EVI1-Positive Leukemias and Myelodysplastic Syndromes: Theoretical and Clinical Aspects (Literature Review)

NN Mamaev, AI Shakirova, EV Morozova, TL Gindina

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Prof. Nikolai Nikolaevich Mamaev, MD, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; e-mail: nikmamaev524@gmail.com

For citation: Mamaev NN, Shakirova AI, Morozova EV, Gindina TL. EVI1-Positive Leukemias and Myelodysplastic Syndromes: Theoretical and Clinical Aspects (Literature Review). Clinical oncohematology. 2021;14(1):103–17. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-103-117


ABSTRACT

The present review provides the analysis of theoretical background and therapy of prognostically poorest EVI1-positive myeloid leukemias and myelodysplastic syndromes which is performed at the RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation. The focus is on the evidence of the dominating role of EVI1 gene in impaired epigenetic regulation of hematopoiesis and, thus, on the feasibility of allogeneic hematopoietic stem cell transplantation with hypomethylating agents and/or trans-retinoic acid used for these diseases treatment.

Keywords: EVI1, acute myeloid leukemia, chronic myeloid leukemia, myelodysplastic syndrome, allo-HSCT, hypomethylating agents, trans-retinoic acid.

Received: September 12, 2020

Accepted: December 6, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Barjesteh van Waalwijk van Doorn-Khosrovani S. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2002;101(3):837–45. doi: 10.1182/blood-2002-05-1459.
  2. Lugthart S, van Drunen E, van Norden Y, et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood. 2008;111(8):4329–37. doi: 10.1182/blood-2007-10-119230.
  3. Groschel S, Lugthart S, Schlenk RF, et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol. 2010;28(12):2101–7. doi: 10.1200/JCO.2009.26.0646.
  4. Paquette RL, Nicoll J, Chalukya M, et al. Frequent EVI1 translocations in myeloid blast crisis CML that evolves through tyrosine kinase inhibitors. Cancer Genet. 2011;204(7):392–7. doi: 10.1016/j.cancergen.2011.06.002.
  5. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Лейкозы и миелодиспластические синдромы с высокой экспрессией гена EVI1: теоретические и клинические аспекты. Клиническая онкогематология. 2012;5(4):361–4.
    [Mamaev NN, Gorbunova AV, Gindina TL, et al. Leukemias and myelodysplastic syndromes with high expression of EVI1 gene: theoretical and clinical aspects. Klinicheskaya onkogematologiya. 2012;5(4):361–4. (In Russ)]
  6. Rogers HJ, Vardiman JW, Anastasi J, et al. Complex or monosomal karyotype and not blast percentage is associated with poor survival in acute myeloid leukemia and myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2): a Bone Marrow Pathology Group study. Haematologica. 2014;99(5):821–9. doi: 10.3324/haematol.2013.096420.
  7. Reiter E, Greinix H, Rabitsch W, et al. Low curative potential of bone marrow transplantation for highly aggressive acute myelogenous leukemia with inversion inv(3)(q21q26) or homologous translocation t(3;3)(q21;q26). Ann Hematol. 2000;79(7):374–7. doi: 10.1007/s002770000158.
  8. He X, Wang Q, Cen J, et al. Predictive value of high EVI1 expression in AML patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation in first CR. Bone Marrow Transplant. 2016;51(7):921–7. doi: 10.1038/bmt.2016.71.
  9. Gindina TL, Mamaev NN, Afanasyev BV. Chromosome abnormalities and hematopoietic stem cell transplantation in acute leukemias. In: ML Larramendy, S Soloneski (eds). Chromosomal abnormalities – A hallmark manifestation of genomic instability. IntechOpen; 2017. рр. 71– doi: 10.5772/67802.
  10. Halaburda K, Labopin M, Houhou M, et al. AlloHSCT for inv(3)(q21;q26)/t(3;3)(q21;q26) AML: a report from the acute leukemia working party of the European society for blood and marrow transplantation. Bone Marrow Transplant. 2018;53(6):683–91. doi: 10.1038/s41409-018-0165-x.
  11. Martinelli G, Ottaviani E, Buonamici S, et al. Association of 3q21q26 syndrome with different RPN1/EVI1 fusion transcripts. Haematologica. 2003;88(11):1221–8.
  12. Poppe B, Dastugue N, Vandesompele J, et al. EVI1 is consistently expressed as principal transcript in common and rare recurrent 3q26 rearrangements. Genes Chromos Cancer. 2006;45(4):349–56. doi: 10.1002/gcc.20295.
  13. De Braekeleer M, Le Bris MJ, De Braekeleer E, et al. 3q26/EVI1 rearrangements in myeloid hemopathies: a cytogenetic review. Fut Oncol. 2015;11(11):1675–86. doi: 10.2217/fon.15.64.
  14. Mamaev NN, Gindina TL, Morozova EV, et al. Primary myelodysplastic syndrome with two rare recurrent chromosome abnormalities [t(3q26/2;q22 and trisomy 13] associated with resistance to chemotherapy and hematopoietic stem cell transplantation. Cell Ther Transplant. 2018;7(2):64–9. doi: 10/18620/ctt-1866-8836-2018-7-2-64-69.
  15. Hodge JC, Bosler D, Rubinstein L, et al. Molecular and pathologic characterization of AML with double inv(3)(q21q26.2). Cancer Genet. 2019;230:28–36. doi: 10.1016/j.cancergen.2018.08.007.
  16. Testoni N, Borsaru G, Martinelli G, et al. 3q21 and 3q26 cytogenetic abnormalities in acute myeloblastic leukemia: biological and clinical features. Haematologica. 1999;84(8):690–4.
  17. Russell M, List A, Greenberg P, et al. Expression of EVI1 in myelodysplastic syndromes and other hematologic malignancies without 3q26 translocations. Blood. 1994;84(4):1243–8. doi: 10.1182/blood.V84.4.1243.1243.
  18. Groschel S, Schlenk RF, Engelmann J, et al. Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias: a study of the German-Austrian Acute Myeloid Leukemia Study Group and the Dutch-Belgian-Swiss HOVON/SAKK Cooperative Group. J Clin Oncol. 2013;31(1):95–103. doi: 10.1200/JCO.2011.41.5505.
  19. Ho PA, Alonzo TA, Gerbing RB, et al. High EVI1 expression is associated with MLL rearrangements and predicts decreased survival in paediatric acute myeloid leukaemia: a report from the children’s oncology group. Br J Haematol. 2013;162(5):670–7. doi: 10.1111/bjh.12444.
  20. Zhang Y, Owens K, Hatem L, et al. Essential role of PR-domain protein MDS1-EVI1 in MLL-AF9 leukemia. Blood. 2013;122(16):2888–92. doi: 10.1182/blood-2012-08-453662.
  21. Mucenski ML, Taylor BA, Ihle JN, et al. Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol. 1988;8(1):301–8. doi: 10.1128/mcb.8.1.301.
  22. Goyama S, Kurokawa M. Pathogenetic significance of ecotropic viral integration site-1 in hematological malignancies. Cancer Sci. 2009;100(6):990–5. doi: 10.1111/j.1349-7006.2009.01152.x.
  23. Hinai AA, Valk PJ. Review: Aberrant EVI1 expression in acute myeloid leukaemia. Br J Haematol. 2016;172(6):870–8. doi: 10.1111/bjh.13898.
  24. Yuan X, Wang X, Bi K, Jiang G. The role of EVI-1 in normal hematopoiesis and myeloid malignancies (Review). Int J Oncol. 2015;47(6):2028–36. doi: 10.3892/ijo.2015.3207.
  25. Delwel R, Funabiki T, Kreider BL, et al. Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA. Mol Cell Biol. 1993;13(7):4291–300. doi: 10.1128/mcb.13.7.4291.
  26. Funabiki T, Kreider BL, Ihle JN. The carboxyl domain of zinc fingers of the Evi-1 myeloid transforming gene binds a consensus sequence of GAAGATGAG. Oncogene. 1994;9(6):1575–81.
  27. Morishita K, Suzukawa K, Taki T, et al. EVI-1 zinc finger protein works as a transcriptional activator via binding to a consensus sequence of GACAAGATAAGATAAN1-28 CTCATCTTC. Oncogene. 1995;10(10):1961–7.
  28. Perkins AS, Kim JH. Zinc fingers 1–7 of EVI1 fail to bind to the GATA motif by itself but require the core site GACAAGATA for binding. J Biol Chem. 1996;271(2):1104–10. doi: 10.1074/jbc.271.2.1104.
  29. Bartholomew C, Kilbey A, Clark AM, Walker M. The Evi-1 proto-oncogene encodes a transcriptional repressor activity associated with transformation. Oncogene. 1997;14(5):569–77. doi: 10.1038/sj.onc.1200864.
  30. Kilbey A, Bartholomew C. Evi-1 ZF1 DNA binding activity and a second distinct transcriptional repressor region are both required for optimal transformation of Rat1 fibroblasts. Oncogene. 1998;16(17):2287–91. doi: 10.1038/sj.onc.1201732.
  31. Bordereaux D, Fichelson S, Tambourin P, Gisselbrecht S. Alternative splicing of the Evi-1 zinc finger gene generates mRNAs which differ by the number of zinc finger motifs. Oncogene. 1990;5(6):925–7.
  32. Alzuherri H, McGilvray R, Kilbey A, Bartholomew C. Conservation and expression of a novel alternatively spliced Evi1 exon. Gene. 2006;384:154–62. doi: 10.1016/j.gene.2006.07.027.
  33. Fears S, Mathieu C, Zeleznik-Le N, et al. Intergenic splicing of MDS1 and EVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc Natl Acad Sci USA. 1996;93(4):1642–7. doi: 10.1073/pnas.93.4.1642.
  34. Huang S, Shao G, Liu L. The PR domain of the Rb-binding zinc finger protein RIZ1 is a protein binding interface and is related to the SET domain functioning in chromatin-mediated gene expression. J Biol Chem. 1998;273(26):15933–9. doi: 10.1074/jbc.273.26.15933.
  35. Goyama S, Yamamoto G, Shimabe M, et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell. 2008;3(2):207–20. doi: 10.1016/j.stem.2008.06.002.
  36. Laricchia-Robbio L, Nucifora G. Significant increase of self-renewal in hematopoietic cells after forced expression of EVI1. Blood Cells Mol Dis. 2008;40(2):141–7. doi: 10.1016/j.bcmd.2007.07.012.
  37. Yoshimi A, Kurokawa M. Evi1 forms a bridge between the epigenetic machinery and signaling pathways. Oncotarget. 2011;2(7):575–86. doi: 10.18632/oncotarget.304.
  38. Buonamici S, Li D, Chi Y, et al. EVI1 induces myelodysplastic syndrome in mice. J Clin Invest. 2005;115(8):2296. doi: 1172/jci21716c1.
  39. Cuenco GM, Ren R. Both AML1 and EVI1 oncogenic components are required for the cooperation of AML1/MDS1/EVI1 with BCR/ABL in the induction of acute myelogenous leukemia in mice. Oncogene. 2004;23(2):569–79. doi: 10.1038/sj.onc.1207143.
  40. Glass C, Wilson M, Gonzalez R, et al. The role of EVI1 in myeloid malignancies. Blood Cells Mol Dis. 2014;53(1–2):67–76. doi: 10.1016/j.bcmd.2014.01.002.
  41. Jin G, Yamazaki Y, Takuwa M, et al. Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood. 2007;109(9):3998–4005. doi: 10.1182/blood-2006-08-041202.
  42. Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442(7104):818–22. doi: 10.1038/nature04980.
  43. Bindels EM, Havermans M, Lugthart S, et al. EVI1 is critical for the pathogenesis of a subset of MLL-AF9-rearranged AMLs. Blood. 2012;119(24):5838–49. doi: 10.1182/blood-2011-11-393827.
  44. Glass C, Wuertzer C, Cui X, et al. Global Identification of EVI1 Target Genes in Acute Myeloid Leukemia. PLoS One. 2013;8(6):e67134. doi: 10.1371/journal.pone.0067134.
  45. Hoyt PR, Bartholomew C, Davis AJ, et al. The Evi1 proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech Dev. 1997;65(1–2):55–70. doi: 10.1016/s0925-4773(97)00057-9.
  46. Nucifora G. The EVI1 gene in myeloid leukemia. Leukemia. 1997;11(12):2022–31. doi: 10.1038/sj.leu.2400880.
  47. Kataoka K, Sato T, Yoshimi A, et al. Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J Exp Med. 2011;208(12):2403–16. doi: 10.1084/jem.20110447.
  48. Zhang Y, Stehling-Sun S, Lezon-Geyda K, et al. PR-domain-containing Mds1-Evi1 is critical for long-term hematopoietic stem cell function. Blood. 2011;118(14):3853–61. doi: 10.1182/blood-2011-02-334680.
  49. Steinleitner K, Rampetsreiter P, Koffel R, et al. EVI1 and MDS1/EVI1 expression during primary human hematopoietic progenitor cell differentiation into various myeloid lineages. Anticancer Res. 2012;32(11):4883–9.
  50. Wieser R. The oncogene and developmental regulator EVI1: expression, biochemical properties, and biological functions. Gene. 2007;396(2):346–57. doi: 10.1016/j.gene.2007.04.012.
  51. Xi ZF, Russell M, Woodward S, et al. Expression of the Zn finger gene, EVI-1, in acute promyelocytic leukemia. Leukemia. 1997;11(2):212–20. doi: 10.1038/sj.leu.2400547.
  52. Aytekin M, Vinatzer U, Musteanu M, et al. Regulation of the expression of the oncogene EVI1 through the use of alternative mRNA 5’-ends. Gene. 2005;356:160–8. doi: 10.1016/j.gene.2005.04.032.
  53. Niederreither K, Subbarayan Y, Dolle P, et al. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet. 1999;21(4):444–8. doi: 1038/7788.
  54. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617–28. doi: 10.1056/NEJMoa040465.
  55. Morishita K, Parganas E, William CL, et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc Natl Acad Sci USA. 1992;89(9):3937–41. doi: 10.1073/pnas.89.9.3937.
  56. Ogawa S, Mitani K, Kurokawa M, et al. Abnormal expression of Evi-1 gene in human leukemias. Hum Cell. 1996;9(4):323–32.
  57. Lugthart S, Groschel S, Beverloo HB, et al. Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol. 2010;28(24):3890–8. doi: 10.1200/JCO.2010.29.2771.
  58. Groschel S, Sanders MA, Hoogenboezem R, et al. Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways. Blood. 2015;125(1):133–9. doi: 10.1182/blood-2014-07-591461.
  59. Langabeer SE, Rogers JR, Harrison G, et al. EVI1 expression in acute myeloid leukaemia. Br J Haematol. 2001;112(1):208–11. doi: 10.1046/j.1365-2141.2001.02569.x.
  60. Balgobind BV, Lugthart S, Hollink IH, et al. EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia. 2010;24(5):942–9. doi: 10.1038/leu.2010.47.
  61. Matsuo H, Kajihara M, Tomizawa D, et al. EVI1 overexpression is a poor prognostic factor in pediatric patients with mixed lineage leukemia-AF9 rearranged acute myeloid leukemia. Haematologica. 2014;99(11):e225–е227. doi: 10.3324/haematol.2014.107128.
  62. Testa U, Lo-Coco F. Targeting of leukemia-initiating cells in acute promyelocytic leukemia. Stem Cell Invest. 2015;2:8. doi: 10.3978/j.issn.2306-9759.2015.04.03.
  63. Jo A, Mitani S, Shiba N, et al. High expression of EVI1 and MEL1 is a compelling poor prognostic marker of pediatric AML. Leukemia. 2015;29(5):1076–83. doi: 10.1038/leu.2015.5.
  64. Sadeghian MH, Rezaei Dezaki Z. Prognostic Value of EVI1 Expression in Pediatric Acute Myeloid Leukemia: A Systematic Review. Iran J Pathol. 2018;13(3):294–300.
  65. Arai S, Yoshimi A, Shimabe M, et al. Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells. Blood. 2011;117(23):6304–14. doi: 10.1182/blood-2009-07-234310.
  66. De Weer A, Van der Meulen J, Rondou P, et al. EVI1-mediated down regulation of MIR449A is essential for the survival of EVI1 positive leukaemic cells. Br J Haematol. 2011;154(3):337–48. doi: 10.1111/j.1365-2141.2011.08737.x.
  67. Yamazaki H, Suzuki M, Otsuki A, et al. A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell. 2014;25(4):415–27. doi: 10.1016/j.ccr.2014.02.008.
  68. Groschel S, Sanders MA, Hoogenboezem R, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014;157(2):369–81. doi: 10.1016/j.cell.2014.02.019.
  69. Lugthart S, Figueroa ME, Bindels E, et al. Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI1. Blood. 2011;117(1):234–41. doi: 10.1182/blood-2010-04-281337.
  70. Bartholomew C, Morishita K, Askew D, et al. Retroviral insertions in the CB-1/Fim-3 common site of integration activate expression of the Evi-1 gene. Oncogene. 1989;4(5):529–34.
  71. Kreider BL, Orkin SH, Ihle JN. Loss of erythropoietin responsiveness in erythroid progenitors due to expression of the Evi-1 myeloid-transforming gene. Proc Natl Acad Sci USA. 1993;90(14):6454–8. doi: 10.1073/pnas.90.14.6454.
  72. Kataoka K, Kurokawa M. Ecotropic viral integration site 1, stem cell self-renewal and leukemogenesis. Cancer Sci. 2012;103(8):1371–7. doi: 10.1111/j.1349-7006.2012.02303.x.
  73. Soderholm J, Kobayashi H, Mathieu C, et al. The leukemia-associated gene MDS1/EVI1 is a new type of GATA-binding transactivator. Leukemia. 1997;11(3):352–8. doi: 10.1038/sj.leu.2400584.
  74. Laricchia-Robbio L, Fazzina R, Li D, et al. Point mutations in two EVI1 Zn fingers abolish EVI1-GATA1 interaction and allow erythroid differentiation of murine bone marrow cells. Mol Cell Biol. 2006;26(20):7658–66. doi: 10.1128/MCB.00363-06.
  75. Senyuk V, Sinha KK, Li D, et al. Repression of RUNX1 activity by EVI1: a new role of EVI1 in leukemogenesis. Cancer Res. 2007;67(12):5658–66. doi: 10.1158/0008-5472.CAN-06-3962.
  76. Laricchia-Robbio L, Premanand K, Rinaldi CR, Nucifora G. EVI1 Impairs myelopoiesis by deregulation of PU.1 function. Cancer Res. 2009;69(4):1633–42. doi: 10.1158/0008-5472.CAN-08-2562.
  77. Steinmetz B, Hackl H, Slabakova E, et al. The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid. Cell Cycle. 2014;13(18):2931–43. doi: 10.4161/15384101.2014.946869.
  78. Yuasa H, Oike Y, Iwama A, et al. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J. 2005;24(11):1976–87. doi: 10.1038/sj.emboj.7600679.
  79. Shimabe M, Goyama S, Watanabe-Okochi N, et al. Pbx1 is a downstream target of Evi-1 in hematopoietic stem/progenitors and leukemic cells. Oncogene. 2009;28(49):4364–74. doi: 10.1038/onc.2009.288.
  80. Kurokawa M, Mitani K, Irie K, et al. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature. 1998;394(6688):92–6. doi: 10.1038/27945.
  81. Izutsu K, Kurokawa M, Imai Y, et al. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood. 2001;97(9):2815–22. doi: 10.1182/blood.v97.9.2815.
  82. Kurokawa M, Mitani K, Yamagata T, et al. The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J. 2000;19(12):2958–68. doi: 10.1093/emboj/19.12.2958.
  83. Buonamici S, Li D, Mikhail FM, et al. EVI1 abrogates interferon-alpha response by selectively blocking PML induction. J Biol Chem. 2004;280(1):428–36. doi: 10.1074/jbc.M410836200.
  84. Pradhan AK, Mohapatra AD, Nayak KB, Chakraborty S. Acetylation of the proto-oncogene EVI1 abrogates Bcl-xL promoter binding and induces apoptosis. PLoS One. 2011;6(9):e25370. doi: 10.1371/journal.pone.0025370.
  85. Yatsula B, Lin S, Read AJ, et al. Identification of binding sites of EVI1 in mammalian cells. J Biol Chem. 2005;280(35):30712–22. doi: 10.1074/jbc.M504293200.
  86. Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42(8):722–6. doi: 10.1038/ng.621.
  87. Figueroa ME, Lugthart S, Li Y, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;17(1):13–27. doi: 10.1016/j.ccr.2009.11.020.
  88. Wagner JM, Hackanson B, Lubbert M, Jung M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenet. 2010;1(3–4):117–36. doi: 10.1007/s13148-010-0012-4.
  89. Senyuk V, Zhang Y, Liu Y, et al. Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis. Proc Natl Acad Sci USA. 2013;110(14):5594–9. doi: 10.1073/pnas.1302645110.
  90. Nikoloski G, Langemeijer SM, Kuiper RP, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42(8):665–7. doi: 10.1038/ng.620.
  91. Makishima H, Jankowska AM, Tiu RV, et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia. 2010;24(10):1799–804. doi: 10.1038/leu.2010.167.
  92. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi: 10.1056/NEJMoa1005143.
  93. Walter MJ, Ding L, Shen D, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–8. doi: 10.1038/leu.2011.44.
  94. Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301. doi: 10.1056/NEJMoa0810069.
  95. Langemeijer SM, Kuiper RP, Berends M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41(7):838–42. doi: 10.1038/ng.391.
  96. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
  97. van Haaften G, Dalgliesh GL, Davies H, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41(5):521–3. doi: 10.1038/ng.349.
  98. Liu Y, Chen L, Ko TC, et al. Evi1 is a survival factor which conveys resistance to both TGFbeta- and taxol-mediated cell death via PI3K/AKT. Oncogene. 2006;25(25):3565–75. doi: 10.1038/sj.onc.1209403.
  99. Yoshimi A, Goyama S, Watanabe-Okochi N, et al. Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood. 2011;117(13):3617–28. doi: 10.1182/blood-2009-12-261602.
  100. Bingemann SC, Konrad TA, Wieser R. Zinc finger transcription factor ecotropic viral integration site 1 is induced by all-trans retinoic acid (ATRA) and acts as a dual modulator of the ATRA response. FEBS J. 2009;276(22):6810–22. doi: 10.1111/j.1742-4658.2009.07398.x.
  101. Pauebelle E, Plesa A, Hayette S, et al. Efficacy of All-Trans-Retinoic Acid in high-risk acute myeloid leukemia with overexpression of EVI1. Oncol Ther. 2019;7(2):121–30. doi: 10.1007/s40487-019-0095-9.
  102. Vazquez I, Maicas M, Cervera J, et al. Down-regulation of EVI1 is associated with epigenetic alterations and good prognosis in patients with acute myeloid leukemia. Haematologica. 2011;96(10):1448–56. doi: 10.3324/haematol.2011. 040535.
  103. Daghistani M, Marin D, Khorashad JS, et al. EVI-1 oncogene expression predicts survival in chronic-phase CML patients resistant to imatinib treated with second-generation tyrosine kinase inhibitors. Blood. 2010;116(26):6014–7. doi: 10.1182/blood-2010-01-264234.
  104. Мамаев Н.Н., Шакирова А.И., Бархатов И.М. идр. Ведущая роль BAALC-экспрессирующих клеток-предшественниц в возникновении и развитии посттрансплантационных рецидивов у больных острыми миелоидными лейкозами. Клиническая онкогематология. 2020;13(1):75–88. doi: 10.21320/2500-2139-2020-13-1-75-88.
    [Mamaev NN, Shakirova AI, Barkhatov IM, et al. Crucial Role of BAALCExpressing Progenitor Cells in Emergence and Development of Post-Transplantation Relapses in Patients with Acute Myeloid Leukemia. Clinical oncohematology. 2020;13(1):75–88. doi: 10.21320/2500-2139-2020-13-1-75-88. (In Russ)]
  105. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. doi: 10.1038/367645a0.
  106. Matsushita H, Yahata T, Sheng Y, et al. Establishment of a humanized APL model via the transplantation of PML-RARA-transduced human common myeloid progenitors into immunodeficient mice. PLoS One. 2014;9(11):e111082. doi: 10.1371/journal.pone.0111082.
  107. Cole CB, Verdoni AM, Ketkar S, et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126(1):85–98. doi: 10.1172/JCI82897.
  108. Гудожникова Я.В., Мамаев Н.Н., Бархатов И.М. и др. Результаты молекулярного мониторинга в посттрансплантационный период с помощью серийного исследования уровня экспрессии гена WT1 у больных острыми миелоидными лейкозами. Клиническая онкогематология. 2018;11(3):241–51. doi: 10.21320/2500-2139-2018-11-3-241-251.
    [Gudozhnikova YaV, Mamaev NN, Barkhatov IM, et al. Results of Molecular Monitoring in Posttransplant Period by Means of Series Investigation of WT1 Gene Expression in Patients with Acute Myeloid Leukemia. Clinical oncohematology. 2018;11(3):241–51. doi: 10.21320/2500-2139-2018-11-3-241-251. (In Russ)]
  109. Dreyfus F, Bouscary D, Melle J, et al. Expression of the Evi-1 gene in myelodysplastic syndromes. Leukemia. 1995;9(1):203–5. doi: 10.1016/0145-2126(94)90237-2.
  110. Thol F, Yun H, Sonntag AK, et al. Prognostic significance of combined MN1, ERG, BAALC, and EVI1 (MEBE) expression in patients with myelodysplastic syndromes. Ann Hematol. 2012;91(8):1221–33. doi: 10.1007/s00277-012-1457-7.
  111. Russell M, Thompson F, Spier C, Taetle R. Expression of the EVI1 gene in chronic myelogenous leukemia in blast crisis. Leukemia. 1993;7(10):1654–7.
  112. Ogawa S, Kurokawa M, Tanaka T, et al. Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. Leukemia. 1996;10(5):788–94.
  113. Kuila N, Sahoo DP, Kumari M, et al. EVI1, BAALC and AME: prevalence of the secondary mutations in chronic and accelerated phases of chronic myeloid leukemia patients from eastern India. Leuk Res. 2009;33(4):594–6. doi: 10.1016/j.leukres.2008.07.018.
  114. Горбунова А.В., Гиндина Т.Л., Морозова Е.В. и др. Влияние молекулярно-генетических и цитогенетических факторов на эффективность аллогенной трансплантации костного мозга у больных хроническим миелолейкозом. Клиническая онкогематология. 2013;6(4):445–50.
    [Gorbunova AV, Gindina TL, Morozova EV, et al. Impact of molecular genetic and cytogenetic characteristics on outcomes of allogeneic hematopoietic stem cell transplantation in chronic myeloid leukemia. Klinicheskaya oncogematologiya. 2013;6(4):445–50. (In Russ)]
  115. Sato T, Goyama S, Kataoka K, et al. Evi1 defines leukemia-initiating capacity and tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Oncogene. 2014;33(42):5028–38. doi: 10.1038/onc.2014.108.
  116. Konantz M, Andre MC, Ebinger M, et al. EVI-1 modulates leukemogenic potential and apoptosis sensitivity in human acute lymphoblastic leukemia. Leukemia. 2013;27(1):56–65. doi: 10.1038/leu.2012.211.
  117. Mittal N, Li L, Sheng Y, et al. A critical role of epigenetic inactivation of miR-9 in EVI1high pediatric AML. Mol Cancer. 2019;18(1):30. doi: 10.1186/s12943-019-0952-z.
  118. Verhagen HJ, Smit MA, Rutten A, et al. Primary acute myeloid leukemia cells with overexpression of EVI-1 are sensitive to all-trans retinoic acid. Blood. 2016;127(4):458–63. doi: 10.1182/blood-2015-07-653840.
  119. Мамаев Н.Н, Горбунова А.В, Гиндина Т.Л. и др. Стойкое восстановление донорского гемопоэза у больной с посттрансплантационным рецидивом острого миеломонобластного лейкоза с inv(3)(q21q26), моносомией 7 и экспрессией онкогена EVI1 после трансфузий донорских лимфоцитов и использования гипометилирующих агентов. Клиническая онкогематология. 2014;7(1):71–5.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Stable donor hematopoiesis reconstitution after post­transplantation relapse of acute myeloid leukemia in patient with inv(3)(q21q26), –7 and EVI1 oncogene overexpression treated by donor lymphocyte infusions and hypomethylating agents. Klinicheskaya oncogematologiya. 2014;7(1):71–5. (In Russ)]
  120. He X, Wang Q, Cen J, et al. Predictive value of high EVI1 expression in AML patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation in first CR. Bone Marrow Transplant. 2016;51(7):921–7. doi: 10.1038/bmt.2016.71.
  121. Мамаев Н.Н., Морозова Е.В., Горбунова А.В. Теоретические и клинические аспекты эпигенетических изменений при миелодиспластических синдромах и острых нелимфобластных лейкозах (обзор литературы). Вестник гематологии. 2011;7(3):12–21.
    [Mamaev NN, Morozova EV, Gorbunova AV. Theoretical and practical aspects of epigenetic changes in myelodysplastic syndromes and acute non-lymphoblastic leukemias (literature review). Vestnik gematologii. 2011;7(3):12–21. (In Russ)]
  122. Mamaev N, Morozova E, Gindina T, et al. Dacogen and allogeneic bone marrow transplantation in the treatment of high-risk myelodysplastic syndromes with non-random chromosome abnormalities. Leuk Res. 2011;35(Suppl 1):72–3. doi: 10.1016/S0145-2126(11)70186-2.
  123. Mamaev N, Gorbunova A, Barkhatov I, et al. Biology and treatment of leukemia and myelodysplastic syndromes with high EVI-1 gene expression. ELN Frontiers Meeting 2012 “Myeloid neoplasms: approaching cure”. Istanbul, Turkey. Abstract No. 37.
  124. Yang X, Wong MPM, Ng RK. Aberrant DNA Methylation in Acute Myeloid Leukemia and Its Clinical Implications. Int J Mol Sci. 2019;20(18):4576. doi: 10.3390/ijms20184576.
  125. Nowek K, Sun SM, Dijkstra MK, et al. Expression of a passenger miR-9* predicts favorable outcome in adults with acute myeloid leukemia less than 60 years of age. Leukemia. 2016;30(2):303–9. doi: 10.1038/leu.2015.282.
  126. Li F, He W, Geng R, Xie X. Myeloid leukemia with high EVI1 expression is sensitive to 5-aza-2’-deoxycytidine by targeting miR-9. Clin Transl Oncol. 2020;22(1):137–43. doi: 10.1007/s12094-019-02121-y.
  127. Cattaneo F, Nucifora G. EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J Cell Biochem. 2008;105(2):344–52. doi: 10.1002/jcb.21869.
  128. Craddock C, Quek L, Goardon N, et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia. 2013;27(5):1028–36. doi: 10.1038/leu.2012.312.
  129. Trino S, Zoppoli P, Carella AM, et al. DNA methylation dynamic of bone marrow hematopoietic stem cells after allogeneic transplantation. Stem Cell Res Ther. 2019;10(1):138. doi: 10.1186/s13287-019-1245-6.
  130. Ahn JS, Kim YK, Min YH, et al. Azacitidine Pre-Treatment Followed by Reduced-Intensity Stem Cell Transplantation in Patients with Higher-Risk Myelodysplastic Syndrome. Acta Haematol. 2015;134(1):40–8. doi: 10.1159/000368711.
  131. Voso MT, Leone G, Piciocchi A, et al. Feasibility of allogeneic stem-cell transplantation after azacitidine bridge in higher-risk myelodysplastic syndromes and low blast count acute myeloid leukemia: results of the BMT-AZA prospective study. Ann Oncol. 2017;28(7):1547–53. doi: 10.1093/annonc/mdx154.
  132. Овечкина В.Н., Бондаренко С.Н., Морозова Е.В. и др. Роль терапии гипометилирующими препаратами перед аллогенной трансплантацией гемопоэтических стволовых клеток при острых миелоидных лейкозах и миелодиспластическом синдроме. Клиническая онкогематология. 2017;10(3):351–7. doi: 10.21320/2500-2139-2017-10-3-351-357.
    [Ovechkina VN, Bondarenko SN, Morozova EV, et al. The Role of Hypomethylating Agents Prior to Allogeneic Hematopoietic Stem Cells Transplantation in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clinical oncohematology. 2017;10(3):351–7. doi: 10.21320/2500-2139-2017-10-3-351-357. (In Russ)]
  133. Nishihori T, Perkins J, Mishra A, et al. Pretransplantation 5-azacitidine in high-risk myelodysplastic syndrome. Biol Blood Marrow Transplant. 2014;20(6):776–80. doi: 10.1016/j.bbmt.2014.02.008.
  134. de Lima M, Giralt S, Thall PF, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010;116(23):5420–31. doi: 10.1002/cncr.25500.
  135. Craddock C, Jilani N, Siddique S, et al. Tolerability and Clinical Activity of Post-Transplantation Azacitidine in Patients Allografted for Acute Myeloid Leukemia Treated on the RICAZA Trial. Biol Blood Marrow Transplant. 2016;22(2):385–90. doi: 10.1016/j.bbmt.2015.09.004.
  136. Marini C, Brissot E, Bazarbachi A, et al. Tolerability and Efficacy of Treatment With Azacytidine as Prophylactic or Preemptive Therapy for Myeloid Neoplasms After Allogeneic Stem Cell Transplantation. Clin Lymphoma Myel Leuk. 2020;20(6):377–82. doi: 10.1016/j.clml.2019.10.011.
  137. Бадаев Р.Ш., Заммоева Д.Б., Гиршова Л.Л. и др. Профилактическое применение азацитидина у пациентов с острыми миелоидными лейкозами после гаплоидентичной аллоТКМ. Клиническая онкогематология. 2019;12(1):37–42. doi: 10.21320/2500-2139-2019-12-1-37-42.
    [Badaev RSh, Zammoeva DB, Girshova LL, et al. Preventive Use of Azacitidine in Patients with Acute Myeloid Leukemia after Haploidentical Allo-BMT. Clinical oncohematology. 2019;12(1):37–42. doi: 10.21320/2500-2139-2019-12-1-37-42. (In Russ)]
  138. Cattaneo F, Nucifora G. EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J Cell Biochem. 2008;105(2):344–52. doi: 10.1002/jcb.21869.
  139. Estey EH, Thall PF, Pierce S, et al. Randomized phase II study of fludarabine + cytosine arabinoside + idarubicin ± all-trans retinoic acid ± granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Blood. 1999;93(8):2478–84. doi: 10.1182/blood.v93.8.2478.
  140. Schlenk RF, Frohling S, Hartmann F, et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia. 2004;18(11):1798–803. doi: 10.1038/sj.leu.2403528.
  141. Raza A, Buonamici S, Lisak L, et al. Arsenic trioxide and thalidomide combination produces multi-lineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pre-therapy EVI1 expression. Leuk Res. 2004;28(8):791–803. doi: 10.1016/j.leukres.2003.11.018.
  142. Burnett AK, Hills RK, Green C, et al. The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood. 2010;115(5):948–56. doi: 10.1182/blood-2009-08-236588.
  143. van Gils N, Verhagen HJMP, Smit L. Reprogramming acute myeloid leukemia into sensitivity for retinoic-acid-driven differentiation. Exp Hematol. 2017;52:12–23. doi: 10.1016/j.exphem.2017.04.007.
  144. Plesa A, Dumontet C, Mattei E, et al. High frequency of CD34+CD38-/low immature leukemia cells is correlated with unfavorable prognosis in acute myeloid leukemia. World J Stem Cells. 2017;9(12):227–34. doi: 10.4252/wjsc.v9.i12.227.
  145. Nguyen CH, Bauer K, Hackl H, et al. All-trans retinoic acid enhances, and a pan-RAR antagonist counteracts, the stem cell promoting activity of EVI1 in acute myeloid leukemia. Cell Death Dis. 2019;10(12):944. doi: 10.1038/s41419-019-2172-2.
  146. Field T, Perkins J, Huang Y, et al. 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2010;45(2):255–60. doi: 10.1038/bmt.2009.134.
  147. Kim DY, Lee JH, Park YH, et al. Feasibility of hypomethylating agents followed by allogeneic hematopoietic cell transplantation in patients with myelodysplastic syndrome. Bone Marrow Transplant. 2012;47(3):374–9. doi: 10.1038/bmt.2011.86.
  148. Jiang YZ, Su GP, Dai Y, et al. Effect of Decitabine Combined with Unrelated Cord Blood Transplantation in an Adult Patient with -7/EVI1+ Acute Myeloid Leukemia: a Case Report and Literature Review. Ann Clin Lab Sci. 2015;45(5):598–601.
  149. Schlenk RF, Lubbert M, Benner A, et al. All-trans retinoic acid as adjunct to intensive treatment in younger adult patients with acute myeloid leukemia: results of the randomized AMLSG 07-04 study. Ann Hematol. 2016;95(12):1931–42. doi: 10.1007/s00277-016-2810-z.
  150. Taussig DC, Vargaftig J, Miraki-Moud F, et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood. 2010;115(10):1976–84. doi: 10.1182/blood-2009-02-206565.
  151. Patel S, Zhang Y, Cassinat B, et al. Successful xenografts of AML3 samples in immunodeficient NOD/shi-SCID IL2Rγ–/– Leukemia. 2012;26(11):2432–5. doi: 10.1038/leu.2012.154.

The Role of Hypomethylating Agents Prior to Allogeneic Hematopoietic Stem Cells Transplantation in Acute Myeloid Leukemia and Myelodysplastic Syndrome

VN Ovechkina1, SN Bondarenko1, EV Morozova1, IS Moiseev1, AA Osipova1, TL Gindina1, AI Shakirova1, TA Bykova1, AD Kulagin1, IA Samorodova2, EV Karyakina3, EA Ukrainchenko4, LS Zubarovskaya1, BV Afanas’ev1

1 RM Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

2 Municipal Clinical Hospital No. 31, 3 Dinamo pr-t, Saint Petersburg, Russian Federation, 197110

3 Municipal Hospital No. 15, 4 Avangardnaya str., Saint Petersburg, Russian Federation, 198205

4 Aleksandrov Hospital, 4 Solidarnosti pr-t, Saint Petersburg, Russian Federation, 193312

For correspondence: Varvara Nikolaevna Ovechkina, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)338-62-72; e-mail ovetchkina@gmail.com

For citation: Ovechkina VN, Bondarenko SN, Morozova EV, et al. The Role of Hypomethylating Agents Prior to Allogeneic Hematopoietic Stem Cells Transplantation in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clinical oncohematology. 2017;10(3):351–7 (In Russ).

DOI: 10.21320/2500-2139-2017-10-3-351-357


ABSTRACT

Background & Aims. The aim of the study was to evaluate the efficacy and safety of azacytidine and decitabine prior to allogeneic hematopoietic stem cell transplantation (allo-HSCT) in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia.

Materials & Methods. The research included 62 patients who received hypomethylating agents (HMA) prior to allo-HSCT. The median age was 28 years (range from 1 to 68 years), the study population consisted of 27 (43.5 %) women and 35 (56.5 %) men.

Results. The overall response (complete + partial remission) was observed in 42 % (n = 26) of cases. At the time of allo-HSCT no disease progression was observed in 41 (66 %) patients. The multivariant analysis showed the overall survival (OS) statistically significantly increased with the graft retention (hazard ratio [HR] 0.002; 95% confidence interval [95% CI] 0.001–0.74; p = 0.03), and also with the administration of HMA after allo-HSCT (HR 0.24; 95% CI 0.08–0.67; p = 0.007). The response (stabilisation, partial or complete remission) due to HMA administration prior to allo-HSCT (HR 6.4; 95% CI 0.75–54.0; p = 0.08) was associated with improved OS. The event-free survival (EFS) was significantly higher with the response to azacytidine and decitabine at the time of allo-HSCT (HR 38.9; 95% CI 1.3–1198.0; p = 0.03) and with the graft retention (HR 0.02; 95% CI 0.005–0.1; p = 0.001). In patients with MDS compared with AML (HR 2.3; 95% CI 0.9–22.0; p = 0.08), there was a tendency to EFS improvement. Progression-free survival rates were higher in patients with a number of blast cells in the bone marrow less than 31 % at the time of diagnosis (HR 1.1; 95% CI 1.1–9.9; p = 0.01).

Conclusion. The use of azacytidine and decitabine prior to allo-HSCT allows to safely control the tumor mass in patients with MDS and to maintain the achieved remission with AML. In patients with a response to HMA, the best OS and EFS values are seen after allo-HSCT.

Keywords: acute myeloid leukemia, myelodysplastic syndrome, allogeneic hematopoietic stem cell transplantation, hypomethylating agents, azacitidine, decitabine.

Received: December 19, 2016

Accepted: March 9, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Ширин А.Д., Баранова О.Ю. Гипометилирующие препараты в онкогематологии. Клиническая онкогематология. 2016;9(4):369–82. doi: 10.21320/2500-2139-2016-9-4-369–382.
    [Shirin AD, Baranova OYu. Hypomethylating Agents in Oncohematology. Clinical oncohematology. 2016;9(4):369–82. doi: 10.21320/2500-2139-2016-9-4-369–382. (In Russ)]
  2. Бондаренко С.Н., Семенова Е.В., Афанасьев Б.В. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при остром миелобластном лейкозе в первой ремиссии. Терапевтический архив. 2013;84(7):18–25.
    [Bondarenko SN, Semenova EV, Afanas’ev BV, et al. Allogeneic hematopoietic stem cell transplantation for acute myeloblastic leukemia in first remission. Terapevticheskii arkhiv. 2013;84(7):18–25. (In Russ)]
  3. Паровичникова Е.Н., Троицкая В.В., Савченко В.Г. и др. Лечение больных острыми миелоидными лейкозами по протоколу российского многоцентрового рандомизированного исследования ОМЛ-01.10: результаты координационного центра. Терапевтический архив. 2014;86(7):14–23.
    [Parovichnikova EN, Troitskaya VV, Savchenko VG, et al. Treating patients with acute myeloid leukemias according to the protocol of the AML-01.10 Russian multicenter randomized trial: the Coordinating Center’s results. Terapevticheskii arkhiv. 2014;86(7):14–23. (In Russ)]
  4. de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129(13):1753–62. doi: 10.1182/blood-2016-06-724500.
  5. Sohn SK, Moon JH. Survey of expert opinions and related recommendations regarding bridging therapy using hypomethylating agents followed by allogeneic transplantation for high-risk MDS. Crit Rev Oncol Hematol. 2015;95(2):243–50. doi: 10.1016/j.critrevonc.2015.03.004.
  6. Al-Ali HK, Jaekel N, Niederwieser D, et al. Azacitidine in patients with acute myeloid leukemia medically unfit for or resistant to chemotherapy: a multicenter phase I/II study. Leuk Lymphoma. 2012;53(1):110–7. doi: 10.3109/10428194.2011.606382.
  7. Cruijsen M, Lubbert M, Huls G, et al. Clinical Results of Hypomethylating Agents in AML Treatment. J Clin Med. 2014;4(1):1–17. doi: 10.3390/jcm4010001.
  8. Field T, Perkins J, Anasetti C, et al. 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2010;45(2):255–60. doi: 10.1038/bmt.2009.134.
  9. Al-Ali HK, Jaekel N, Niederwieser D. The role of hypomethylating agents in the treatment of elderly patients with AML. J Geriatr Oncol. 2014;5(1):89–105. doi: 10.1016/j.jgo.2013.08.004.
  10. Komrokji RS, DeZern AE, Sekeres MA, et al. Validation of International Working Group (IWG) Response Criteria in Higher-Risk Myelodysplastic Syndromes (MDS): A Report on Behalf of the MDS Clinical Research Consortium (MDS CRC). Blood. 2015;126:909.
  11. Seymour JF, Buckstein R, Santini V, et al. Efficacy and Safety of Azacitidine (AZA) Versus Conventional Care Regimens (CCR) in Patients Aged ≥ 75 Years with Acute Myeloid Leukemia (AML) in the Phase 3 AZA-AML-001 Study. Blood. 2016;128:2818.
  12. Garcia JS, Jain N, Godley LA. An update on the safety and efficacy of decitabine in the treatment of myelodysplastic syndromes. Onco Targets Ther. 2010;3:1–13. doi: 10.2147/ott.s7222.
  13. Кострома И.И., Грицаев С.В., Карягина Е.В. и др. Гематологическое улучшение — вариант благоприятного противоопухолевого ответа на лечение азацитидином при острых миелоидных лейкозах и миелодиспластических синдромах. Клиническая онкогематология. 2015;8(4):413–9. doi: 10.21320/2500-2139-2015-8-4-413-419.
    [Kostroma II, Gritsaev SV, Karyagina EV, et al. Hematological Improvement is a Favorable Response to Azacitidine in Patients with Acute Myeloid Leukemias and Myelodysplastic Syndromes. Clinical oncohematology. 2015;8(4):413–9. doi: 10.21320/2500-2139-2015-8-4-413-419. (In Russ)]
  14. Potter VT, Iacobelli S, Biezen A, et al. Comparison of Intensive Chemotherapy and Hypomethylating Agents before Allogeneic Stem Cell Transplantation for Advanced Myelodysplastic Syndromes: A Study of the Myelodysplastic Syndrome Subcommittee of the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2016;22(9):1615–20. doi: 10.1016/j.bbmt.2016.05.026.
  15. Jabbour E, Mathisen MS, Garcia-Manero G, et al. Allogeneic hematopoietic stem cell transplantation versus hypomethylating agents in patients with myelodysplastic syndrome: A retrospective case-control study. Am J Hematol. 2013;88(3):198–200. doi: 10.1002/ajh.23371.
  16. Ahn JS, Kim YK, Min YH, et al. Azacitidine Pre-Treatment Followed by Reduced-Intensity Stem Cell Transplantation in Patients with Higher-Risk Myelodysplastic Syndrome. Acta Haematol. 2015;134(1):40–8. doi: 10.1159/000368711.
  17. Waespe N, Akker Van Den M, Klaassen RJ, et al. Response to treatment with azacitidine in children with advanced myelodysplastic syndrome prior to hematopoietic stem cell transplantation. Haematologica. 2016;101(12):1508–15. doi: 10.3324/haematol.2016.145821.
  18. Prebet Th, Gore SD, Esterni B, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol. 2011;29(24):3322–7. doi: 10.1200/jco.2011.35.8135.
  19. Bally C, Thepot S, Quesnel B, et al. Azacitidine in the treatment of therapy related myelodysplastic syndrome and acute myeloid leukemia (tMDS/AML): A report on 54 patients by the Groupe Francophone Des Myelodysplasies (GFM). Leuk Res. 2013;37(6):637–40. doi: 10.1016/j.leukres.2013.02.014.
  20. Fenaux P, Mufti GJ, Peterson BL, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomized, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32. doi: 10.1016/s1470-2045(09)70003-8.
  21. Quintas-Cardama A, Ravandi F, Liu-Dumlao Th, et al. Epigenetic therapy is associated with similar survival compared with intensive chemotherapy in older patients with newly diagnosed acute myeloid leukemia. Blood. 2012;120(24):4840–5. doi: 10.1182/blood-2012-06-436055.
  22. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010;28(4):562–9. doi: 10.1200/jco.2009.23.8329.
  23. Pleyer L, Burgstaller B, Greil R, et al. Azacitidine front-line in 339 patients with myelodysplastic syndromes and acute myeloid leukaemia: comparison of French-American-British and World Health Organization classifications. J Hematol Oncol. 2016;9(1):39. doi: 10.1186/s13045-016-0263-4.
  24. Yahng SA, Yooh JH, Shin SH, et al. Response to pretransplant hypomethylating agents influences the outcome of allogeneic hematopoietic stem cell transplantation in adults with myelodysplastic syndromes. Eur J Haematol. 2013;90(2):111–20. doi: 10.1111/ejh.12038.
  25. Овечкина В.Н., Бондаренко С.Н., Морозова Е.В. и др. Острый миелобластный лейкоз и миелодиспластический синдром: применение азацитидина с профилактической и превентивной целью после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология. 2017;10(1):45–51. doi: 10.21320/2500-2139-2017-10-1-45-51.
    [Ovechkina VN, Bondarenko SN, Morozova EV, et al. Acute Myeloblastic Leukemia and Myelodysplastic Syndrome: Azacitidine for Prophylactic and Preventive Purposes after Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2017;10(1):45–51. doi: 10.21320/2500-2139-2017-10-1-45-51. (In Russ)]
  26. Craddock Ch, Jilani N, Siddique Sh, et al. Tolerability and Clinical Activity of Post-Transplantation Azacitidine in Patients Allografted for Acute Myeloid Leukemia Treated on the RICAZA Trial. Biol Blood Marrow Transplant. 2016;22(2):385–90. doi: 10.1016/j.bbmt.2015.09.004.

Hypomethylating Agents in Oncohematology

AD Shirin, OYu Baranova

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Anton Dmitrievich Shirin, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-28-24; e-mail: shirin-anton@mail.ru

For citation: Shirin AD, Baranova OYu. Hypomethylating Agents in Oncohematology. Clinical oncohematology. 2016;9(4):369–82 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-369-382


ABSTRACT

The review describes epigenetic processes, including methylation of nuclear and mitochondrial DNA, as well as RNA. It dwells on mechanisms of demethylation and corresponding medicinal products. It presents detailed information on results of numerous large randomized studies intended to evaluate hypomethylating agents (azanucleosides). Special attention is paid to outcomes of azanucleoside therapy in patients with acute myeloid leukemias. The article describes several prognostic systems and treatment algorithms for myelodysplastic syndromes. Two azanucleosides have been approved in Russia to date: azacitidine (for SQ administration) and decitabine (for IV administration). International authors analyze the experience in oral and subcutaneous administration of decitabine. However, the problem of off-label use of hypomethylating agents is still open. The review gives a brief description of ongoing clinical trials with azanucleosides.


Keywords: epigenetics, acute myeloid leukemias, myelodysplastic syndromes, azacitidine, decitabine, hypomethylating agents, azanucleosides.

Received: May 10, 2016

Accepted: May 20, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Уоддингтон К.Х. Основные биологические концепции. В кн.: На пути к теоретической биологии. Часть I. Пролегомены. М.: Мир, 1970. С. 11–38.
    [Waddington CH. Basic Ideas of Biology. In: Waddington CH, ed. Towards a Theoretical Biology. Vol. 1. Edinburgh: Edinburgh University Press. 1968–72. (Russ. ed.: Waddington CH. Osnovnye biologicheskie kontseptsii. In: Waddington CH, ed. Na puti k teoreticheskoi biologii. Chast’ I. Prolegomeny. Moscow: Mir Publ.; 1970. pp. 11–38.)]
  2. Huntly BJP, Johnson PWM. Targeting Epigenetic Readers in Hematologic Malignancies: A Good BET? The Hematologist. 2012;9(2):5–7.
  3. Daser A, Rabbitts TH. Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes & Dev. 2004;18:965–74. doi: 10.1101/gad.1195504.
  4. Ansorge WJ. Next-generation DNA sequencing techniques. New Biotechnol. 2009;25(4):195–203. doi: 10.1016/j.nbt.2008.12.009.
  5. Foley SB, Rios JJ, Mgbemena V. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic. EBioMedicine. 2014;2(1):74–81. doi: 10.1016/j.ebiom.2014.12.003.
  6. Wojdacz TK, Moller TH, Thestrup BB, et al. Limitations and advantages of MS-HRM and bisulfite sequencing for single locus methylation studies. Exp Rev Mol Diagn. 2010;10(5):575–80. doi: 10.1586/erm.10.46.
  7. Reinders J, Paszkowski J. Bisulfite methylation profiling of large genomes. Epigenomics. 2010;2(2):209–20. doi: 10.2217/epi.10.6.
  8. Thompson CB. Targeting Metabolic Inputs into Epigenetic Regulations of Acute Leukemia. Blood. 2013;122(21):SCI-26.
  9. Зиновкина Л.А., Зиновкин Р.А. Метилирование ДНК, митохондрии и программируемое старение. Биохимия. 2015;80(12):1830–7.
    [Zinovkina LA, Zinovkin RA. DNA methylation, mitochondria, and programmed aging. Biokhimiya. 2015;80(12):1830–7. (In Russ)]
  10. Vanyushin BF, Kiryanov GI, Kudryashova IB, Belozersky AN. DNA & methylase in loach embryos (Misgurnus fossilis). FEBS Lett. 1971;15(4):313–6. doi: 10.1016/0014-5793(71)80646-4.
  11. Vanyushin BF, Kirnos MD. The nucleotide composition and pyrimidine clusters in DNA from beef heart mitochondria. FEBS Lett. 1974;39(2):195–9. doi: 10.1016/0014-5793(74)80049-99.
  12. Vanyushin BF, Kirnos MD. The structure of animal mitochondrial DNA (base composition, pyrimidine clusters, character of methylation). Mol Cell Biochem. 1977;14(1–3):31–6. doi: 10.1007/bf01734162.
  13. Byun HM, Panni T, Motta V, et al. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol. 2013;10(1):18. doi: 10.1186/1743-8977-10-18.
  14. Sun C, Reimers LL, Burk RD. Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol. 2011;121(1):59–63. doi: 10.1016/j.ygyno.2011.01.013.
  15. Vanyushin BF, Nemirovsky LE, Klimenko VV, et al. The 5-methylcytosine in DNA of rats. Gerontologia. 1973;19(3):138–52. doi: 10.1159/000211967.
  16. Биология и медицина. Метилирование РНК. [Электронный документ] Доступно по: http://medbiol.ru/medbiol/epigenetica/001a1613.htm. Ссылка активна на 14.05.2013.
    [Biologiya i meditsina. Metilirovanie RNK. (Biology and Medicine. RNA Methylation) [Internet]. Available from: http://medbiol.ru/medbiol/epigenetica/001a1613.htm. (accessed 14.05.2013) (In Russ)]
  17. Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307(5711):932–5. doi: 10.1126/science.1107130.
  18. Goll MG, Kirpekar E, Maggert KA, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311(5759):395–8. doi: 10.1126/science.1120976.
  19. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530(7591):441–6. doi: 10.1038/nature16998.
  20. Christman J. 5-Azacytidine and 5-aza-2¢-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21(35):5483–95. doi: 10.1038/sj.onc.1205699.
  21. Kumar A, List A. F, Hozo I, et al. Decitabine versus 5-azacitidine for the treatment of myelodysplastic syndrome: adjusted indirect meta-analysis. Haematologica. 2010;95(2):340–2. doi: 10.3324/haematol.2009.017764.
  22. Phase II Decitabine (DAC) Versus Azacitidine (AZA) in Myelodysplastic Syndrome (MDS). [Internet] Available from: http://www.druglib.com/trial/80/NCT02269280.html. (accessed 15.05.2016).
  23. Fenaux P, Gattermann N, Seymour JF, et al. Prolonged survival with improved tolerability in higher-risk myelodysplastic syndromes: azacitidine compared with low dose ara-C. Br J Haematol. 2010;149(2):244–9. doi: 10.1111/j.1365-2141.2010.08082.x.
  24. Al-Ali HK, Jaekel N, Niederwieser D. The role of hypomethylating agents in the treatment of elderly patients with AML. J Geriatr Oncol. 2014;5(1):89–105. doi: 10.1016/j.jgo.2013.08.004.
  25. Burnett AK, Milligan D, Prentice AG, et al. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer. 2007;109(6):1114–24. doi: 10.1002/cncr.22496.
  26. Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012;30(21):2670–7. doi: 10.1200/jco.2011.38.9429.
  27. European Medicines Agency: assessment report on Dacogen 19 July 2012. [Internet] Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002221/WC500133571.pdf2012. (accessed 17.05.2016).
  28. Minutes for the February 9 2012 meeting of the FDA Oncologic Drugs Advisory Committee. [Internet] Available from: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/OncologicDrugsAdvisoryCommittee/UCM293710.pdf2012. (accessed 19.05.2016).
  29. Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65. doi: 10.1182/blood-2012-03-420489.
  30. Schanz J, Tuchler H, Sole F, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30(8):820–9. doi: 10.1200/jco.2011.35.6394.
  31. Kantarjian H, O’Brien S, Ravandi F, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113(6):1351–61. doi: 10.1002/cncr.23697.
  32. Garcia-Manero G. Myelodysplastic syndromes: 2015 Update on diagnosis, risk-stratification and management. Am J Hematol. 2015;90(9):831–41. doi: 10.1002/ajh.24102.
  33. Garcia-Manero G, Fenaux P. Hypomethylating agents and other novel strategies in myelodysplastic syndromes. J Clin Oncol. 2011;29(10):516–23. doi: 10.1200/jco.2010.31.0854.
  34. Lyons RM, Cosgriff TM, Modi SS, et al. Hematologic response to three alternative dosing schedules of azacitidine in patients with myelodysplastic syndromes. J Clin Oncol. 2009;27(11):1850–6. doi: 10.1200/jco.2008.17.1058.
  35. Garcia-Manero G, Gore SD, Cogle C, et al. Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J Clin Oncol. 2011;29(18):2521–7. doi: 10.1200/jco.2010.34.4226.
  36. Garcia-Manero G, Jabbour E, Borthakur G, et al. Randomized open-label phase II study of decitabine in patients with low- or intermediate-risk myelodysplastic syndromes. J Clin Oncol. 2013;31(20):2548–53. doi: 10.1200/jco.2012.44.6823.
  37. Wei Y, Dimicoli S, Bueso-Ramos C, et al. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia. 2013;27(9):1832–40. doi: 10.1038/leu.2013.180.
  38. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: A randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32. doi: 10.1016/s1470-2045(09)70003-8.
  39. Blum W, Garzon R, Klisovic RB, et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA. 2010;107(16):7473–8. doi: 10.1073/pnas.1002650107.
  40. Itzykson R, Thepot S, Quesnel B, et al. Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine. Blood. 2011;117(2):403–11. doi: 10.1182/blood-2010-06-289280.
  41. Jabbour E, Garcia-Manero G, Batty N, et al. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer. 2010;116(16):3830–4. doi: 10.1002/cncr.25247.
  42. Montalban-Bravo G, Garcia-Manero G. Novel drugs for older patients with acute myeloid leukemia. Leukemia. 2015;29(4):760–9. doi: 10.1038/leu.2014.244.
  43. Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with > 30% blasts. Blood. 2015;126(3):291–9. doi: 10.1182/blood-2015-01-621664.
  44. Pleyer L, Burgstaller S, Girschikofsky M, et al. Azacitidine in 302 patients with WHO-defined acute myeloid leukemia: results from the Austrian Azacitidine Registry of the AGMT-Study Group. Ann Hematol. 2014;93(11):1825–38. doi: 10.1007/s00277-014-2126-9.
  45. Radujkovic A, Dietrich S, Bochtler T, et al. Azacitidine and low-dose cytarabine in palliative patients with acute myeloid leukemia and high bone marrow blast counts – a retrospective single-center experience. Eur J Haematol. 2014;93(2):112–7. doi: 10.1111/ejh.12308.
  46. Field T, Perkins J, Huang Y, et al. 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2010;45(2):255–60. doi: 10.1038/bmt.2009.134.
  47. Gerds AT, Gooley TA, Estey EH, et al. Pretransplantation Therapy with Azacitidine vs Induction Chemotherapy and Posttransplantation Outcome in Patients with MDS. Biol Blood Marrow Transplant. 2012;18(8):1211–8. doi: 10.1016/j.bbmt.2012.01.009.
  48. Damaj G, Duhamel A, Robin M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Societe Francaise de Greffe de Moelle et de Therapie-Cellulaire and the Groupe-Francophone des Myelodysplasies. J Clin Oncol. 2012;30(36):4533–40. doi: 10.1200/jco.2012.44.3499.
  49. de Lima M, Giralt S, Thall PF, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogeneous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010;116(23):5420–31. doi: 10.1002/cncr.25500.
  50. Jabbour E, Giralt S, Kantarjian H, et al. Low-dose azacitidine after allogeneic stem cell transplantation for acute leukemia. Cancer. 2009;115(9):1899–905. doi: 10.1002/cncr.24198.
  51. Schroeder T, Czibere A, Platzbecker U, et al. Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 2013 27(6), 1229–35. doi: 10.1038/leu.2013.7.
  52. Lubbert M, Bertz H, Wasch R, et al. Efficacy of a 3-day, low-dose treatment with 5-azacytidine followed by donor lymphocyte infusions in older patients with acute myeloid leukemia or chronic myelomonocytic leukemia relapsed after allografting. Bone Marrow Transplant. 2010;45:627–32. doi: 10.1038/bmt.2009.222.
  53. Sanchez-Abarca LI, Gutierrez-Cosio S, Santamaria C, et al. Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood. 2010;115(1):107–21. doi: 10.1182/blood-2009-03-210393.
  54. Goodyear О, Agathanggelou A, Novitzky-Basso, et al. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood. 2010;116(11):1908–18. doi: 10.1182/blood-2009-11-249474.
  55. Atanackovich D, Luetkens T, Kloth B, et al. Cancer-testis antigen expression and its epigenetic modulation in acute myeloid leukemia. Am J Hematol. 2011;86(11):918–22. doi: 10.1002/ajh.22141.
  56. Kroger N, Bacher U, Bader P, et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the committee on disease-specific methods and strategies for monitoring relapse following allogeneic stem cell transplantation: II. Chronic leukemias, myeloproliferative neoplasms, and lymphoid malignancies. Biol Blood Marrow Transplant. 2010;16(10):1325–46. doi: 10.1016/j.bbmt.2010.06.008.
  57. Platzbecker U, Wermke M, Radke J, et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia. 2012;26(3):381–9. doi: 10.1038/leu.2011.234.
  58. Sockel K, Wermke M, Radke J, et al. Minimal Residual Disease-Directed Preemptive Treatment With Azacitidine In Patients With NPM1-Mutant Acute Myeloid Leukemia And Molecular Relapse. Haematologica. 2011;96(10):1568–70. doi: 10.3324/haematol.2011.044388.
  59. The MDS Foundation. New MDS Clinical Trials. [Internet] Available from: http://www.mds-foundation.org/clinical-trial-announcements/#New-MDS-Clinical-Trials. (accessed 17.05.2016).

 

Stable donor hematopoiesis reconstitution after post-transplantation relapse of acute myeloid leukemia in patient with inv(3)(q21q26), –7 and EVI1 oncogene overexpression treated by donor lymphocyte infusions and hypomethylating agents

N.N. Mamaev, A.V. Gorbunova, T.L. Gindina, O.A. Slesarchuk, V.N. Ovechkina, S.N. Bondarenko, O.V. Goloshchapov, V.M. Kravtsova, and B.V. Afanasev

I.P. Pavlov Saint Petersburg State Medical University, R.M. Gorbacheva Institute of Pediatric Oncology, Hematology and Transplantology, Saint Petersburg, Russian Federation


ABSTRACT

We present the case of successful treatment of post-transplantation relapse of prognostically unfavorable AML with inv(3)(q21q26), –7 and EVI1 oncogene overexpression, when stable donor hematopoiesis reconstitution was achieved due to one high-dose cytarabine course, DLI, and hypomethylating agents (decitabine, 5-azacitidine). Possible molecular mechanisms of this effect are discussed with respect to the new approaches to management of such patients.

Keywords: acute myeloid leukemia, inv(3)(q21q26), EVI1 high expression, hematopoietic stem cell transplantation, relapse, treatment, donor lymphocyte infusions, hypomethylating agents.

Read in PDF (RUS)pdficon


REFERENCES

  1. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Лейкозы и миелодис- пластические синдромы с высокой экспрессией гена EVI1: теоретические и клинические аспекты. Клин. онкогематол. 2012; 5(4): 361–4.[Mamayev N.N., Gorbunova A.V., Gindina T.L. et al. Leukemias and myelodisplastic syndromes with high EVI1 gene expression: theoretical and clinical aspects. Klin. onkogematol. 2012; 5(4): 361–4. (In Russ.)].
  2. Barrett A.J., Battiwalla M. Relapse after allogeneic stem cell transplantation. Expert. Rev. Hematol. 2010; 3(4): 429–41.
  3. Arellano M.L., Langston A., Winton E. et al. Treatment of relapsed acute leukemia after allogeneic transplantation: a single center experience. Biol. Blood Marrow Transplant. 2007; 13(1): 116–23.
  4. Porter D.L., Alyea E.P., Antin J.H. et al. NCI First International Workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: Report from the Committee on Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2010; 16: 1467–503.
  5. Pavletic S.Z., Kumar S., Mohty M. et al. NCI First International Workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: Report from the Committee on the Epidemiology and Natural History of Relapse following Allogeneic Cell Transplantation. Biol. Blood Marrow Transplant. 2010; 16: 871–90.
  6. Wang Y., Liu D.-H., Fan Z.-P. et al. Prevention of relapse using DLI can increase survival following HLA-identical transplantation in patients with advanced-stage acute leukemia: a multi-center study. Clin. Transplant. 2012. doi: 10.111/j.1399-0012.2012.01626.x.
  7. Lubbert M., Bertz H., Wasch R. et al. Efficacy of a 3-day, low-dose treatment with 5-azacytidine followed by donor lymphocyte infusions in older patients with acute myeloid leukemia or chronic myelomonocytic leukemia relapsed after allografting. Bone Marrow Transplant. 2009; 45(4): 627–32.
  8. Craddock C., Quek L., Goardon N. et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia 2012; doi: 10.1038/leu.2012.312.
  9. Candoni A., Tiribelli M., Toffoletti E. et al. Quantitative assessment of WT1 gene expression after allogeneic stem cell transplantation is a useful tool for monitoring minimal residual disease in acute myeloid leukemia. Eur. J. Haematol. 2009; 82(1): 61–8.
  10. Zhao X.-S., Jin S., Zhu H.-H. et al. Wilms’ tumor gene 1 expression: an independent acute leukemia prognostic indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2011. doi:10.1038/bmt.2011.121.