1093/eurheartj/ehw210.

  14. Graham DJ, Baro E, Zhang R, et al. Comparative Stroke, Bleeding, and Mortality Risks in Older Medicare Patients Treated with Oral Anticoagulants for Nonvalvular Atrial Fibrillation. Am J Med. 2019;132(5):596–604.e11. doi: 10.1016/j.amjmed.2018.12.023.

  15. Mehran R, Rao SV, Bhatt DL, et al. Standardized bleeding definitions for cardiovascular clinical trials a consensus report from the bleeding academic research consortium. Circulation. 2011;123(23):2736–47. doi: 10.1161/CIRCULATIONAHA.110.009449.

Rhythm and Conduction Disorders in Patients Receiving Ibrutinib

EI Emelina1, GE Gendlin1, IG Nikitin1, EA Dmitrieva2, EA Nikitin2, VV Ptushkin2

1 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

2 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

For correspondence: Prof. Gennadii Efimovich Gendlin, MD, PhD, 1 Ostrovityanova str., Moscow, Russian Federation, 117997; e-mail: rgmugt2@mail.ru

For citation: Emelina EI, Gendlin GE, Nikitin IG, et al. Rhythm and Conduction Disorders in Patients Receiving Ibrutinib. Clinical oncohematology. 2019;12(2):220–30.

DOI: 10.21320/2500-2139-2019-12-2-220-230


ABSTRACT

Aim. Early diagnosis and treatment of rhythm and conduction disorders in patients receiving ibrutinib.

Materials & Methods. The trial included 206 patients with indications for ibrutinib, 193 of them are at different stages of treatment from 1.5 to 51 months. The trial enrolled the patients with chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom’s macroglobulinemia, aged 59 to 72 years (with median age of 66 years): 70 women aged 54 to 71 years (with median age of 64 years), and 123 men aged 60 to 72 years (with median age of 66 years). For early detection of rhythm and conduction disorders all the patients received ECG monitoring and 24-hour Holter ECG monitoring.

Results. Atrial fibrillation (AF) was identified in 21 (12 %) patients during ibrutinib therapy period of 1 to 24 months. Most often AF is registered within the first 6 months of ibrutinib therapy. Before its administration 18 (10.5 %) patients had history of prior AF. Thus, a total of 39 ibrutinib recipients with AF are followed-up. According to CHA2DS2-VASc 27 (69 %) of them have an indication for anticoagulant treatment. Severe atrioventricular block was diagnosed in 2 (1 %) patients that necessitated a pacemaker. In 2 (1 %) female patients severe supraventricular tachycardia with up to 295 BPM was registered which required ablation. In a patient with permanent atrial fibrillation rhythm pauses were identified and a pacemaker was installed.

Conclusion. The presence of AF in ibrutinib recipients is not a withdrawal criterion and does not require ibrutinib therapy to be discontinued. Anticoagulants were administered to patients with AF according to existing guidelines in compliance with CHA2DS2-VASc which had to be approached with caution and required dynamic monitoring of patients. Severe rhythm and conduction disorders in ibrutinib recipients arise in rare cases (2 %). Such patients require cardiac surgery with subsequent ibrutinib treatment without dose reduction. Timely diagnosis and the correction of rhythm and conduction allow to avoid changing of antitumor therapy plan.

Keywords: ibrutinib, chronic lymphocytic leukemia, atrial fibrillation, atrioventricular block, rhythm pauses, supraventricular tachycardia, pacemaker installation, ablation.

Received: October 30, 2018

Accepted: February 8, 2019

Read in PDF 


REFERENCES

  1. Gribben JG, Bosch F, Cymbalista F, et al. Optimising outcomes for patients with chronic lymphocytic leukaemia on ibrutinib therapy: European recommendations for clinical practice. Br J Haematol. 2018;180(5):666–79. doi: 10.1111/bjh.15080.

  2. Zamorano JL, Lancellotti P, Munoz RD, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801. doi: 10.1093/eurheartj/ehw211.

  3. Brown JR, Moslehi J, O’Brien S, et al. Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials. Haematologica. 2017;102(10):1796–805. doi: 10.3324/haematol.2017.171041.

  4. Gustine JN, Meid K, Dubeau TE, et al. Atrial fibrillation associated with ibrutinib in Waldenstrom macroglobulinemia. Am J Hematol. 2016;91(6):E312–3. doi: 10.1002/ajh.24366.

  5. Lee HJ, Chihara D, Wang M, et al. Ibrutinib-related atrial fibrillation in patients with mantle cell lymphoma. Leuk Lymphoma. 2016;57(12):2914–6. doi: 10.3109/10428194.2016.1169408.

  6. Leong DP, Caron F, Hillis C, et al. The risk of atrial fibrillation with ibrutinib use: a systematic review and meta-analysis. Blood. 2016;128(1):138–40. doi: 10.1182/blood-2016-05-712828.

  7. Mulligan SP, Ward CM, Whalley D, et al. Atrial fibrillation, anticoagulant stroke prophylaxis and bleeding risk with ibrutinib therapy for chronic lymphocytic leukaemia and lymphoproliferative disorders. Br J Haematol. 2016;175(3):359–64. doi: 10.1111/bjh.14321.

  8. Chai KL, Rowan G, Seymour JF, et al. Practical recommendations for the choice of anticoagulants in the management of patients with atrial fibrillation on ibrutinib. Leuk Lymphoma. 2017;58(12):2811–4. doi: 10.1080/10428194.2017.1315115.

  9. Thompson PA, Levy V, Tam CS, et al. Atrial fibrillation in CLL patients treated with ibrutinib. An international retrospective study. Br J Haematol. 2016;175(3):462–6. doi: 10.1111/bjh.14324.

  10. Клинические рекомендации: «диагностика и лечение фибрилляции предсердий», 2017г. Под ред. А.Ш. Ревишвили, Ф.Г. Рзаева и др. [электронный документ]. Доступно по: webmed.irkutsk.ru/doc/pdf/af.pdf. Ссылка активна на 30.10.2018.

    [Revishvili ASh, Rzaeva FG, et al. (eds). Klinicheskie rekomendatsii: “diagnostika i lechenie fibrillyatsii predserdii”. (Clinical Guidelines “Diagnosis and treatment of atrial fibrillation”.) [Internet] Available from: webmed.irkutsk.ru/doc/pdf/af. (accessed 30.10.2018) (In Russ)]

  11. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–962. doi: 10.1093/eurheartj/ehw210.

  12. Shanafelt TD, Parikh SA, Noseworthy PA, et al. Atrial fibrillation in patients with chronic lymphocytic leukemia (CLL). Leuk Lymphoma. 2017;58(7):1630–9. doi: 10.1080/10428194.2016.1257795.

  13. Wiczer TE, Levine LB, Brumbaugh J, et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib. Blood Adv. 2017;1(20):1739–48. doi: 10.1182/bloodadvances.2017009720.

  14. Steffel J, Verhamme P, Potpara TS, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018;39(16):1330–93. doi: 10.1093/eurheartj/ehy136.

  15. Shah S, Norby FL, Datta YH, et al. Comparative effectiveness of direct oral anticoagulants and warfarin in patients with cancer and atrial fibrillation. Blood Adv. 2018;2(3):200–9. doi: 10.1182/bloodadvances.2017010694.

  16. Lopez-Fernandez T, Canales M, Farmakis D, et al. Ibrutinib-Associated Atrial Fibrillation: A Practical Approach. Ann Hematol Oncol. 2018;5(4):1203. doi: 10.26420/annhematoloncol.2018.1203.

  17. Thorp BC, Badoux X. Atrial fibrillation as a complication of ibrutinib therapy: clinical features and challenges of management. Leuk Lymphoma. 2017;59(2):311–20. doi: 10.1080/10428194.2017.1339874.

  18. Mathur K, Saini A, Ellenbogen KA, Shepard RK. Profound Sinoatrial Arrest Associated with Ibrutinib. Case Rep Oncol Med. 2017;2017:1–3. doi: 10.1155/2017/7304021.

  19. Имбрувика® (инструкция по медицинскому применению). Джонсон & Джонсон (Россия). Доступно по: https://www.vidal.ru/drugs/imbruvica__43861. Ссылка активна на10.2018.

    [Imbruvica® (package insert). Johnson & Johnson (Russia). Available from: https://www.vidal.ru/drugs/imbruvica__43861. (accessed 30.10.2018) (In Russ)]

Ibrutinib in the Treatment of Refractory Chronic Lymphocytic Leukemia

EA Nikitin1, EA Dmitrieva1, MA Panteleev2, EI Emelina3, VL Ivanova1, YuB Kochkareva1, EG Arshanskaya1, IE Lazarev1, EE Markova1, LA Mukha1, NG Novitskaya1, MM Pankrashkina1, VV Glazunova1, AV Shubina1, SA Chernysh1, NK Khuazheva1, EV Naumova4, SA Lugovskaya4, ME Pochtar’4, TN Obukhova5, OYu Vinogradova1, GE Gendlin3, VV Ptushkin1

1 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

2 Dmitrii Rogachev Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117198

3 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

4 Department of Clinical Laboratory Diagnostics, Russian Medical Academy of Postgraduate Education, 7 bld. 2 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

5 Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Evgenii Aleksandrovich Nikitin, DSci, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284; Tel.: +7(916)572-06-44; e-mail: eugene_nikitin@mail.ru

For citation: Nikitin EA, Dmitrieva EA, Panteleev MA, et al. Ibrutinib in the Treatment of Refractory Chronic Lymphocytic Leukemia. Clinical oncohematology. 2017;10(3):271–81 (In Russ).

DOI: 10.21320/2500-2139-2017-10-3-271-281


ABSTRACT

Background & Aims. This paper presents the results of the observational study of ibrutinib in patients with chronic lymphocytic leukemia (CLL), conducted in SP Botkin Municipal Clinical Hospital. The main objective was the analysis of complications of ibrutinib and identification of factors, influencing the dosage regimen; the secondary objective was the estimation of the total response to treatment, event-free and overall survival.

Materials & Methods. The study included 96 patients with CLL with indications for ibrutinib therapy. The median age was 64,9 years (range 32–91 years), the study population consisted of 69 (72 %) men and 27 (28 %) women. The condition of 25 (26 %) patients according to the ECOG scale was of > 3 points. The disease of stage C were diagnosed in 36 (37 %) patients . Deletion of 17p/TP53 mutations were detected in 29 (33 %) of 87 patients. Seventy patients had refractory CLL. The median of the number of the lines of the previous therapy was 3 (range 1–9). Adverse events were assessed in accordance with the CTCAE criteria, version 4.0; the bleeding severity was evaluated using ITP-specific bleeding score; hematological complications were classified according to the recommendations of IWCLL-2008.

Results. Ibrutinib was administered at a dosage of 420 mg per day daily until progression or intolerable toxicity. The median duration of ibrutinib therapy was 10.3 months. Ibrutinib was shown to have moderate toxicity, mostly of grade I or II. The bleeding was the most frequent complication. Of the hematological complications, thrombocytopenia was the most common (35 %); neutropenia < 1 × 109/L was observed in 4 patients. GIT complications were identified in 51 (53 %) patients. Atrial fibrillation was registered in 5 patients, who initially had sinus rhythm. The total of 144 infections were diagnosed in 64 (66 %) patients. Severe infections (> grade III) developed in 26 % of patients. The treatment response was assessed in 92 patients. The overall response to treatment was 89 %. Complete remission, partial remission and partial remission with lymphocytosis were achieved in 4 (4 %), 57 (62 %), and 21 (23 %) patients, respectively. The event-free survival and overall survival by the month 10 was 90 % and 91 %, respectively. For this observation period, ECOG status and the number of the lines of therapy prior to ibrutinib had the prognostic value.

Conclusion. Ibrutinib was shown to have high efficiency in relapsed/refractory forms of CLL. The nature of the ibrutinib toxicity is fundamentally different from that of the conventional chemotherapy. The frequency of ibrutinib therapy complications and patients’ non-compliance depends on the intensity of the previous treatment of CLL. Despite a short observation period, it can be concluded that ibrutinib had the greatest impact on the patient’s quality of life when administered for the first relapse. The low toxicity of ibrutinib is likely to allow the combination with other antitumor agents.

Keywords: chronic lymphocytic leukemia, del 17p, TP53, refractory CLL, ibrutinib, bleeding, atrial fibrillation.

Received: March 14, 2017

Accepted: April 14, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–74. doi: 10.1016/S0140-6736(10)61381-5.
  2. Fischer K, Cramer P, Busch R, et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012;30(26):3209–16. doi: 10.1200/jco.2011.39.2688.
  3. Fischer K, Bahlo J, Fink AM, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127(2):208–15. doi: 10.1182/blood-2015-06-651125.
  4. Thompson PA, Tam CS, O’Brien SM, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016;127(3):303–9. doi: 10.1182/blood-2015-09-667675.
  5. Rossi D, Terzi-di-Bergamo L, De Paoli L, et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood. 2015;126(16):1921–4. doi: 10.1182/blood-2015-05-647925.
  6. Shvidel L, Shtalrid M, Bairey O, et al. Conventional dose fludarabine-based regimens are effective but have excessive toxicity in elderly patients with refractory chronic lymphocytic leukemia. Leuk Lymphoma. 2003;44(11):1947–50. doi: 10.1080/1042819031000110991.
  7. Marotta G, Bigazzi C, Lenoci M, et al. Low-dose fludarabine and cyclophosphamide in elderly patients with B-cell chronic lymphocytic leukemia refractory to conventional therapy. Haematologica. 2000;85(12):1268–70.
  8. Smolej L, Spacek M, Doubek M, et al. Low-Dose Fludarabine and Cyclophosphamide Combined With Rituximab Is a Safe and Effective Treatment Option for Elderly and Comorbid Patients With Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: Preliminary Results of Project Q-lite, by the Czech CLL Study Group. Clin Lymph Myel Leuk. 2011;11:S261. doi: 10.1016/j.clml.2011.09.181.
  9. Mulligan SP, Gill D, Turner P, et al. A Randomised Dose De-Escalation Safety Study of Oral Fludarabine, ±Oral Cyclophosphamide and Intravenous Rituximab (OFOCIR) As First-Line Therapy of Fit Patients with Chronic Lymphocytic Leukaemia (CLL) Aged ≥65 Years: Final Analysis of Response and Toxicity. Blood. 2014;124:3325.
  10. Nikitin E, Kisilichina D, Zakharov O, et al. Randomised Comparison Of FCR-Lite And ClbR (Chlorambucil Plus Rituximab) Regimens In Elderly Patients With Chronic Lymphocytic Leukemia. Hematologica. 2013;98(Suppl 1):473, abstract NS1147.
  11. Foon KA, Mehta D, Lentzsch S, et al. Long-term results of chemoimmunotherapy with low-dose fludarabine, cyclophosphamide and high-dose rituximab as initial treatment for patients with chronic lymphocytic leukemia. Blood. 2012;119(13):3184–5. doi: 10.1182/blood-2012-01-408047.
  12. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10. doi: 10.1056/nejmoa1313984.
  13. Fischer K, Cramer P, Busch R, et al. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2011;29(26):3559–66. doi: 10.1200/jco.2010.33.8061.
  14. Robak T, Dmoszynska A, Solal-Celigny Ph, et al. Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol. 2010;28(10):1756–65. doi: 10.1200/jco.2009.26.4556.
  15. Badoux XC, Keating MJ, Wen S, et al. Phase II study of lenalidomide and rituximab as salvage therapy for patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2013;31(5):584–91. doi: 10.1200/jco.2012.42.8623.
  16. Keating MJ, O’Brien S, Kontoyiannis D, et al. Results of first salvage therapy for patients refractory to a fludarabine regimen in chronic lymphocytic leukemia. Leuk Lymphoma. 2002;43(9):1755–62. doi: 10.1080/1042819021000006547.
  17. Keating M.J. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood. 2002;99(10):3554–61. doi: 10.1182/blood.v99.10.3554.
  18. Stilgenbauer S, Hallek M. Chronic lymphocytic leukemia. Treatment and genetic risk profile. Internist (Berl). 2013;54(2):164, 166–70.
  19. Stilgenbauer S, Zenz Th, Winkler D, et al. Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2009;27(24):3994–4001. doi: 10.1200/jco.2008.21.1128.
  20. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94. doi: 10.1200/jco.2012.42.7906.
  21. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi: 10.1056/NEJMoa1215637.
  22. Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol. 2012;31(2):119–32. doi: 10.3109/08830185.2012.664797.
  23. Ponader S, Chen S-S, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182–9. doi: 10.1182/blood-2011-10-386417.
  24. Chun JK, Lee TJ, Song JW, et al. Analysis of clinical presentations of Bruton disease: a review of 20 years of accumulated data from pediatric patients at Severance Hospital. Yonsei Med J. 2008;49(1):28–36. doi: 10.3349/ymj.2008.49.1.28.
  25. Bruton OC, Apt L, Gitlin D, Janeway CA. Absence of serum gamma globulins. AMA Am J Dis Child. 1952;84(5):632–6.
  26. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23. doi: 10.1056/nejmoa1400376.
  27. Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506. doi: 10.1182/blood-2014-10-606038.
  28. O’Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17(10):1409–18. doi: 10.1016/s1470-2045(16)30212-1.
  29. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N Engl J Med. 2015;373(25):2425–37. doi: 10.1056/NEJMoa1509388.
  30. Choi MY, Kipps TJ. Inhibitors of B-cell receptor signaling for patients with B-cell malignancies. Cancer J. 2012;18(5):404–10. doi: 10.1097/ppo.0b013e31826c5810.
  31. de Rooij MF, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–4. doi: 10.1182/blood-2011-11-390989.
  32. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56. doi: 10.1182/blood-2007-06-093906.
  33. Jones JA, Hillmen P, Coutre S, et al. Pattern of Use of Anticoagulation and/or Antiplatelet Agents in Patients with Chronic Lymphocytic Leukemia (CLL) Treated with Single-Agent Ibrutinib Therapy. Blood. 2014;124(21):1990.
  34. Rodeghiero F, Michel M, Gernsheimer T, et al. Standardization of bleeding assessment in immune thrombocytopenia: report from the International Working Group. Blood. 2013;121(14):2596–606. doi: 10.1182/blood-2012-07-442392.
  35. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. J Clin Oncol. 1999;17(4):1244. doi: 10.1200/jco.1999.17.4.1244.
  36. Pettitt AR, Jackson R, Carruthers S, et al. Alemtuzumab in combination with methylprednisolone is a highly effective induction regimen for patients with chronic lymphocytic leukemia and deletion of TP53: final results of the national cancer research institute CLL206 trial. J Clin Oncol. 2012;30(14):1647–55. doi: 10.1200/jco.2011.35.9695.
  37. Perkins JG, Flynn JM, Howard RS, Byrd JC. Frequency and type of serious infections in fludarabine-refractory B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma: implications for clinical trials in this patient population. Cancer. 2002;94(7):2033–9. doi: 10.1002/cncr.0680.abs.
  38. Wierda WG, Kipps TJ, Mayer J, et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol. 2010;28(10):1749–55. doi: 10.1200/jco.2009.25.3187.