Role of Enzymatic Activity in Producing an Antiproliferative Effect of L-Asparaginases

VS Pokrovskii1, MV Komarova2, SS Aleksandrova3, MV Pokrovskaya3, MS Kalish’yan1, SSh Karshieva1, EM Treshchalina1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 S.P. Korolev Samara State Aerospace University, 34 Moskovskoye sh., Samara, Russian Federation, 443086

3 V.N. Orekhovich Scientific Research Institute of Biomedical Chemistry, 10 bld. 8 Pogodinskaya str., Moscow, Russian Federation, 119121

For correspondence: Vadim Sergeevich Pokrovskii, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-14-09; e-mail: vadimpokrovsky@gmail.com

For citation: Pokrovskii VS, Komarova MV, Aleksandrova SS, et al. Role of Enzymatic Activity in Producing an Antiproliferative Effect of L-Asparaginases. Clinical oncohematology. 2015;8(2):120–8 (In Russ).


ABSTRACT

Background & Aims. E. coli (EcA) and Erwinia chrysanthemi (ErA) L-asparaginases have been used in antitumor chemotherapy for acute lymphoblastic leukemias since 1970s. Reports of their effect in a combined therapy of NK/T-cell and skin T-cell lymphomas have been published lately. The aim of this paper is to evaluate the relation between antiproliferative and enzymatic activities of L-asparaginases of different origin.

Methods. We conducted a prospective study of in vitro/in vivo enzymatic and antiproliferative activity of several new L-asparaginases: Yersinia pseudotuberculosis (YpA), Rhodospirillum rubrum (RrA), Wolinella succinogenes (WsA), Erwinia carotovora (EwA) in comparison with Escherichia coli L-asparaginase (EcA). Km, kcat and Vmax were calculated for evaluation of kinetic parameters. Cell lines of human transplantable tumors were used to analyze the cytotoxic activity, and DBA2 female mice with the body weight of 18–24 g with intraperitoneally transplanted Fisher lymphadenosis L5178Y (3–12 passage) from the bank of the N.N. Blokhin Russian Cancer Research Center were used for assessment of the antitumor activity.

Results. The use of type II L-asparaginases (EcA, EwA, YpA and WsA) permitted to determine a clear tendency: IC50 rises simultaneously with Km (r = 0.66; = 0.007). Using single-dose range of 2000–8000 IU/kg in mice the highest efficacy was shown for L-asparaginases with Km = 0.017 and 0.054 mМ in comparison with L-asparaginases with lower enzymatic activity, as confirmed by corresponding odds ratio values in the stratified Cox proportional regression model. The pair-wise comparison of Kaplan-Meier curves and Cox regression method showed that WsA displays the best Km/antiproliferative activity ratio both in vitro and in vivo. In the L5178 mice model, it has been shown that WsA decreases the risk of treatment failure by 4–6 times, as compared to L-asparaginases with Km = 0.017 mМ (EcA and YpA) using a single-dose range of 500–1000 IU/kg and 2000–8000 IU/kg, RR = 0.16 and 0.28, respectively.

Conclusion. The obtained results confirmed the predictive value of enzymatic activity for demonstration of statistically significant antiproliferative activity both in vitro and in vivo. However, a statistical analysis demonstrated that this prognosis is not absolute for some enzymes or dose ranges. For instance, there might not be such correlation for high effective single dosed > 12 000 IU/kg.


Keywords: L-asparaginase, antitumor activity, enzymatic activity, mechanism of action.

Received: November 8, 2014

Accepted: January 28, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Rizzari C, Conter V, Stary J, et al. Optimizing asparaginase therapy for acute lymphoblastic leukemia. Curr Opin Oncol. 2013;25(Suppl 1):S1–9. doi: 10.1097/CCO.0b013e32835d7d85.
  2. Salzer W, Seibel N, Smith M. Erwinia asparaginase in pediatric acute lymphoblastic leukemia. Expert Opin Biol Ther. 2012;12(10):1407–14. doi: 10.1517/14712598.2012.718327.
  3. Gui W, Yang B, Shen Q, et al. Successful treatment with L-asparaginase based regimen for primary pulmonary NK/T cell lymphoma: a case report and review of the literature. Clin Respir J. 2014;9(4):493–6. doi: 10.1111/crj.12156.
  4. Emadi A, Zokaee H, Sausville EA. Asparaginase in the treatment of non-ALL hematologic malignancies. Cancer Chemother Pharmacol. 2014;73(5):875–83. doi: 10.1007/s00280-014-2402-3.
  5. Tse E, Kwong YL. Practical management of natural killer/T-cell lymphoma. Curr Opin Oncol. 2012;24(5):480–6. doi: 10.1097/CCO.0b013e3283556142.
  6. Avramis VI, Panosyan EH. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future. Clin Pharmacokinet. 2005;44(4):367–93. doi: 10.2165/00003088-200544040-00003.
  7. Avramis VI, Tiwari PN. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomed. 2006;1(3):241–54.
  8. Panosyan EH, Grigoryan RS, Avramis IA, et al. Deamination of glutamine is a prerequisite for optimal asparagine deamination by asparaginases in vivo (CCG-1961). Anticancer Res. 2004;24(2C):1121–5.
  9. Rotoli BM, Uggeri J, Dall’Asta V, et al. Inhibition of glutamine synthetase triggers apoptosis in asparaginase-resistant cells. Cell Physiol Biochem. 2005;15(6):281–92. doi: 10.1159/000087238.
  10. Tardito S, Uggeri J, Bozzetto C, et al. The inhibition of glutamine synthetase sensitizes human sarcoma cells to L-asparaginase. Cancer Chemother Pharmacol. 2007;60(5):751–8. doi: 10.1007/s00280-007-0421-z.
  11. Ankel EG, Zirneski J, Ring BJ, Holcenberg JS. Effect of asparaginase on cell membranes of sensitive and resistant mouse lymphoma cells. In Vitro. 1984;20(5):376–84. doi: 10.1007/bf02619582.
  12. Liu JJ, Dai XJ, Xu Y, et al. Inhibition of lymphoma cell proliferation by peroxisomal proliferator-activated receptor-g ligands via Wnt signaling pathway. Cell Biochem Biophys. 2012;62(1):19–27. doi: 10.1007/s12013-011-9253-x.
  13. Fidler IJ, Montgomery PC. Effects of L-asparaginase on lymphocyte surface and blastogenesis. Cancer Res. 1972;32(11):2400–6.
  14. Покровский В.С., Лесная Н.А., Трещалина Е.М. и др. Перспективы разработки новых ферментных противоопухолевых препаратов. Вопросы онкологии. 2011;57(2):155–64.
    [Pokrovskii VS, Lesnaya NA, Treshchalina EM, et al. Perspectives of development of new enzymatic antitumor agents. Voprosy onkologii. 2011;57(2):155–64. (In Russ)]
  15. Sidoruk KV, Pokrovsky VS, Borisova AA, et al. Creation of producent, optimization of expression and purification of recombinant Yersinia pseudotuberculosis L-asparaginase. Bull Exp Biol Med. 2011;152(2):219–23. doi: 10.1007/s10517-011-1493-7.
  16. Pokrovskaya MV, Pokrovsky VS, Aleksandrova SS, et al. Recombinant intracellular Rhodospirillum riubrum L-asparaginase with low L-glutaminase activity and antiproliferative effect. Biochemistry (Mosc.). Suppl B: Biomed Chem. 2012;6(2):121–31. doi: 10.1134/s1990750812020096.
  17. Покровский В.С., Анисимова Н.Ю., Покровская М.В. и др. Антипролиферативная активность рекомбинантной L-аспарагиназы Rhodospirillum rubrum. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2011;22(4):24–31.
    [Pokrovskii VS, Anisimova NYu, Pokrovskaya MV, et al. Antiproliferative activity of recombinant Rhodospirillum rubrum L-asparaginase. Vestnik RONTs im. N.N. Blokhina RAMN. 2011;22(4):24–31. (In Russ)]
  18. Трещалина Е.М. Коллекция опухолевых штаммов человека. М.: Практическая медицина, 2009. 171 с.
    [Treshchalina EM. Kollektsiya opukholevykh shtammov cheloveka. (Collection of human tumor strains.) Moscow: Prakticheskaya Meditsina Publ.; 2009. 171 p. (In Russ)]
  19. Трещалина Е.М., Жукова О.С., Герасимова Г.К. и др. Методические рекомендации по доклиническому изучению противоопухолевой активности лекарственных средств. В кн.: Руководство по проведению доклинических исследований лекарственных средств. Ч. I. М.: Гриф и К, 2012. С. 642–57.
    [Treshchalina EM, Zhukova OS, Gerasimova GK, et al. Guidelines for preclinical studies of antitumor activity of medicinal agents. In: Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. (Guidelines for preclinical studies of medicinal agents.) Part I. Moscow: Grif & K Publ.; 2012. pp. 642–57. (In Russ)]
  20. Трещалина Е.М. Противоопухолевая активность веществ природного происхождения. М.: Практическая медицина, 2005.
    [Treshchalina EM. Protivoopukholevaya aktivnost’ veshchestv prirodnogo proiskhozhdeniya. (Antitumor activity of substances of natural origin.) Moscow: Prakticheskaya Meditsina Publ.; 2005. (In Russ)]
  21. Chabner BA, Longo DL. Cancer Chemotherapy and Biotherapy: Principles and Practice. Philadelphia: Lippincott-Raven; 2001.
  22. Newson R. Parameters behind “nonparametric” statistics: Kendall’s tau, Somers’ D and median differences. Stata J. 2002;2(1):45–64.
  23. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Statist Med. 1998;17(8):857–72. doi: 10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e.
  24. Borek D, Jaskolski M. Sequence analysis of enzymes with asparaginase activity. Acta Biochimica Polonica. 2001;48(4):893–902.