Anemia of Chronic Diseases

NV Kurkina, EI Gorshenina, LV Chegodaeva, AV Polagimova

NP Ogarev National Research Mordovia State University, 68 Bolshevistskaya str., Saransk, Russian Federation, 430005

For correspondence: Nadezhda Viktorovna Kurkina, MD, PhD, 26А Ul’yanova str., Saransk, Russian Federation, 430032; Tel.: +7(927)172-48-63; e-mail: nadya.kurckina@yandex.ru

For citation: Kurkina NV, Gorshenina EI, Chegodaeva LV, Polagimova AV. Anemia of Chronic Diseases. Clinical oncohematology. 2021;14(3):347–54. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-347-354


ABSTRACT

Anemia of chronic diseases (ACD) refers to a group of anemias arising in various inflammatory infections, autoimmune or tumor diseases due to acute or chronic immune activation. ACD ranks second in incidence after iron deficiency anemia (IDA). Within the variety of pathogenetic mechanisms one of the primary ones is hepcidin synthesis in hepatocytes, which blocks iron absorption in the intestine and contributes to its deposition in cells of the monocyte-macrophage system. Besides, excessive cytokines in such diseases and pathologies lead to lower erythropoietin production which does not correspond to the severity grade of anemia. This results in impaired erythropoiesis in the bone marrow. The differential diagnosis should also specify iron deficiency type (the absolute one in IDA and the functional one in ACD). The effective treatment of the main disease and anemia correction speed up the improvement of patient’s status, rehabilitation, and quality of life.

Keywords: anemia, chronic diseases, immune system, hepcidin, cytokines, erythropoietin, ferritin, serum iron.

Received: January 17, 2021

Accepted: April 30, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Андреичев Н.А., Балеева Л.В. Анемия хронических заболеваний. Российский медицинский журнал. 2014;20(2):50–5.
    [Andreichev NA, Baleeva LV. Anemia of chronic diseases. Rossiiskii meditsinskii zhurnal. 2014;20(2):50–5. (In Russ)]
  2. Волкова С.А., Боровков Н.Н. Основы клинической гематологии: учебное пособие. Н. Новгород: НижГМА, 2013. 400 с.
    [Volkova SA, Borovkov NN. Osnovy klinicheskoi gematologii: uchebnoe posobie. (Fundamentals of clinical hematology: learning guide.) Nizhny Novgorod: NizhGMA Publ.; 2013. 400 p. (In Russ)]
  3. John M, Hoernig S, Doehner W, et al. Anemia and inflammation in COPD. Chest. 2005;127(3):825–9. doi: 10.1378/chest.127.3.825.
  4. Будневский А.В., Есауленко И.Е., Овсянников Е.С., Жусина Ю.Г. Анемия при хронической обструктивной болезни легких. Терапевтический архив. 2016;88(3):96–9. doi: 10.17116/terarkh201688396-99.
    [Budnevsky AV, Esaulenko IE, Ovsyannikov ES, Zhusina YuG. Anemia in chronic obstructive pulmonary disease. Terapevticheskii arkhiv. 2016;88(3):96–9. doi: 10.17116/terarkh201688396-99. (In Russ)]
  5. Жусина Ю.Г., Будневский А.В., Феськова А.А., Овсянников Е.С. О взаимосвязи хронической обструктивной болезни легких и анемии. Пульмонология. 2018;28(6):730–5. doi: 10.18093/0869-0189-2018-28-6-730-735.
    [Zhusina YuG, Budnevskiy AV, Fes’kova AA, Ovsyannikov ES. About relationship between chronic obstructive pulmonary disease and anemia. Pulmonologiya. 2018;28(6):730–5. doi: 10.18093/0869-0189-2018-28-6-730-735. (In Russ)]
  6. Tsantes AE, Tassiopoulos ST, Papadhimitriou SI, et al. Theophylline treatment may adversely affect the anoxia-induced erythropoietic response without suppressing erythropoietin production. Eur J Clin Pharmacol. 2003;59(5–6):379–83. doi: 10.1007/s00228-003-0640-0.
  7. Marathias KP, Agroyannis B, Mavromoustakos T, et al. Hematocrit-lowering effect following inactivation of renin-angiotensin system with angiotensin converting enzyme inhibitors and angiotensin receptor blockers. Curr Top Med Chem. 2004;4(4):483–6. doi: 10.2174/1568026043451311.
  8. Рукавицын О.А. Гематология. Национальное руководство. М.: ГЭОТАР-Медиа, 2017. 784 с.
    [Rukavitsyn OA. Natsional’noe rukovodstvo. (Hematology. National Guidelines.) Moscow: GEOTAR-Media Publ.; 2017. 784 p. (In Russ)]
  9. Groenveld HF, Januzzi JL, Damman K, et al. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J Am Coll Cardiol. 2008;52(10):818–27. doi: 10.1016/j.jacc.2008.04.061.
  10. Снеговой А.В., Aapro M., Гладков О.А. и др. Практические рекомендации по лечению анемии у онкологических больных. Злокачественные опухоли. 2016;4:368–77.
    [Snegovoi AV, Aapro M, Gladkov OA, et al. Practical guidelines for anemia treatment in oncological patients. Zlokachestvennye opukholi. 2016;4:368–77. (In Russ)]
  11. Voulgari PV, Kolios G, Papadopoulos GK, et al. Role of cytokines in the pathogenesis of anemia of chronic disease in rheumatoid arthritis. Clin Immunol. 1999;92(2):153–60. doi: 10.1006/clim.1999.4736.
  12. Stauffer ME, Fan T. Prevalence of Anemia in Chronic Kidney Disease in the United States. PLoS One. 2014;9(1):e84943. doi: 10.1371/journal.pone.0084943.
  13. McClellan W, Aronoff SL, Bolton WK, et al. The prevalence of anemia in patients with chronic kidney disease. Curr Med Ress Opion. 2004;20(9):1501–10. doi: 10.1185/030079904X2763.
  14. Stenvinkel P. The role of inflammation in the anaemia of end-stage renal disease. Nephrol Dial Transplant. 2001;16(Suppl 7):36–40. doi: 10.1093/ndt/16.suppl_7.36.
  15. Thorp ML, Johnson ES. Effect of anemia on mortality, cardiovascular hospitalizations and end stage renal disease among patients with chronic kidney disease. Nephrology. 2009;14(2):240–6. doi: 10.1111/j.1440-1797.2008.01065.x.
  16. Andrews M, Arredondo M. Ferritin levels and hepcidin mRNA expression in peripheral mononuclear cells from anemic type 2 diabetic patients. Biol Trace Elem Res. 2012;149(1):1–4. doi: 10.1007/s12011-012-9389-6.
  17. Zoppini G, Targher G, Chonchol M, et al. Anaemia, independent of chronic kidney disease, predicts all cause and cardiovascular mortality in type 2 diabetic patients. Atherosclerosis. 2010;210(2):575–80. doi: 10.1016/j.atherosclerosis.2009.12.008.
  18. Ito H, Takeuchi Y, Ishida H, et al. Mild anemia is frequent and associated with micro- and macroangiopathies in patients with type 2 diabetes mellitus. J Diab Invest. 2010;1(6):273–8. doi: 10.1111/j.2040-1124.2010.00060.x.
  19. Roy CN, Mak HH, Akpan I, et al. Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood. 2007;109(9):4038–44. doi: 10.1182/blood-2006-10-051755.
  20. Ganz T, Nemeth E. Iron sequestration and anemia of inflammation. Semin Hematol. 2009;46(4):387–393. doi: 10.1053/j.seminhematol.2009.06.001.
  21. Морщакова Е.Ф., Павлов А.Д., Румянцев А.Г. Эритропоэз, эритропоэтин, железо. М.: ГЭОТАР-Медиа, 2013. 178 с.
    [Morshchakova EF, Pavlov AD, Rumyantsev AG. Eritropoez, eritropoetin, zhelezo. (Erythropoiesis, erythropoietin, iron.) Moscow: GEOTAR-Media Publ.; 2013. 178 p. (In Russ)]
  22. Рукавицын О.А. Анемия хронических заболеваний: отдельные аспекты патогенеза и пути коррекции. Онкогематология. 2016;11(1):37–46. doi: 10.17650/1818-8346-2016-11-1-37-46.
    [Rukavitsyn OA. Anemia of chronic diseases: the important aspects of pathogenesis and treatment. Oncohematology. 2016;11(1):37–46. doi: 10.17650/1818-8346-2016-11-1-37-46. (In Russ)]
  23. Румянцев А.Г., Масчан А.А. Федеральные клинические рекомендации по диагностике и лечению анемии хронических заболеваний (электронный документ). Доступно по: https://nodgo.org/sites/default/files/%D0%A4%D0%9A%D0%A0%20%D0%BF%D0%BE%20%D0%B4%D0%B8%D0%B0%D0%B3%D0%BD%D0%BE%D1%81%D1%82%D0%B8%D0%BA%D0%B5%20%D0%B8%20%D0%BB%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D1%8E%20%D0%B0%D0%BD%D0%B5%D0%BC%D0%B8%D0%B8%20%D1%85%D1%80%D0%BE%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85%20%D0%B1%D0%BE%D0%BB%D0%B5%D0%B7%D0%BD%D0%B5%D0%Bpdf. Ссылка активна на 13.04.2021.
    [Rumyantsev AG, Maschan AA. Federal clinical guidelines for diagnosis and treatment of anemia of chronic diseases. [Internet] Available from: https://nodgo.org/sites/default/files/%D0%A4%D0%9A%D0%A0%20%D0%BF%D0%BE%20%D0%B4%D0%B8%D0%B0%D0%B3%D0%BD%D0%BE%D1%81%D1%82%D0%B8%D0%BA%D0%B5%20%D0%B8%20%D0%BB%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D1%8E%20%D0%B0%D0%BD%D0%B5%D0%BC%D0%B8%D0%B8%20%D1%85%D1%80%D0%BE%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85%20%D0%B1%D0%BE%D0%BB%D0%B5%D0%B7%D0%BD%D0%B5%D0%B9.pdf. (accessed 13.04.2021) (In Russ)]
  24. Nemeth E, Ganz T. Anemia of Inflammation. Hematol Oncol Clin North Am. 2014;28(4):671–81. doi: 10.1016/j.hoc.2014.04.005.
  25. Weiss Pathogenesis and treatment of anemia of chronic disease. Blood Rev. 2002;16(2):87–96. doi: 10.1054/blre.2002.0193.
  26. Сморкалова Е.В. Иммуногематологические особенности железодефицитной анемии и анемии хронических заболеваний: Автореф. дис.… канд. мед. наук. Уфа, 2012. 22 с.
    [Smorkalova EV. Immunogematologicheskie osobennosti zhelezodefitsitnoi anemii i anemii khronicheskikh zabolevanii. (Immunohematological characteristics of iron deficiency anemia and anemia of chronic diseases.) [dissertation] Ufa; 2012. 22 p. (In Russ)]
  27. Kato Y, Takagi C, Tanaka J, et al. Effect of daily subcutaneous administration of recombinant erythropoietin on chronic anemia in rheumatoid arthritis. Intern Med. 1994;33(4):193–7. doi: 10.2169/internalmedicine.33.193.
  28. Peeters HR, Jongen-Lavrencic M, Bakker CH, et al. Recombinant human erythropoietin improves health-related quality of life in patients with rheumatoid arthritis and anaemia of chronic disease; utility measures correlate strongly with disease activity measures. Rheumatol Int. 1999;18(5–6):201–6. doi: 10.1007/s002960050085.
  29. Arndt U, Kaltwasser JP, Gottschalk R, et al. Correction of iron-deficient erythropoiesis in the treatment of anemia of chronic disease with recombinant human erythropoietin. Ann Hematol. 2005;84(3):159–66. doi: 10.1007/s00277-004-0950-z.
  30. Schipperus M, Rijnbeek B, Reddy M, et al. CNTO328 (Anti-IL-6 mAb) Treatment Is Associated with An Increase in Hemoglobin (Hb) and Decrease in Hepcidin Levels in Renal Cell Carcinoma (RCC). Blood. 2009;114(22):4045. doi: 10.1182/blood.v114.22.4045.4045.
  31. Hohlbaum A, Gille H, Christian J, et al. Iron mobilization and pharmacodynamic marker measurements in non-human primates following administration of PRS-080, a novel and highly specific antihepcidin therapeutic. Am J Hematol. 2013;88(5):E41.
  32. Schwoebel F, van Eijk LT, Zboralski D, et al. The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys. Blood. 2013;121(12):2311–5. doi: 10.1182/blood-2012-09-456756.
  33. Poli M, Girelli D, Campostrini N, et al. Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo. Blood. 2011;117(3):997–1004. doi: 10.1182/blood-2010-06-289082.
  34. Crosby JR, Gaarde WA, Egerston J, et al. Targeting hepcidin with antisense oligonucleotides improves anemia endpoints in mice. Blood. 2006;108(11, Pt 1):269. doi: 10.1182/blood.v108.11.269.269.
  35. Akinc A, Chan-Daniels A, Sehgal A, et al. Targeting the hepcidin pathway with RNAi therapeutics for the treatment of anemia. Blood. 2011;118(21):688. doi: 10.1182/blood.v118.21.688.688.
  36. Гармиш Е.А. Анемия хронического воспаления при ревматоидном артрите: патогенез и выбор терапии. Украинский ревматологический журнал. 2016;1(63):39–41.
    [Garmish EА. Anemia of chronic inflammation of rheumatoid arthritis: pathogenesis and choice of treatment. Ukrainskii revmatologicheskii zhurnal. 2016;1(63):39–41. (In Russ)]

Immunological Synapse in the Biology of Chronic Lymphocytic Leukemia

DS Badmazhapova, IV Gal’tseva, EE Zvonkov

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Darima Semunkoevna Badmazhapova, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(929)562-93-41; e-mail: badmazhapova-darima@mail.ru

For citation: Badmazhapova DS, Gal’tseva IV, Zvonkov EE. Immunological Synapse in the Biology of Chronic Lymphocytic Leukemia. Clinical oncohematology. 2018;11(4):313–8.

DOI: 10.21320/2500-2139-2018-11-4-313-318


ABSTRACT

Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease manifested by accumulation of tumor B-cells with characteristic immunophenotype (CD19+CD5+CD23+) in bone marrow, peripheral blood and secondary lymphoid organs. The clinical course of CLL is heterogeneous. This is the most prevalent leukemia among older-aged patients. Despite the use of novel drugs refractory forms of disease remain. The latest discoveries in immunology enabled understanding of some mechanisms of tumor evasion from immune surveillance. The interaction of immune system cells occurs due to the development of immunological synapse that predominantly depends on the family of CD28/В7 molecules, the so-called immune checkpoints able to control the activating and inhibiting mechanisms of cells. The acquisition of tumor phenotype is a multistage process, in which cells obtain unique biological properties including the ability of being invisible to the immune system. As opposed to solid tumors in lymphoproliferative diseases tumor B-cells are able to express major histocompatibility complex class II and CD80 and CD86 co-stimulatory molecules. It proves their ability to present antigens to T-cells. Co-inhibitory molecules on the surface of tumor cells is a factor contributing to the inhibition of immune response. The present paper reviews current conceptions of biological properties and immunological interactions of CLL cells with the microenvironmental cells.

Keywords: chronic lymphocytic leukemia, immunological synapse, immune system.

Received: March 15, 2018

Accepted: June 29, 2018

Read in PDF 


REFERENCES

  1. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56. doi: 10.1182/blood-2007-06-093906.

  2. Eichhorst B, Robak T, Montserrat E, et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v78–v84. doi: 10.1093/annonc/mdv303.

  3. The International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–90. doi: 10.1016/S1470-2045(16)30029-8.

  4. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. doi: 10.1038/ni1102-991.

  5. Mellor AL, Munn DH. Tryptophan catabolism and regulation of adaptive immunity. J Immunol. 2003;170(12):5809–13. doi: 4049/jimmunol.170.12.5809.

  6. Vladimirova R, Popova D, Vikentieva E, et al. Chronic Lymphocytic Leukemia — Microenvironment and B Cells. In: Guenova M, Balatzenko G, eds. Leukemias: Updates and New Insights [Internet]; 2015. рр. 247–76. doi: 10.5772/60761. Available from: https://www.intechopen.com/books/leukemias-updates-and-new-insights/chronic-lymphocytic-leukemia-microenvironment-and-b-cells (accessed 31.05.2018).

  7. Ярилин А.А. Иммунология: учебник. M.: ГЭОТАР-Медиа, 2010. С. 394–403.

    [Yarilin AA. Immunologiya: uchebnik. (Immunology: a manual.) Moscow: GEOTAR-Media Publ.; 2010. pp. 394–403. (In Russ)]

  8. Kupfer A, Kupfer H. Imaging immune cell interactions and functions: SMACs and the immunological synapse. Semin Immunol. 2003;15(6):295–300. doi: 10.1016/j.smim.2003.09.001.

  9. Dustin ML. Modular design of immunological synapses and kinapses. Cold Spring Harb Perspect Biol. 2009;1(1):a002873. doi: 10.1101/cshperspect.a002873.

  10. Janeway C, Travers P, Walport M, et al. Immunobiology. The immune system in health and disease, 6th edn. Garland Science; 2005.

  11. Burger JA. Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program. 2011;1:96–103. doi: 10.1182/asheducation-2011.1.96.

  12. Pasikowska M, Walsby E, Apollonio B, et al. Phenotype and immune function of lymph node and peripheral blood CLL cells are linked to transendothelial migration. 2016;128(4):563–73. doi: 10.1182/blood-2016-01-683128.

  13. Hofbauer JP, Heyder C, Denk U, et al. Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia. 2011;25(9):1452–8. doi: 10.1038/leu.2011.111.

  14. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23(1):515–48. doi:1146/annurev.immunol.23.021704.115611.

  15. Sansom DM. CD28, CTLA-4 and their ligands: who does what and to whom? 2000;101(2):169–77. doi: 10.1046/j.1365-2567.2000.00121.x.

  16. Boussiotis VA, Freeman GJ, Gribben GJ, et al. The role of B7-1/B7-2:CD28/CTLA-4 pathways in the prevention of anergy, induction of productive immunity and downregulated of the immune response. Immunol Rev. 1996;153(1):5–26. doi: 10.1111/j.1600-065x.1996.tb00918.x.

  17. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17. doi: 10.1084/jem.20112741.

  18. Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3 zeta signalosome and downstream signaling to PKC theta. FEBS Lett. 2004;574(1–3):37–41. doi: 10.1016/j.febslet.2004.07.083.

  19. Thibult M-L, Mamessier E, Gertner-Dardenne J, et al. PD-1 is a novel regulator of human B-cell activation. Int Immunol. 2013;25(2):129–37. doi: 10.1093/intimm/dxs098.

  20. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. doi: 10.1186/2162-3619-1-36.

  21. Mills DM, Stolpa JC, Cambier JC. Modulation of MHC class II signal transduction by CD19. Adv Exp Med Biol. 2007;596:139–48. doi: 1007/0-387-46530-8_12.

  22. Kuijpers TW, Bende RJ, Baars PA, et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Invest. 2010;120(1):214–22. doi: 1172/JCI40231.

  23. Nitschke L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev. 2009;230(1):128–43. doi: 1111/j.1600-065X.2009.00801.x.

  24. Cerutti A, Kim EC, Shah S, et al. Dysregulation of CD30+ T cells by leukemia impairs isotype switching in normal B cells. Nat Immunol. 2001;2(2):150–6. doi: 10.1038/84254.

  25. Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8(5):765–72. doi: 10.1093/intimm/8.5.765.

  26. Chinai JM, Janakiram M, Chen F, et al. New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci. 2015;36(9):587–95. doi: 10.1016/j.tips.2015.06.005.

  27. Majolini MB, D’Elios MM, Galieni P, et al. Expression of the T-cell-specific tyrosine kinase Lck in normal B-1 cells and in chronic lymphocytic leukemia B cells. Blood. 1998;91(9):3390–6.

  28. Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118(7):2427–37. doi: 10.1172/JCI35017.

  29. Caligaris-Cappio F, Bertilaccio MT, Scielzo C. How the microenvironment wires the natural history of chronic lymphocytic leukemia. Semin Cancer Biol. 2014;24:43–8. doi: 10.1016/j.semcancer.2013.06.010.

  30. Damle RN, Calissano C, Chiorazzi N. Chronic lymphocytic leukaemia: a disease of activated monoclonal B cells. Clin Haematol. 2010;23(1):33–45. doi: 10.1016/j.beha.2010.02.001.

  31. Lauria F, Foa R, Catovsky D. Increase in T gamma lymphocytes in B-cell chronic lymphocytic leukaemia. Scand J Haematol. 1980;24(2):187–90. doi:1111/j.1600-0609.1980.tb02366.x.

  32. Herrmann F, Lochner A, Philippen H, et al. Imbalance of T cell subpopulations in patients with chronic lymphocytic leukaemia of the B cell type. Clin Exp Immunol. 1982;49(1):157–62.

  33. Mills KH, Worman CP, Cawley JC. T-cell subsets in B-chronic lymphocytic leukaemia (CLL). Br J Haematol. 1982;50(4):710–2. doi:1111/j.1365-2141.1982.tb01974.x.

  34. Platsoucas CD, Galinski M, Kempin S, et al. Abnormal T lymphocyte subpopulations in patients with B cell chronic lymphocytic leukemia: an analysis by monoclonal antibodies. J Immunol. 1982;129(5):2305–12.

  35. Pizzolo G, Chilosi M, Ambrosetti A, et al. Immunohistologic study of bone marrow involvement in B-chronic lymphocytic leukemia. Blood. 1983;62(6):1289–96.

  36. Ghia P, Strola G, Granziero L, et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol. 2002;32(5):1403–13. doi: 10.1002/1521-4141(200205)32:5<1403::aid-immu1403>3.0.co;2-y.

  37. Bagnara D, Kaufman MS, Calissano C, et al. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood. 2011;117(20):5463–72. doi: 10.1182/blood-2010-12-324210.

  38. Qorraj M, Bottcher M, Mougiakakos D. PD-L1/PD-1: new kid on the “immune metabolic” block. Oncotarget. 2017;8(43):73364–5. doi: 10.18632/oncotarget.20639.

  39. Burger JA, Tsukada N, Burger M, et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood. 2000;96(8):2655–63.

  40. Tsukada N, Burger JA, Zvaifler NJ, Kipps TJ. Distinctive features of “nurselike” cells that differentiate in the context of chronic lymphocytic leukemia. Blood. 2002;99(3):1030–7. doi: 10.1182/blood.V99.3.1030.

  41. Schiemann B, Gommerman JL, Vora K, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293(5537):2111–4. doi: 1126/science.1061964.

  42. Schneider P, Takatsuka H, Wilson A, et al. Maturation of marginal zone and follicular B cells requires B cell activating factor of the tumor necrosis factor family and is independent of B cell maturation antigen. J Exp Med. 2001;194(11):1691–7. doi: 10.1084/jem.194.11.1691.

  43. Mackay F, Schneider P, Rennert P, et al. BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21(1):231–64. doi: 1146/annurev.immunol.21.120601.141152.

  44. Walton JA, Lydyard PM, Nathwani A, et al. Patients with B cell chronic lymphocytic leukaemia have an expanded population of CD4 perforin expressing T cells enriched for human cytomegalovirus specificity and an effector-memory phenotype. Br J Haematol. 2010;148(2):274–84. doi: 10.1111/j.1365-2141.2009.07964.x.

  45. Nunes C, Wong R, Mason M, et al. Expansion of a CD8(+) PD-1(+) replicative senescence phenotype in early stage CLL patients is associated with inverted CD4:CD8 ratios and disease progression. Clin Cancer Res. 2012;18(3):678–87. doi: 10.1158/1078-0432.CCR-11-2630.

  46. Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170(3):1257–66. doi: 10.4049/jimmunol.170.3.1257.

  47. Ramsay AG, Clear AJ, Fatah R, et al. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120(7):1412–21. doi: 10.1182/blood-2012-02-411678.

  48. Grzywnowicz M, Karabon L, Karczmarczyk A, et al. The function of a novel immunophenotype candidate molecule PD-1 in chronic lymphocytic leukemia. Leuk Lymphoma. 2015;56(10):2908–13. doi: 10.3109/10428194.2015.1017820.

  49. Li J, Pang N, Zhang Z, et al. PD-1/PD-L1 expression and its implications in patients with chronic lymphocytic leukemia. Zhonghua Xue Ye Xue Za Zhi. 2017;38(03):198–203. doi: 10.3760/cma.j.issn.0253-2727.2017.03.005.

  50. Brusa D, Serra S, Coscia M, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953–63. doi: 10.3324/haematol.2012.077537.

  51. Xerri L, Chetaille B, Seriari N, et al. Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol. 2008;39(7):1050–8. doi: 10.1016/j.humpath.2007.11.012.

  52. Panayiotidis P, Jones D, Ganeshaguru K, et al. Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol. 1996;92(1):97–103. doi: 10.1046/j.1365-2141.1996.00305.x.

  53. Burger M, Hartmann T, Krome M, et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood. 2005;106(5):1824–30. doi: 10.1182/blood-2004-12-4918.