Complex Karyotype in Pediatric Acute Myeloid Leukemia

EV Fleishman1, OI Sokova1, AV Popa1, II Kalinina2, LN Konstantinova1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Dmitrii Rogachev Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology under the Ministry of Health of the Russian Federation, 1 Samory Mashela str., Moscow, Russian Federation, 117997

For correspondence: Elena Vol’fovna Fleischman, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)323-57-22; e-mail: flesok@yandex.ru

For citation: Fleishman EV, Sokova OI, Popa AV, et al. Complex Karyotype in Pediatric Acute Myeloid Leukemia. Clinical oncohematology. 2015;8(2):151–60 (In Russ).


ABSTRACT

Objective. To evaluate the clinical relevance of the complex karyotype in pediatric practice.

Methods. In this study, we investigated the karyotype of 521 patients with de novo AML (299 children and 222 adults). Among them 34 pediatric patients and 25 adults had various complex karyotypes.

Results. Certain differences of complex karyotypes between pediatric and adult AML were revealed. Some peculiarities of marker sets were also found: in children, such high-risk markers as monosomy 5 and del(5q) as well as monosomy 7 and del(7q) were less frequent than in adults. Monosomal complex karyotypes were less common in children. Specific distribution of blast cell morphological types was observed in pediatric AML with complex karyotypes. Unlike AML with noncomplex karyotype, where the M2 type was found in almost a half (47.9 %) of patients, in patients with 3 and more chromosome aberrations its incidence was 11.8 % only (= 0,000). However, incidence of M5 and rare M0 and M7 types in patients with complex karyotype was higher than in the others. RFS in patients with a complex karyotype was similar to that of remaining patients in the high-risk group: 38.4 ± 9.9 % and 30.6 ± 8.8 %, respectively. The OS rate of patients with a complex karyotype was practically identical to that of intermediate-risk group patients: 48.0 ± 10.0 % and 48.0 ± 10.0 %, respectively. There was a comparatively high 10-year survival rate (RFS and OS were higher than 30 %) in the pediatric high-risk group. Ten of 25 (40 %) patients with complex karyotype survived five years and 7 of them persisted in complete remission for more than 10 years. Five-year survival in adults from high-risk group is up to 15 %.

Conclusion. Analysis of data on survival of pediatric AML does not answer a question in which prognostic group (high or intermediate-risk) cases of AML with complex karyotypes without high-risk chromosome markers must be included.

Keywords: pediatric acute myeloid leukemia, chromosome aberrations, complex karyotype.


Received: November 26, 2014

Accepted: February 2, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML10 trial. Blood. 1998;92(7):2322–33.
  2. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–36. doi: 10.1182/blood-2002-03-0772.
  3. Mitelman F. Catalog of chromosome aberrations in cancer. 5th edition. Willey-Liss; 1995.
  4. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  5. Grimwade D. The changing paradigm of prognostic factors in acute myeloid leukemia. Best Pract Res Clin Haematol. 2012;25(4):419–25. doi: 10.1016/j.beha.2012.10.004.
  6. Mrozek K. Acute myeloid leukemia with a complex karyotype. Semin Oncol. 2013;35(4):365–77. doi: 10.1053/j.seminoncol.2008.04.007.
  7. Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents; recommendations from an international expert panel. Blood. 2012;120(16):3187–205. doi: 10.1182/blood-2012-03-362608.
  8. von Neuhoff C, Reinhardt D, Sander A, et al. Prognostic impact of specific chromosomal aberrations in large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol. 2010;28(16):2682–8. doi: 10.1200/jco.2009.25.6321.
  9. Harrison CJ, Hills RK, Moorman AV, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML10 and 12. J Clin Oncol. 2010;28(16):2674–81. doi: 10.1200/jco.2009.24.8997.
  10. Флейшман Е.В., Сокова О.И., Кириченко О.П. и др. Сложные аномалии кариотипа при остром миелоидном лейкозе детей. Вестник РАМН. 2008;5:3–7.
    [Fleishman EV, Sokova OI, Kirichenko OP, et al. Complex karyotype abnormalities in pediatric acute myeloid leukemia. Vestnik RAMN. 2008;5:3–7. (In Russ)]
  11. Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United kingdom Medical Research Council trials. Blood. 2010;116(3):354–65. doi: 10.1182/blood-2009-11-254441.
  12. Баранова О.Ю., Волкова М.А., Френкель М.А. и др. Анализ результатов различных программ терапии острых нелимфобластных лейкозов с М0-М2, М4-М7 ФАБ-вариантами (по данным Российского онкологического научного центра им. Н.Н. Блохина, РАМН). Гематология и трансфузиология. 2003;48(2):3–10.
    [Baranova OYu, Volkova MA, Frenkel’ MA, et al. Analysis of outcomes of different treatment regimens for acute non-lymphoblastic leukaemia with M0-M2, M4-M7 FAB-variants (according to data of the N.N. Blokhin Russian Cancer Research Center). Gematologiya i transfuziologiya. 2003;48(2):3–10. (In Russ)]
  13. Shaffer LG, et al, eds. ISCN-2013: An International System for Human Cytogenetic Nomenclature. Basel: Karger; 2013.
  14. Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457–81. doi: 10.2307/2281868.
  15. Stark B, Jeison M, Glazer G, et al. Classical and molecular cytogenetic abnormalities and outcome of childhood acute myeloid leukemia: a report from a referral center in Israel. Br J Haematol. 2004;126(3):320–37. doi: 10.1111/j.1365-2141.2004.05038.x.
  16. Gibson BES, Webb DKH, Howman AJ, et al. Results of randomized trial in children with acute myeloid leukemia: Medical research Council AML 12 trial. Br J Haematol. 2011;155(3):366–77. doi: 10.1111/j.1365-2141.2011.08851.x.
  17. Kelly MG, Horan JT, Alonzo TA, et al. Comparable survival for pediatric acute myeloid leukemia with poor-risk cytogenetics following chemotherapy, matched related donor, or unrelated donor transplantation. Pediatr Blood Cancer. 2014;61(2):269–375. doi: 10.1002/pbc.24739.
  18. Slovak ML, Kopecku KJ, Kassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology group study. Blood. 2000;96(13):4075–83.
  19. Schoch C, Haferlach T, Haase D, et al. Patients with de novo acute myeloid leukemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: a study of 90 patients. Br J Haematol. 2001;112(1):118–26. doi: 10.1046/j.1365-2141.2001.02511.x.
  20. Schoch C, Kern W, Schnittger S, et al. The influence of age on prognosis of de novo acute myeloid leukemia differs according to cytogenetic subgroups. Haematologica. 2004;89(9):1082–90.
  21. Breems DA, van Putten DL, de Greef GE, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26(29):4791–7. doi: 10.1200/jco.2008.16.0259.