Anemia of Chronic Diseases

NV Kurkina, EI Gorshenina, LV Chegodaeva, AV Polagimova

NP Ogarev National Research Mordovia State University, 68 Bolshevistskaya str., Saransk, Russian Federation, 430005

For correspondence: Nadezhda Viktorovna Kurkina, MD, PhD, 26А Ul’yanova str., Saransk, Russian Federation, 430032; Tel.: +7(927)172-48-63; e-mail: nadya.kurckina@yandex.ru

For citation: Kurkina NV, Gorshenina EI, Chegodaeva LV, Polagimova AV. Anemia of Chronic Diseases. Clinical oncohematology. 2021;14(3):347–54. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-347-354


ABSTRACT

Anemia of chronic diseases (ACD) refers to a group of anemias arising in various inflammatory infections, autoimmune or tumor diseases due to acute or chronic immune activation. ACD ranks second in incidence after iron deficiency anemia (IDA). Within the variety of pathogenetic mechanisms one of the primary ones is hepcidin synthesis in hepatocytes, which blocks iron absorption in the intestine and contributes to its deposition in cells of the monocyte-macrophage system. Besides, excessive cytokines in such diseases and pathologies lead to lower erythropoietin production which does not correspond to the severity grade of anemia. This results in impaired erythropoiesis in the bone marrow. The differential diagnosis should also specify iron deficiency type (the absolute one in IDA and the functional one in ACD). The effective treatment of the main disease and anemia correction speed up the improvement of patient’s status, rehabilitation, and quality of life.

Keywords: anemia, chronic diseases, immune system, hepcidin, cytokines, erythropoietin, ferritin, serum iron.

Received: January 17, 2021

Accepted: April 30, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Андреичев Н.А., Балеева Л.В. Анемия хронических заболеваний. Российский медицинский журнал. 2014;20(2):50–5.
    [Andreichev NA, Baleeva LV. Anemia of chronic diseases. Rossiiskii meditsinskii zhurnal. 2014;20(2):50–5. (In Russ)]
  2. Волкова С.А., Боровков Н.Н. Основы клинической гематологии: учебное пособие. Н. Новгород: НижГМА, 2013. 400 с.
    [Volkova SA, Borovkov NN. Osnovy klinicheskoi gematologii: uchebnoe posobie. (Fundamentals of clinical hematology: learning guide.) Nizhny Novgorod: NizhGMA Publ.; 2013. 400 p. (In Russ)]
  3. John M, Hoernig S, Doehner W, et al. Anemia and inflammation in COPD. Chest. 2005;127(3):825–9. doi: 10.1378/chest.127.3.825.
  4. Будневский А.В., Есауленко И.Е., Овсянников Е.С., Жусина Ю.Г. Анемия при хронической обструктивной болезни легких. Терапевтический архив. 2016;88(3):96–9. doi: 10.17116/terarkh201688396-99.
    [Budnevsky AV, Esaulenko IE, Ovsyannikov ES, Zhusina YuG. Anemia in chronic obstructive pulmonary disease. Terapevticheskii arkhiv. 2016;88(3):96–9. doi: 10.17116/terarkh201688396-99. (In Russ)]
  5. Жусина Ю.Г., Будневский А.В., Феськова А.А., Овсянников Е.С. О взаимосвязи хронической обструктивной болезни легких и анемии. Пульмонология. 2018;28(6):730–5. doi: 10.18093/0869-0189-2018-28-6-730-735.
    [Zhusina YuG, Budnevskiy AV, Fes’kova AA, Ovsyannikov ES. About relationship between chronic obstructive pulmonary disease and anemia. Pulmonologiya. 2018;28(6):730–5. doi: 10.18093/0869-0189-2018-28-6-730-735. (In Russ)]
  6. Tsantes AE, Tassiopoulos ST, Papadhimitriou SI, et al. Theophylline treatment may adversely affect the anoxia-induced erythropoietic response without suppressing erythropoietin production. Eur J Clin Pharmacol. 2003;59(5–6):379–83. doi: 10.1007/s00228-003-0640-0.
  7. Marathias KP, Agroyannis B, Mavromoustakos T, et al. Hematocrit-lowering effect following inactivation of renin-angiotensin system with angiotensin converting enzyme inhibitors and angiotensin receptor blockers. Curr Top Med Chem. 2004;4(4):483–6. doi: 10.2174/1568026043451311.
  8. Рукавицын О.А. Гематология. Национальное руководство. М.: ГЭОТАР-Медиа, 2017. 784 с.
    [Rukavitsyn OA. Natsional’noe rukovodstvo. (Hematology. National Guidelines.) Moscow: GEOTAR-Media Publ.; 2017. 784 p. (In Russ)]
  9. Groenveld HF, Januzzi JL, Damman K, et al. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J Am Coll Cardiol. 2008;52(10):818–27. doi: 10.1016/j.jacc.2008.04.061.
  10. Снеговой А.В., Aapro M., Гладков О.А. и др. Практические рекомендации по лечению анемии у онкологических больных. Злокачественные опухоли. 2016;4:368–77.
    [Snegovoi AV, Aapro M, Gladkov OA, et al. Practical guidelines for anemia treatment in oncological patients. Zlokachestvennye opukholi. 2016;4:368–77. (In Russ)]
  11. Voulgari PV, Kolios G, Papadopoulos GK, et al. Role of cytokines in the pathogenesis of anemia of chronic disease in rheumatoid arthritis. Clin Immunol. 1999;92(2):153–60. doi: 10.1006/clim.1999.4736.
  12. Stauffer ME, Fan T. Prevalence of Anemia in Chronic Kidney Disease in the United States. PLoS One. 2014;9(1):e84943. doi: 10.1371/journal.pone.0084943.
  13. McClellan W, Aronoff SL, Bolton WK, et al. The prevalence of anemia in patients with chronic kidney disease. Curr Med Ress Opion. 2004;20(9):1501–10. doi: 10.1185/030079904X2763.
  14. Stenvinkel P. The role of inflammation in the anaemia of end-stage renal disease. Nephrol Dial Transplant. 2001;16(Suppl 7):36–40. doi: 10.1093/ndt/16.suppl_7.36.
  15. Thorp ML, Johnson ES. Effect of anemia on mortality, cardiovascular hospitalizations and end stage renal disease among patients with chronic kidney disease. Nephrology. 2009;14(2):240–6. doi: 10.1111/j.1440-1797.2008.01065.x.
  16. Andrews M, Arredondo M. Ferritin levels and hepcidin mRNA expression in peripheral mononuclear cells from anemic type 2 diabetic patients. Biol Trace Elem Res. 2012;149(1):1–4. doi: 10.1007/s12011-012-9389-6.
  17. Zoppini G, Targher G, Chonchol M, et al. Anaemia, independent of chronic kidney disease, predicts all cause and cardiovascular mortality in type 2 diabetic patients. Atherosclerosis. 2010;210(2):575–80. doi: 10.1016/j.atherosclerosis.2009.12.008.
  18. Ito H, Takeuchi Y, Ishida H, et al. Mild anemia is frequent and associated with micro- and macroangiopathies in patients with type 2 diabetes mellitus. J Diab Invest. 2010;1(6):273–8. doi: 10.1111/j.2040-1124.2010.00060.x.
  19. Roy CN, Mak HH, Akpan I, et al. Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood. 2007;109(9):4038–44. doi: 10.1182/blood-2006-10-051755.
  20. Ganz T, Nemeth E. Iron sequestration and anemia of inflammation. Semin Hematol. 2009;46(4):387–393. doi: 10.1053/j.seminhematol.2009.06.001.
  21. Морщакова Е.Ф., Павлов А.Д., Румянцев А.Г. Эритропоэз, эритропоэтин, железо. М.: ГЭОТАР-Медиа, 2013. 178 с.
    [Morshchakova EF, Pavlov AD, Rumyantsev AG. Eritropoez, eritropoetin, zhelezo. (Erythropoiesis, erythropoietin, iron.) Moscow: GEOTAR-Media Publ.; 2013. 178 p. (In Russ)]
  22. Рукавицын О.А. Анемия хронических заболеваний: отдельные аспекты патогенеза и пути коррекции. Онкогематология. 2016;11(1):37–46. doi: 10.17650/1818-8346-2016-11-1-37-46.
    [Rukavitsyn OA. Anemia of chronic diseases: the important aspects of pathogenesis and treatment. Oncohematology. 2016;11(1):37–46. doi: 10.17650/1818-8346-2016-11-1-37-46. (In Russ)]
  23. Румянцев А.Г., Масчан А.А. Федеральные клинические рекомендации по диагностике и лечению анемии хронических заболеваний (электронный документ). Доступно по: https://nodgo.org/sites/default/files/%D0%A4%D0%9A%D0%A0%20%D0%BF%D0%BE%20%D0%B4%D0%B8%D0%B0%D0%B3%D0%BD%D0%BE%D1%81%D1%82%D0%B8%D0%BA%D0%B5%20%D0%B8%20%D0%BB%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D1%8E%20%D0%B0%D0%BD%D0%B5%D0%BC%D0%B8%D0%B8%20%D1%85%D1%80%D0%BE%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85%20%D0%B1%D0%BE%D0%BB%D0%B5%D0%B7%D0%BD%D0%B5%D0%Bpdf. Ссылка активна на 13.04.2021.
    [Rumyantsev AG, Maschan AA. Federal clinical guidelines for diagnosis and treatment of anemia of chronic diseases. [Internet] Available from: https://nodgo.org/sites/default/files/%D0%A4%D0%9A%D0%A0%20%D0%BF%D0%BE%20%D0%B4%D0%B8%D0%B0%D0%B3%D0%BD%D0%BE%D1%81%D1%82%D0%B8%D0%BA%D0%B5%20%D0%B8%20%D0%BB%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D1%8E%20%D0%B0%D0%BD%D0%B5%D0%BC%D0%B8%D0%B8%20%D1%85%D1%80%D0%BE%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85%20%D0%B1%D0%BE%D0%BB%D0%B5%D0%B7%D0%BD%D0%B5%D0%B9.pdf. (accessed 13.04.2021) (In Russ)]
  24. Nemeth E, Ganz T. Anemia of Inflammation. Hematol Oncol Clin North Am. 2014;28(4):671–81. doi: 10.1016/j.hoc.2014.04.005.
  25. Weiss Pathogenesis and treatment of anemia of chronic disease. Blood Rev. 2002;16(2):87–96. doi: 10.1054/blre.2002.0193.
  26. Сморкалова Е.В. Иммуногематологические особенности железодефицитной анемии и анемии хронических заболеваний: Автореф. дис.… канд. мед. наук. Уфа, 2012. 22 с.
    [Smorkalova EV. Immunogematologicheskie osobennosti zhelezodefitsitnoi anemii i anemii khronicheskikh zabolevanii. (Immunohematological characteristics of iron deficiency anemia and anemia of chronic diseases.) [dissertation] Ufa; 2012. 22 p. (In Russ)]
  27. Kato Y, Takagi C, Tanaka J, et al. Effect of daily subcutaneous administration of recombinant erythropoietin on chronic anemia in rheumatoid arthritis. Intern Med. 1994;33(4):193–7. doi: 10.2169/internalmedicine.33.193.
  28. Peeters HR, Jongen-Lavrencic M, Bakker CH, et al. Recombinant human erythropoietin improves health-related quality of life in patients with rheumatoid arthritis and anaemia of chronic disease; utility measures correlate strongly with disease activity measures. Rheumatol Int. 1999;18(5–6):201–6. doi: 10.1007/s002960050085.
  29. Arndt U, Kaltwasser JP, Gottschalk R, et al. Correction of iron-deficient erythropoiesis in the treatment of anemia of chronic disease with recombinant human erythropoietin. Ann Hematol. 2005;84(3):159–66. doi: 10.1007/s00277-004-0950-z.
  30. Schipperus M, Rijnbeek B, Reddy M, et al. CNTO328 (Anti-IL-6 mAb) Treatment Is Associated with An Increase in Hemoglobin (Hb) and Decrease in Hepcidin Levels in Renal Cell Carcinoma (RCC). Blood. 2009;114(22):4045. doi: 10.1182/blood.v114.22.4045.4045.
  31. Hohlbaum A, Gille H, Christian J, et al. Iron mobilization and pharmacodynamic marker measurements in non-human primates following administration of PRS-080, a novel and highly specific antihepcidin therapeutic. Am J Hematol. 2013;88(5):E41.
  32. Schwoebel F, van Eijk LT, Zboralski D, et al. The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys. Blood. 2013;121(12):2311–5. doi: 10.1182/blood-2012-09-456756.
  33. Poli M, Girelli D, Campostrini N, et al. Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo. Blood. 2011;117(3):997–1004. doi: 10.1182/blood-2010-06-289082.
  34. Crosby JR, Gaarde WA, Egerston J, et al. Targeting hepcidin with antisense oligonucleotides improves anemia endpoints in mice. Blood. 2006;108(11, Pt 1):269. doi: 10.1182/blood.v108.11.269.269.
  35. Akinc A, Chan-Daniels A, Sehgal A, et al. Targeting the hepcidin pathway with RNAi therapeutics for the treatment of anemia. Blood. 2011;118(21):688. doi: 10.1182/blood.v118.21.688.688.
  36. Гармиш Е.А. Анемия хронического воспаления при ревматоидном артрите: патогенез и выбор терапии. Украинский ревматологический журнал. 2016;1(63):39–41.
    [Garmish EА. Anemia of chronic inflammation of rheumatoid arthritis: pathogenesis and choice of treatment. Ukrainskii revmatologicheskii zhurnal. 2016;1(63):39–41. (In Russ)]

Anemia of Chronic Disease: Key Mechanisms of Pathogenesis in Patients with Malignancies and Feasible Classification Approaches

VT Sakhin1, ER Madzhanova1, EV Kryukov3, AV Sotnikov2, AV Gordienko2, OA Rukavitsyn3

1 1586 Military Clinical Hospital, 4 Mashtakova str., Moscow Region, Podolsk, Russian Federation, 142110

2 SM Kirov Military Medical Academy, 6 Akademika Lebedeva str., Saint Petersburg, Russian Federation, 194044

3 NN Burdenko Central Military Clinical Hospital, 3 Gospital’naya sq., Moscow, Russian Federation, 105229

For correspondence: Valerii Timofeevich Sakhin, MD, PhD, 4 Mashtakova str., Moscow Region, Podolsk, Russian Federation, 142110; Tel.: +7(916)314-31-11; e-mail: SahinVT@yandex.ru

For citation: Sakhin VT, Madzhanova ER, Kryukov EV, et al. Anemia of Chronic Disease: Key Mechanisms of Pathogenesis in Patients with Malignancies and Feasible Classification Approaches. Clinical oncohematology. 2019;12(3):344–9 (In Russ).

doi: 10.21320/2500-2139-2019-12-3-344-349


ABSTRACT

Aim. To study the effect of hepcidin, soluble transferrin receptor (sTfR), and cytokines on iron metabolism and occurrence of anemia in patients with malignancies and to propose, on this basis, a draft classification of anemia of chronic disease (ACD) based on the major pathogenic factor.

Materials & Methods. The trial included 63 patients with malignancies of stage II/IV: 41 patients with anemia (34 men, 7 women, mean age 67.1 ± 9.9 years), 22 patients without anemia (17 men, 5 women, mean age 60.2 ± 14.9 years). Comparative analysis was based on the values of iron metabolism, C-reactive protein (CRP), hepcidin, sTfR, as well as pro-inflammatory (interleukin-6 [IL-6], tumour necrosis factor α [TNF-α]) and anti-inflammatory (IL-10) cytokines in solid malignancy patients with and without anemia. The correlation analysis between IL-6, IL-10, TNF-α, hepcidin, sTfR, and blood count was performed.

Results. Compared with the control group patients with anemia show lower levels of iron concentration, total iron-binding capacity (TIBC), and percent transferrin saturation (TSAT), as well as higher level of CRP, hepcidin, sTfR, IL-6, IL-10, and TNF-α (< 0.05). IL-6 (r = –0.58), TNF-α (r = –0.32), and hepcidin (r = –0.57) proved to negatively affect erythrocyte level. A negative correlation was established between hemoglobin concentration and IL-6 (r = –0.57), IL-10 (r = –0.64), TNF-α (r = –0.65), hepcidin (r = –0.3), and sTfR (r = –0.57). A correlation was identified between concentrations of hepcidin and IL-6 (r = 0.58), IL-10 (r = 0.33), TNF-α (r = –0.4), as well as between concentrations of sTfR and IL-10 (r = 0.58), TNF-α (r = –0.53). A relationship was identified between IL-6 concentration and iron status (r = –0.38), TIBC (r = –0.56), TSAT (r = –0.31), ferritin (r = 0.56), transferrin (r = –0.72), CRP (r = 0.86) as well as between concentrations of IL-10 and iron (r = –0.63), TSAT (r = –0.67), transferrin (r = –0.7), ferritin (r = 0.55), CRP (r = 0.65), TIBC (r = –0.71). A correlation between the levels of TNF-α and TIBC (r = –0.36), transferrin (r = –0.5) was confirmed.

Conclusion. The paper deals with multi-factorial pathogenesis of anemia in patients with malignancies. Most important factors are iron deficiency and erythropoietic disorder. A draft ACD classification based on the major pathogenic factor of anemia (ACD with dominating iron deficiency, ACD with impaired regulatory mechanism of erythropoiesis, and ACD with insufficient erythropoietin production) is proposed.

Keywords: cancer, anemia, iron metabolism, interleukin-6, interleukin-10, tumor necrosis factor alpha, hepcidin, soluble transferrin receptor.

Received: January 21, 2019

Accepted: June 18, 2019

Read in PDF 


REFERENCES

  1. Weiss G. Pathogenesis and treatment of anaemia of chronic disease. Blood Rev. 2002;16(2):87–96. doi: 10.1054/blre.2002.0193.

  2. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352(10):1011–23. doi: 10.1056/nejmra041809.

  3. Means RT. Recent developments in the anemia of chronic disease. Curr Hematol Rep. 2003;2(2):116–21.

  4. Poggiali E, De Amicis MM, Motta I, et al. Anemia of chronic disease: a unique defect of iron recycling for many different chronic diseases. Eur J Int Med. 2014;25(1):12–17. doi: 10.1016/j.ejim.2013.07.011.

  5. Weiss G. Iron metabolism in the anemia of chronic disease. Biochim Biophys Acta. 2009;1790(7):682–93. doi: 10.1016/j.bbagen.2008.08.006.

  6. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434–43. doi: 10.1016/j.bbamcr.2012.01.014.

  7. McCranor BJ, Kim MJ, Cruz NM, et al. Interleukin-6 directly impairs the erythroid development of human TF-1 erythroleukemic cells. Blood Cells Mol Dis. 2014;52(2–3):126–33. doi: 10.1016/j.bcmd.2013.09.004.

  8. Анемии. Под ред. О.А. Рукавицына. 2-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2016. 256 c.

    [Rukavitsyn OA, ed. (Anemias.) 2nd revised edition. Moscow: GEOTAR-Media Publ.; 2016. 256 p. (In Russ)]

  9. Сахин В.Т., Маджанова Е.Р., Крюков Е.В. и др. Анемия хронических заболеваний: особенности патогенеза и возможности терапевтической коррекции (обзор литературы и результаты собственных исследований). Онкогематология. 2018;13(1):45–53. doi: 10.17650/1818-8346-2018-13-1-45-53.

    [Sakhin VТ, Madzhanova ЕR, Kryukov EV, et al. Anemia of chronic disease: features of pathogenesis and possible therapeutic correction (literature review and results of own research). Oncohematology. 2018;13(1):45–53. doi: 10.17650/1818-8346-2018-13-1-45-53. (In Russ)]

  10. Steinmetz T, Totzke U, Schweigert M, et al. A prospective observational study of anaemia management in cancer patients–results from the German Cancer Anaemia Registry. Eur J Cancer Care. 2011;20(4):493–502. doi: 10.1111/j.1365-2354.2010.01230.x.

  11. Waters JS, O’Brien MER, Ashley S. Management of anemia in patients receiving chemotherapy. J Clin Oncol. 2002;20(2):601–3. doi: 10.1200/JCO.2002.20.2.601.

  12. Grotto HZ. Anaemia of cancer: an overview of mechanisms involved in its pathogenesis. Med Oncol. 2008;25(1):12–21. doi: 1007/s12032-007-9000-8.

  13. Гематология: национальное руководство. Под ред. О.А. Рукавицына. М.: ГЭОТАР-Медиа, 2015. С. 143–9.

    [Rukavitsyn OA, ed. Gematologiya: natsional’noe rukovodstvo. (Hematology: national guidelines.) Moscow: GEOTAR-Media Publ.; 2015. pp. 143–9. (In Russ)]

  14. Steinmetz HT, Tsamaloukas A, Schmitz S, et al. A new concept for the differential diagnosis and therapy of anaemia in cancer patients. Support Care Cancer. 2010;19(2):261–9. doi: 10.1007/s00520-010-0812-2.

  15. Maccio A, Madeddu C, Massa D, et al. Hemoglobin levels correlate with interleukin-6 levels in patients with advanced untreated epithelial ovarian cancer: role of inflammation in cancer-related anemia. 2005;106(1):362–7. doi: 10.1182/blood-2005-01-0160.

  16. Сахин В.Т., Маджанова Е.Р., Крюков Е.В. и др. Патогенетические особенности анемии у больных с солидными опухолями. Клиническая онкогематология. 2017;10(4):514–8. doi: 10.21320/2500-2139-2017-10-4-514-518.

    [Sakhin VT, Madzhanova ER, Kryukov EV, et al. Pathogenetic Characteristics of Anemia in Patients with Solid Tumors. Clinical oncohematology. 2017;10(4):514–8. doi: 10.21320/2500-2139-2017-10-4-514-518. (In Russ)]

  17. Park S, Jung CW, Kim K, et al. Iron deficient erythropoiesis might play key role in development of anemia in cancer patients. Oncotarget. 2015;6(40):42803–12. doi: 10.18632/oncotarget.5658.

  18. Speeckaert MM, Speeckaert R, Delanghe JR. Biological and clinical aspects of soluble transferrin receptor. Crit Rev Clin Lab Sci. 2010;47(5–6):213–28. doi: 10.3109/10408363.2010.550461.

  19. Moldawer LL, Marano MA, Wei H, et al. Cachectin/tumor necrosis factor-alpha alters red blood cell kinetics and induces anemia in vivo. FASEB J. 1989;3(5):1637–43.

  20. Raj DSC. Role of interleukin-6 in the anemia of chronic disease. Sem Arthritis Rheum. 2009;38(5):382–8. doi: 10.1016/j.semarthrit.2008.01.006.

  21. Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108(9):3204–9. doi: 10.1182/blood-2006-06-027631.

  22. Huang P, Wang J, Lin X, et al. Effects of IL-10 on iron metabolism in LPS-induced inflammatory mice via modulating hepcidin expression. Eur Rev MedPharmacol Sci. 2017;21(15):3469–75.

  23. Shanmugam NKN, Ellenbogen S, Trebicka E, et al. Tumor necrosis factor α inhibits expression of the iron regulating hormone hepcidin in murine models of innate colitis. PLoS One. 2012;7(5):e38136. doi: 10.1371/journal.pone.0038136.

  24. De Lurdes Cabrita AA, Pinho A, Malho A, et al. Risk factors for high erythropoiesis stimulating agent resistance index in pre-dialysis chronic kidney disease patients, stages 4 and 5. Int Urol Nephrol. 2011;43(3):835–40. doi: 10.1007/s11255-010-9805-9.

  25. Nazemian F, Karimi G, Moatamedi M, et al. Effect of silymarin administration on TNFalpha serum concentration in peritoneal dialysis patients. Phytother Res. 2010;24(11):1654–7. doi: 10.1002/ptr.3175.

Erythroferron: Modern Concepts of Its Role in Iron Metabolism Regulation

VT Sakhin1, NV Kremneva1, AV Gordienko2, OA Rukavitsyn3

1 Military Clinical Hospital No. 1586 under the Ministry of Defense of Russia, 4 Mashtakova str., Podol’sk, Moscow Oblast, Russian Federation, 142110

2 SM Kirov Military Medical Academy, 6 Akademika Lebedeva str., Saint Petersburg, Russian Federation, 194044

3 NN Burdenko Principal Military Clinical Hospital under the Ministry of Defense of Russia, 3 Gospital’naya pl., Moscow, Russian Federation, 105229

For correspondence: Valerii Timofeevich Sakhin, PhD, 4 Mashtakova str., Podol’sk, Moscow Oblast, Russian Federation, 142110; Tel: +7(916)314-31-11; e-mail: SahinVT@yandex.ru

For citation: Sakhin VT, Kremneva NV, Gordienko AV, Rukavitsyn OA. Erythroferron: Modern Concepts of Its Role in Iron Metabolism Regulation. Clinical oncohematology. 2017;10(1):25–8 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-25-28


ABSTRACT

The article presents the results of experimental and clinical studies evaluating the importance of supposed erythroid regulators of hepcidin levels and mechanism of their action. It demonstrates that the role of growth differentiation factor 15 and twisted gastrulation protein homolog 1 in regulation of hepcidin levels in humans has not been confirmed yet. The data confirming the importance of erythroferron in the pathogenesis of anemia related to blood loss, hemolysis, and hereditary anemias with ineffective erythropoiesis are presented. The studies demonstrated that erythroferron plays the greatest role in the regulation of hepcidin levels in pathological conditions and at stress and does not play a leading role in erythropoiesis under normal conditions. Erythroferron suppresses the hepcidin synthesis by affecting the liver cells directly through an unknown receptor cellular pathway.

Keywords: anemia of chronic disease, hepcidin, erythroferron.

Received: September 14, 2016

Accepted: November 13, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Гематология: национальное руководство. Под ред. О.А. Рукавицына. М.: ГЭОТАР-Медиа, 2015. С. 143–9.
    [Rukavitsyn OA, ed. Gematologiya: natsional’noe rukovodstvo. (Hematology: national guidelines.) Moscow: GEOTAR-Media Publ.; 2015. pp. 143–9. (In Russ)]
  2. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434–43. doi: 10.1016/j.bbamcr.2012.01.014.
  3. Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidinis regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110(7):1037–44. doi: 10.1172/jci0215686.
  4. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest. 2007;117(7):1926–32. doi: 10.1172/jci31370.
  5. Pinto JP, Ribeiro S, Pontes H, et al. Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBP alpha. Blood. 2008;111(12):5727–33. doi: 10.1182/blood-2007-08-106195.
  6. Liu Q, Davidoff O, Niss K, et al. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J Clin Invest. 2012;122(12):4635–44. doi: 10.1172/jci63924.
  7. Pak M, Lopez MA, Gabayan V, et al. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108(12):3730–5. doi: 10.1182/blood-2006-06-028787.
  8. Vokurka M, Krijt J, Sulc K, Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Phys Res. 2006;55(6):667–74.
  9. Tanno T, Bhanu NV, Oneal PA, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 2007;13(9):1096–101. doi: 10.1038/nm1629.
  10. Tanno T, Porayette P, Sripichai O, et al. Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood. 2009;114(1):181–6. doi: 10.1182/blood-2008-12-195503.
  11. Unsicker K, Spittau B, Krieglstein K. The multiple facets of the TGF-b family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cyt Growth Factor Rev. 2013;24(4):373–84. doi: 10.1016/j.cytogfr.2013.05.003.
  12. Forsman CL, Ng BC, Heinze RK, et al. BMP-binding protein twisted gastrulation is required in mammary gland epithelium for normal ductal elongation and myoepithelial compartmentalization. Devel Biol. 2013;373(1):95–106. doi: 10.1016/j.ydbio.2012.10.007.
  13. Frazer DM, Wilkins SJ, Darshan D, et al. Stimulated erythropoiesis with secondary iron loading leads to a decrease in hepcidin despite an increase in bone morphogenetic protein 6 expression. Br J Haematol. 2012;157(5):615–26. doi: 10.1111/j.1365-2141.2012.09104.x.
  14. Casanovas G, Spasic MV, Casu C, et al. The murine growth differentiation factor 15 is not essential for systemic iron homeostasis in phlebotomized mice. Haematologica. 2013;98(3):444–7. doi: 10.3324/haematol.2012.069807.
  15. Tamary H, Shalev H, Perez-Avraham G, et al. Elevated growth differentiation factor 15 expression in patients with congenital dyserythropoietic anemia type I. Blood. 2008;112(13):5241–4. doi: 10.1182/blood-2008-06-165738.
  16. An X, Schulz VP, Li J, et al. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood. 2014;123(22):3466–77. doi: 10.1182/blood-2014-01-548305.
  17. Tanno T, Rabel A, Lee YT, et al. Expression of growth differentiation factor 15 is not elevated in individuals with iron deficiency secondary to volunteer blood donation. Transfusion. 2010;50(7):1532–5. doi: 10.1111/j.1537-2995.2010.02601.x.
  18. Theurl I, Finkenstedt A, Schroll A, et al. Growth differentiation factor 15 in anaemia of chronic disease, iron deficiency anaemia and mixed type anaemia. Br J Haematol. 2010;148(3):449–55. doi: 10.1111/j.1365-2141.2009.07961.x.
  19. Waalen J, von Lohneysen K, Lee P, et al. Erythropoietin, GDF15, IL6, hepcidin and testosterone levels in a large cohort of elderly individuals with anaemia of known and unknown cause. Eur J Haematol. 2011;87(2):107–16. doi: 10.1111/j.1600-0609.2011.01631.x.
  20. Kautz L, Jung G, Valore EV, et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678–84. doi: 10.1038/ng.2996.
  21. Merryweather-Clarke AT, Atzberger A, Soneji S, et al. Global gene expression analysis of human erythroid progenitors. Blood. 2011;118(26):e96–108. doi: 10.1182/blood-2010-07-290825.
  22. Diaz V, Gammella E, Recalcati S, et al. Liver iron modulates hepcidin expression during chronically elevated erythropoiesis in mice. Hepatology. 2013;58(6):2122–32. doi: 10.1002/hep.26550.
  23. Pippard MJ, Warner GT, Callender ST, Weatherall DJ. Iron absorption and loading in b-thalassaemia intermedia. Lancet. 1979;314(8147):819–21. doi: 10.1016/s0140-6736(79)92175-5.
  24. Papanikolaou G, Tzilianos M, Christakis JI, et al. Hepcidin in iron overload disorders. Blood. 2005;105(10):4103–5. doi: 10.1182/blood-2004-12-4844.
  25. Centis F, Tabellini L, Lucarelli G, et al. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with b-thalassemia major. Blood. 2000;96(10):3624–9.
  26. Kattamis A, Papassotiriou I, Palaiologou D, et al. The effects of erythropoetic activity and iron burden on hepcidin expression in patients with thalassemia major. Haematologica. 2006;91(6):809–12.
  27. Origa R, Galanello R, Ganz T, et al. Liver iron concentrations and urinary hepcidin in beta-thalassemia. Haematologica. 2007;92(5):583–8. doi: 10.3324/haematol.10842.
  28. Nai A, Pagani A, Mandelli G, et al. Deletion of TMPRSS6 attenuates the phenotype in a mouse model of beta-thalassemia. Blood. 2012;119(21):5021–9. doi: 10.1182/blood-2012-01-401885.
  29. Guo S, Casu C, Gardenghi S, et al. Reducing TMPRSS6 ameliorates hemochromatosis and beta-thalassemia in mice. J Clin Invest. 2013;123(4):1531–41. doi: 10.1172/JCI66969.
  30. Schmidt PJ, Toudjarska I, Sendamarai AK, et al. An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe–/– mice and ameliorates anemia and iron overload in murine beta-thalassemia intermedia. Blood. 2013;121(7):1200–8. doi: 10.1182/blood-2012-09-453977.
  31. Goodnough LT, Nemeth E, Ganz T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood. 2010;116(23):4754–61. doi: 10.1182/blood-2010-05-286260.

 

Iron Metabolism in Normal and Pathological Conditions

E.A. Lukina, A.V. Dezhenkova

Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Elena Alekseevna Lukina, DSci, Professor, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-09-23; e-mail: elenalukina02@gmail.com

For citation: Lukina EA, Dezhenkova AV. Iron Metabolism in Normal and Pathological Conditions. Clinical oncohematology. 2015;8(4):355–361 (In Russ).

DOI: 10.21320/2500-2139-2015-8-4-362-367


ABSTRACT

This review describes modern conceptions of the physiological and pathological roles of iron, as well as the main mechanisms of iron metabolism regulation. In recent years, it has been shown that both deficiency and excess of iron can have damaging effects on the body, and the existence of homeostatic mechanisms controlling the total iron content of the body has been proved. The body of an average healthy adult human contains 3 to 5 g iron, most of which is contained in blood cells, bone marrow and liver; it is bound to proteins and this is important for prevention of cytotoxic effects of free iron ions. This review summarizes data on the main proteins involved in iron metabolism and their role in iron homeostasis. The processes of iron recirculation and the functional role of hepcidin, the key protein regulating extracellular iron concentration, are emphasized. The review provides brief data on pathogenic mechanisms of functional iron deficiency development and its role in anemia of chronic disease, as well as the pathogenesis, diagnostics and management of secondary iron overload.


Keywords: iron metabolism, ferritin, hepcidin, iron recirculation, anemia of chronic disease, iron overload.

Received: July 1, 2015

Accepted: November 9, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Петров В.Н. Физиология и патология обмена железа. Львов: Наука, 1982. 224 c.
    [Petrov VN. Fiziologiya i patologiya obmena zheleza. (Physiology and pathology of iron metabolism.) L’vov: Nauka Publ.; 1982. 224 p. (In Russ)]
  2. Finch CA, Huebers HA. Iron metabolism. Clin Physiol Biochem. 1986;4:5–15.
  3. Richardson DR. Role of iron in cell cycle progression and cellular proliferation. Book of Abstracts. BioIron; 2005:7.
  4. Roetto A, Camaschella C. New insights into iron homeostasis through the study of non-HFE hereditary haemochromatosis. Best Pract Res Clin Haematol. 2005;18:235–50. doi: 10.1016/j.beha.2004.09.004.
  5. Sussman HH. Iron in cancer. Pathobiology. 1992;60:2–9. doi: 10.1159/000163690.
  6. Идельсон Л.И., Воробьев А.И. Железодефицитная анемия. Руководство по гематологии. Под ред. А.И. Воробьева. В 3 томах. М.: Ньюдиамед, 2005. Т. 2. С. 171–90.
    [Idel’son LI, Vorob’ev AI. Iron-deficiency anemia. In: Vorob’ev AI, ed. Rukovodstvo po gematologii. (Manual of Hematology.) In 3 vol. Moscow: Newdiamed Publ.; 2005. Vol. 2. p. 171–90. (In Russ)]
  7. Porter JB. Monitoring and treatment of iron overload: state of the art and new approaches. Sem Hematol. 2005;42(2 Suppl. 1):14–8. doi: 10.1053/j.seminhematol.2005.01.004.
  8. Kuntz E, Kuntz H-D. Haemochromatosis. In: Hepatology – Principles and Practice. Berlin: Springer-Verlag; 2002. p. 556–65.
  9. Ilickstein H, El RB, Shvartsman M, Cabantchik ZY. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood. 2005;106:3242–50. doi: 10.1182/blood-2005-02-0460.
  10. Corce V, Renaud St, Cannie I, et al. Tumoral vectorization of new iron chelators for antiproliferative activity: biological properties of polyaminoquinolines. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #230.
  11. Guyader CD, Thirouard A-S, Erdtmann L, et al. Liver iron is surrogate marker of severe fibrosis in chronic hepatitis. J Hepatol. 2007;46:587–96. doi: 10.1016/j.jhep.2006.09.021.
  12. Camaschella C. Iron and hepcidin: a story of recycling and balance. Hematol Am Soc Hematol Educ Program. 2013;2013:1–8. doi: 10.1182/asheducation-2013.1.1.
  13. Sikorska K, Romanowski T, Stalke P, et al. Association of Hepcidin mRNA Expression With Hepatocyte Iron Accumulation and Effects of Antiviral Therapy in Chronic Hepatitis C Infection. Hepat Mon. 2014;14(11):e21184. doi:10.5812/hepatmon.21184.
  14. Raha AA, Vaishnav RA, Friedland RP, et al. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. BMC Neuroscience. 2015;16(1):24. doi: 10.1186/2051-5960-1-55.
  15. Xu X, Pin S, Gathinji M, et al. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostais. Ann N Y Acad Sci. 2004;1012:299–305. doi: 10.1196/annals.1306.024.
  16. Moreau C, Devedjian J, Kluza J, et al. Targeting brain chelatable iron as therapeutic strategy for parkinson’s disease. Translational and clinical studies. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #52.
  17. Collingwood J, Finnegan M, Visanji N, et al. Brain iron and MRI in Alzheimer’s disease, Parkinson’s disease, and Multiple System Atrophy. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #67.
  18. Долгов В.В., Луговская С.А., Почтарь М.Е. Лабораторная диагностика нарушений метаболизма железа. СПб.: Vital Diagnostics, 2002. 51 c.
    [Dolgov VV, Lugovskaya SA, Pochtar’ ME. Laboratornaya diagnostika narushenii metabolizma zheleza. (Laboratory diagnosis of impaired iron metabolism.) Saint Petersburg: Vital Diagnostics Publ.; 2002. 51 p. (In Russ)]
  19. Cabantchik ZY, Brener W, Zanninelili G. LPI-labile plasma iron in iron overload. Best Pract Res Clin Haematol. 2005;18:277–87. doi: 10.1016/j.beha.2004.10.003.
  20. Cheng Y, Zak O, Aisen P, et al. Structure of the human transferring receptor-transferrin complex. Cell. 2004;116:483–5. doi: 10.1016/s0092-8674(04)00130-8.
  21. Левина А.А., Андреева А.П., Замчий А.А. Определение концентрации ферритина в сыворотке крови радиоиммунным методом. Гематология и трансфузиология. 1984;5:57–60.
    [Levina AA, Andreeva AP, Zamchii AA. Evaluation of serum ferritin levels using radioimmunoassay technique. Gematologiya i transfuziologiya. 1984;5:57–60. (In Russ)]
  22. Lukina EA, Levina AA, Mokeeva NA. The diagnostic significance of serum ferritin indices in patients with malignant and reactive histiocytoses. Br J Haematol. 1993;83:326–9. doi: 10.1111/j.1365-2141.1993.tb08289.x.
  23. Denz H, Orth B, Huber P, et al. Immune activation and anemia of chronic disorders. Blood. 1993;81:1404–9.
  24. Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of mammalian proton-coupled metal-ion transporter gene. Nature. 1997;388:482–8. doi: 10.1038/41343.
  25. Mims MP, Guan Y, Pospisilova D, et al. Identification of a human mutation of DMT1 in a patient with microcytic anemia and iron overload. Blood. 2005;105(3):1337–42. doi: 10.1182/blood-2004-07-2966.
  26. Napier I, Ponka P, Richardson DR. Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood. 2005;105:1867–974. doi: 10.1182/blood-2004-10-3856.
  27. D’Angelo G. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res. 2013;48(1):10–5. doi: 10.5045/br.2013.48.1.10.
  28. Hellman N, Gitlin JD. Ceruloplasmin metabolism and function. Ann Rev Nutr. 2002;22:439–58. doi: 10.1146/annurev.nutr.22.012502.114457.
  29. Fuqua B, Darshan D, Frazer D, et al. Severe defects in iron metabolism in mice with double knockout of the multicopper ferroxidases hephaestin and ceruloplasmin. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #24.
  30. Krause A, Neitz S, Magert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibit antimicrobial activity. FEBS Lett. 2000;480(2):147–50. doi: 10.1016/s0014-5793(00)01920-7.
  31. Park CH, Valore EV, Waring AJ, et al. Hepcidin: a urinary antibacterial peptide synthesized in the liver. J Biol Chem. 2001;276:7806–10. doi: 10.1074/jbc.m008922200.
  32. Ganz T. Hepcidin – a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol. 2005;18:171–82. doi: 10.1016/j.beha.2004.08.020.
  33. Pigeon C, Ilyin G, Courselaud B, et al. A new mouseт liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276(4):7811–9. doi: 10.1074/jbc.m008923200.
  34. Hunter HN, Fulton DB, Vogel HJ. The solution structure of human hepcidin, a antibicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem. 2002;277:37597–603. doi: 10.1074/jbc.m205305200.
  35. Harrison-Findik D, Lu S, Zmijewski E. Regulation of hepcidin transcription by reactive oxygen species and hypoxia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #6.
  36. Luo Q, Cheng Ch, Wang D, et al. Regulation of intracellular iron homeostasis under hypoxia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #166.
  37. Means RT, Krantz SB. Progress in understanding the pathogenesis of anemia of chronic disease. Blood. 1992;80:1639–44.
  38. Gardenghi S, Casu C, Renaud T, et al. Investigating the role of cytokines and hepcidin in anemia of inflammation. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #138.
  39. Nairz M, Ferring-Appel D, Schroll A, et al. Iron regulatory proteins mediate macrophage innate immunity against salmonella. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #34.
  40. Kautz L, Nemeth E, Ganz T. The erythroid factor erythroferrone and its role in iron homeostasis. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #30.
  41. Frazer D, Wilkins S, Whitelaw N, et al. Hepcidin-independent iron recycling in a mouse model of haemolytic anaemia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #32.
  42. Gerhard G, Still Ch, Wood C, et al. Primary hepatic iron overload in extreme obesity is common and not associated with metabolic abnormalities. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #58.
  43. Miyanishi K, Tanaka Sh, Kobune M, et al. Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #227.
  44. Kobune M, Kikuchi S, Iyama S, et al. Iron chelation therapy improves oxidative DNA damage in hematopoietic cells derived from transfusion-dependent myelodysplastic syndrome. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #93.
  45. Jones E, Allen A, Evans P, et al. Differences in hepcidin regulation distinguish mild and severe phenotypes of e-beta thalassaemia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #27.