Diagnostic Strategy for Detection of Typical and Atypical BCR-ABL Fusion Gene Transcripts in Chronic Myeloid Leukemia

OV Nikulina1,2, GA Tsaur1,2,3, TO Riger1,2, YuA Yakovleva1,2, AS Demina1,2, ER Semenikhina1, TV Spilnik3, LI Savelev1,2,3, LG Fechina1,2

1 Regional Children’s Hospital No. 1, 32 Serafimy Deryabinoy str., Yekaterinburg, Russian Federation, 620149

2 Research Institute of Medical Cell Technologies, 22a K. Marksa str., Yekaterinburg, Russian Federation, 620026

3 Ural State Medical University, 3 Repina str., Yekaterinburg, Russian Federation, 620219

For correspondence: Grigorii Anatol’evich Tsaur, PhD, 32 Serafimy Deryabinoy str., Yekaterinburg, Russian Federation, 620149; Tel.: +7(343)216-25-17; e-mail: tsaur@mail.ru

For citation: Nikulina O.V., Tsaur G.A., Riger T.O., Yakovleva Yu.A., Demina A.S., Semenikhina E.R., Spil’nik T.V., Savel’ev L.I., Fechina L.G. Diagnostic Strategy for Detection of Typical and Atypical BCR-ABL Fusion Gene Transcripts in Chronic Myeloid Leukemia. Klin. Onkogematol. 22015;8(2):161–8 (In Russ.).


ABSTRACT

Background & Aims. The diagnosis of chronic myeloid leukemia (CML) is confirmed when t(9;22)(q34;q11) translocation is found by the cytogenetic test method and/or chimeric BCR-ABL transcript is detected by the reverse transcription polymerase chain reaction (RT-PCR). It is known that two most common types of chimeric BCR-ABL transcript are determined in CML patients: e13a2 (b2a2) и e14a2 (b3a2). However, rare types of chimeric BCR-ABL transcript have been described and they may be overlooked. Moreover, timely diagnosing and detection of different types of the chimeric transcript are very important, because the clinical course of the disease and efficacy of the therapy with tyrosine kinases inhibitors depend on the structure of chimeric BCR-ABL gene. Since in some cases CML may be diagnosed without the standard cytogenetic test and be confirmed by RT-PCR alone, we consider it important to develop a diagnostic algorithm which might permit to determine almost any type of chimeric BCR-ABL transcript.

Methods. Over the period from January, 2004, till December, 2013, in the laboratory of molecular biology of the department of pediatric oncology and hematology in Regional Children’s Hospital No. 1 (Yekaterinburg), the diagnosis of CML was confirmed in 1082 patients: 531 (49 %) males and 551 (51 %) females. The median age was 50 years (range 5–88 years). All patients underwent standard cytogenetic and molecular genetic tests. Primers which are complementary to nucleotide ABL gene sequence are localized in 2 and 3 ABL exons and are used for detection of all transcript types. Primers which are complementary to nucleotide BCR gene sequence are localized either in 12 and 13 exons for detection of most typical e13a2 and e14a2 (M-bcr) transcripts or in exon 1 for detection of e12a (m-bcr) transcript. While detecting amplicons which size differs from that of e13a2, e14a2, and e1a2, their direct paired-end sequencing is performed using primers (applied during the second round of RT-PCR) and a Big Dye Terminator 3.1 kit.

Results. After having analyzed 1082 patients with confirmed CML, we have developed a diagnostic algorithm for detecting common and rare types of chimeric BCR-ABL transcript in CML using RT-PCR. We detected common chimeric BCR-ABL transcripts, e14a2 and e13a2, in 62.53 % and 35.89 % of cases, respectively, using this algorithm. Rare transcripts, e13a3, e14a3, e19a2, e1a2, e3a2, e6a2, and e8a2, were detected in 1.57 % of cases.

Conclusion. Therefore, the proposed diagnostic algorithm proved to be effective for detection of common and rare types of chimeric BCR-ABL transcripts in CML patients.


Keywords: chronic myeloid leukemia, molecular diagnostics, chimeric BCR-ABL transcript.

Received: December 31, 2014

Accepted: February 4, 2015

Read in PDF (RUS) pdficon


REFERENCES

  1. Nowell P.C., Hungerford D.A. Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 1960; 25: 85–109.
  2. Rowley J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973; 243: 290–3.
  3. Телегеев Г.Д., Дубровская А.Н., Дыбков М.В. и др. Роль белка BCR-ABL в лейкогенезе. Экспериментальная онкология. 1999; 21: 182–94. [Telegeev G.D., Dubrovskaya A.N., Dybkov M.V. et al. The role of BCR-ABL protein in leukomogenesis. Eksperimental’naya onkologiya. 1999; 21: 182–94. (In Russ.)]
  4. Туркина А.Г., Челышева Е.Ю. Стратегия терапии хронического ми- елолейкоза: возможности и перспективы. Терапевтический архив. 2013; 85(7): 4–9. [Turkina A.G., Chelysheva E.Yu. Therapeutic strategy for chronic myeloid leukemia: potentials and prospects. Terapevticheskii arkhiv. 2013; 85(7): 4–9. (In Russ.)]
  5. Dongen van J.J.M., Macintyre E.A., Gabert J.A. et al. Standardized RTPCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia. 1999; 13(12): 1901–28.
  6. Verma D., Kantarjian H.M., Jones D. et al. Chronic myeloid leukemia (CML) with P190 BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood. 2009; 114: 2232–5.
  7. Beel K.A., Lemmens J., Vranckx H. et al. CML with e6a2 BCR-ABL1 transcript: an aggressive entity? Ann. Hematol. 2011; 90: 1241–3.
  8. Demehri S., Paschka P., Schultheis B. et al. e8a2 BCR–ABL: more frequent than other atypical BCR–ABL variants? Leukemia. 2005; 19: 681–4.
  9. Martin S.E., Sausen M., Joseph A., Kingham B.F. Chronic myeloid leukemia with e19a2 atypical transcript: early Imatinib resistance and complete response to dasatinib. Cancer Gen. Cytogen. 2010; 201(2): 133–4.
  10. Langabeer S.E., McCarron S.L., Carrol P. et al. Molecular response to first line nilotinib in a patient with e19a2 BCR-ABL 1 chronic myeloid leukemia. Leuk. Res. 2011; 35: 169–70.
  11. Baccarani M., Deininger M., Rosti G. et al. European Leukemia Net Recommendations for the Management of Chronic Myeloid Leukemia: 2013. Blood. 2013; 122(6): 872–84.
  12. Цаур Г.А., Друй А.Е., Попов А.М. и др. Возможность использования микроструйных биочипов для оценки качества и количества РНК у па- циентов с онкологическими и онкогематологическими заболеваниями. Вестник Уральской медицинской академической науки. 2011; 4(37): 107–11. [Tsaur G.A., Drui А.Е., Popov А.М. et al. Microfluidic biochips for RNA quantity and quality evaluation in patients with oncological and oncohematological disorders. Vestnik Ural’skoi meditsinskoi akademicheskoi nauki. 2011; 4(37): 107–11. (In Russ.)]
  13. Tabassum N., Saboor M., Moinuddin M. et al. Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan. Pakist. J. Med. Sci. 2014; 30(4): 850–3.
  14. Yaghmaie M., Seyed H., Ghaffari H. et al. Frequency of BCR-ABL fusion transcripts in Iranian patients with chronic myeloid leukemia. Arch. Iran. Med. 2008; 11(3): 247–51.
  15. Goh H.-G., Hwang J.-Y., Kim S.-H. et al. Comprehensive analysis of BCRABL transcript types in Korean CML patients using a newly developed multiplex RT-PCR. Transl. Res. 2006; 148(5): 249–56.
  16. Ito T., Tanaka H., Tanaka K. et al. Insertion of a genomic fragment of chromosome 19 between BCR intron 19 and ABL intron 1a in a chronic myeloid leukaemia patient with BCR-ABL (e19a2) transcript. Br. J. Hematol. 2004; 126: 750–5.
  17. Bennour A., Ouahchi I., Achour B. et al. Analysis of the clinico-hematological relevance of the breakpoint location within M-BCR in chronic myeloid leukemia. Med. Oncol. 2013; 30: 348.
  18. Pane F., Frigeri F., Sindona M. et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR-ABL with C3/A2 Junction). Blood 1996; 88 (7): 2410-2414.
  19. Vefring H.K., Gruber F.X.E., Wee L. et al. Chronic myelogenous leukemia with the e6a2 BCR-ABL and lacking Imatinib response: presentation of two cases. Acta Haematol. 2009; 122: 11–6.
  20. Schnittger S., Bacher U., Kern W. et al. A new case with rare e6a2 BCR– ABL fusion transcript developing two new resistance mutations during imatinib mesylate, which were replaced by T315I after subsequent dasatinib treatment. Leukemia. 2008; 22: 856–88.
  21. Breccia M., Cannella L., Diverio D. et al. Isolated thrombocytosis as first sign of chronic myeloid leukemia with e6a2 BCR/ABL fusion transcript, JAK2 negativity and complete response to Imatinib. Leuk. Res. 2008; 32: 177–80.
  22. Schultheis B., Wang L., Clark R.E. et al. BCR-ABL with an e6a2 fusion in a CML patient diagnosed in blast crisis. Leukemia. 2003; 17: 2054–5.
  23. Popovici C., Cailleres S., David M. et al. e6a2 BCR-ABL fusion with BCR exon 5-deleted transcript in a Philadelphia positive CML responsive to Imatinib. Leuk. Lymphoma. 2005; 46(9): 1375–7.
  24. Roti G., Starza R., Gorello P. et al. e6a2 BCR/ABL1 fusion with cryptic der(9)t(9;22) deletions in a patient with chronic myeloid leukemia. Haematologica. 2005; 90: 1139–41.
  25. Branford S., Rudzki Z., Hughes T.P. A novel BCR-ABL transcript (e8a2) with the insertion of an inverted sequence of ABL intron I b in a patient with Philadelphia-positive chronic myeloid leukaemia. Br. J. Hematol. 2000; 109: 635–7.
  26. Cayuela J.-M., Rousselot P., Nicolini F. et al. Identification of a rare e8a2 BCR-ABL fusion gene in three novel chronic myeloid leukemia patients treated with Imatinib. Leukemia. 2005; 19: 2234–6.
  27. Tchirkov A., Couderc J.-L., Perissel B. et al. Major molecular response to imatinib in a patient with chronic myeloid leukemia expressing a novel form of e8a2 BCR-ABL transcript. Leukemia. 2006; 20: 167–8.
  28. Sugimoto T., Ijima K., Hisatomi H. et al. Second case of CML with aberrant BCR-ABL fusion transcript (e8/a2) with insertion of an inverted ABL intron 1b sequence. Am. J. Hematol. 2004; 77: 164–6.
  29. Martinelli G., Terragna C., Amabile M. et al. Alu and translisin recognition site sequences flank translocation sites in a novel type of chimeric BCR-ABL transcript and suggest a possible general mechanism for BCR-ABL breakpoints. Haematologica. 2000; 85: 40–6.
  30. How G., Lim L., Kulkarni S. et al. Two patients with novel BCR/ABL fusion transcripts (e8/a2 and e13/a2) resulting from translocation breakpoints within BCR exons. Br. J. Haematol. 1999; 105: 434–6.
  31. Qin Y.Z., Jiang B., Jiang Q. et al. Imatinib mesylate resistance in a chronic myeloid leukemia patient with a novel e8a2 BCR-ABL transcript variant. Acta Haematol. 2008; 120: 146–9.
  32. Park I.J., Lim Y.A., Lee W.G. et al. A case of chronic myelogenous leukemia with e8a2 fusion transcript. Cancer Gen. Cytogen. 2008; 185: 106–8.
  33. Burmeister T., Reinhardt R. A multiplex PCR for improved detection of typical and atypical BCR-ABL fusion transcripts. Leuk. Res. 2008; 32: 579–85.
  34. Дубина М.В., Куевда Д.А., Хомякова Т.Е. и др. Молекулярный мони- торинг эффективности терапии больных хроническим миелолейкозом в России (по материалам Всероссийской научно-практической конфе- ренции, Иркутск, 3–4 сентября 2010 г.). Современная онкология. 2010; 4: 9–15. [Dubina M.V., Kuevda D.A., Khomyakova T.E. et al. Molecular monitoring of the treatment efficacy in patients with chronic myeloid leukemia in Russia (Materials of Russian Theoretical and Practical Conference, Irkutsk, September 3–4, 2010). Sovremennaya onkologiya. 2010; 4: 9–15. (In Russ.)]
  35. Hughes T., Deininger M., Hochhaus A. et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors — review and recommendations for ‘harmonizing’ current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006; 108: 28–37.
  36. Schliben S., Borkhardt A., Reinisch J. et al. Incidence and clinical outcome of children with BCR-ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-FM-90 and CoALL-05-92. Leukemia. 1996; 10: 957–63.

Second Generation Tyrosine Kinase Inhibitors and Their Toxicity in Treatment of Patients in Chronic Phase of Chronic Myeloid Leukemia

N.S. Lazorko1, E.G. Lomaia1, E.G. Romanova1, E.I. Sbityakova1, E.R. Machyulaitene2, P.A. Butylin1,3, A.Yu. Zaritskii1,2

1 Federal North-West Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russia, 197341

2 Academician I.P. Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russia, 197022

3 Saint Petersburg State University of Information Technologies, Mechanics and Optics, Institute of Translational Medicine, 49 Kronverkskii pr-t, Saint Petersburg, Russia, 197101

For correspondence: Elza Galaktionovna Lomaia, PhD, 2 Akkuratova str., Saint Petersburg, Russia, 197341; Tel.: +7(812)702-37-65; e-mail: lomelza@gmail.com

For citation: Lazorko N.S., Lomaia E.G., Romanova E.G., Sbityakova E.I., Machyulaitene E.R., Butylin P.A., Zaritskii A.Yu. Second Generation Tyrosine Kinase Inhibitors and Their Toxicity in Treatment of Patients in Chronic Phase of Chronic Myeloid Leukemia. Klin. Onkogematol. 2015;8(3):302–8. (In Russ.)


ABSTRACT

Background & Aims. Certain experience in the use of new tyrosine kinase inhibitors (TKIs) in treatment of patients with chronic myeloid leukemia has been obtained over the last years. The article summarizes literature data on toxicity obtained in international clinical trials. The aim of the study is to evaluate adverse effects of second generation TKIs in the routine clinical practice and to assess their effect on patient future life.

Methods. We analyzed our own data obtained during routine clinical practice. 76 patients (36 men and 40 women) over 18 years of age (median age was 49 years, range 26–75) with chronic myeloid leukemia were enrolled in the retrospective trial. 48 patients were treated with nilotinib, 28 patients received dazatinib during the chronic phase of the disease as a second line therapy after withdrawal of imatinib mesylate. The toxicity degree was determined according to CTCAE 4.0 criteria.

Results. III–IV degree hematologic toxicity was registered in 36.8 % of patients. No significant difference in the incidence of complications between nilotinib and dazatinib groups was observed: 39.6 % and 32.1 %, respectively. II–IV degree non-hematologic toxicity was found in 35.4 % patients on nilotinib and in 25 % of patients on dazatinib. The incidence of individual types of toxicity did not exceed 15 %. A combination of different types of non-hematologic toxicity was observed in 9.2 % of patients. No TKI2 toxicity-related lethal outcomes were registered.

Conclusion. Hematologic and/or non-hematologic toxicity related to TKI2 was registered in more than 50 % of patients. In most cases, the complications were transient and eliminated after discontinuation of TKI2 or after dose reduction. TKI2-associated complications did not affect the possibility to achieve a complete cytogenetic response and its stability.


Keywords: chronic myeloid leukemia, tyrosine kinase inhibitors, toxicity.

Received: January 29, 2015

Accepted: June 1, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Kantarjian H, Pasquini R, Hamerschlak N, et al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia after failure of first-line imatinib: a randomized phase 2 trial. Blood. 2007;109(12):5143–50. doi: 10.1182/blood-2006-11-056028.
  2. Kantarjian H, Giles F, Bhalla K, et al. Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow-up results. Blood. 2011;117(4):1141–5. doi: 10.1182/blood-2010-03-277152.
  3. Лазорко Н.С., Ломаиа Е.Г., Сбитякова Е.И., Зарицкий А.Ю. Нилотиниб и дазатиниб в первой линии терапии больных хроническим миелолейкозом в хронической фазе. Современная онкология. 2011;13(1):38–40. [Lazorko NS, Lomaia EG, Sbityakova EI, Zaritskii AYu. Nilotinib and dazatinib as first line therapy of patients in chronic phase of chronic myeloid leukemia. Sovremennaya onkologiya. 2011;13(1):38–40. (In Russ)]
  4. Ломаиа Е.Г., Романова Е.Г., Сбитякова Е.И., Зарицкий А.Ю. Эффективность и безопасность ингибиторов тирозинкиназ 2-го поколения (дазатиниб, нилотиниб) в терапии хронической фазы хронического миелолейкоза. Онкогематология. 2013;2:22–33. [Lomaia EG, Romanova EG, Sbityakova EI, Zaritskii AYu. Efficacy and safety of 2nd generation tyrosine kinase inhibitors (dasatinib, nilotinib) in teatment of chronic phase of chronic myeloid leukemia. Onkogematologiya. 2013;2:22–33. (In Russ)]
  5. Туркина А.Г., Хорошко Н.Д., Гусарова Г.А. и др. Российский опыт применения нилотиниба во второй линии терапии больных хроническим миелолейкозом с резистентностью или непереносимостью иматиниба: оценка безопасности и эффективности в исследовании ENACT (расширенный доступ к нилотинибу в клинических исследованиях). Вестник гематологии. 2010;1(2):92–3. [Turkina AG, Khoroshko ND, Gusarova GA, et al. Russian experience in use of nilotinib in second line therapy of patients with chronic myeloid leukemia and imatinib resistance or intolerance: evaluation of safety and efficacy in ENACT trial (Expanding Nilotinib Access in Clinical Trials). Vestnik gematologii. 2010;1(2):92–3. (In Russ)]
  6. http://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm.
  7. Kantarjian H, Giles F, Gattermann N, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007;110(10):3540–6. doi: 10.1182/blood-2007-03-080689.
  8. Saglio G, Kim D, Issaragrisil S, et al. Nilotinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–9. doi: 10.1517/14656566.2011.534780.
  9. Hochhaus A, Kantarjian H, Baccarani M, et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic phase chronic myeloid leukemia after failure of imatinib therapy. Blood. 2007;109(6):2303–9. doi: 10.1182/blood-2006-09-047266.
  10. Kantarjian H, Shah N, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70. doi: 10.1056/nejmoa1002315.
  11. Shah R. Drug-induced hepatotoxicity: pharmacokinetic perspectives and strategies for risk reduction. Adv Drug React Toxicol Rev. 1999;18:181–233.
  12. Russmann S, Kullak-Ublick G, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem. 2009;16(23):3041–53.
  13. Teo YL, Ho HK, Chan A. Risk of tyrosine kinase inhibitors-induced hepatotoxicity in cancer patients: A meta-analysis. Cancer Treat Rev. 2013;39(2):199–206. doi: 10.1016/j.ctrv.2012.09.004.
  14. Saglio G, Pinilla-Ibarz J, Cortes J, et al. Intolerance to tyrosine kinase inhibitors in chronic myeloid leukemia. Blood. 2011;117(4):688−697. doi: 10.1002/cncr.25648.
  15. Rosti G, Castagnetti F, Gugliotta G, et al. Dasatinib and nilotinib in imatinib resistant Philadelphia-positive chronic myelogenous leukemia: a ‘head-to-head’ comparison. Leuk Lymphoma 2010;51(4):583–91. doi: 10.3109/10428191003637282.
  16. Shah R, Morganroth J, Shah D. Hepatotoxicity of Tyrosine Kinase Inhibitors: Clinical and Regulatory Perspectives. Drug Saf. 2013;36(7):491–503. doi: 10.1007/s40264-013-0048-4.
  17. Lammie A, Drobnjak M, Gerald W, et al. Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem. 1994;42(11):1417–25. doi: 10.1177/42.11.7523489.
  18. Grichnik J, Burch J, Burchette J, Shea C. The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Invest Dermatol. 1998;111(2):233–8.
  19. Kantarjian H, Pasquini R, Levy V, et al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia resistant to imatinib at a dose of 400 to 600 milligrams daily: two-year follow-up of a randomized phase 2 study (START-R). Cancer. 2009;115(18):4136–47. doi: 10.1002/cncr.24504.
  20. Irvine E, Williams C. Treatment-, Patient-, and Disease-Related Factors and the Emergence of Adverse Events with Tyrosine Kinase Inhibitors for the Treatment of Chronic Myeloid Leukemia. Pharmacotherapy. 2013;33(8):868–81. doi: 10.1002/phar.1266.
  21. Van Etten RA. Cycling, stressed-out and nervous: cellular functions of cAbl. Trends Cell Biol. 1999;9(5):179–86. doi: 10.1016/s0962-8924(99)01549-4.
  22. Wasle B, Edwardson J. The regulation of exocytosis in the pancreatic acinar cell. Cell Signal. 2002;14(3):191–7. doi: 10.1016/s0898-6568(01)00257-1.
  23. Mooren F, Hlouschek V, Finkes T, et al. Early changes in pancreatic acinar cell calcium signalling after pancreatic duct obstruction. J Biol Chem. 2003;278(11):9361–9. doi: 10.1074/jbc.m207454200.
  24. Fitter S, Vandyke K, Gronthos S, Zannettino AC. Suppression of PDGF-induced PI3 kinase activity by imatinib promotes adipogsis and adiponectin secretion. J Mol Endocrinol. 2012;48(3):229–40. doi: 10.1530/jme-12-0003.
  25. Racil Z, Razga F, Drapalova J, et al. Mechanism of impaired glucose metabolism during nilotinib therapy in patients with chronic myelogenous leukemia. Haematologica. 2013;98(10):e124–6. doi: 10.3324/haematol.2013.086355.
  26. le Coutre P, Giles F, Hochhaus A, et al. Analysis of glucose profiles in imatinib resistant or intolerant chronic myelogenous leukemia (CML) patients treated with nilotinib: lack of correlation between glucose levels and nilotinib efficacy. Blood. 2007;110: Abstract 4588.
  27. Breccia M, Alimena G. Pleural/pericardic effusions during dasatinib treatment: incidence, management and risk factors associated to their development. Exp Opin Drug Saf. 2010;9(5):713–21. doi: 10.1517/14740331003742935.
  28. de Lavallade H, Punnialingam S, Milojkovic D, et al. Pleural effusions in patients with chronic myeloid leukaemia treated with dasatinib may have an immune-mediated pathogenesis. Br J Haematol. 2008;141(5):745–7. doi: 10.1111/j.1365-2141.2008.07108.x.
  29. Porkka K, Khoury H, Paquette R, et al. Dasatinib 100 mg once daily minimizes the occurrence of pleural effusion in patients with chronic myeloid leukemia in chronic phase and efficacy is unaffected in patients who develop pleural effusion. Cancer. 2010;116(2):377–86. doi: 10.1002/cncr.24734.
  30. Shah N, Kantarjian H, Kim D, et al. Six-year (yr) follow-up of patients (pts) with imatinib-resistant or -intolerant chronic-phase chronic myeloid leukemia (CML-CP) receiving dasatinib. J Clin Oncol. 2012;30:6506.
  31. Hasinoff BB. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicol Appl Pharmacol. 2010;244(2):190–5. doi: 10.1016/j.taap.2009.12.032.
  32. Albini A, Pennesi G, Donatelli F, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25. doi: 10.1093/jnci/djp440.
  33. Strevel E, Ing D, Siu L. Molecularly targeted oncology therapeutics and prolongation of the QT interval. J Clin Oncol. 2007;25(22):3362–71. doi: 10.1200/jco.2006.09.6925.
  34. Haverkamp W, Breithardt G, Camm A, et al. The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications. Report on a policy conference of the European Society of Cardiology. Eur Heart J. 2000;21(15):1216–31. doi: 10.1053/euhj.2000.2249.
  35. Priori S, Schwartz P, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348(19):1866–74. doi: 10.1056/nejmoa022147.
  36. Sauer A, Moss A, McNitt S, et al. Long QT syndrome in adults. J Am Coll Cardiol. 2007;49(3):329–37. doi: 10.1016/j.jacc.2006.08.057.
  37. Center for Drug Evaluation and Research: Nilotinib Pharmacology/Toxicology Review and Evaluation; 2007.
  38. Le Coutre P, Ottmann O, Giles F, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood. 2008;111(4):1834–9. doi: 10.1182/blood-2007-04-083196.
  39. Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354(24):2542–51. doi: 10.1056/nejmoa055104.
  40. Kim T, Rea D, Schwarz M, et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia. 2013;27(6):1316–21. doi: 10.1038/leu.2013.70.
  41. Larson R, Hochhaus A, Hughes T, et al. Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia. 2012;26(10):2197–203. doi: 10.1038/leu.2012.134.
  42. Aichberger K, Herndlhofer S, Schernthaner G, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol. 2011;86(7):533–9. doi: 10.1002/ajh.22037.
  43. Verma D, Verstovsek S, Kantarjian H, et al. Malignancies occurring during therapy with tyrosine kinase inhibitors (TKIs) for chronic myeloid leukemia (CML) and other hematologic malignancies. Blood. 2011;118(16):4353–8. doi: 10.1182/blood-2011-06-362889.
  44. Hoffmann V, Baccarani M, Hasford J. The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European Countries. Leukemia. 2015;29(6):1336–43. doi: 10.1038/leu.2015.73 [Epub 2015 Mar 18]

Role of tyrosine-kinase inhibitor selectivity in development of adverse effects during treatment of chronic myeloid leukemia

A.A. Zeifman1,2, E.Yu. Chelysheva3, A.G. Tukrina3, and G.G. Chilov1,2

1 N.D. Zelinsky Institute of Organic Chemistry, RAS, Moscow, Russian Federation

2 Fusion Pharma LLC, Moscow, Russian Federation

3 Hematology Research Center, RF MH, Moscow, Russian Federation


ABSTRACT

This review focuses on association between the selectivity of Bcr-Abl kinase inhibitors and the spectrum of their adverse effects during treatment of patients with chronic myeloid leukemia. The data on the structure and natural biochemical functions of the well-known adverse targets for inhibitors of Bcr-Abl kinases, including BRAF, FMS, EGFR, PDGFR, PYK2, TIE2, and VEGFR1/2/3 are summarized, and the potential association between their off-target inhibition and adverse effects of tyrosine-kinase inhibitors is suggested.


Keywords: chronic myeloid leukemia, tyrosine-kinase inhibitors, selectivity, imatinib, nilotinib, dasatinib, ponatinib, PF-114, BRAF, FMS, EGFR, PDGFR, PYK2, TIE2, VEGFR1/2/3.

Read in PDF (RUS)pdficon


REFERENCES

  1. Chartier M., Chenard T., Barker J. et al. Kinome Render: a stand-alone and web-accessible tool to annotate the human protein kinome tree. Peer J. 2013; 1: e126.
  2. Soverini S., Hochhaus A., Nicolini F.E. et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 2011; 118(5): 1208–15.
  3. Куцев С.И., Вельченко М.В. Значение анализа мутаций гена BCR-ABL в оптимизации таргетной терапии хронического миелолейкоза. Клин. онкогематол. 2008; 1(3): 190–9. [Kutsev S.I., Velchenko M.V. Significance of analysis of BCR-ABL gene mutations in optimization of target therapy for chronic myeloid leukemia. Klin. onkogematol. 2008; 1(3): 190–9. (In Russ.)].
  4. Челышева Е.Ю., Шухов О.А., Лазарева О.В. и др. Мутации гена BCR-ABL при хроническом миелолейкозе. Клин. онкогематол. 2012; 5(1): 13–21. [Chelysheva Ye.Yu., Shukhov O.A., Lazareva O.V. et al. BCR-ABL gene mutations in chronic myeloid leukemia. Klin. onkogematol. 2012; 5(1): 13–21. (In Russ.)].
  5. Lombardo L.J., Lee F.Y., Chen P. et al. Discovery of N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino) thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem 2004; 47(27): 6658–61.
  6. Weisberg E., Manley P.W., Breitenstein W. et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005; 7(2): 129–41.
  7. Golas J.M., Arndt K., Etienne C. et al. SKI-606, a 4-anilino-3-quinoline carbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res 2003; 63(2): 375–81.
  8. O’Hare T., Shakespeare W.C., Zhu X. et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 2009; 16(5): 401–12.
  9. Mian A.A., Badura S., Rafiei A. et al. PF-114, a novel selective pan-Bcr/ Abl inhibitor for Philadelphia chromosome positive (Ph+) leukemia, effectively targets T315I and the other resistance mutants. European Hematologic Association, Stockholm, Sweden, June 13–16, 2013: S1177.
  10. Anastassiadis T., Deacon S.W., Devarajan K. et al. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat. Biotechnol. 2011; 29(11): 1039–45.
  11. Saglio G., Kim D.W., Issaragrisil S. et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 2010; 362(24): 2251–9.
  12. Kantarjian H., Shah N.P., Hochhaus A. et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 2010; 362(24): 2260–70.
  13. Davis M.I., Hunt J.P., Herrgard S. et al. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2011; 29(11): 1046–51.
  14. Martins D.H., Wagner S.C., Dos Santos T.V. et al. Monitoring imatinib plasma concentrations in chronic myeloid leukemia. Rev. Bras. Hematol. Hemother. 2011; 33(4): 302–6.
  15. Demetri G.D., Lo Russo P., MacPherson I.R. et al. Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin. Cancer Res. 2009; 15(19): 6232–40.
  16. Manley P.W., Drueckes P., Fendrich G. et al. Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochem. Biophys. Acta 2010; 1804(3): 445–53.
  17. Bradeen H.A., Eide C.A., O’Hare T. et al. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood 2006; 108(7): 2332–8.
  18. Remsing Rix L.L., Rix U., Colinge J. et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 2009; 23(3): 477–85.
  19. Cortes J.E., Kantarjian H.M., Brummendorf T.H. et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood 2011; 118(17): 4567–76.
  20. Schrock A.B., Gozgit J.M., Rivera V. The pan-BCR-ABL inhibitor ponatinib inhibits viability of gatekeeper mutant BCR-ABLT315I cells with greater potency than a nilotinib/MEK inhibitor combination. Clin. Cancer Res. 2012; 18: Abstract B15.
  21. Sonnichsen D., Dorer D.J., Cortes J. et al. Analysis of the potential effect of ponatinib on the QTc interval in patients with refractory hematological malignancies. Cancer Chemother. Pharmacol. 2013; 71(6): 1599–607.
  22. Chan W.W., Wise S.C., Kaufman M.D. et al. Conformational control inhibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper T315I mutant, by the switch-control inhibitor DCC-2036. Cancer Cell 2011; 19(4): 556–68.
  23. Fiskus W., Smith C.C., Smith J. et al. Activity of Allosteric, Switch-Pocket, ABL/FLT3 Kinase Inhibitor DCC2036 Against Cultured and Primary AML Progenitors with FLT-ITD or FLT3 Kinase Domain Mutations. 53rd ASH Annual Meeting and Exposition, 2011.
  24. Fancelli D., Moll J., Varasi M. et al. 1,4,5,6-tetrahydropyrrolo[3,4-c] pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J. Med. Chem. 2006; 49(24): 7247–51.
  25. Steeghs N., Eskens F.A., Gelderblom H. et al. Phase I pharmacokinetic and pharmacodynamic study of the aurora kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. J. Clin. Oncol. 2009; 27(30): 5094–101.
  26. Ruthardt M. PF-114, a novel selective PAN BCR/ABL inhibitor for Philadelphia chromosome-positive (Ph+) leukemia, effectively targets T315I and other resistance mutant. 15th International Conference on Chronic Myeloid Leukemia: Biology and Therapy, 2013.
  27. Uniprot for BRAF. Available from: http://www.uniprot.org/uniprot/P15056.
  28. Davies H., Bignell G.R., Cox C. et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417(6892): 949–54.
  29. Pratilas C.A., Xing F., Solit D.B. Targeting oncogenic BRAF in human cancer. Curr. Top Microbiol. Immunol. 2012; 355: 83–98.
  30. Roskoski R.Jr. RAF protein-serine/threonine kinases: structure and regulation. Biochem. Biophys. Res. Commun. 2010; 399(3): 313–7.
  31. Chang F., Steelman L.S., Lee J.T. et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17(7): 1263–93.
  32. Wellbrock C., Karasarides M., Marais R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 2004; 5(11): 875–85.
  33. Freeman A.K., Ritt D.A., Morrison D.K. Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol. Cell 2013; 49(4): 751–8.
  34. Sabbatino F., Wang Y., Wang X. et al. Emerging BRAF inhibitors for melanoma. Exp. Opin. Emerg. Drugs 2013; 18(4): 431–43.
  35. Boussemart L., Routier E., Mateus C. et al. Prospective study of cutaneous side-effects associated with the BRAF inhibitor vemurafenib: a study of 42 patients. Ann. Oncol. 2013; 24(6): 1691–7.
  36. Huang V., Hepper D., Anadkat M. et al. Cutaneous toxic effects associated with vemurafenib and inhibition of the BRAF pathway. Arch. Dermatol. 2012; 148(5): 628–33.
  37. Hey F., Pritchard C. A new mode of RAF autoregulation: a further complication in the inhibitor paradox. Cancer Cell 2013; 23(5): 561–3.
  38. FDA, Risk Assessment And Risk Mitigation Review(S) for Iclusig (ponatinib), 2012.
  39. Drucker A.M., Wu S., Busam K.J. et al. Rash with the multitargeted kinase inhibitors nilotinib and dasatinib: meta-analysis and clinical characterization. Eur. J. Haematol. 2013; 90(2): 142–50.
  40. Uniprot for c-FMS. Available from: http://www.uniprot.org/uniprot/P07333.
  41. Bourette R.P., Rohrschneider L.R. Early events in M-CSF receptor signaling. Growth Factors 2000; 17(3): 155–66.
  42. Zaidi M. Skeletal remodeling in health and disease. Nat. Med. 2007; 13(7): 791–801.
  43. Kimura K., Kitaura H., Fujii T. et al. An anti-c-Fms antibody inhibits osteoclastogenesis in a mouse periodontitis model. Oral Dis. 2013 [Epub ahead of print].
  44. Nurmio M., Joki H., Kallio J. et al. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats. Toxicol. Appl. Pharmacol. 2011; 254(3): 267–79.
  45. Hamilton J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 2008; 8(7): 533–44.
  46. Paniagua R.T., Chang A., Mariano M.M. et al. c-Fms-mediated differentiation and priming of monocyte lineage cells play a central role in autoimmune arthritis. Arthritis Res. Ther. 2010; 12(1): R32.
  47. Lim A.K., Ma F.Y., Nikolic-Paterson D.J. et al. Antibody blockade of c-fms suppresses the progression of inflammation and injury in early diabetic nephropathy in obese db/db mice. Diabetologia 2009; 52(8): 1669–79.
  48. Baay M., Brouwer A., Pauwels P. et al. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy. Clin. Dev. Immunol. 2011; 2011: 12.
  49. Ovadia S., Insogna K., Yao G.Q. The cell-surface isoform of colony stimulating factor 1 (CSF1) restores but does not completely normalize fecundity in CSF1-deficient mice. Biol. Reprod. 2006; 74(2): 331–6.
  50. Salmassi A., Mettler L., Jonat W. et al. Circulating level of macrophage colony-stimulating factor can be predictive for human in vitro fertilization outcome. F rtil. Steril. 2010; 93(1): 116–23.
  51. Narayanan K.R., Bansal D., Walia R. et al. Growth failure in children with chronic myeloid leukemia receiving imatinib is due to disruption of GH/IGF-1 axis. Pediatr. Blood Cancer 2013; 60(7): 1148–53.
  52. Iclusig (ponatinib) prescribing information. 53. Bosulif (Bosutinib) prescribing information.
  53. Uniprot for EGFR. Available from: http://www.uniprot.org/uniprot/P00533.
  54. Hynes N.E., Lane H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 2005; 5(5): 341–54.
  55. Reuter C.W., Morgan M.A., Eckardt A. Targeting EGF-receptor-signalling in squamous cell carcinomas of the head and neck. Br. J. Cancer 2007; 96(3): 408–16.
  56. Lenz H.J. Anti-EGFR mechanism of action: antitumor effect and underlying cause of adverse events. Oncology (Williston Park) 2006; 20(5 Suppl. 2): 5–13.
  57. Perez-Soler R. Can rash associated with HER1/EGFR inhibition be used as a marker of treatment outcome? Oncology (Williston Park) 2003; 17(11 Suppl. 12): 23–8.
  58. Murillas R., Larcher F., Conti C.J. et al. Expression of a dominant negative mutant of epidermal growth factor receptor in the epidermis of transgenic mice elicits striking alterations in hair follicle development and skin structure. EMBO J. 1995; 14(21): 5216–23.
  59. Yano S., Kondo K., Yamaguchi M. et al. Distribution and function of EGFR in human tissue and the effect of EGFR tyrosine kinase inhibition. Anticancer Res. 2003; 23(5A): 3639–50.
  60. Lee Y., Shim H.S., Park M.S. et al. High EGFR gene copy number and skin rash as predictive markers for EGFR tyrosine kinase inhibitors in patients with advanced squamous cell lung carcinoma. Clin. Cancer Res. 2012; 18(6): 1760–8.
  61. Perez-Soler R., Delord J.P., Halpern A. et al. HER1/EGFR inhibitorassociated rash: future directions for management and investigation outcomes from the HER1/EGFR inhibitor rash management forum. Oncologist 2005; 10(5): 345–56.
  62. Takeda K., Hida T., Sato T. et al. Randomized phase III trial of platinumdoublet chemotherapy followed by gefitinib compared with continued platinumdoublet chemotherapy in Japanese patients with advanced non-small-cell lung cancer: results of a west Japan thoracic oncology group trial (WJTOG0203). J. Clin. Oncol. 2010; 28(5): 753–60.
  63. Erlotinib(Iressa) prescribing information.
  64. Sprycel (dasatinib) prescribing information.
  65. Uniprot for PDGFRA. Available from: http://www.uniprot.org/uniprot/ P16234.
  66. Uniprot for PDGFRB. Available from: http://www.uniprot.org/uniprot/ P09619.
  67. Hoch R.V., Soriano P. Roles of PDGF in animal development. Development 2003; 130(20): 4769–84.
  68. Shim A.H., Liu H., Focia P.J. et al. Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex. Proc. Natl. Acad. Sci. U S A 2010; 107(25): 11307–12.
  69. Andrae J., Gallini R., Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008; 22(10): 1276–312.
  70. Eckhardt S.G., Rizzo J., Sweeney K.R. et al. Phase I and pharmacologic study of the tyrosine kinase inhibitor SU101 in patients with advanced solid tumors. J. Clin. Oncol. 1999; 17(4): 1095–104.
  71. Kuenen B.C., Giaccone G., Ruijter R. et al. Dose-finding study of the multitargeted tyrosine kinase inhibitor SU6668 in patients with advanced malignancies. Clin. Cancer Res. 2005; 11(17): 6240–6.
  72. Jayson G.C., Parker G.J., Mullamitha S. et al. Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab’, leads to fluid accumulation and is associated with increased tumor vascularized volume. J. Clin. Oncol. 2005; 23(5): 973–81.
  73. Kelly K., Swords R., Mahalingam D. et al. Serosal inflammation (pleural and pericardial effusions) related to tyrosine kinase inhibitors. Target Oncol. 2009; 4(2): 99–105.
  74. Berman E., Nicolaides M., Maki R.G. et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N. Engl. J. Med. 2006; 354(19): 2006–13.
  75. O’Sullivan S., Naot D., Callon K. et al. Imatinib promotes osteoblast differentiation by inhibiting PDGFR signaling and inhibits osteoclastogenesis by both direct and stromal cell-dependent mechanisms. J. Bone Miner. Res. 2007; 22(11): 1679–89.
  76. Tasigna (nilotinib) prescribing information.
  77. Uniprot for PYK2. Available from: http://www.uniprot.org/uniprot/Q14289.
  78. Lipinski C.A., Loftus J.C. Targeting Pyk2 for therapeutic intervention. Exp. Opin. Ther. Targets 2010; 14(1): 95–108.
  79. Raja S., Avraham S., Avraham H. Tyrosine phosphorylation of the novel protein-tyrosine kinase RAFTK during an early phase of platelet activation by an integrin glycoprotein IIb-IIIa-independent mechanism. J. Biol. Chem. 1997; 272(16): 10941–7.
  80. Ohmori T., Yatomi Y., Asazuma N. et al. Involvement of proline-rich tyrosine kinase 2 in platelet activation: tyrosine phosphorylation mostly dependent on alphaIIb beta3 integrin and protein kinase C, translocation to the cytoskeleton and association with Shc through Grb2. Biochem. J. 2000; 347(Pt. 2): 561–9.
  81. Canobbio I., Cipolla L., Consonni A. et al. Impaired thrombin-induced platelet activation and thrombus formation in mice lacking the Ca(2+)-dependent tyrosine kinase Pyk2. Blood 2013; 121(4): 648–57.
  82. Okigaki M., Davis C., Falasca M. et al. Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration. Proc. Natl. Acad. Sci. U S A 2003; 100(19): 10740–5.
  83. Kamen L.A., Schlessinger J., Lowell C.A. Pyk2 is required for neutrophil degranulation and host defense responses to bacterial infection. J. Immunol. 2011; 186(3): 1656–65.
  84. Gil-Henn H., Destaing O., Sims N.A. et al. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(-/-) mice. J. Cell Biol. 2007; 178(6): 1053–64.
  85. Buckbinder L., Crawford D.T., Qi H. et al. Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc. Natl. Acad. Sci. U S A 2007; 104(25): 10619–24.
  86. Eleniste P.P., Bruzzaniti A. Focal adhesion kinases in adhesion structures and disease. J. Signal Transduct. 2012; 2012: 296450.
  87. Uniprot for Angiopoietin-1 receptor. Available from: http://www.uniprot. org/uniprot/Q02763.
  88. Barton W.A., Tzvetkova-Robev D., Miranda E.P. et al. Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex. Nat. Struct. Mol. Biol. 2006; 13(6): 524–32.
  89. Huang H., Bhat A., Woodnutt G. et al. Targeting the ANGPT-TIE2 pathway in malignancy. Nat. Rev. Cancer 2010; 10(8): 575–85.
  90. Sato T.N., Tozawa Y., Deutsch U. et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376(6535): 70–4.
  91. Jones N., Voskas D., Master Z. et al. Rescue of the early vascular defects in Tek/Tie2 null mice reveals an essential survival function. EMBO Rep. 2001; 2(5): 438–45.
  92. Peters K.G., Kontos C.D., Lin P.C. et al. Functional significance of Tie2 signaling in the adult vasculature. Rec. Prog. Horm. Res. 2004; 59: 51–71.
  93. Fukuhara S., Sako K., Noda K. et al. Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histol. Histopathol. 2010; 25(3): 387–96.
  94. Elice F., Rodeghiero F. Side effects of anti-angiogenic drugs. Thromb. Res. 2012; 129(Suppl. 1): S50–3.
  95. Aichberger K.J., Herndlhofer S., Schernthaner G.H. et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am. J. Hematol. 2011; 86(7): 533–9.
  96. Uniprot for VEGFR1. Available from: http://www.uniprot.org/uniprot/ P17948.
  97. Uniprot for VEGFR2. Available from: http://www.uniprot.org/uniprot/ P35968.
  98. Uniprot for VEGFR3. Available from: http://www.uniprot.org/uniprot/ P35916.
  99. Leppanen V.M., Tvorogov D., Kisko K. et al. Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proc. Natl. Acad. Sci. U S A 2013; 110(32): 12960–5.
  100. Stuttfeld E., Ballmer-Hofer K. Structure and function of VEGF receptors. IUBMB Life 2009; 61(9): 915–22.
  101. Olsson A.K., Dimberg A., Kreuger J. et al. VEGF receptor signalling — in control of vascular function. Nat. Rev. Mol. Cell Biol. 2006; 7(5): 359–71.
  102. Takahashi H., Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. (London) 2005; 109(3): 227–41.
  103. Kamba T., McDonald D.M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer 2007; 96(12): 1788–95.
  104. Dy G.K., Adjei A.A. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J. Clin. 2013; 63(4): 249–79.
  105. Baccarani M., Deininger M.W., Rosti G. et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 2013; 122(6): 872–84.
  106. Soverini S., Colarossi S., Gnani A. et al. Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica 2007; 92(3): 401–4.
  107. Гусарова Г.А., Туркина А.Г., Колошейнова Т.И. и др. Клинические аспекты применения нилотиниба при лечении больных хроническим миелолейкозом в хронической фазе. Гематол. и трансфузиол. 2012; 4: 3–11. [Gusarova G.A., Turkina A.G., Kolosheynova T.I. et al. Clinical aspects of nilotinib administration in management of patients with chronic myeloid leukemia in chronic phase. Gematol. i transfuziol. 2012; 4: 3–11. (In Russ.)].
  108. Лазарева О.В., Костина И.Э., Туркина А.Г. Лекарственно-индуци- рованный пневмонит: редкое осложнение терапии иматиниба мезилатом у больных хроническим миелолейкозом. Клин. онкогематол. 2010; 3(1): 47–52.  [Lazareva O.V., Kostina I.Ye., Turkina A.G. Drug-induced pneumonitis: rare complication of imatinib mesylate therapy in patients with chronic myeloid leukemia. Klin. onkogematol. 2010; 3(1): 47–52. (In Russ.)].
  109. Виноградова О.Ю., Туркина А.Г., Воронцова А.В. и др. Применение дазатиниба у больных в хронической стадии хронического миелолейкоза, резистентных либо не переносящих терапию иматинибом. Тер. арх. 2009; 7: 41–6.  [Vinogradova O.Yu., Turkina A.G., Vorontsova A.V. et al. Dasatinib administration to patients with chronic phase of chronic myeloid leukemia, who are resistant or intolerant to dasatinib. Ter. arkh. 2009; 7: 41–6. (In Russ.)].

Impact of molecular genetic and cytogenetic characteristics on outcomes of allogeneic hematopoietic stem cell transplantation in chronic myeloid leukemia

A.V. Gorbunova, T.L. Gindina, E V. Morozova, I.M. Barkhatov, N.N. Mamayev, and B.V. Afanasyev

R.M. Gorbacheva Institute of Pediatric Oncology, Hematology and Transplantology, I.P. Pavlov State Medical University, Saint Petersburg, Russian Federation


ABSTRACT

Point mutations in the BCR-ABL kinase domain, BCR-ABL and EVI1 gene expression alterations, and additional chromosomal aberrations in Philadelphia chromosome-positive chronic myeloid leukemia are strongly associated with resistance to tyrosine kinase inhibitors (TKIs) and disease progression, but their effect on the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is uncertain. This retrospective study included 35 CML patients with resistance to TKI therapy who received a related or unrelated HSCT. Additional chromosomal aberrations were associated with the decreased rate of the complete molecular response (CMR) after allo-HSCT. EVI1 expression level was associated with a decreased disease-free survival (DFS). BCR-ABL kinase domain mutations showed no influence on CMR, OS, and DFS in this patient cohort. 9 out of 10 patients with T315I mutation achieved CMR. EVI1-directed stratification of patients during the post-transplantation period may improve outcome of HSCT.


Keywords: chronic myeloid leukemia, CML, allogeneic hematopoietic stem cells transplantation, allo-HSCT, BCR-ABL, EVI1.

Read in PDF (RUS)pdficon


Refernces

  1. Oyekunle A., Klyuchnikov E., Ocheni S. et al. Challenges for allogeneic hematopoietic stem cell transplantation in chronic myeloid leukemia in the era of tyrosine kinase inhibitors. Acta Haematol. 2011; 126(1): 30–9.
  2. Baccarani M., Cortes J., Pane F. et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. Clin. Oncol. 2009; 27(35): 6041–51.
  3. Soverini S., Hochhaus A., Nicolini F.E. et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 2011; 118(5): 1208–15.
  4. Cortes J.E., Kantarjian H., Shah N.P. et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. Engl. J. Med. 2012; 367(22): 2075–88.
  5. Hochhaus A., Kreil S., Corbin A.S. et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16: 2190–6.
  6. Wang Y., Cai D., Brendel C. et al. Adaptive secretion of granulocytemacrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 2007; 109: 2147–55.
  7. Chu S., Holtz M., Gupta M. et al. BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 2004; 103: 3167–74.
  8. Burchert A., Wang Y., Cai D. et al. Compensatory PI3-kinase/Akt/mTOR activation regulates imatinib resistance development. Leukemia 2005; 19: 1774–82.
  9. Daghistani M., Marin D., Khorashad J.S. et al. EVI-1 oncogene expression predicts survival in chronic-phase CML patients resistant to imatinib treated with second-generation tyrosine kinase inhibitors. Blood 2010; 116(26): 6014–7.
  10. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Лейкозы и миело- диспластические синдромы с экспрессией гена EVI1: теоретические и клинические аспекты. Клин. онкогематол. 2012; 5(4): 361–4. [Mamayev N.N., Gorbunova A.V., Gindina T.L. i dr. Leykozy i miyelodis_ plasticheskiye sindromy s vysokoy ekspressiyey gena EVI1: teoreticheskiye i klinicheskiye aspekty (Leukemias and myelodisplastic syndromes with high EVI1 gene expression: theoretical and clinical aspects. In: Clin. oncohematol.). Klin. onkogematol. 2012; 5(4): 361–4.]
  11. Groschel S., Lugthart S., Schlenk R.F. et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. Clin. Oncol. 2010; 28(12): 2101–7.

 

Genfatinib® therapy for chronic-phase chronic myeloid leukemia in routine clinical practice

T.V. Chagorova1, V.V. Yablokova2, P.A. Borkina3, and N.A. Pryanikova3

1 Regional Oncology Clinic, Penza, Russian Federation

2 Yaroslavl Regional Clinical Hospital, Yaroslavl, Russian Federation

3 Moscow Representative Office of GENFA LTD (United Kingdom), Moscow, Russian Federation


ABSTRACT

The article describes the outcomes of Genfatinib® therapy in routine clinical practice at the Regional Oncology Clinic (Penza) and Yaroslavl Regional Clinical Hospital (Yaroslavl). 62 patients with chronic myeloid leukemia (chronic phase) were treated at the above institutions from April 2012 to April 2013. The patients were assigned into the following groups: the first treatment group, where Genfatinib® was prescribed as an initial therapy at the time of diagnosis of chronic-phase chronic myeloid leukemia; the second group, where Genfatinib® was prescribed after the initial therapy with Gleevek®. The main objectives were assessment of the Genfatinib® efficacy (rates of complete or partial clinico-hematological, cytogenetic, and molecular responses), toxicity, and safety. It was shown that Genfatinib® used after previous therapy with Gleevek® caused no negative influence of the rates of clinico-hematological, cytogenetic, and molecular responses. In the patients who received Genfatinib® as an initial therapy, the complete clinico-hematological and cytogenetic and molecular responses were achieved by 3–5 and 3–6 months of treatment, respectively. The spectrum of adverse events observed with Genfatinib® therapy was similar to the one of Gleevek®.


Keywords: chronic myeloid leukemia, chronic phase, Genfatinib®, efficacy, safety.

Read in PDF (RUS)pdficon


Refernces

  1. Туркина А.Г. Хронический миелолейкоз. Руководство по гематологии. М.: Ньюмед, 2003: 251–64. [Turkina A.G. Khronicheskiy miyeloleykoz. Rukovodstvo po gematologii (Chronic myeloid leukemia. Manual on hematology). M.: Nyumed, 2003: 251–64.]
  2. Хронический миелоидный лейкоз у взрослых. Национальный клини- ческий протокол. Кишинев, 2009: 7. [Khronicheskiy miyeloidnyy leykoz u vzroslykh. Natsionalnyy klinicheskiy protokol (Chronic myeloid leukemia in adults. National clinical protocol). Kishinev, 2009: 7]
  3. Туркина Г.А., Виноградова О.Ю., Хорошко Н.Д., Воробьев А.И. До- стижения в диагностике и лечении больных хроническим миелолейкозом в Российской Федерации (2004–2008 гг.). Бюлл. сибир. мед. 2008; 3: 76–80. Федерации (2004–2008 гг.). Бюлл. сибир. мед. 2008; 3: 76–80. [Turkina G.A., Vinogradova O.Yu., Khoroshko N.D., Vorobyev A.I. Dostizheniya v diagnostike i lechenii bolnykh khronicheskim miyeloleykozom v Rossiyskoy Federatsii (2004–2008 gg.) (Achievements in diagnosis and management of patients with chronic myeloid leukemia in Russian Federation (2004–2008). In: Bull. of Siber. med.). Byull. sibir. med. 2008; 3: 76–80]
  4. Виноградова О.Ю. Клиническая эволюция хронического миелолей- коза в процессе лечения ингибиторами тирозинкиназ: Автореф. дис. ¼ д-ра мед. наук. М., 2011: 7. [Vinogradova O.Yu. Klinicheskaya evolyutsiya khronicheskogo miyeloleykoza v protsesse lecheniya ingibitorami tirozinkinaz: Avtoref. dis. ¼ d-ra med. nauk (Clinical evolution of chronic myeloid leukemia during therapy with tyrosinekinase inhibitors: Author’s summary of dissertation for the degree of DSci). M., 2011: 7.]
  5. Виноградова О.Ю., Туркина А.Г., Хорошко Н.Д. Организация терапии хронического миелолейкоза. Первый общероссийский регистр больных хроническим миелолейкозом: анализ и перспективы. Журн. ONCOLOGY. RU® (Период. науч.-практ., реценз. электр. изд.) 2009: 1–17. [Vinogradova O.Yu., Turkina A.G., Khoroshko N.D. Organizatsiya terapii khronicheskogo miyeloleykoza. Pervyy obshcherossiyskiy registr bolnykh khronicheskim miyeloleykozom: analiz i perspektivy (Organization of therapy for chronic myeloid leukemia. First all-Russian register of patients with chronic myeloid leukemia: analysis and prospects. In: Journ. ONCOLOGY.RU® (Period. scientif-and-pract. peer-reveiwed ed.)). Zhurn. ONCOLOGY.RU® (Period. nauch.-prakt., retsenz. elektr. izd.) 2009: 1–17.]
  6. Куцев С.И. Генетический мониторинг таргетной терапии хрониче- ского миелоидного лейкоза: Автореф. дис. ¼ д-ра мед. наук. М., 2009: 3. [Kutsev S.I. Geneticheskiy monitoring targetnoy terapii khronicheskogo miyeloidnogo leykoza: Avtoref. dis. ¼ d-ra med. nauk (Genetic monitoring of target therapy for chronic myeloid leukemia: Author’s summary of dissertation for the degree of DSci). M., 2009: 3.]
  7. Стахина О.В., Туркина А.Г., Гусарова Г.А. и др. Отдаленные резуль- таты выживаемости больных в поздней хронической фазе Ph+ хрониче- ского миелолейкоза при лечении иматиниба мезилатом (Гливек®). Вестн. гематол. 2009; 5(2): 42. [Stakhina O.V., Turkina A.G., Gusarova G.A. i dr. Otdalennyye rezultaty vyzhivayemosti bolnykh v pozdney khronicheskoy faze Ph+ khronicheskogo miyeloleykoza pri lechenii imatiniba mezilatom (Glivek®) (Long-term survival of patients with late-stage chronic phase Ph+ chronic myeloid leukemia treated with imatinib mesylate (Gleevek®). In: Bull. of hematol.). Vestn. gematol. 2009; 5(2): 42.]
  8. Куцев С.И., Шатохин Ю.В. Влияние перерывов терапии иматинибом на достижение цитогенетического и молекулярного ответов у больных хроническим миелолейкозом. Казан. мед. журн. 2009; 90(6): 827–31. [Kutsev S.I., Shatokhin Yu.V. Vliyaniye pereryvov terapii imatinibom na dostizheniye tsitogeneticheskogo i molekulyarnogo otvetov u bolnykh khronicheskim miyeloleykozom (Impact of interruptions in imatinib therapy on achievement of cytogenetic and molecular responses in patients with chronic myeloid leukemia. In: Kazan. med. journ.). Kazan. med. zhurn. 2009; 90(6): 827–31.]
  9. Ковалева Л.Г., Соколова М.А., Виноградова О.Ю. и др. Результаты многоцентрового исследования терапии гливеком больных хроническим ми- елолейкозом в хронической фазе. Гематол. и трансфузиол. 2007; 52(2): 13–7. [Kovaleva L.G., Sokolova M.A., Vinogradova O.Yu. i dr. Rezultaty mnogo tsentrovogo issledovaniya terapii glivekom bolykh khronicheskim miyeloleykozom v khronicheskoy faze (Results of multicenter study of Gleevek therapy in patients with chronic phase chronic myeloid leukemia. In: Hematol. & transfusiol.). Gematol. i transfuziol. 2007; 52(2): 13–7.]

Association between HLA-DRB1 alleles and response to imatinib in chronic myeloid leukemia

E.G. Ovsyannikova1, I.L. Davydkin2, E.A. Popov1, L.V. Zaklyakova1, and B.N. Levitan1

1 Astrakhan State Medical Academy, RF Ministry of Health, Astrakhan, Russian Federation

2 Research Institute of Hematology, Transfusiology, and Intensive Care, Samara State Medical University, RF Ministry of Health, Samara, Russian Federation


ABSTRACT

The article presents analysis of association between the HLA-DRB1 gene alleles and the response to imatinib in the patients with Ph-positive chronic myeloid leukemia (Ph+ CML). HLA class II alleles, DRB1 locus, were determined using PCR-SSP. The predictors of optimal response to imatinib in 3 to 18-months treatment of CML are HLA-DRB1*16(02), HLA-DRB1*17(03), and HLA-DRB1*08 specificities. Immunogenetic markers of imatinib treatment failure are HLA-DRB1*11(05), HLA-DRB1*12(05), and HLA-DRB1*14(06) alleles. The results obtained can be used for the development of individual long-term prognosis for chronic myeloid leukemia and optimization of the treatment choice.


Keywords: chronic myeloid leukemia, HLA-DRB1, imatinib, prognosis.

Read in PDF (RUS)pdficon


REFERENCES

  1. Deininger M., O’Brien S.G., Guilhot F. et al. International randomized study of interferon vs STI571 (IRIS) 8-year follow up: sustained survival and low risk for progression or events in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with imatinib. Blood 2009; 114: 1126 (abstr.).
  2. Apperley J.F. Part I: Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007; 8: 1018–29.
  3. Soverini S., Hochhaus A. et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 2011; 18(5): 1208–15.
  4. Li L., Wang L., Li L. et al. Activation of p53 by SIRT1 Inhibition Enhances Elimination of CML Leukemia Stem Cells in Combination with Imatinib. Cancer Cell 2012; 21: 266–81.
  5. Ferrandiz N., Caraballoa J. M., Albajara M. et al. p21(Cip1) confers resistance to imatinib in human chronic myeloid leukaemia с Cancer Lett. 2010; 292(1): 133–9.
  6. Guillem V., Amat P., Cervantes F. et al. Functional polymorphisms in SOCS1 and PTPN22 genes correlate with the response to imatinib treatment in newly diagnosed chronic-phase chronic myeloid leukemia. Res. 2012; 36(2): 174–81.
  7. Marin D., Gabriel I.H., Ahmad S. et al. KIR2DS1 genotype predicts for complete cytogenetic response and survival in newly diagnosed chronic myeloid leukemia patients treated with imatinib. Leukemia 2012; 26(2): 296–302.
  8. Хаитов P.M., Дедов И.И., Болдырева М.Н. Новые представления о функции главного комплекса генов иммунного ответа человека. Мол. мед. 2006; 3: 47–51. [Khaitov P.M., Dedov I.I., Boldyreva M.N. Novye predstavleniya o funktsii glavnogo kompleksa genov immunnogo otveta cheloveka (New concepts of function of human major immune response gene complex. In: Mol. med.). Mol. med. 2006; 3: 47–51.]
  9. Короткова И.Ю. Клиническая иммуногенетика заболеваний, злокачественных новообразований и хронических воспалительных процессов: Дис. ¼ д-ра мед. наук. Новосибирск, 2007. [Korotkova I.Yu. Klinicheskaya immunogenetika zabolevaniy, zlokachestvennykh novoobrazovaniy i khronicheskikh vospalitelnykh protsessov: Dis. ¼ d-ra med. nauk (Clinical immunogenetics of diseases, malignancies, and chronic inflammatory processes. Dissertation for the degree of DSci). Novosibirsk, 2007.]
  10. Соколова Ю.В. Роль полиморфизма генов иммуноглобулинподобных рецепторов киллерных клеток, их лигандов и генов HLA в патогенезе и прогнозе множественной миеломы: Автореф. дис. ¼ канд. биол. наук. СПб., 2012. [Sokolova Yu.V. Rol polimorfizma genov immunoglobulinpodobnykh retseptorov killernykh kletok, ikh ligandov i genov HLA v patogeneze i prognoze mnozhestvennoy miyelomy: Avtoref. dis. ¼ kand. biol. nauk (Role of Ig-like killer cell receptor gene polymorphism, their ligands, and HLA genes in pathogenesis and prognosis of multiple myeloma. Author’s summary of dissertation for the degree of PhD). Spb., 2012.]
  11. Villalobos C., Rivera S., Weir-Medina J. et al. Association of HLA class I and leukemia in mestizo patients of the state of Zulia, Venezuela. Clin. 2003; 44(4): 283–9.
  12. Wei L., Xiao L., Wu X.Y. et al. Expression and analysis of HLA-A, B and DRB1 genes in patients with chronic myelogenous leukemia in Guangdong area. Journal of experimental hematology. Chinese Assoc. Pathophysiol. 2008; 16(4): 915–8.
  13. Naugler C., Liwski R. HLA risk markers for chronic myelogenous leukemia in Eastern Canada. Lymphoma 2009; 50(2): 254–9.
  14. Хамаганова Е.Г. Активная вакцинация при хроническом миелолейкозе. Гематол. и трансфузиол. 2008; 53(2): 42–8. [Khamaganova Ye.G. Aktivnaya vaktsinatsiya pri khronicheskom miyeloleykoze [Active immunization in chronic myelogenous leukemia. In: Hematol. & transfuziol.). Gematol. i transfuziol. 2008; 53(2): 42–8.]
  15. Mannering S.I., Mckenzie J.L, Feamley D.В., Hart D.N.J. HLA-DRlrestricted bcr-abl (b3a2)-specific CD4+ T lymphocytes respond to dendritic cells pulsed with b3а2 peptide and antigen presenting cells exposed to b3a2- containing cell lysates. Blood 1997; 90: 290–7.
  16. Хамаганова Е.Г., Зарецкая Ю.М. Молекулярные механизмы ассоциаций HLA-системы с резистентностью к развитию хронического миелолейкоза. Гематол. и трансфузиол. 2006; 1: 12–7. [Khamaganova Ye.G., Zaretskaya YU.M. Molekulyarnye mekhanizmy assotsiatsiy HLA-sistemy s rezistentnostyu k razvitiyu khronicheskogo miyeloleykoza (Molecular mechanisms of associations between HLA system and resistance to development of chronic myelogenous leukemia. In: Hematol. & transfuziol.). Gematol. i transfuziol. 2006; 1: 12–7.]
  17. Bosch ten G.J., Kessler J.H., Joosten A.C. et al. A BCR-ABL oncoprotein p210 b2а2 fusion region sequence is recognized by HLA-DR2a-restricted cytotoxic T lymphocytes and presented by HLA-DR-matched cells transfected with an L-li (b2а2) construct. Blood 1999; 94: 1038–45.
  18. Максимов О.Д., Зайцев Г.А., Бутина Е.В. Распределение HLA-маркеров при хроническом лимфолейкозе. Гематол. и трансфузиол. 2003; 1: 19–22. Maksimov O.D., (Zaytsev G.A., Butina Ye.V. Raspredeleniye HLA-markerov pri khronicheskom limfoleykoze [HLA markers distribution in chronic lymphocytic leukemia. In: Hematol. & transfuziol.). Gematol. i transfuziol. 2003; 1: 19–22.]
  19. Сенькина Е.А. Клиническое значение полиморфизма HLA- специфичностей классов I, II и иммунных нарушений при множественной миеломе: Автореф. дис. ¼ канд. мед. наук. СПб., 2010. [Senkina Ye.A. Klinicheskoye znacheniye polimorfizma HLA-spetsifichnostey klassov I, II i immunnykh narusheniy pri mnozhestvennoy miyelome: Avtoref. dis. ¼ kand. med. nauk (Clinical significance of HLA class I and class II specificity polymorphism and immunological disorders in multiple myeloma]. Author’s summary of dissertation for the degree of PHD). SPb., 2010.]
  20. Shi J., Tricot G.J., Garg T.K. et al. Bortezomib down-regulates the cell surface expression of HLA-class I and enhances natural killer cell-mediated lysis of myeloma. Blood 2008; 111(3): 1309–17.
  21. Овсянникова Е.Г., Исрапилова З.М., Заклякова Л.В. Анализ распре- деления аллелей гена HLA-DRB1 у больных хроническим миелолейкозом. Науч. ведомости Белгородского гос. ун-та. 2011; 22 (117): 110–4. [Ovsyannikova Ye.G., Israpilova Z.M., Zaklyakova L.V. Analiz raspredeleniya alleley gena HLA-DRB1 u bolnykh khronicheskim miyeloleykozom (Analysis of HLA DRB1 allele distribution in patients with chronic myelogenous leukemia. In: Scientif. bulletin of Belgorod St. Univers.). Nauch. vedomosti Belgorodskogo gos. un-ta. 2011; 22 (117): 110–4.]
  22. Овсянникова Е.Г., Исрапилова З.М., Заклякова Л.В., Попов Е.А. Аллельный полиморфизм гена HLA-DRB1 при хроническом миелолейкозе. Фундамент. исслед. 2011; 10(3): 538–54. [Ovsyannikova Ye.G., Israpilova Z.M., Zaklyakova L.V., Popov Ye.A. Allelnyy polimorfizm gena HLA-DRB1 pri khronicheskom miyeloleykoze (HLA DRB1 allele polymorphism in chronic myelogenous leukemia. In: Fundament. stud.). Fundament. issled. 2011; 10(3): 538–54.]
  23. Baccarani M., Cortes J., Pane F. et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. Clin. Oncol. 2009; 27(35): 6041–51.
  24. Сароянц Л.В., Болдырева М.Н., Гуськова И.А. и др. Иммуногенетические маркеры предрасположенности к лепре у русских жителей Астрахан- ского региона. Иммунология 2005; 5: 263–7. [Saroyants L.V., Boldyreva M.N., Guskova I.A. i dr. Immunogeneticheskiye markery predraspolozhennosti k lepre u russkikh zhiteley Astrakhanskogo regiona (Immunogenetic markers of susceptibility to leprosy in Russian population of Astrakhan’ region. In: Immunology). Immunologiya 2005; 5: 263–7.]

Quality of life and symptom profile in patients with chronic myeloid leukemia receiving dasatinib as а second-line therapy due to intolerance or resistance to imatinib

Ionova1,2, D. Fedorenko1,2, T. Nikitina1, and K. Kurbatova1

1 N.I. Pirogov National Medico-surgical Center, Moscow, Russian Federation

2 International Center for Quality of Life Studies, Saint-Petersburg, Russian Federation


ABSTRACT

The article is focused on preliminary results of the observational study “Quality of life and symptom profile in imatinib-resistant or intolerant patients with chronic myeloid leukemia during disease-modifying treatment” (2011–2012). 56 imatinib-resistant or intolerant patients with chronic myeloid leukemia in chronic phase were included in the preliminary analysis. It was shown that prior to treatment with dasatinib more than one third of patients had severe or critical quality of life deterioration. Patients treated with standard doses of imatinib during the first-line treatment reported better quality of life than patients treated with high doses of imatinib. After 12 months of treatment with dasatinib, the majority of patients showed complete or partial cytogenetic response (62 %); most of the patients with complete cytogenetic response were treated with standard doses of imatinib during the first-line treatment (19 % vs 8 %). During treatment with dasatinib, stabilization of quality of life parameters was recorded with a slight trend towards improved vitality, mental health, and pain scales. In the majority of patients (68 %), the treatment response as improved or stabilized quality of life was observed. During treatment with dasatinib, severity of the most frequent disease- or treatment-specific symptoms decreased. In this observational study, it was shown that dasatinib therapy in the real-world practice is effective both in terms of clinical parameters and patient-reported outcomes, and characterized by good tolerability.


Keywords: quality of life, symptom profile, chronic myeloid leukemia, dasatinib.

Read in PDF (RUS)pdficon


REFERENCES

  1. Baccarani M., Pileri S., Steegmann J.-L. et al. Chronic myeloid leukemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncology 2012; 23(7): vii72–7.
  2. Saglio G. New approaches to treatment of chronic myeloid leukemia. Hematology Education: the education program for the annual congress of the European Hematology Association. 2012; 6: 129–36.
  3. Hochhaus A. Management of newly diagnosed chronic myeloid leukemia patients. Hematology Education: the education program for the annual congress of the European Hematology Association. 2011; 5: 120–6.
  4. Голенков А.К., Высоцкая Л.Л., Трифонова Е.В. и др. Эффективность лечения больных хроническим миелолейкозом иматинибом в широкой клинической практике. Онкогематология 2012; 3: 17–21. [Golenkov A.K., Vysotskaya L.L., Trifonova E.V. i dr. Effectivnost lecheniya bolnikh khronicheskim miyeloleykozom imatinibom v shirokoy klinicheskoy practike (Efficacy of imatinib therapy for chronic myeloid leukemia in routine clinical practice). Onkogematologia 2012; 3: 17–21.]
  5. Практические аспекты терапии хронического миелолейкоза в хро- нической фазе (по материалам выступлений на конгрессе гематологов. Москва, 3 июля 2012 г.). Онкогематология 2012; 3: 8–16. [Practicheskiye aspecty terapii khronicheskogo miyeloleykoza v khronicheskoy faze (po materialam vystupleniy na kongresse gematologov. Moskva, 3 iulya 2012 g.) (Practical aspects of therapy for chronic myeloid leukemia in chronic phase (adapted from presentations at the hematologists’ congress. Moscow, July 3, 2012)). Onkogematologia 2012; 3: 8–16.]
  6. De Lavallade H., Apperley J.F., Khorashad J.S. et al. Imatinib for newly diagnosed patients with chronic myeloid leukemia: incidence of sustained responses in an intention-to-treat analysis. J. Clin. Oncol. 2008; 26: 3358–63.
  7. Волкова М.А. Новые возможности в терапии хронического миелолей- коза: дазатиниб. Клин. онкогематол. 2008; 1(3): 218–25. [Volkova M.A. Novyye vozmozhnosti v terapii khronicheskogo miyeloleykoza: dazatinib (New possibilities in dasatinib therapy for chronic myeloid leukemia). Klin. onkogematol. 2008; 1(3): 218–25.]
  8. Guilhot F., Apperley J., Kim D.-W. et al. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood 2007; 109: 4143–50.
  9. Hochhaus A., Kantarjian H.M., Baccarani M. et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic phase chronic myeloid leukemia after failure of imatinib therapy. Blood 2007; 109: 2303–9.
  10. Kantarjian H., Pasquini R., Hamerschlak N. et al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia after failure of first-line imatinib: a randomized phase 2 trial. Blood 2007; 109(12): 5143–50.
  11. Hochhaus A., Baccarani M., Deininger M. et al. Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia 2008: 1–7.
  12. Ottmann O., Dombret H., Martinelli G. et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood 2007; 110: 2309–15.
  13. Guidelines. Patient-reported outcomes in hematology. The EHA SWG «Quality of life and Symptoms». Forum Service Editore. Genoa, Forum service editore. 2012.
  14. Ionova T., Nikitina T., Gritsenko T. et al. Quality of life and symptom profile in patients with Imatinib-resistant or intolerant chronic myeloid leukemia. Haematologica 2012; 97(1): 368.
  15. Новик А.А., Ионова Т.И. Руководство по исследованию качества жизни в медицине, 3-е изд., перераб. и доп. Под ред. Ю.Л. Шевченко. М.: РАЕН, 2012. [Novik A.A., Ionova T.I. Rukovodstvo po issledovaniyu kachestva zhizni v meditsine, 3-e izd., pererab. i dop. Pod. red. Yu.L. Shevchenko (Manual on quality of life assessment in medicine, 3rd ed., revised and amended. Ed. by Yu.L. Shevchenko). M.: RAEN, 2012.]
  16. Efficace F., Baccarani M., Breccia M. Health-related quality of life in chronic myeloid leukemia patients receiving long-term therapy with imatinib compared with the general population. Blood 2011; 118(17): 4554–60.
  17. Efficace F., Cocks K., Breccia M. et al. GIMEMA and EORTC Quality of Life Group. Time for a new era in the evaluation of targeted therapies for patients with chronic myeloid leukemia: Inclusion of quality of life and other patientreported outcomes. Crit. Rev. Oncol. Hematol. 2012; 81(2): 123–35.
  18. Guilhod J., Baccarani M., Clark R.E. et al. Definitions, methodological and statistical issues for phase 3 clinical trials in chronic myeloid leukemia: a proposal by the European Leukemia Net. Blood 2012; 119: 5963–71.
  19. Hays R.D., Sherbourne C.D., Mazel R.M. User’s Manual for Medical Outcomes Study (MOS) Core measures of health-related quality of life. RAND Corporation, MR-162-RC. Available at: www.rand.org.
  20. Efficace F., Cocks K., Breccia M. et al. GIMEMA and EORTC Quality of Life Group. Time for a new era in the evaluation of targeted therapies for patients with chronic myeloid leukemia: Inclusion of quality of life and other patientreported outcomes. Crit. Rev. Oncol. Hematol. 2012; 81(2): 123–35.
  21. Bevans M.F., Mitchell S.A., Barrett A.J. et al. Function, Adjustment, Quality of Life and Symptoms (FAQS) in Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) Survivors: A Study Protocol. Health and Quality of Life Outcomes 2011; 9: 24. doi: 10.1186/1477-7525-9-24.

The problem of adherence to therapy in chronic myeloid leukemia: understanding the patient and making a decision

E.Yu. Chelysheva1, A.V. Galaktionova2, and A.G. Turkina1

1 Hematology Research Center, RF Ministry of Health, Moscow, Russian Federation

2 ANO “CO-operation project”, Moscow, Russian Federation


ABSTRACT

This article prepared by hematologists and the psychologist raises the problem of adherence to therapy in chronic myeloid leukemia. Poor adherence to therapy can worsen treatment outcomes. Patients who take less than 90 % of prescribed imatinib have lower chances to achieve clinically significant deep remission. It is shown that adherence rates decrease over time. Methods for measurement of adherence have limitations and do not always reflect an actual situation. It is noted that long-term treatment using medication in a form of tablets has its peculiarities associated with the necessity of a patient’s clear understanding of treatment goals, appropriate information on therapy aspects, and correction of side effects. The data on tyrosine kinase inhibitors regimens in chronic myeloid leukemia are included. The causes of poor adherence to therapy related to a particular mode of treatment and psychological status of the patient are described. Practical recommendations on adherence improvement are given.


Keywords: chronic myeloid leukemia, tyrosine kinase inhibitors, adherence to therapy

Read in PDF (RUS) pdficon


REFERENCES

  1. Deininger M., O’Brien S.G., Guilhot F. et al. International Randomized Study of Interferon Vs STI571 (IRIS) 8-Year Follow up: Sustained Survival and Low Risk for Progression or Events in Patients with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP) Treated with Imatinib. Blood (ASH Annual Meeting Abstracts), 2009; 114(22): 1126.
  2. Туркина А.Г., Челышева Е.Ю., Гусарова Г.А. и др. Программное ле- чение заболеваний системы крови. М.: Практика, 2012: 19–65. [Turkina A.G., Chelysheva E.Yu., Gusarova G.A. i dr. Programmnoye lecheniye zabolevaniy sistemy krovi (Program management of hematological disorders). M.: Practika, 2012: 19–65.]
  3. Baccarani M., Cortes J., Pane F. et al. Chronic Myeloid Leukemia: An Update of Concepts and Management Recommendations of European LeukemiaNet. J. Clin. Oncol. 2009; 27(35): 6041–51.
  4. Baccarani M., Pileri S., Steegmann J.-L. et al. Chronic myeloid leukemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2012; 23(Suppl. 7): vii72–vii77.
  5. World Health Organization. Adherence to Long-Term Therapies: Evidence for Action, 2003. Available at: http://whqlibdoc.who.int/publications/2003/9241545992.pdf.
  6. Noens L., van Lierde M.-A., De Bock R. et al. Prevalence, determinants, and outcomes of nonadherence to imatinib therapy in patients with chronic myeloid leukemia: the ADAGIO study. Blood 2009; 113: 5401–11.
  7. Yood M.U., Oliveria S.A., Hirji I. et al. Adherence to treatment in patients with chronic myelogenous leukemia during a 10-year time period: A medical record review. Blood (ASH Annual Meeting Abstracts) 2010; 116(21): 1235.
  8. Marin D., Bazeos A., Mahon F.-X. et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J. Clin. Oncol. 2010; 28(14): 2381–8.
  9. Milojkovic D., Apperley J. Mechanisms or resistance to imatinib and second generation tyrosine kinase inhibitors in chronic myeloid leukemia. Clin. Cancer Res. 2009; 15(24): 7519–27.
  10. Куцев С.И., Шатохин Ю.В. Влияние перерывов терапии иматинибом на достижение цитогенетического и молекулярного ответов у больных хроническим миелолейкозом. Казан. мед. журн. 2009; 90(6): 827–31. [Kutsev S.I., Shatokhin Yu.V. Vliyaniye pereryvov terapii imatinibom na dostizheniye tsitogeneticheskogo i molekulyarnogo otvetov u bolnykh chronicheskim miyeloleykozom (Effect of interruptions in imatinib therapy on achievement of molecular response in patients with chronic myeloid leukemia). Kazan. med. zhurn. 2009; 90(6): 827–31.]
  11. Darkow T., Henk H.J., Thomas S.K. et al. Treatment interruptions and non-adherence with imatinib and associated healthcare costs: a retrospective analysis among managed care patients with chronic myelogenous leukaemia. Pharmacoeconomics 2007; 25(6): 481–96.
  12. Куцев С.И., Оксенюк О.С., Кравченко Е.Г. и др. Лекарственный мониторинг терапии хронического миелолейкоза иматинибом. Клин. онкогематол. 2010: 3(1): 1–9. [Kutsev S.I., Oksenyuk O.S., Kravchenko E.G. i dr. Lekarstvennyy monitoring terapii khronicheskogo miyeloleykoza imatinibom (Drug monitoring of imatinib therapy for chronic myeloid leukemia). Klin. onkogematol. 2010; 3(1): 1–9.]
  13. Ibrahim A.R., Milojkovic D., Bua M. et al. Poor Adherence Is the Main Reason for Loss of CCyR and Imatinib Failure for CML Patients On Long Term Imatinib Therapy. Blood (ASH Annual Meeting Abstracts) 2010; 116(21): 3414.
  14. Medicines adherence Involving patients in decisions about prescribed medicines and supporting adherence. NICE Clinical Guideline 76, 2009. Available at: http://www.nice.org.uk/nicemedia/live/11766/43042/43042.pdf.
  15. Barber N., Parsons J., Clifford S. et al. Patients’ problems with new medication for chronic conditions. Qual. Saf. Health Care 2004; 13(3): 172–5.
  16. Eliasson L., Clifford S., Barber N. et al. Exploring chronic myeloid leukemia patients’ reasons for not adhering to the oral anticancer drug imatinib as prescribed. Leuk. Res. 2011; 35(5): 626–30.
  17. Claxton A.J., Cramer J., Pierce C. A systematic review of the associations between dose regimens and medication compliance. Clin. Ther. 2001; 23(8): 1296–310.
  18. da Silveira V.L., Drachler M.L., Leite J.C. et al. Characteristics of HIV antiretroviral regimen and treatment adherence. Braz. J. Infect. Dis. 2003; 7(3): 194–201.
  19. Osterberg L., Blaschke T. Drug Therapy: Adherence to Medication. N. Engl. J. Med. 2005; 353(5): 487–97.
  20. Albert N.M. Improving medication adherence in chronic cardiovascular disease. Crit. Care Nurse 2008; 28(5): 54–64.
  21. Wu J.-R., Moser D.K., Chung M.L. et al. Objectively Measured, but Not Self-Reported, Medication Adherence Independently Predicts Event-Free Survival in Patients With Heart Failure. J. Card. Fail. 2008; 14(3): 203–10.
  22. Paterson D.L., Potoski B., Capitano B. et al. Measurement of adherence to antiretroviral medications. JAIDS 2002; 31(Suppl. 3): S103–6.
  23. Bartlett J.A. Addressing the Challenges of Adherence. JAIDS 2002; 29(Suppl. 2): S2–10.
  24. Andrade S.E., Kahler K.H., Frech F. et al. Methods for evaluation of medication adherence and persistence using automated databases. Pharmacoepidemiol. Drug Saf. 2006; 15(8): 565–74.
  25. Claxton A.J., Cramer J., Pierce C. A systematic review of the associations between dose regimens and medication compliance. Clin. Ther. 2001; 23(8): 1296–310.
  26. Гливек® (иматиниб) — инструкция по применению препарата, 2012. [Glivek® (imatinib) — instruktsiya po primeneniyu preparata (Gleevec® (imatinib) prescribing information), 2012.]
  27. Тасигна® (нилотиниб) — инструкция по применению препарата, 2012. [Tasigna® (nilotinib) — instruktsiya po primeneniyu preparata (Tasigna® (nilotinib) prescribing information), 2012.]
  28. Спрайсел® (дазатиниб) — инструкция по применению препарата, 2012. [Spraysel® (dasatinib) — instruktsiya po primeneniyu preparata (Sprycel® (dasatinib) prescribing information), 2012.]
  29. St. Charles M., Bollu V.K., Hornyak E. et al. Predictors of Treatment Non-Adherence in Patients Treated with Imatinib Mesylate for Chronic Myeloid Leukemia. Blood (ASH Annual Meeting Abstracts) 2009; 114(22): 2209.
  30. Hines P., Hirji I., Davis C.C. Concomitant medications and comorbidities among patients with chronic myelogenous leukemia using pharmetrics data. Poster Presented at European Society of Hematology (ESH) — International CML Foundation 12th International Conference; September 24–26, 2010 Washington, DC.
  31. Touchette D.R. Medication compliance, adherence, and persistence: Current status of behavioral and educational interventions to improve outcomes. J. Manag. Care Pharm. 2008; 14(6): S2–10.
  32. Nunes V., Neilson J., O’Flynn N. et al. Clinical guidelines and evidence review for medicines adherence involving patients. London: National Collaborating Centre for Primary Care and Royal College of General Practitioners, 2009.
  33. Конради А.О., Полуничева Е.В. Недостаточная приверженность к лечению артериальной гипертензии: причины и пути коррекции. Артериал. гипертенз. 2004; 10(3): 3. [Konradi A.O., Polunicheva E.V. Nedostatochnaya priverzhennost k lecheniyu arterialnoy gipertenzii: prichiny i puti korrektsii (Poor adherence to therapy of arterial hypertension: causes and ways of correction). Arterial. gipertenz. 2004; 10(3): 3.]
  34. Власюк Т. Приверженность к терапии: в поисках улучшения. Электронное издание. Аптека. № 651 (30) 04.08.2008. http://www.apteka.ua/ online/27333/ [Vlasyuk T. Priverzhennost k terapii: v poiskakh uluchsheniya. Electronnoye izdaniye (Adherence to therapy: in pursuit of improvement. Electronic edition). Apteka. #651 (30) 04.08.2008. http://www.apteka.ua/online/27333/]
  35. Енцов Д.В. Приверженность к терапии. Электронное издание. Меди- цинский справочник. http://doctorspb.ru/articles.php?article_id=1606 [Yentsov D.V. Priverzhennost k terapii. Electronnoye izdaniye. Meditsinskiy spravochnik (Adherence to therapy. Electronic edition. Medical guide). http:// doctorspb.ru/articles.php?article_id=1606]

Cardiovascular complications of chronic myeloid leukemia treated with tyrosine kinase inhibitors

G.E. Gendlin, L.M. Makeeva, E.I. Emelina, K.V. Shuikova, G.I. Storozhakov

 FGEI HPE RNRMU named after N.I. Pirogov of Russian MoH, Moscow, Russian Federation


ABSTRACT

The achieved nowadays success in oncohematology patients’ treatment is primarily associated with the development of targeted therapy, including invention of specific tyrosine kinase inhibitors for chronic myeloid leukemia treatment (imatinib, nilotinib and dasatinib,). However, along with the high efficacy, these medicines have certain toxicities. Cardiovascular complications of tyrosine kinase inhibitors therapy of chronic myeloid leukemia are described in this review article. Taking onto consideration the fact that therapy with these medicines can cause rear but serious side effects. It is necessary to consider the probability of cardiotoxicity, arterial occlusion of various diameter and pulmonary hypertension development before prescription. In order to minimize side effects patients examination is recommended before treatment initiation for recognition of initial cardiovascular diseases, as well as thorough control of cardiovascular condition throughout the treatment.


Keywords: chronic myeloid leukemia, tyrosine kinase inhibitors, cardiac toxicity, targeted therapy

 Read in  PDF (RUS)pdficon


REFERENCES

  1. Емелина Е.И., Шуйкова К.В., Сторожаков Г.И. и др. Поражения сердца при лечении современными противоопухолевыми препаратами и лучевые повреждения сердца у больных с лимфомами. Клин. онкогематол. 2009; 2(2): 152–60. [Emelina E.I., Shuikova K.V., Storozhakov G.I. i dr. Porazheniya serdtsa pri lechenii sovremennymi protivoopukholevymi preparatami i luchevye povrezhdeniya serdtsa u bol’nykh s limfomami (Heart diseases in the modern anti-tumor agent treatment and radiation-induced heart lesions in lymphoma patients). Klin. onkogematol. 2009; 2(2): 152–60.]
  2. Гендлин Г.Е., Сторожаков Г.И., Шуйкова К.В. и др. Острые сердечнососудистые события во время применения противоопухолевых химиопрепаратов: клинические наблюдения. Клин. онкогематол. 2011; 4(2): 155–64. [Gendlin G.E., Storozhakov G.I., Shuikova K.V. i dr. Ostrye serdechnososudistye sobytiya vo vremya primeneniya protivoopukholevykh khimiopreparatov: klinicheskie nablyudeniya (Acute cardiovascular events during treatment with anti-tumor chemotherapeutic agents: clinical observations). onkogematol. 2011; 4(2): 155–64.]
  3. Емелина Е.И., Сторожаков Г.И., Гендлин Г.Е. и др. Случай антрациклин-индуцированной кардиомиопатии после лечения диффузной крупноклеточной В-клеточной лимфомы по схеме АСОР и лучевой терапии. Сердечная недостаточность 2006; 4(38): 202–4. [Emelina E.I., Storozhakov G.I., Gendlin G.E. i dr. Sluchai antratsiklin-indutsirovannoi kardiomiopatii posle lecheniya diffuznoi krupnokletochnoi V-kletochnoi limfomy po skheme ASOR i luchevoi terapii (A case of an anthracycline-induced cardiomyopathy after the ACOP treatment of diffuse large B-cell lymphoma). Serdechnaya nedostatochnost’ 2006; 4(38): 202–4.]
  4. Hare J.M. The Dilated, Restrictive, and Infiltrative Cardiomyopathies. In: Braunwald’s heart disease: A Textbook of Cardiovascular Medicine, 8th Edition, 2008.
  5. ACC/AHA 2005 Guidelines Update for the Diagnosis and Management of Chronic Heart Failure in the Adult.
  6. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. J. Am. Soc. Echocardiogr. 2011; 24: 229–67.
  7. Nuclear Cardiology and Cardiac CT. Berlin, May 5–8, 2013.
  8. Домнинский Д.А. Основы таргетной терапии. Онкогематология 2012; 1: 46–54. [Domninskii D.A. Osnovy targetnoi terapii (Fundamentals of targeted therapy). Onkogematologiya 2012; 1: 46–54.]
  9. Hughes T.P., Kaeda J., Branford S. et al. Frequency of Major Molecular Responses to Imatinib or Interferon Alfa plus Cytarabine in Newly Diagnosed Chronic Myeloid Leukemia. New Engl. J. Med. 2003; 349: 1423–32.
  10. National comprehensive cancer network NCCN clinical practice guidelines in oncology: Chronic myelogenous leukemia: Version 2. Fort Washington, PA,
  11. Chen M.H., Kerkela R., Forse T. et al. Mechanisms of cardiac dysfunction associated with tirosine kinase inhibitor cancer therapeutics. Circulation 2008; 118: 84–95.
  12. Kerkela R., Grazette I., Yacolti R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat. Med. 2006; 12(8).
  13. Ederhy S., Izzedine H., Massard C. et al. Cardiac side effects of molecular targeted therapies: Towards a better dialogue between oncologists and cardiologists. Crit. Rev. Oncol. Hematol. 2011: 369–79.
  14. Pinilla-Ibarz J., Cortes J., Mauro M.J. et al. Intolerance to tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer 2011; 117: 688–97.
  15. Kantarjian H.M., Shah N.P., Cortes J.E. et al. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood 2012; 119: 1123–9.
  16. Porkka K., Khoury H.J., Paquette R. et al. Dasatinib 100 mg once daily minimizes the occurrence of pleural effusion in patients with chronic myeloid leukemia in chronic phase and efficacy is unaffected in patients who develop pleural effusion. Cancer 2010; 116: 377–86.
  17. Kantarjian H., Shah N.P., Hochhaus A. et al. Dasatinib versus Imatinib in Newly Diagnosed Chronic-Phase Chronic Myeloid Leukemia. New Engl. J. Med. 2010.
  18. Saglio G., Hochhaus A., Cortes J.E. et al. Safety and Efficacy of Dasatinib Versus Imatinib by Baseline Cardiovascular Comorbidity In Patients with Chronic Myeloid Leukemia In Chronic Phase (CMLCP): Analysis of the DASISION Trial. ASH 2010. Poster 2286.
  19. Rasheed W., Flaim B., Symour J.F. et al. Reversible severe pulmonary hypertension secondary to dasatinib in a patient with chronic myeloid leukemia. Leuk. Res. 2009; 33: 860–9.
  20. EMEA: Sprycel-Scientific discussion. European Public Assessment Report (EPAR 2011).
  21. Quintas-Cardama A., Kantarjian H., O’Brien S. et al. Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. Clin. Oncol. 2007; 25(25): 3908–14.
  22. Mattei D., Feola M., Orzan F. et al. Reversible dasatinib-induced pulmonary arterial hypertension and right ventricle failure in a previously allografted CML patient. Bone Marrow Transplant. 2009; 43(12): 967–8.
  23. Dumitrescu D., Seck C., ten Freyhaus H. et al. Fully reversible pulmonary arterial hypertension associated with dasatinib treatment for chronic myeloid leukemia. Respir. J. 2011; 38(1): 218–20.
  24. Hennigs J.K., Keller G., Baumann H.J. et al. Multi tyrosine kinase inhibitor dasatinib as novel cause of severe pre-capillary pulmonary hypertension? BMC Pulm. Med. 2011; 23: 11–30.
  25. Orlandi E.M., Rocca B., Pazzano A.S. et al. Reversible pulmonary arterial hypertension likely related to long-term, low dose dasatinib treatment for chronic myeloid leukemia. Leuk. Res. 2012; 36(81): 4–6.
  26. Breccia M., Efficace F., Alimena G. et al. Progressive arterial occlusive disease (PAOD) and pulmonary arterial hypertension (PAH) as new adverse events of second generation TKIs in CML treatment: Who’s afraid of the big bad wolf? Res. 2012; 36: 813–4.
  27. Montani D., Bergot E., Ganter S. et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 2012; 125(17): 2128–37.
  28. Philibert L., Cazorla C., Peyrire H. et al. Pulmonary arterial hypertension induced by dasatinib: positive reintroduction with nilotinib (Abstract). Fundam. Clin. Pharmacol. 2011; 25(Suppl. 1): 95.
  29. Aichberger K.J., Herndlhofer S., Schernthaner G.-H. et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Hematology 2011; 86: 533–9.