Comparative Pathomorphology of Lymph Node Changes in Kikuchi-Fujimoto and Autoimmune Diseases with Lymphadenopathy: Own Experience

AM Kovrigina

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Prof. Alla Mikhailovna Kovrigina, PhD in Biology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM. Comparative Pathomorphology of Lymph Node Changes in Kikuchi-Fujimoto and Autoimmune Diseases with Lymphadenopathy: Own Experience. Clinical oncohematology. 2021;14(1):80–90. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-80-90


ABSTRACT

Background. Pathomorphological analysis of lymph node tissues in immune-mediated lymphadenopathies commonly presupposes differential diagnosis with tumors of lymphoid and myeloid tissues with partial lesions in lymph nodes. Besides, further study is required on pathogenetic relationship between autoimmune diseases with lymphadenopathy and Kikuchi-Fujimoto disease (KFD) with morphological substrate characterized by histiocytic necrotizing lymphadenitis.

Aim. To compare, based on biopsy material, morpho-immunohistochemical characteristics of changes in lymph node tissues in patients with pathomorphological diagnosis of KFD and in patients with autoimmune diseases with lymphadenopathy, i.e. systemic lupus erythematosus (SLE) and adult Still’s disease (ASD).

Materials & Methods. Morphological and immunohistochemical analyses were carried out on lymph node biopsies of 20 patients, 16 out of them with KFD (men/women 15:1, median age 26.5 years, range 18–47 years; in 44 % of cases lesions were only in cervical lymph nodes). In 2 female patients (aged 19 and 33 years) SLE was diagnosed based on clinical and laboratory data, and 2 patients (a woman aged 43 years and a man aged 25 years) were diagnosed with ASD.

Results. Morphological and immunohistochemical analyses detected three major cell populations similar in KFD and SLE and probably reflecting pathogenetic relationship of these diseases: histiocytes expressing myeloperoxidase (MPO+), CD123+ plasmacytoid dendritic cells, cytotoxic CD8+ T-cells, and granzyme B+. In 55 % of KFD cases and 2 SLE cases there were many activated CD30+ lymphoid cells clustered and scattered in the areas of cytotoxic T-cells.

Conclusion. To exclude SLE during subsequent additional examination of patients with morphological substrate characterized by histiocytic necrotizing lymphadenitis it is reasonable to use the term “Kikuchi-like changes” instead of KFD. When the data of immunohistochemical analysis in KFD, SLE, and ASD patients are compared, MPO+ histiocytes in lymph node tissue can serve as diagnostic immunohistochemical marker of immunoinflammatory process. If they are detected, differential diagnosis with myeloid sarcoma is required. CD30 expression by activated cytotoxic lymphoid cells was identified in SLE and in 55 % of KFD cases, which is another important common diagnostic characteristic of the substrate of two diseases (KFD and SLE) and requires differential diagnosis with anaplastic large-cell lymphoma and Hodgkin’s lymphoma. Within the analyzed group of 20 patients morphological substrate of lymph nodes in 2 ASD patients differed in its morphological and immunohistochemical parameters from that in KFD and SLE patients and was characterized by expanded paracortex and morpho-immunohistochemical characteristics of extrafollicular B-cell activation.

Keywords: morphology, immunohistochemistry, Kikuchi-Fujimoto disease, histiocytic necrotizing lymphadenitis, systemic lupus erythematosus, adult Still’s disease, CD30, myeloperoxidase.

Received: July 30, 2020

Accepted: December 2, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Jeon YK, Paik JH, Park SS, et al. Spectrum of lymph node pathology in adult onset Still’s disease; analysis of 12 patients with one follow up biopsy. J Clin Pathol. 2004;57(10):1052–6. doi: 10.1136/jcp.2004.018010.
  2. Cush JJ, Medsger TA, Christy WC, et al. Adult-onset Still’s disease. Arthrit Rheum. 1987;30(2):186–94. doi: 10.1002/art.1780300209.
  3. Kojima M, Nakamura S, Itoh H, et al Systemic Lupus Erythematosus (SLE) Lymphadenopathy Presenting with Histopathologic Features of Castleman’ Disease: A Pathologic Study of Five Cases. Pathol Res Pract. 1997;193(8):565–71 doi: 10.1016/S0344-0338(97)80015-5.
  4. Graef E, Magliulo D, Hollie N, et al. Clinical Characteristics of Lymphadenopathy in Systemic Lupus Erythematous: A Case Control Study from a Tertiary Care Center. Arthrit Rheumatol. 2019;71(Suppl 10): Abstract.
  5. Kikuchi M. Lymphadenitis showing focal reticulum cell hyperplasia with nuclear debris and phagocytosis. Nippon Ketsueki Gakkai Zasshi. 1972;35:379–80.
  6. Fujimoto Y, Kozima Y, Yamaguchi K. Cervical subacute necrotizing lymphadenitis. A new clinicopathological entity. Naika. 1972;20:920–7.
  7. Pileri S, Kikuchi M, Helbron D, Lennert K. Histiocytic necrotizing lymphadenitis without granulocytic infiltration. Virch Arch Pathol Anat. 1982;395(3):257–71. doi: 10.1007/bf00429352.
  8. Turner RR, Martin J, Dorfman RF. Necrotizing lymphadenitis. A study of 30 cases. Am J Surg Pathol. 1983;7(2):115–23.
  9. Feller AC, Lennert K, Stein H, et al. Immunohistology and etiology of histiocytic necrotizing lymphadenitis: report of three instructive cases. Histopathology. 1983;7(6):825–39. doi: 1111/j.1365–2559.1983.tb02299.x.
  10. Dorfman RF. Histiocytic necrotizing lymphadenitis of Kikuchi and Fujimoto. Arch Pathol Lab Med. 1987;111(11):1026–9.
  11. Sumiyoshi Y, Kikuchi M, Ohshima K, et al Human herpesvirus-6 genomes in histiocytic necrotizing lymphadenitis (Kikuchi’s disease) and other forms of lymphadenitis. Am J Clin Pathol. 1993;99(5):609–14. doi: 10.1093/ajcp/99.5.609.
  12. Huh J, Kang GH, Gong G, et al. Kaposi’s sarcoma associated herpesvirus in Kikuchi’s disease. Hum Pathol. 1998;29(10):1091–6. doi: 10.1016/S0046-8177(98)90419-1.
  13. Chiu CF, Chow KC, Lin TY, et al. Virus infection in patients with histiocytic necrotizing lymphadenitis in Taiwan. Detection of Epstein-Barr virus, type 1 human T-cell lymphotropic virus, and parvovirus B19. Am J Clin Pathol. 2000;113(6):774–81. doi: 10.1309/1A6Y-YCKP-5AVF-QTYR.
  14. Adoue D, Rauzy O, Rigal-Huguet F. Syndrome de Kikuchi, infection a Cytomegalovirus et maladie lupique. Rev Med Intern. 1997;18(4):338–42. doi: 10.1016/s0248-8663(97)84023-4.
  15. Imamura M, Ueno H, Matsuura A, et al. An ultrastructural study of subacute necrotizing lymphadenitis. Am J Pathol. 1982;107(3):292–9.
  16. Meyer O, Kahn MF, Grossin M, et al. Parvovirus B19 infection can induce histiocytic necrotizing lymphadenitis (Kikuchi’s disease) associated with systemic lupus erythematosus. Lupus. 1991;1(1):37–41. doi: 10.1177/096120339100100107.
  17. Lamzaf L, Harmouche H, Maamar M, et al. Kikuchi-Fujimoto disease: Report of 4 cases and review of the literature. Eur Ann Otorhinolaryngol Head Neck Dis. 2014;131(6):329–32. doi: 10.1016/j.anorl.2013.01.007.
  18. Ferrao E, Grade M, Arez L, et al. Kikuchi-Fujimoto’s disease associated to a systemic erythematosus lupus: a clinical case. Eur J Intern Med. 2003;14:S76. doi: 10.1016/S0953-6205(03)91417-8.
  19. Merwald-Fraenk H, Wiesent F, Dorfler R, et al. Lymphadenitis und systemischer Lupus erythematodes. Z Rheumatol. 2016,75(10):1028–31. doi: 10.1007/s00393-016-0170-7.
  20. Dumas G, Prendki V, Haroche J, et al. Kikuchi-Fujimoto disease: retrospective study of 91 cases and review of the literature. Medicine (Baltimore). 2014;93(24):372–82. doi: 10.1097/0000000000000220.
  21. Kishimoto K, Tate G, Kitamura T, et al. Cytologic features and frequency of plasmacytoid dendritic cells in the lymph nodes of patients with histiocytic necrotizing lymphadenitis (Kikuchi-Fujimoto disease). Diagn Cytopathol. 2010;38(7):521–6. doi: 10.1002/dc.21265.
  22. Lennert K, Remmele W. Karyometric research on lymph node cells in man. I. Germinoblasts, lymphoblasts & lymphocytes. Acta Haematol. 1958;19(2):99–113. doi: 10.1159/000205419.
  23. Ronnblom L, Alm GV. A pivotal role for the natural interferon alpha-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J Exp Med. 2001;194(12):F59–F64. doi: 10.1084/jem.194.12.f59.
  24. Pabon-Porras MA, Molina-Rios S, Florez-Suarez JB. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med. 2019;7:1–24. doi: 10.1177/2050312119876146.
  25. Barrat FJ, Su LJ. A pathogenic role of plasmacytoid dendritic cells in autoimmunity and chronic viral infection. Exp Med. 2019;216(9):1974–85. doi: 10.1084/jem.20181359.
  26. Rollins-Raval MA, Marafioti T, Swerdlow SH, Roth CG. The number and growth pattern of plasmacytoid dendritic cells vary in different types of reactive lymph nodes: an immunohistochemical study. Hum Pathol. 2013;44(6):1003–10. doi: 10.1016/j.humpath.2012.08.020.
  27. Katsiari CG, Liossis S-NC, Sfikakis PP. The Pathophysiologic Role of Monocytes and Macrophages in Systemic Lupus Erythematosus: A Reappraisal. Semin Arthrit Rheum. 2010;39(6):491–503. doi: 10.1016/j.semarthrit.2008.11.002.
  28. Ma W-T, Gao F, Gu K, et al. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol. 2019;10:1140. doi: 10.3389/fimmu.2019.01140.
  29. Pileri SA, Facchetti F, Ascani S, et al. Myeloperoxidase expression by histiocytes in Kikuchi’s and Kikuchi-like lymphadenopathy. Am J Pathol. 2001;159(3):915–24. doi: 10.1016/S0002-9440(10)61767-1.
  30. Strzepa A, Pritchard KA, Dittel BN. Myeloperoxidase: A new player in autoimmunity. Cell Immunol. 2017;317:1–8. doi: 10.1016/j.cellimm.2017.05.002.
  31. Pilichowska ME, Pinkus JL, Pinkus GS. Histiocytic Necrotizing Lymphadenitis (Kikuchi-Fujimoto Disease). Am J Clin Pathol. 2009;131(2):174–82. doi: 10.1309/AJCP7V1QHJLOTKKJ.
  32. Jang SJ, Min JH, Kim D, Yang WI. Myeloperoxidase positive histiocytes in subacute necrotizing lymphadenitis express both CD11c and CD163. Basic Appl Pathol. 2011;4(4):110–5. doi: 10.1111/j.1755-9294.2011.01114.x.
  33. Andersen MH, Schrama D, Straten PT, et al. Cytotoxic T cells. J Invest Dermatol. 2006;126(1):32–41. doi: 10.1038/sj.jid.5700001.
  34. Suarez-Fueyo A, Bradley SJ, Tsokos GC. T cells in Systemic Lupus Erythematosus. Curr Opin Immunol. 2016;43:32–8. doi: 10.1016/j.coi.2016.09.001.
  35. Tabata T, Takata K, Miyata-Takata T, et al. Characteristic Distribution Pattern of CD30-positive Cytotoxic T Cells Aids Diagnosis of Kikuchi-Fujimoto Disease. Appl Immunohistochem Mol Morphol. 2018;26(4):274–82. doi: 10.1097/pai.0000000000000411.
  36. Salman-Monte TC, Ruiz JP, Almirall M, et al. Lymphadenopathy syndrome in systemic lupus erythematosus: Is it Kikuchi-Fujimoto disease? Reumatol Clin. 2017;13(1):55–6. doi: 10.1016/j.reumae.2016.04.004.
  37. Sukswai N, Jung HR, Amr SS. Immunopathology of Kikuchi-Fujimoto Disease: A reappraisal using novel immunohistochemistry markers. Histopathology. 2020;77(2):262–74. doi: 10.1111/his.14050.

Pathomorphological Diagnosis of Splenic Diffuse Red Pulp Small B-Cell Lymphoma

AM Kovrigina, SM Korzhova, LS Al’-Radi, UL Dzhulakyan, BV Biderman, IA Yakutik, AB Sudarikov

Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Alla Mikhailovna Kovrigina, DSci, Professor, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: 7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM, Korzhova SM, Al’-Radi LS, et al. Pathomorphological Diagnosis of Splenic Diffuse Red Pulp Small B-Cell Lymphoma. Clinical oncohematology. 2016;9(3):287-95 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-287-295


ABSTRACT

Background. Unclassifiable splenic B-cell lymphoma/leukemia is a rare and poorly studied disorder introduced in the WHO classification of hematopoietic and lymphoid tissue malignancies for the first time in 2008. This type of lymphoma requires differential diagnosing between hairy cell leukemia-variant (HCL-V) and splenic diffuse red pulp small B-cell lymphoma (SDRPL).

Aim. To develop criteria for diagnosis of SDRPL by comparison of bone marrow biopsies (BMB) and surgical specimens of the spleen.

Methods. In the Department of Morbid Anatomy of the Hematology Research Center, preoperative BMBs and surgical specimens of the spleen (2013–2015) were compared in 71 patients (men/women ratio 1:2.6, age range 44–81, median age 58 years) using morphological and extended immunohistochemical studies. Sanger sequencing and PCR assay were carried out to analyze the mutational status of IgHV and to identify mutations in MAP2K1, NOTCH, BRAF.

Results. SDRPL was diagnosed in 5 (7 %) of 71 patients. In 2 groups of patients (with normal and high WBC count), the morphological features of spleen tissue were similar to those of a neoplastic substrate of HCL-V. The immunohistochemical assay demonstrates monomorphic expression of CD20 and DBA.44 and heterogeneous expression of CD11c, TRAP, CD103, CD123 in all cases. In none of the 5 cases, expression of CD25, CD27, Cyclin D1, Annexin-1 was found. In bone marrow (unlike HCL and HCL-V), predominantly interstitial and intravascular scant CD20+ lymphoid infiltration (4 of 5 cases) was found without detectable nucleoli in nuclei of small lymphoid cells. In 1 case, there was a combined lymphoid infiltration: CD20+ microfocal-interstitial infiltration with an intravascular component. No persistent molecular mutations in the spleen tissue specimens were found.

Conclusion. SDRPL is diagnosed in 7 % of splenic B-cell lymphomas. It is a rare disorder, whose verification requires an integrated approach taking into account clinical and laboratory data, results of flow cytometry, cytological, morphological, extended IHC and molecular biological studies.


Keywords: immunohistochemistry, splenic diffuse red pulp small B-cell lymphoma, splenectomy, bone marrow biopsy.

Received: April 28, 2016

Accepted: April 29, 2016

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Kanellis G, Mollejo M, Montes-Moreno S, et al. Splenic diffuse red pulp small B-cell lymphoma: revision of a series of cases reveals characteristic clinico-pathological features. Haematologica. 2010;95(7):1122–9. doi: 10.3324/haematol.2009.013714.
  2. Traverse-Glehen A, Baseggio L, Callet-Bauchu E, et al. Hairy cell leukaemia-variant and splenic red pulp lymphoma: a single entity? Br J Haematol. 2010;150:113–5. doi: 10.1111/j.1365-2141.2010.08153.x.
  3. Raess PW, Mintzer D, Husson M, Nakashima MO. BRAF V600E is also seen in unclassifiable splenic B-cell lymphoma/leukemia, a potential mimic of hairy cell leukemia. Blood. 2013;122(17):84–5. doi: 10.1182/blood-2013-07-513523.
  4. Jain P, Pemmaraju N, Ravandi F. Update on the Biology and Treatment Options for Hairy Cell Leukemia. Curr Treat Opt Oncol. 2014;15(2):187–209. doi: 10.1007/s11864-014-0285-5.
  5. Naresh K. Grey zone lymphoid neoplasms with features overlapping between splenic marginal zone lymphoma and hairy cell leukaemia: splenic B-cell lymphoma/leukaemia, unclassifiable. J Haematopathol. 2011;4(2):93–100. doi: 10.1007/s12308-011-0092-x.
  6. Mollejo M, Algara P, Mateo MS, et al. Splenic small B-cell lymphoma with predominant red pulp involvement: a diffuse variant of splenic marginal zone lymphoma? Histopathology. 2002;40(1):22–30. doi: 10.1046/j.1365-2559.2002.01314.x.
  7. Traverse-Glehen A, Baseggio L, Bauchu EC, et al. Splenic red pulp lymphoma with numerous basophilic villous lymphocytes: a distinct clinicopathologic and molecular entity? Blood. 2008;111(4):2253–60. doi: 10.1182/blood-2007-07-098848.
  8. Behdad A, Bailey NG. Diagnosis of Splenic B-Cell Lymphomas in the Bone Marrow. Arch Pathol Lab Med. 2014;138(10):1295–301. doi: 10.5858/arpa.2014-0291-cc.
  9. Tiacci E, Trifonov V, Schiavoni G, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15. doi: 10.1056/nejmoa1014209.
  10. Xi L, Arons E, Navarro W, et al. Both variant and IGHV4-34-expressing hairy cell leukemia lack the BRAF V600E mutation. Blood. 2012;119(14):3330–2. doi: 10.1182/blood-2011-09-379339.
  11. Bikos V, Darzentas N, Hadzidimitriou A, et al. Over 30% of patients with splenic marginal zone lymphoma express the same immunoglobulin heavy variable gene: ontogenetic implications. Leukemia. 2012;26(7):1638–46. doi: 10.1038/leu.2012.3.
  12. Якутик И.А., Аль-Ради Л.С., Бидерман Б.В. и др. Применение аллель-специфичной ПЦР-РВ для определения мутации B-RAF V600E у больных волосатоклеточным лейкозом. Гематология и трансфузиология 2014;59(2):16–9.
    [Yakutik IA, Al-Radi LS, Biderman BV, et al. Detection of В-RAF V600E mutation in patients with hairy cell leukemia by allele-specific RT-PCR. Gematologiya i transfuziologiya. 2014;59(2):16–9. (In Russ)]
  13. Якутик И.А., Аль-Ради Л.С., Джулакян У.Л. и др. Мутации в генах BRAF и MAP2K1 при волосатоклеточном лейкозе и селезеночной В-клеточной лимфоме из клеток маргинальной зоны. Онкогематология. 2016;11(1):34–6. doi: 10.17650/1818-8346-2016-11-1-34-36.
    [Yakutik IA, Al’-Radi LS, Julhakyan HL, et al. BRAF and MAP2K1 mutations in hairy cell leukemia and splenic marginal zone B-cell lymphoma. Oncohematology. 2016;11(1):34–6. doi: 10.17650/1818-8346-2016-11-1-34-36. (In Russ)]
  14. Бидерман Б.В., Никитин Е.А., Сергиенко Т.Ф. и др. Репертуар генов тяжелой цепи иммуноглобулинов при В-клеточном хроническом лимфолейкозе в России и Беларуси. Онкогематология. 2012;7(3):38–42.
    [Biderman BV, Nikitin EA, Sergienko TF, et al. The repertoire of heavy chain immunoglobulin genes in B-cell chronic lymphocytic leukemia in Russia and Belarus. Onkogematologiya. 2012;7(3):38–42. (In Russ)]
  15. Waterfall JJ, Arons E, Walker RL, et al. High prevalence of MAP2K1 mutations in variant and IGHV4-34–expressing hairy-cell leukemias. Nat Genet. 2014;46(1):8–10. doi: 10.1038/ng.2828.
  16. Martinez D, Navarro A, Martinez-Trillos A, et al. NOTCH1, TP53, and MAP2K1 Mutations in Splenic Diffuse Red Pulp Small B-cell Lymphoma Are Associated With Progressive Disease. Am J Surg Pathol. 2016;40(2):192–201. doi: 10.1097/pas.0000000000000523.
  17. Hockley SL, Giannouli S, Morilla A, et al. Insight into the molecular pathogenesis of hairy cell leukaemia, hairy cell leukaemia variant and splenic marginal zone lymphoma, provided by the analysis of their IGH rearrangements and somatic hypermutation patterns. Br J Haematol. 2010;148(4):666–9. doi: 10.1111/j.1365-2141.2009.07962.x.
  18. Navarro A, Clot G, Royo C, et al. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer Res. 2012;72(20):5307–16. doi: 10.1158/0008-5472.can-12-1615.
  19. Джулакян У.Л., Бидерман Б.В., Гемджян Э.Г. и др. Молекулярный анализ генов иммуноглобулина в опухолевых В-клетках при лимфоме селезенки из клеток маргинальной зоны. Терапевтический архив. 2015;87(7):58–63.
    [Julakyan UL, Biderman BV, Gemdzhian EG, et al. Molecular analysis of immunoglobulin genes in the tumor B cells in splenic marginal zone lymphoma. Terapevticheskii arkhiv. 2015;87(7):58–63. (In Russ)]
  20. El-Habr EA, Levidou G, Trigka E-A, et al. Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and Notch-1 pathways, indicate their involvement in meningioma development. Virchows Arch. 2014;465:473–85. doi: 10.1007/s00428-014-1641-3.

MYC and BCL2 Protein Expression in Patients with Diffuse Large B-cell Lymphoma

AE Misyurina1, AM Kovrigina1, EA Baryakh1, VA Misyurin2, SK Kravchenko1, AV Misyurin2, TN Obukhova1, SM Kulikov1, AN Kopylov2, AU Magomedova1, EG Gemdzhyan1, AI Vorob’ev1

1 Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Anna Evgen’evna Misyurina, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(909)637-32-46; e-mail: anna.lukina1@gmail.com

For citation: Misyurina AE, Kovrigina AM, Baryakh EA, et al. MYC and BCL2 Protein Expression in Patients with Diffuse Large B-cell Lymphoma. Clinical oncohematology. 2015;8(1):44–53 (In Russ).


ABSTRACT

Objective. The objective of this study is to analyze the incidence and the role of MYC and BCL2 protein expression in patients with diffuse large B-cell lymphoma (DLBCL) and to compare data of histological, immunohistochemical, genetic, and moleculobiological analyses with clinical characteristics.

Methods. 62 patients with confirmed diffuse large B-cell lymphoma (DLBCL) were enrolled in the study; they underwent treatment according to the original modified protocol NHL-BFM-90 ± R in the Hematology Research Center under the Ministry of Health of the Russian Federation. A reference group consisted of 13 DLBCL patients who underwent СНОР-like ± R therapy. In all observations, histological and immunohistochemical tests were performed in archived biopsy samples of a tumor tissue or a lymph node (paraffin blocks) using BCL2 (clone 124, Dako) and MYC antibodies (clone Y69, Epitomics). Based on C.P. Hans’s algorithm (2004), GCB and non-GCB immunohistochemical subtypes of DLBCL were determined. Standard cytogenetic tests (n = 22) and FISH analysis (n = 52) were performed in this study in order to determine locus translocation of с-MYC gene, IgH gene, t(8;14)(q24;q32), BCL2 gene, t(14;18)(q32;q21). Quantitative RT-PCR on paraffin tumor/node biopsy samples was also performed to evaluate the number of mRNAs of с-MYC and BCL2 genes.

Results. MYC expression was found in 24 (39 %) of 62 DLBCL patients and BCL2 in 36 (58 %) of 62 patients (threshold values were 40 % and 50 % of tumor cells, respectively). MYC/BCL2 coexpression was diagnosed in 15 (24 %) of 62 DLBCL patients. 4 (27 %) of 15 patients with MYC/BCL2 coexpression had a GCB-subtype of DLBCL, 73 % patients with MYC/BCL2 coexpression were diagnosed with non-GCB subtype of DLBCL (< 0.02). c-MYC rearrangement was found in two cases (3 %), one of them had a MYC protein expression score more than 40 %. 10 (19 %) patients had one or more additional signal from 8q24 locus of c-MYC gene. We didn’t find any correlation between the presence of additional signals from c-MYC gene locus and the level of immunohistochemical expression of MYC protein ³ 40 % (< 0.05). BCL2 gene rearrangement was detected in one case; it was accompanied by BCL2 protein immunohistochemical expression ³ 50 %. BCL2 amplification was observed in 17 (40 %) patients. There was a correlation between the amplification of BCL2 gene and immunohistochemical expression of BCL2 protein (threshold value was ³ 50 % of positive cells) (= 0.0053). There was a direct correlation between the amount of mRNAs and MYC protein (correlation coefficient 0.86; < 0.0001). There was no correlation between the level of BCL2 gene expression and the amount of protein (correlation coefficient 0.14; = 0.57). Four-year overall survival for DLBCL patients treated with m-NHL-BFM-90 ± R was 71 % (in patients without MYC/BCL2 coexpression) vs 57 % (in patients with MYC/BCL2 coexpression) (= 0.39). The probability of relapse or progression of DLBCL was significantly higher in patients with MYC/BCL2 coexpression, than in patients without MYC/BCL2 coexpression (65 % vs 15 %; = 0.0029).

Conclusions. The MYC/BCL2 coexpression is observed mainly in DLBCL patients with non-GCB immunohistochemical subtype of the disease. The MYC/BCL2 coexpression is vital for prediction of the risk of relapses/progression of the disease in patients receiving an intensive chemotherapy according to the m-NHL-BFM-90 ± R protocol. Taking into account a relatively stable structure of the protein substrate, the obtained data may become a basis for development of a diagnostic immunohistochemical algorithm for stratification of DLBCL patients.


Keywords: DLBCL, intensive therapy, MYC/BCL2 coexpression, immunohistochemistry, unfavorable prognostic factor.

Received: November 8, 2014

Accepted: November 11, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  2. A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med. 1993;329(14):987–94.
  3. Frick M, Dorken B, Lenz G. New insights into the biology of molecular subtypes of diffuse large B-cell lymphoma and Burkitt lymphoma. Best Pract Res Clin Haematol. 2012;25(1):3–12. doi: 10.1016/j.beha.2012.01.003.
  4. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.
  5. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47. doi: 10.1056/nejmoa012914.
  6. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8(1):68–74. doi: 10.1038/nm0102-68.
  7. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;359(22):2313–23. doi: 10.1056/nejmoa0802885.
  8. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.
  9. Savage KJ, Monti S, Kutok JL, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003;102(12):3871–9. doi: 10.1007/s00795-013-0038-8.
  10. Wright G, Tan B, Rosenwald A, et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA. 2003;100(17):9991–6. doi: 10.1073/pnas.1732008100.
  11. Мисюрина А.Е., Мисюрин В.А., Барях Е.А и др. Роль экспрессии c-MYC, BCL-2, BCL-6 в патогенезе диффузной В-крупноклеточной лимфомы. Клиническая онкогематология. 2014;7(4):512–21.
    [Misyurina AE, Misyurin VA, Baryakh EA, et al. Role of c-MYC, BCL-2, and BCL-6 expression in pathogenesis of diffuse large B-cell lymphoma. Klinicheskaya onkogematologiya. 2014;7(4):512–21. (In Russ)]
  12. Savage KJ, Johnson NA, Ben-Neriah S, et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009;114(17):3533–7. doi: 10.1182/blood-2009-05-220095.
  13. Horn H, Ziepert M, Becher C, et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood. 2013;121(12):2253–63. doi: 10.1182/blood-2012-06-435842.
  14. Barrans S, Crouch S, Smith A, et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol. 2010;28(20):3360–5. doi: 10.1200/jco.2009.26.3947.
  15. Iqbal J, Sanger WG, Horsman DE, et al. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol. 2004;165(1):159–66. doi: 10.1016/s0002-9440(10)63284-1.
  16. Ohno H, Fukuhara S. Significance of rearrangement of the BCL6 gene in B-cell lymphoid neoplasms. Leuk Lymphoma. 1997;27(1–2):53–63. doi: 10.3109/10428199709068271.
  17. Willis TG, Dyer MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 2000;96(3):808–22.
  18. Hu S, Xu-Monette ZY, Tzankov A, et al. MYC/BCL2 protein co-expression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2013;121(20):4021–31. doi: 10.1182/blood-2012-10-460063.
  19. Green TM, Young KH, Visco C, et al. Immunohistochemical Double-Hit Score Is a Strong Predictor of Outcome in Patients With Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J Clin Oncol. 2012;30(28):3460–7. doi: 10.1200/jco.2011.41.4342.
  20. Johnson NA, Slack GW, Savage K, et al. Concurrent Expression of MYC and BCL2 in Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J Clin Oncol. 2012;30(28):3452–9. doi: 10.1200/jco.2011.41.0985.
  21. Valera A, Lopez-Guillermo A, Cardesa-Salzmann T. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica. 2013;98(10):1554–62. doi: 10.3324/haematol.2013.086173.
  22. Магомедова А.У., Кравченко С.К., Кременецкая AM. и др. Модифицированная программа NHL-BFM-90 в лечении больных диффузной В-крупноклеточной лимфосаркомой. Терапевтический архив. 2006;10:44–7.
    [Magomedova AU, Kravchenko SK, Kremenetskaya AM, et al. Modified NHL-BFM-90 protocol in treatment of diffuse large B-cell lymphosarcoma. Terapevticheskii arkhiv. 2006;10:44–7. (In Russ)]
  23. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82. doi: 10.1182/blood-2003-05-1545.
  24. Green TM, Nielsen O, de Stricker K, et al. High levels of nuclear MYC protein predict the presence of MYC rearrangement in diffuse large B-cell lymphoma. Am J Surg Pathol. 2012;36(4):612–9. doi: 10.1097/pas.0b013e318244e2ba.
  25. Cook JR, Goldman B, Tubbs RR. Clinical significance of MYC expression and/or “high-grade” morphology in non-Burkitt, diffuse aggressive B-cell lymphomas: a SWOG S9704 correlative study. Am J Surg Pathol. 2014;38(4):494–501. doi: 10.1097/PAS.0000000000000147.
  26. Leucci E, Cocco M, Onnis A, et al. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol. 2008;216(4):440–50. doi: 10.1002/path.2410.
  27. Onnis A, De Falco G, Antonicelli G, et al. Аlteration of microRNAs regulated by c-MYC in Burkitt lymphoma. PLoS One. 2010;5(9);e12960. doi: 10.1371/journal.pone.0012960.
  28. Kluin PM. Origin And Migration of Follicular Lymphoma Cells. Haematologica. 2013;98(9):1331–3. doi: 10.3324/haematol.2013.091546.
  29. Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14(8):475–88. doi: 10.1038/nrm3611.
  30. Мангасарова Я.К., Мисюрин А.В., Магомедова А.У. и др. Молекулярная диагностика первичной медиастинальной В-клеточной лимфомы и диффузной В-крупноклеточной лимфомы с первичным вовлечением лимфоузлов средостения. Клиническая онкогематология. 2011;4(2):142–5.
    [Mangasarova YaK, Misyurin AV, Magomedova AU, et al. Molecular diagnostics of primary mediastinal B-cell lymphoma and diffuse large B-cell lymphoma with primary involvement of mediastinal lymph nodes. Klinicheskaya onkogematologiya. 2011;4(2):142–5. (In Russ)]
  31. Liu Y, Hernandez AM, Shibata D, Cortopassi GA. BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci USA. 1994;91(19):8910–4. doi: 10.1073/pnas.91.19.8910.
  32. Harries LW, Hernandez D, Henley W. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell. 2011;10(5):868–78. doi: 10.1111/j.1474-9726.2011.00726.x.
  33. Dunleavy K, Pittaluga S, Shovlin M. Concurrent Expression Of MYC/BCL2 Protein In Newly Diagnosed DLBCL Is Not Associated With An Inferior Survival Following EPOCH-R Therapy. Blood. 2013;122(21):3029.