Clinical and Prognostic Value of Molecular Markers of Diffuse Large B-Cell Lymphoma

SM Rastorguev1, DA Koroleva2, ES Boulygina1, SV Tsygankova1, NG Goncharov1, OS Naraikin1, NG Gabeeva2, EE Zvonkov2, AV Nedoluzhko1

1 National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova sq., Moscow, Russian Federation, 123182

2 National Medical Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Artem Valer’evich Nedoluzhko, PhD in Biology, 1 Akademika Kurchatova sq., Moscow, Russian Federation, 123182; Tel.: +7(916)670-55-95; e-mail: nedoluzhko@gmail.com

For citation: Rastorguev SM, Koroleva DA, Bulygina ES, et al. Clinical and Prognostic Value of Molecular Markers of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019:12(1):95–100.

DOI: 10.21320/2500-2139-2019-12-1-95-100


ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid tumor in adults which is associated with approximately 30–40 % of all non-Hodgkin’s lymphomas. Diagnostic criteria include diffuse growth of large anaplastic tumor cells, expression of В-cell markers, and a high proliferative index. Due to the development of molecular genetic technologies it became obvious that underlying cause of clinical diversity is a huge amount of genetic failures which determine epigenetic modification of gene expression, activation variability of certain signaling pathways, and immunological properties of tumor cells. The study and systemization of molecular markers present a significant trend in DLBCL diagnosis and treatment. This review discusses most important molecular markers and current view on their clinical value.

Keywords: lymphoma, DLBCL, B-cells, transcriptomics, gene expression, epigenomics, genomics.

Received: July 3, 2018

Accepted: December 10, 2018

Read in PDF 


REFERENCES

  1. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.

  2. Rosenwald A, Alizadeh AA, Widhopf G, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001;194(11):1639–48. doi: 1084/jem.194.11.1639.

  3. Staudt LM, Dave S. The biology of human lymphoid malignancies revealed by gene expression profiling. Adv Immunol. 2005;87:163–208. doi: 10.1016/S0065-2776(05)87005-1.

  4. Звонков Е.Е., Морозова А.К., Кравченко С.К. и др. Восьмилетний опыт применения модифицированной программы NHL-BFM-90 в лечении взрослых больных первичной диффузной В-крупноклеточной лимфомой желудка. Гематология и трансфузиология. 2012;57(3):47–8.

    [Zvonkov EE, Morozova AK, Kravchenko SK, et al. Eight-year experience of using the modified NHL-BFM-90 program for treatment of adult patients with primary diffuse large B-cell gastric lymphoma. Gematologiya i transfuziologiya. 2012;57(3):47–8. (In Russ)]

  5. Магомедова А.У., Кравченко С.К., Кременецкая A.M. и др. Девятилетний опыт лечения больных диффузной В-крупноклеточной лимфосаркомой. Терапевтический архив. 2011;83(7):5–10.

    [Magomedova AU, Kravchenko SK, Kremenetskaya AM, et al. Nine-year experience in the treatment of patients with diffuse large B-cell lymphosarcoma. Terapevticheskii arkhiv. 2011;83(7):5–10. (In Russ)]

  6. Гаврилина О.А., Габеева Н.Г., Морозова А.К. и др. Роль высокодозной химиотерапии и трансплантации аутологичных стволовых клеток крови у пациентов с диффузной В-крупноклеточной лимфомой. Терапевтический архив. 2013;85(7):90–7.

    [Gavrilina OA, Gabeeva NG, Morozova AK, et al. Role of high-dose chemotherapy and autologous blood stem cell transplantation in patients with diffuse large B-cell lymphoma. Terapevticheskii arkhiv. 2013;85(7):90–7. (In Russ)]

  7. Габеева Н.Г., Королева Д.А., Беляева А.В. и др. Диффузная В-крупноклеточная лимфома с сочетанной реаранжировкой генов c-MYC и BCL6 с первичным поражением кожи: собственное наблюдение и обзор литературы. Терапевтический архив. 2017;89(7):85–92.

    [Gabeeva NG, Koroleva DA, Belyaeva AV, et al. Diffuse large B-cell lymphoma with concomitant c-MYC and BCL6 gene rearrangements with primary skin involvement: A case report and a review of literature. Terapevticheskii arkhiv. 2017;89(7):85–92. (In Russ)]

  8. Martelli M, Ferreri AJ, Agostinelli C, et al. Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 2013;87(2):146–71. doi: 10.1016/j.critrevonc.2012.12.009.

  9. Cohen M, Vistarop AG, Huaman F, et al. Epstein-Barr virus lytic cycle involvement in diffuse large B cell lymphoma. Hematol Oncol. 2017;36(1):98–103. doi: 10.1002/hon.2465.

  10. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;359(22):2313–23. doi: 10.1056/NEJMoa0802885.

  11. Wright G, Tan B, Rosenwald A, et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA. 2003;100(17): 9991–6. doi: 10.1073/pnas.1732008100.

  12. Skryabin KG, Prokhortchouk EB, Mazur AM, et al. Combining Two Technologies for Full Genome Sequencing of Human. Acta Nat. 2009;1(3):102–7.

  13. Artemov AV, Boulygina ES, Tsygankova SV, et al. Study of Alzheimer Family Case Reveals Hemochromotosis-Associated HFE Mutation. Hum Gen Var. 2014;1(1):14004. doi: 10.1038/hgv.2014.4.

  14. Scelo G, Riazalhosseini Y, Greger L, et al. Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nat Commun. 2014;5(1):5135. doi: 10.1038/ncomms6135.

  15. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8(1):68–74. doi: 10.1038/nm0102-68.

  16. Scherer F, Kurtz DM, Newman AM, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016;8(364):364ra155. doi: 10.1126/scitranslmed.aai8545.

  17. Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer. 2007;121(5):1156–61. doi: 10.1002/ijc.22800.

  18. Malumbres R, Sarosiek KA, Cubedo E, et al. Differentiation stage–specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood. 2009;113(16):3754–64. doi: 10.1182/blood-2008-10-184077.

  19. Zhu D, Fang C, Li X, et al. Predictive analysis of long non-coding RNA expression profiles in diffuse large B-cell lymphoma. Oncotarget. 2017;8(14):23228–36. doi: 10.18632/oncotarget.15571.

  20. Peng W, Fan H, Wu G, et al. Upregulation of long noncoding RNA PEG10 associates with poor prognosis in diffuse large B cell lymphoma with facilitating tumorigenicity. Clin Exp Med. 2016;16(2):177–82. doi: 10.1007/s10238-015-0350-9.

  21. Peng W, Feng J. Long noncoding RNA LUNAR1 associates with cell proliferation and predicts a poor prognosis in diffuse large B-cell lymphoma. Biomed Pharmacother. 2016;77:65–71. doi: 10.1016/j.biopha.2015.12.001.

  22. Peng W, Wu J, Feng J. Long noncoding RNA HULC predicts poor clinical outcome and represents pro-oncogenic activity in diffuse large B-cell lymphoma. Biomed Pharmacother. 2016;79:188–93. doi: 10.1016/j.biopha.2016.02.032.

  23. Yan Y, Han J, Li Z, et al. Elevated RNA expression of long non-coding HOTAIR promotes cell proliferation and predicts a poor prognosis in patients with diffuse large B cell lymphoma. Mol Med Rep. 2016;13(6):5125–31. doi: 10.3892/mmr.2016.5190.

  24. Li L-J, Chai Y, Guo X-J, et al. The effects of the long non-coding RNA MALAT-1 regulated autophagy-related signaling pathway on chemotherapy resistance in diffuse large B-cell lymphoma. Biomed Pharmacother. 2017;89:939–48. doi: 10.1016/j.biopha.2017.02.011.

  25. Sun J, Cheng L, Shi H, et al. A potential panel of six-long non-coding RNA signature to improve survival prediction of diffuse large-B-cell lymphoma. Sci Rep. 2016;6(1):27842. doi: 10.1038/srep27842.

  26. Verma A, Jiang Y, Du W, et al. Transcriptome sequencing reveals thousands of novel long non-coding RNAs in B cell lymphoma. Gen Med. 2015;7(1):110. doi: 10.1186/s13073-015-0230-7.

  27. Gutierrez-Garcia G, Cardesa-Salzmann T, Climent F, et al. Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Blood. 2011;117(18):4836–43. doi: 10.1182/blood-2010-12-322362.

  28. Schuetz JM, Johnson NA, Morin RD, et al. BCL2 mutations in diffuse large B-cell lymphoma. Leukemia. 2012;26(6):1383–90. doi: 10.1038/leu.2011.378.

  29. Greenough A, Moffitt A, Jima D, et al. Strand-Specific Total RNA Sequencing Establishes the Complete Transcriptome and Alternative Splicing Repertoire in Diffuse Large B Cell Lymphoma. Blood. 2014;124(21):864.

  30. Park HY, Lee SB, Yoo HY, et al. Whole-Exome and Transcriptome Sequencing of Refractory Diffuse Large B-Cell Lymphoma. Oncotarget. 2016;7(52): 86433–45. doi: 10.18632/oncotarget.13239.

  31. Dekker JD, Park D, Shaffer AL, et al. Subtype-Specific Addiction of the Activated B-Cell Subset of Diffuse Large B-Cell Lymphoma to FOXP1. Proc Natl Acad Sci USA. 2016;113(5):E577–86. doi: 10.1073/pnas.1524677113.

  32. Reddy A, Zhang J, Davis NS, et al. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell. 2017;171(2):481–94.e15. doi: 10.1016/j.cell.2017.09.027.

  33. Saez AI, Saez AJ, Artiga MJ, et al. Building an outcome predictor model for diffuse large B-cell lymphoma. Am J Pathol. 2004;164(2):613–22. doi: 10.1016/S0002-9440(10)63150-1.

  34. Campo E. MYC in DLBCL: partners matter. Blood. 2015;126(22):2439–40. doi: 10.1182/blood-2015-10-671362.

  35. Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med. 2018;378(15):1396–407. doi: 10.1056/NEJMoa1801445.

  36. Dubois S, Viailly PJ, Mareschal S, et al. Next-generation sequencing in diffuse large B-cell lymphoma highlights molecular divergence and therapeutic opportunities: a LYSA study. Clin Cancer Res. 2016;22(12):2919–28. doi: 10.1158/1078-0432.CCR-15-2305.

  37. Lohr JG, Stojanov P, Lawrence MS, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA. 2012;109(10):3879–84. doi: 10.1073/pnas.1121343109.

  38. Morin RD, Mungall K, Pleasance E, et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood. 2013;122(7):1256–65. doi: 10.1182/blood-2013-02-483727.

  39. Pasqualucci L, Trifonov V, Fabbri G, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011;43(9):830–7. doi: 10.1038/ng.892.

  40. Roschewski M, Dunleavy K, Pittaluga S, et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol. 2015;16(5):541–9. doi: 10.1016/S1470-2045(15)70106-3.

  41. Yeh P, Hunter T, Sinha D, Ftouni S, et al. Circulating tumour DNA reflects treatment response and clonal evolution in chronic lymphocytic leukaemia. Nat Commun. 2017;8:14756. doi: 10.1038/ncomms14756.

  42. Khare D, Goldschmidt N, Bardugo A, et al. Plasma microRNA profiling: Exploring better biomarkers for lymphoma surveillance. PLoS One. 2017;12(11):e0187722. doi: 10.1371/journal.pone.0187722.

  43. Meng Y, Quan L, Liu A. Identification of key microRNAs associated with diffuse large B-cell lymphoma by analyzing serum microRNA expressions. Gene. 2018;642:205–11. doi: 10.1016/j.gene.2017.11.022.

  44. Kurtz DM, Green MR, Bratman SV, et al. Noninvasive Monitoring of Diffuse Large B-Cell Lymphoma by Immunoglobulin High-Throughput Sequencing. Blood. 2015;125(24):3679–87. doi: 10.1182/blood-2015-03-635169.

  45. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–30. doi: 10.1126/science.aar3247.

  46. Shaknovich R, Melnick A. Epigenetics and B-Cell Lymphoma. Curr Opin Hematol. 2011;18(4):293–9. doi: 10.1097/MOH.0b013e32834788cf.

  47. Shaknovich R, Geng H, Johnson NA, et al. DNA methylation signatures define molecular subtypes of diffuse large B-cell lymphoma. Blood. 2010;116(20):e81–9. doi: 10.1182/blood-2010-05-285320.

  48. Lai AY, Fatemi M, Dhasarathy A, et al. DNA methylation prevents CTCF-mediated silencing of the oncogene BCL6 in B cell lymphomas. J Exp Med. 2010;207(9):1939–50. doi: 10.1084/jem.20100204.

  49. Kristensen LS, Hansen JW, Kristensen SS, et al. Aberrant Methylation of Cell-Free Circulating DNA in Plasma Predicts Poor Outcome in Diffuse Large B Cell Lymphoma. Clin Epigen. 2016;8(1):5. doi: 10.1186/s13148-016-0261-y.

  50. Wedge E, Hansen JW, Garde C, et al. Global hypomethylation is an independent prognostic factor in diffuse large B cell lymphoma. Am J Hematol. 2017;92(7):689–94. doi: 10.1002/ajh.24751.

  51. Krajnovic M, Jovanovic MP, Mihaljevic B, et al. Hypermethylation of p15 Gene in Diffuse – Large B‐Cell Lymphoma: Association with Less Aggressiveness of the Disease. Clin Transl Sci. 2014;7(5):384–90. doi: 10.1111/cts.12162.

  52. Chambwe N, Kormaksson M, Geng H, et al. Variability in DNA methylation defines novel epigenetic subgroups of DLBCL associated with different clinical outcomes. Blood. 2014;123(11):1699–708. doi: 10.1182/blood-2013-07-509885.

  53. Clozel T, Yang S, Elstrom RL, et al. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov. 2013;3(9):1002–19. doi: 10.1158/2159-8290.CD-13-0117.

  54. Pan H, Jiang Y, Boi M, et al. Epigenomic evolution in diffuse large B-cell lymphomas. Nat Commun. 2015;6(1):6921. doi: 10.1038/ncomms7921.

  55. Jing L, Su L, Ring BZ. Ethnic Background and Genetic Variation in the Evaluation of Cancer Risk: A Systematic Review. PLoS ONE. 2014;9(6):e97522. doi: 10.1371/journal.pone.0097522.

  56. Li Y, Wang Y, Wang Z, et al. Racial Differences in Three Major NHL Subtypes: Descriptive Epidemiology. Cancer Epidemiol. 2015;39(1):8–13. doi: 10.1016/j.canep.2014.12.001.

 

Prognostic and Differential Diagnostic Value of Standardized Uptake Volume (SUV) of Fluorodeoxyglucose in Patients with Hodgkin’s Lymphoma

AA Rukavitsyn, SI Kurbanov, OA Rukavitsyn

Academician NN Burdenko Principal Military Clinical Hospital under the Ministry of Defence of the Russian Federation, 3 Gospital’naya pl., Moscow, Russian Federation, 105229

For correspondence: Anatolii Anatol’evich Rukavitsyn, 3 Gospital’naya pl., Moscow, Russian Federation, 105229; Tel: +7(499)263-53-17; e-mail: rukavitsin46@gmail.com

For citation: Rukavitsyn AA, Kurbanov SI, Rukavitsyn OA. Prognostic and Differential Diagnostic Value of Standardized Uptake Volume (SUV) of Fluorodeoxyglucose in Patients with Hodgkin’s Lymphoma. Clinical oncohematology. 2017;10(2):182–6 (In Russ).

DOI: 10.21320/2500-2139-2017-10-2-182-186


ABSTRACT

Background & Aims. Hodgkin’s lymphoma (HL) is still considered one of the most curable oncohematological diseases of lymphoid tissue. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) combined with multispiral computed tomography (CT) is one of precise and easily available methods of imaging of lymphoid neoplasia. The aim is to determine the correlation between the standardized uptake volume (SUV) of 18F-FDG and results of the first-line anti-tumor treatment of HL patients; to evaluate the possibility of differential diagnosis between HL and diffuse large B-cell lymphomas (DLBCL) based on SUV.

Materials & Methods. 76 patients (69 men and 7 women) aged from 19 to 75 years (median age 36.7 years) with DLBCL (n = 22) and HL (n = 54) were retrospectively enrolled in the study. The diseases were diagnosed over the period from 2011 until 2015. A combined PET-CT imaging was performed for the disease staging.

Results. The comparison of median SUVs in patients with HL (n = 54) and DLBCL (n = 22) demonstrated that the difference had a very high level of significance (< 0.001). HL patients demonstrated a significantly lower 18F-FDG SUV than DLBCL patients. The analysis of PET findings demonstrated a correlation between the chosen treatment option for the lymphoma and the SUV level (< 0.001). HL patients demonstrated an insignificant negative correlation between the SUV level rise and the treatment outcome (= 0.2).

Conclusion. The SUV level does not affect the treatment outcomes of HL patients according to the ABVD protocol, as well as the metabolic response rate and tumor mass reduction. However, the SUV levels significantly differ in patients with HL and DLBCL. These data may be used as additional criteria for differential diagnosis of HL and DLBCL.

Keywords: SUV, PET-CT, Hodgkin’s lymphoma, DLBCL.

Received: November 21, 2016

Accepted: January 23, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Гематология: национальное руководство. Под ред. О.А. Рукавицына. М.: ГЭОТАР-Медиа, 2015. 776 с.
    [Rukavitsyn OA, ed. Gematologiya: natsional’noe rukovodstvo. (Hematology: national guidelines.) Moscow: GEOTAR-Media Publ.; 2015. 776 p. (In Russ)]
  2. Campo E, Swerdlow SH, Harris NL, et al. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019–32. doi: 10.1182/blood-2011-01-293050.
  3. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J Clin Oncol. 2014;32(27):3059–67. doi: 10.1200/jco.2013.54.8800.
  4. Naumann R, Beuthien-Baumann B, Reiss A, et al. Substantial impact of FDG PET imaging on the therapy decision in patients with early-stage Hodgkin’s lymphoma. Br J Cancer. 2004;90(3):620–5. doi: 10.1038/sj.bjc.6601561.
  5. D’souza MM, Jaimini A, Bansal A, et al. FDG-PET/CT in lymphoma. Indian J Radiol Imaging. 2013;23(4):354–65. doi: 10.4103/0971-3026.125626.
  6. Ngeow JYY, Quek RHH, Ng DCE, et al. High SUV uptake on FDG-PET/CT predicts for an aggressive B-cell lymphoma in a prospective study of primary FDG-PET/CT staging in lymphoma. Ann Oncol. 2009;20(9):1543–7. doi: 10.1093/annonc/mdp030.
  7. Schoder H, Noy A, Gonen M, et al. Intensity of 18Fluorodeoxyglucose Uptake in Positron Emission Tomography Distinguishes Between Indolent and Aggressive Non-Hodgkin’s Lymphoma. J Clin Oncol. 2005;23(21):4643–51. doi: 10.1200/jco.2005.12.072.

 

 

MYC and BCL2 Protein Expression in Patients with Diffuse Large B-cell Lymphoma

AE Misyurina1, AM Kovrigina1, EA Baryakh1, VA Misyurin2, SK Kravchenko1, AV Misyurin2, TN Obukhova1, SM Kulikov1, AN Kopylov2, AU Magomedova1, EG Gemdzhyan1, AI Vorob’ev1

1 Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Anna Evgen’evna Misyurina, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(909)637-32-46; e-mail: anna.lukina1@gmail.com

For citation: Misyurina AE, Kovrigina AM, Baryakh EA, et al. MYC and BCL2 Protein Expression in Patients with Diffuse Large B-cell Lymphoma. Clinical oncohematology. 2015;8(1):44–53 (In Russ).


ABSTRACT

Objective. The objective of this study is to analyze the incidence and the role of MYC and BCL2 protein expression in patients with diffuse large B-cell lymphoma (DLBCL) and to compare data of histological, immunohistochemical, genetic, and moleculobiological analyses with clinical characteristics.

Methods. 62 patients with confirmed diffuse large B-cell lymphoma (DLBCL) were enrolled in the study; they underwent treatment according to the original modified protocol NHL-BFM-90 ± R in the Hematology Research Center under the Ministry of Health of the Russian Federation. A reference group consisted of 13 DLBCL patients who underwent СНОР-like ± R therapy. In all observations, histological and immunohistochemical tests were performed in archived biopsy samples of a tumor tissue or a lymph node (paraffin blocks) using BCL2 (clone 124, Dako) and MYC antibodies (clone Y69, Epitomics). Based on C.P. Hans’s algorithm (2004), GCB and non-GCB immunohistochemical subtypes of DLBCL were determined. Standard cytogenetic tests (n = 22) and FISH analysis (n = 52) were performed in this study in order to determine locus translocation of с-MYC gene, IgH gene, t(8;14)(q24;q32), BCL2 gene, t(14;18)(q32;q21). Quantitative RT-PCR on paraffin tumor/node biopsy samples was also performed to evaluate the number of mRNAs of с-MYC and BCL2 genes.

Results. MYC expression was found in 24 (39 %) of 62 DLBCL patients and BCL2 in 36 (58 %) of 62 patients (threshold values were 40 % and 50 % of tumor cells, respectively). MYC/BCL2 coexpression was diagnosed in 15 (24 %) of 62 DLBCL patients. 4 (27 %) of 15 patients with MYC/BCL2 coexpression had a GCB-subtype of DLBCL, 73 % patients with MYC/BCL2 coexpression were diagnosed with non-GCB subtype of DLBCL (< 0.02). c-MYC rearrangement was found in two cases (3 %), one of them had a MYC protein expression score more than 40 %. 10 (19 %) patients had one or more additional signal from 8q24 locus of c-MYC gene. We didn’t find any correlation between the presence of additional signals from c-MYC gene locus and the level of immunohistochemical expression of MYC protein ³ 40 % (< 0.05). BCL2 gene rearrangement was detected in one case; it was accompanied by BCL2 protein immunohistochemical expression ³ 50 %. BCL2 amplification was observed in 17 (40 %) patients. There was a correlation between the amplification of BCL2 gene and immunohistochemical expression of BCL2 protein (threshold value was ³ 50 % of positive cells) (= 0.0053). There was a direct correlation between the amount of mRNAs and MYC protein (correlation coefficient 0.86; < 0.0001). There was no correlation between the level of BCL2 gene expression and the amount of protein (correlation coefficient 0.14; = 0.57). Four-year overall survival for DLBCL patients treated with m-NHL-BFM-90 ± R was 71 % (in patients without MYC/BCL2 coexpression) vs 57 % (in patients with MYC/BCL2 coexpression) (= 0.39). The probability of relapse or progression of DLBCL was significantly higher in patients with MYC/BCL2 coexpression, than in patients without MYC/BCL2 coexpression (65 % vs 15 %; = 0.0029).

Conclusions. The MYC/BCL2 coexpression is observed mainly in DLBCL patients with non-GCB immunohistochemical subtype of the disease. The MYC/BCL2 coexpression is vital for prediction of the risk of relapses/progression of the disease in patients receiving an intensive chemotherapy according to the m-NHL-BFM-90 ± R protocol. Taking into account a relatively stable structure of the protein substrate, the obtained data may become a basis for development of a diagnostic immunohistochemical algorithm for stratification of DLBCL patients.


Keywords: DLBCL, intensive therapy, MYC/BCL2 coexpression, immunohistochemistry, unfavorable prognostic factor.

Received: November 8, 2014

Accepted: November 11, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  2. A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med. 1993;329(14):987–94.
  3. Frick M, Dorken B, Lenz G. New insights into the biology of molecular subtypes of diffuse large B-cell lymphoma and Burkitt lymphoma. Best Pract Res Clin Haematol. 2012;25(1):3–12. doi: 10.1016/j.beha.2012.01.003.
  4. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.
  5. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47. doi: 10.1056/nejmoa012914.
  6. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8(1):68–74. doi: 10.1038/nm0102-68.
  7. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;359(22):2313–23. doi: 10.1056/nejmoa0802885.
  8. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.
  9. Savage KJ, Monti S, Kutok JL, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003;102(12):3871–9. doi: 10.1007/s00795-013-0038-8.
  10. Wright G, Tan B, Rosenwald A, et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA. 2003;100(17):9991–6. doi: 10.1073/pnas.1732008100.
  11. Мисюрина А.Е., Мисюрин В.А., Барях Е.А и др. Роль экспрессии c-MYC, BCL-2, BCL-6 в патогенезе диффузной В-крупноклеточной лимфомы. Клиническая онкогематология. 2014;7(4):512–21.
    [Misyurina AE, Misyurin VA, Baryakh EA, et al. Role of c-MYC, BCL-2, and BCL-6 expression in pathogenesis of diffuse large B-cell lymphoma. Klinicheskaya onkogematologiya. 2014;7(4):512–21. (In Russ)]
  12. Savage KJ, Johnson NA, Ben-Neriah S, et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009;114(17):3533–7. doi: 10.1182/blood-2009-05-220095.
  13. Horn H, Ziepert M, Becher C, et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood. 2013;121(12):2253–63. doi: 10.1182/blood-2012-06-435842.
  14. Barrans S, Crouch S, Smith A, et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol. 2010;28(20):3360–5. doi: 10.1200/jco.2009.26.3947.
  15. Iqbal J, Sanger WG, Horsman DE, et al. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol. 2004;165(1):159–66. doi: 10.1016/s0002-9440(10)63284-1.
  16. Ohno H, Fukuhara S. Significance of rearrangement of the BCL6 gene in B-cell lymphoid neoplasms. Leuk Lymphoma. 1997;27(1–2):53–63. doi: 10.3109/10428199709068271.
  17. Willis TG, Dyer MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 2000;96(3):808–22.
  18. Hu S, Xu-Monette ZY, Tzankov A, et al. MYC/BCL2 protein co-expression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2013;121(20):4021–31. doi: 10.1182/blood-2012-10-460063.
  19. Green TM, Young KH, Visco C, et al. Immunohistochemical Double-Hit Score Is a Strong Predictor of Outcome in Patients With Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J Clin Oncol. 2012;30(28):3460–7. doi: 10.1200/jco.2011.41.4342.
  20. Johnson NA, Slack GW, Savage K, et al. Concurrent Expression of MYC and BCL2 in Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J Clin Oncol. 2012;30(28):3452–9. doi: 10.1200/jco.2011.41.0985.
  21. Valera A, Lopez-Guillermo A, Cardesa-Salzmann T. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica. 2013;98(10):1554–62. doi: 10.3324/haematol.2013.086173.
  22. Магомедова А.У., Кравченко С.К., Кременецкая AM. и др. Модифицированная программа NHL-BFM-90 в лечении больных диффузной В-крупноклеточной лимфосаркомой. Терапевтический архив. 2006;10:44–7.
    [Magomedova AU, Kravchenko SK, Kremenetskaya AM, et al. Modified NHL-BFM-90 protocol in treatment of diffuse large B-cell lymphosarcoma. Terapevticheskii arkhiv. 2006;10:44–7. (In Russ)]
  23. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82. doi: 10.1182/blood-2003-05-1545.
  24. Green TM, Nielsen O, de Stricker K, et al. High levels of nuclear MYC protein predict the presence of MYC rearrangement in diffuse large B-cell lymphoma. Am J Surg Pathol. 2012;36(4):612–9. doi: 10.1097/pas.0b013e318244e2ba.
  25. Cook JR, Goldman B, Tubbs RR. Clinical significance of MYC expression and/or “high-grade” morphology in non-Burkitt, diffuse aggressive B-cell lymphomas: a SWOG S9704 correlative study. Am J Surg Pathol. 2014;38(4):494–501. doi: 10.1097/PAS.0000000000000147.
  26. Leucci E, Cocco M, Onnis A, et al. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol. 2008;216(4):440–50. doi: 10.1002/path.2410.
  27. Onnis A, De Falco G, Antonicelli G, et al. Аlteration of microRNAs regulated by c-MYC in Burkitt lymphoma. PLoS One. 2010;5(9);e12960. doi: 10.1371/journal.pone.0012960.
  28. Kluin PM. Origin And Migration of Follicular Lymphoma Cells. Haematologica. 2013;98(9):1331–3. doi: 10.3324/haematol.2013.091546.
  29. Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14(8):475–88. doi: 10.1038/nrm3611.
  30. Мангасарова Я.К., Мисюрин А.В., Магомедова А.У. и др. Молекулярная диагностика первичной медиастинальной В-клеточной лимфомы и диффузной В-крупноклеточной лимфомы с первичным вовлечением лимфоузлов средостения. Клиническая онкогематология. 2011;4(2):142–5.
    [Mangasarova YaK, Misyurin AV, Magomedova AU, et al. Molecular diagnostics of primary mediastinal B-cell lymphoma and diffuse large B-cell lymphoma with primary involvement of mediastinal lymph nodes. Klinicheskaya onkogematologiya. 2011;4(2):142–5. (In Russ)]
  31. Liu Y, Hernandez AM, Shibata D, Cortopassi GA. BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci USA. 1994;91(19):8910–4. doi: 10.1073/pnas.91.19.8910.
  32. Harries LW, Hernandez D, Henley W. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell. 2011;10(5):868–78. doi: 10.1111/j.1474-9726.2011.00726.x.
  33. Dunleavy K, Pittaluga S, Shovlin M. Concurrent Expression Of MYC/BCL2 Protein In Newly Diagnosed DLBCL Is Not Associated With An Inferior Survival Following EPOCH-R Therapy. Blood. 2013;122(21):3029.