Systemic Т-Cell Lymphoproliferative Disease Associated with Epstein-Barr Virus: A Literature Review and a Case Report

EA Shalamova, AM Kovrigina, IA Shupletsova, EE Nikulina, VD Latyshev, NV Tsvetaeva

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Alla Mikhailovna Kovrigina, PhD in Biology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: kovrigina.alla@gmail.com

For citation: Shalamova EA, Kovrigina AM, Shupletsova IA, et al. Systemic Т-Cell Lymphoproliferative Disease Associated with Epstein-Barr Virus: A Literature Review and a Case Report. Clinical oncohematology. 2021;14(4):477–87. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-477-487


ABSTRACT

Epstein-Barr virus (EBV) is ubiquitous, being identified in 90–95 % of adults. Its reactivation in immunodeficiency conditions often leads to clonal transformation of В-lymphocytes and development of В-cell lymphoproliferative diseases (LPD) and В-cell lymphomas. At the same time, in the countries of North-East and East Asia, as well as Latin America, non-immunocompromised patients sometimes demonstrate the development of EBV-associated Т-cell lymphoproliferative diseases. The present paper reports a rare case of EBV-associated systemic T-LPD with lymphadenopathy, splenomegaly as well as acute autoimmune hemolytic anemia in a man of Caucasian race. Complex analysis of anamnestic, pathomorphological, and laboratory data allowed to distinguish this disease from Т-cell lymphoma and choose the appropriate patient management strategy.

Keywords: lymphoproliferative disease, Epstein-Barr virus, EBV+ T-LPD, diagnosis, pathomorphology.

Received: May 30, 2021

Accepted: September 2, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Smatti MK, Al-Sadeq DW, Ali NH, et al. Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene Among Healthy Population: An Update. Front Oncol. 2018;8:211. doi: 10.3389/fonc.2018.00211.
  2. Kuri A, Jacobs BM, Vickaryous N, et al. Epidemiology of Epstein-Barr virus infection and infectious mononucleosis in the United Kingdom. BMC Public Health. 2020;20(1):912. doi: 10.1186/s12889-020-09049-x.
  3. Rostgaard K, Balfour HH Jr, Jarrett R, et al. Primary Epstein-Barr virus infection with and without infectious mononucleosis. PLoS One. 2019;14(12):e0226436. doi: 10.1371/journal.pone.0226436.
  4. Montes-Mojarro IA, Kim WY, Fend F, Quintanilla-Martinez L. Epstein-Barr virus positive T and NK-cell lymphoproliferations: Morphological features and differential diagnosis. Semin Diagn Pathol. 2020;37(1):32–46. doi: 10.1053/j.semdp.2019.12.004.
  5. Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors. Front Oncol. 2019;9:713. doi: 10.3389/fonc.2019.00713.
  6. Pei Y, Lewis AE, Robertson ES. Current Progress in EBV-Associated B-Cell Lymphomas. Adv Exp Med Biol. 2017;1018:57–74. doi: 10.1007/978-981-10-5765-6_5.
  7. Martinez OM, Krams SM. The Immune Response to Epstein Barr Virus and Implications for Posttransplant Lymphoproliferative Disorder. 2017;101(9):2009–16. doi: 10.1097/TP.0000000000001767.
  8. Compagno F, Basso S, Panigari A, et al. Management of PTLD After Hematopoietic Stem Cell Transplantation: Immunological Perspectives. Front Immunol. 2020;11:567020. doi: 10.3389/fimmu.2020.567020.
  9. Ковригина А.М. ВЭБ-позитивные лимфопролиферативные заболевания: новая концепция, дифференциальная диагностика (обзор литературы и собственные наблюдения). Клиническая онкогематология. 2018;11(4):326–37. doi: 10.21320/2500-2139-2018-11-4-326-337.
    [Kovrigina AM. EBV-Positive Lymphoproliferative Diseases: A New Concept and Differential Diagnosis (Literature Review and Case Reports). Clinical oncohematology. 2018;11(4):326–37. doi: 10.21320/2500-2139-2018-11-4-326-337. (In Russ)]
  10. Kimura H, Fujiwara S. Overview of EBV-Associated T/NK-Cell Lymphoproliferative Diseases. Front Pediatr. 2019;6:417. doi: 10.3389/fped.2018.00417.
  11. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017. pp. 358–60.
  12. Coffey AM, Lewis A, Marcogliese AN, et al. A clinicopathologic study of the spectrum of systemic forms of EBV‐associated T‐cell lymphoproliferative disorders of childhood: A single tertiary care pediatric institution experience in North America. Pediatr Blood Cancer. 2019;66(8):e27798. doi: 10.1002/pbc.27798.
  13. Ohshima K, Kimura H, Yoshino T, et al. Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD. Pathol Int. 2008;58(4):209–17. doi: 10.1111/j.1440-1827.2008.02213.x.
  14. Kawamoto K, Miyoshi H, Suzuki T, et al. A distinct subtype of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorder: adult patients with chronic active Epstein-Barr virus infection-like features. 2018;103(6):1018–28. doi: 10.3324/haematol.2017.174177.
  15. Fujiwara S, Kimura H, Imadome K, et al. Current research on chronic active Epstein-Barr virus infection in Japan. Pediatr Int. 2014;56(2):159–66. doi: 10.1111/ped.12314.
  16. van Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317. doi: 10.1038/sj.leu.2403202.
  17. Чернова Н.Г., Сидорова Ю.В., Смирнова С.Ю. и др. Молекулярная диагностика ангиоиммунобластной Т-клеточной лимфомы. Терапевтический архив. 2019;91(7):63–9. doi: 10.26442/00403660.2019.07.000330.
    [Chernova NG, Sidorova YuV, Smirnova SYu, et al. Molecular diagnosis angioimmunoblastic T-cell lymphoma. Terapevticheskii arkhiv. 2019;91(7):63–9. doi: 10.26442/00403660.2019.07.000330. (In Russ)]
  18. Cohen JI, Jaffe ES, Dale JK, et al. Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. 2011;117(22):5835–49. doi: 10.1182/blood-2010-11-316745.
  19. Arai A. Advances in the Study of Chronic Active Epstein-Barr Virus Infection: Clinical Features Under the 2016 WHO Classification and Mechanisms of Development. Front Pediatr. 2019;7:14. doi: 10.3389/fped.2019.00014.
  20. Fournier B, Boutboul D, Bruneau J, et al. Rapid identification and characterization of infected cells in blood during chronic active Epstein-Barr virus infection. J Exp Med. 2020;217(11):e20192262. doi: 10.1084/jem.20192262.
  21. Kawabe S, Ito Y, Gotoh K, et al. Application of flow cytometric in situ hybridization assay to Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases. Cancer Sci. 2012;103(8):1481–8. doi: 10.1111/j.1349-7006.2012.02305.x.
  22. Paik JH, Choe JY, Kim H, et al. Clinicopathological categorization of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disease: an analysis of 42 cases with an emphasis on prognostic implications. Leuk Lymphoma. 2017;58(1):53–63. doi: 10.1080/10428194.2016.1179297.
  23. Kimura H. EBV in T-/NK-Cell Tumorigenesis. Adv Exp Med Biol. 2018;1045:459–75. doi: 10.1007/978-981-10-7230-7_21.
  24. Takada H, Imadome KI, Shibayama H, et al. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells. PLoS One. 2017;12(3):e0174136. doi: 10.1371/journal.pone.0174136.
  25. Okuno Y, Murata T, Sato Y, et al. Defective Epstein-Barr virus in chronic active infection and haematological malignancy. Nat Microbiol. 2019;4(3):404–13. doi: 10.1038/s41564-018-0334-0.
  26. Katano H, Ali MA, Patera AC, et al. Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. 2004;103(4):1244–52. doi: 10.1182/blood-2003-06-2171.
  27. Beer T, Dorion P. Angioimmunoblastic T-Cell Lymphoma Presenting with an Acute Serologic Epstein-Barr Virus Profile. Hematol Rep. 2015;7(2):5893. doi: 10.4081/hr.2015.5893.
  28. Steciuk MR, Massengill S, Banks PM. In immunocompromised patients, Epstein-Barr virus lymphadenitis can mimic angioimmunoblastic T-cell lymphoma morphologically, immunophenotypically, and genetically: a case report and review of the literature. Hum Pathol. 2012;43(1):127–33. doi: 10.1016/j.humpath.2011.02.024.
  29. Chiba S, Sakata-Yanagimoto M. Advances in understanding of angioimmunoblastic T-cell lymphoma. 2020;34(10):2592–606. doi: 10.1038/s41375-020-0990-y.
  30. Yabe M, Dogan A, Horwitz SM, Moskowitz AJ. Angioimmunoblastic T-Cell Lymphoma. In: Querfeld C, Zain J, Rosen S, eds. T-Cell and NK-Cell Lymphomas. Cancer Treatment and Research. Springer; Vol. 176. pp. 99–126. doi: 10.1007/978-3-319-99716-2_5.
  31. Kato S, Takahashi E, Asano N, et al. Nodal cytotoxic molecule (CM)-positive Epstein-Barr virus (EBV)-associated peripheral T cell lymphoma (PTCL): a clinicopathological study of 26 cases. 2012;61(2):186–99. doi: 10.1111/j.1365-2559.2012.04199.x.
  32. Jeon YK, Kim J-H, Sung J-Y, et al.; Hematopathology Study Group of the Korean Society of P. Epstein-Barr virus-positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features. Hum Pathol. 2015;46(7):981–90. doi: 10.1016/j.humpath.2015.03.002.
  33. Takahashi E, Asano N, Li C, et al. Nodal T/NK-cell lymphoma of nasal type: a clinicopathological study of six cases. 2008;52(5):585–96. doi: 10.1111/j.1365-2559.2008.02997.x.
  34. Ng SB, Chung TH, Kato S, et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. 2018;103(2):278–87. doi: 10.3324/haematol.2017.180430.
  35. Edwards ESJ, Bier J, Cole TS, et al. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. J Allergy Clin Immunol. 2019;143(1):276–291.e6. doi: 10.1016/j.jaci.2018.04.030.
  36. Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev. 2019;291(1):174–89. doi: 10.1111/imr.12791.
  37. Files JK, Boppana S, Perez MD, et al. Sustained cellular immune dysregulation in individuals recovering from SARS-CoV-2 infection. J Clin Invest. 2021;131(1):e140491. doi: 10.1172/JCI140491.
  38. Liu J, Yang X, Wang H, et al. The analysis of the long-term impact of SARS-CoV-2 on the cellular immune system in individuals recovering from COVID-19 reveals a profound NK/T cell impairment. mBio. 2021 (Preprint). doi: 10.1101/2020.08.21.20179358.
  39. Kovoor JG, Scott NA, Tivey DR, et al. Proposed delay for safe surgery after COVID-19. ANZ J Surg. 2021;91(4):495–506. doi: 10.1111/ans.16682.
  40. Dematapitiya C, Perera C, Chinthaka W, et al. Cold type autoimmune hemolytic anemia – a rare manifestation of infectious mononucleosis; serum ferritin as an important biomarker. BMC Infect Dis. 2019;19(1):68. doi: 10.1186/s12879-019-3722-z.
  41. Teijido J, Tillotson K, Liu JM. A Rare Presentation of Epstein-Barr Virus Infection. J Emerg Med. 2020;58(2):e71-e73. doi: 10.1016/j.jemermed.2019.11.043.
  42. Whitelaw F, Brook MG, Kennedy N, Weir WR. Haemolytic anaemia complicating Epstein-Barr virus infection. Br J Clin Pract. 1995;49(4):212–3.
  43. Aveiro M, Ferreira G, Matias C, et al. Hard-To-Treat Idiopathic Refractory Autoimmune Haemolytic Anaemia with Reticulocytopenia. Eur J Case Rep Intern Med. 2020;7(12):002112. doi: 10.12890/2020_002112.
  44. Fattizzo B, Giannotta JA, Serpenti F, Barcellini W. Difficult Cases of Autoimmune Hemolytic Anemia: A Challenge for the Internal Medicine Specialist. J Clin Med. 2020;9(12):3858. doi: 10.3390/jcm9123858.
  45. Barcellini W, Fattizzo B, Zaninoni A, et al. Clinical heterogeneity and predictors of outcome in primary autoimmune hemolytic anemia: a GIMEMA study of 308 patients. 2014;124(19):2930–6. doi: 10.1182/blood-2014-06-583021.
  46. Barcellini W, Fattizzo B. Clinical Applications of Hemolytic Markers in the Differential Diagnosis and Management of Hemolytic Anemia. Dis Markers. 2015;2015:635670. doi: 10.1155/2015/635670.
  47. Fink S, Tsai MH, Schnitzler P, et al. The Epstein–Barr virus DNA load in the peripheral blood of transplant recipients does not accurately reflect the burden of infected cells. Transpl Int. 2017;30(1):57–67. doi: 10.1111/tri.12871.
  48. Andrei G, Trompet E, Snoeck R. Novel Therapeutics for Epstein-Barr Virus. 2019;24(5):997. doi: 10.3390/molecules24050997.

Autoimmune lymphoproliferative syndrome: literature review and case report

I.B. Kovynev1, T.I. Pospelova1, A.V. Mishenin2, I.N. Nechunaeva2, and R.V. Tarnovsky1

1 Novosibirsk State Medical University, Novosibirsk, Russian Federation

2 Municipal Clinical Hospital #2, Novosibirsk, Russian Federation


ABSTRACT

The article presents the literature review and the rare case of autoimmune lymphoproliferative syndrome (ALPS). The disease is associated with blocked apoptosis of immune cells caused by mutations in Fas-protein genes. The clinical course is characterized by progressive generalized lymphadenopathy with the picture of reactive hyperplasia in lymph nodes biopsy specimens and immune 1- to 3-lineage cytopenia(s). Potential of transformation into lymphoma or systemic lupus erythematosus (SLE) and current treatment approaches are discussed


Keywords: autoimmune lymphoproliferative syndrome, cytopenias, autoimmune hemolytic anemia, autoimmune neutropenia, lymphadenopathy, lymphoproliferative disease, immune thrombocytopenic purpura, lymphoma

Read in  PDF (RUS)pdficon


REFERENCES

  1. Jackson C.E., Puck J.M. Autoimmune lymphoproliferative syndrome, impaired apoptosis. Curr. Opin. Pediatr. 1999; 11(6): 521–7.
  2. Fleisher T.A., Straus S.E., Bleesing J.J. et al. Genetic disorders lymphocyte apoptosis pathway involving FAS: autoimmune lymphoproliferative syndrome. Curr. Allergy Asthma Rep. 2001; 1(6): 534–40.
  3. Oren H., Ozkal S., Gulen H. et al. Autoimmune lymphoproliferative syndrome: report of two cases and review of the literature. Ann. Hematol. 2002; 81(11): 651–3.
  4. Sneller M.C., Wang J., Dale J.K. et al. Clincal, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood 1997; 89(4): 1341–8.
  5. Sneller M.C., Dale J.K., Straus S.E. Autoimmune lymphoproliferative syndrome. Curr. Opin. Rheumatol. 2003; 15(4): 417–21.
  6. Straus S.E. et al. An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann. Intern. Med. 1999; 130(7): 591–601.
  7. Canale V.C., Smith C.H. Chronic lymphadenopathy simulating malignant lymphoma. J. Paediatr. 1967; 70: 899.
  8. Sneller M.C., Straus S.E., Jaffe E.S. et al. A novel lymphoproliferative/ autoimmune syndrome resembling murine lpr/gld disease. J. Clin. Invest. 1992; 90(2): 334–41.
  9. Watanabe-Fukunaga R., Brannan C.I., Copeland N.G. et al. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992; 356(6367): 314–7.
  10. Rieux-Laucat F., Le Deist F., Hivroz C. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995; 268(5215): 1347–9.
  11. Rieux-Laucat F., Le Deist F., Fischer A. Autoimmunelymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ. 2003; 10(1): 124–33.
  12. Rao V.K., Oliveira J.B. How I treat autoimmune lymphoproliferative syndrome. Blood 2011; 118(22): 5741–51.
  13. Lenardo M.J. Fas and the art of lymphocyte maintenance. J. Exp. Med. 1996; 183(3): 721–4.
  14. Ройт А., Бростофф Дж., Мейл Д. Иммунология. М.: Мир, 2000. [Royt A., Brostoff J., Meyl D. Immunologiya (Immunology). M.: Mir, 2000.]
  15. Щербина А.Ю., Продеус А.П., Румянцев А.Г. Иммунодефицитные состояния. Трудный пациент 2007; 2: 28–30. [Shcherbina A.Yu., Prodeus A.P., Rumyantsev A.G. Immunodefitsitnyye sostoyaniya (Immunodeficiency states). Difficult patient 2007; 2: 28–30.]
  16. Данилов И.П. Гематологические аспекты первичного иммунодефи- цита и аутоиммунных заболеваний. Мед. новости 2005; 4: 5–8. [Danilov I.P. Hematologicheskiye aspecty pervichnogo immunodefitsita i autoimmunnykh zabolevaniy (Hematological aspects of primary immunodeficiency and autoimmune disorders). Med. novosti 2005; 4: 5–8.]
  17. Teachey D.T., Seif A.E., Grupp S.A. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br. J. Haematol. 2010; 148(2): 205–16.
  18. Teachey D.T. New advances in the diagnosis and treatment of autoimmune lymphoproliferative syndrome. Curr. Opin. Pediatr. 2012; 24(1): 1–8.
  19. Ries F., Ferster A., Rieux-Laucat F. et al. Autoimmune lymphoproliferative syndrome (ALPS).Case report and family history. Bull. Soc. Sci. Med. Grand Duche Luxemb. 2010; 2: 271–8.
  20. Seif A.E., Manno C.S., Sheen C., Grupp S.A., Teachey D.T. Identifying autoimmune lymphoproliferative syndrome in children with Evans syndrome: a multi-institutional study. Blood 2010; 115(11): 2142–5.
  21. Madkaikar M., Mhatre S., Gupta M., Ghosh K. Advances in autoimmune lymphoproliferative syndromes. Eur. J. Haematol. 2011; 87(1): 1–9.
  22. Turbyville J.C., Rao V.K. The autoimmune lymphoproliferative syndrome: A rare disorder providing clues about normal tolerance. Autoimmun. Rev. 2010: 488–93.
  23. Kim Y.J., Dale J.K., Noel P., Brown M.R. et al. Eosinophilia is associated with a higher mortality rate among patients with autoimmune lymphoproliferative syndrome. Am. J. Hematol. 2007; 82: 615–24.
  24. Лисуков И.А., Ковынев И.Б., Лосева М.И. Изучение экспрессии дифференцировочных антигенов лимфопоэза на мембране мононуклеаров периферической крови при опухолевой прогрессии лимфосарком. Тер. арх. 1991; 7(63): 78–80. [Lisukov I.A., Kovynev I.B., Loseva M.I. Izucheniye ekspressii differentsirovochnykh antigenov limfopoeza na membrane mononuklearov perifericheskoy krovi pri opukholevoy progressii limfosarkom (Studies of lymphopoiesis differentiation antigens expression on the membrane of peripheral blood mononuclear cells in lymphosarcoma tumor progression). Ter. arkh. 1991; 7(63): 78–80.]
  25. Лисуков И.А., Ковынев И.Б., Лосева М.И. Экспрессия эритроидных дифференцировочных антигенов на мононуклеарных клетках перифе- рической крови при опухолевой прогрессии неходжкинской злокаче- ственной лимфомы. Гематол. и трансфузиол. 1991; 36(3): 9–10. [Lisukov I.A., Kovynev I.B., Loseva M.I. Ekspressiya eritroidnykh differentsirovochnykh antigenov na mononuklearnykh kletkah perefericheskoy krovi pri opukholevoy progressii nekhodzhkinskoy zlokachestvennoy limfomy (Expression of erythroid differentiation antigens on peripheral blood mononuclear cells in tumor progression of non-Hodgkin’s malignant lymphoma). Gematol. i transfuziol. 1991; 36(3): 9–10.]
  26. Ковынев И.Б., Поспелова Т.И., Лосева М.И. Значение иммуномор- фологических маркеров апоптоза при оценке опухолевой прогрессии лимфобластной неходжкинской лимфомы. Журн. клин. и экспер. мед. 2004; 1(2): 190–5. [Kovynev I.B., Pospelova T.I., Loseva M.I. Znacheniye immunomorfologicheskikh markerov apoptoza pri otsenke opukholevoy progressii limfoblastnoy nekhodzhkinskoy limfomy (Significance of immunomorphological markers of apoptosis in assessment of tumor progression of non-Hodgkin’s lymphoblastic lymphoma). Zhurn. klin. i eksper. med. 2004; 1(2): 190–5.]
  27. Oliveira J.B., Bleesing J.J., Dianzani U. et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood 2010; 116(14): 35–40.
  28. Dowdell K.C., Niemela J.E., Price S. et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood 2010; 115(25): 5164–9.
  29. Bleesing J.J., Brown M.R., Dale J.K. et al. TcR-alpha/beta(+) CD4(–) CD8(–) T cells in humans with the autoimmune lymphoproliferative syndrome express a novel CD45 isoform that is analogous to murine B220 and represents a marker of altered O-glycan biosynthesis. Clin. Immunol. 2001; 100: 314–24.
  30. Straus S.E., Jaffe E.S., Puck J.M. et al. The development of lymphomas in families with autoimmunelymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 2001; 98: 194–200.
  31. Strober W., Fuss I.J., Dale J.K. et al. Characteristic T helper 2 T cell cytokine abnormalities in autoimmune lymphoproliferative syndrome, a syndrome marked by defective apoptosis and humor autoimmunity. J. Immunol. 1997; 158(4): 1912–8.
  32. Levy Y., Brouet J.C. Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the bc1-2 protein. J. Clin. Invest. 1994; 93(1): 424–8.
  33. Li L., Krajewski S., Reed J.C., Choi Y.S. The apoptosis and proliferation of SAC-activated B cells by IL-10 are associated with changes in Bcl-2, Bcl-xL, and Mcl-1 expression. J. Clin. Invest. 1994; 93424–8.
  34. Cohen S.B., Crawley J.B., Kahan M.C. et al. Interleukin-10 rescues T cells from apoptotic cell death: association with an upregulation of Bcl-2. Immunology 1997; 921–5.
  35. Horwitz D.A., Gray J.D., Behrendsen S.C. et al. Decreased production of interleukin-12 and other Th1-type cytokines in patients with recent-onset systemic lupus erythematosus. Arthritis Rheum. 1998; 41(5): 838–44.
  36. Tanaka H., Nagai H., Maeda Y. Effect of anti-IL-4 and anti-IL-5 antibodies on allergy airway hyperresponsiveness in mice. Life Sci. 1994; 62: PL169–74.
  37. Caminha I., Fleisher T.A., Hornung R.L. et al. Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome. J. Allergy Clin. Immunol. 2010; 125: 946–9.
  38. Behrmann I., Walczak H., Krammer P.H. Structure of the human APO-1 gene. Eur. J. Immunol. 1994; 24(12): 3057–62.
  39. Infante A.J., Britton H.A., DeNapoli T. et al. The clinical spectrum in a large kindred with autoimmune lymphoproliferative syndrome due to a Fas mutation that impairs lymphocyte apoptosis. J. Pediatr. 1998; 133(5): 629–33.
  40. Huang B., Eberstadt M., Olejniczak E.T. et al. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 1996; 384(6610): 638–41.
  41. Fisher G.H., Rosenberg F.J., Straus S.E. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995; 81(6): 935–46.
  42. Drappa J., Vaishnaw A.K., Sullivan K.E. et al. Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N. Engl. J. Med. 1996; 335(22): 1643–9.
  43. Izeradjene K., Quemeneur L., Michallet M.C. et al. Mycophenolate mofetil interferes with interferon gamma production in T-cell activation models. Transplant. Proc. 2001; 33(3): 2110–1.
  44. Teachey D.T., Greiner R., Seif A. et al. Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Br. J. Haematol. 2009; 145(1): 101–6.
  45. Hsieh A.C., Liu Yi., Edlind M.P. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012; 485: 55–61.
  46. Hartford C.M., Ratain M.J. Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin. Pharmacol. Ther. 2007; 82(4): 381–8.
  47. Abdel-Karim I.A., Giles F.J. Mammalian target of rapamycin as a target in hematological malignancies. Curr. Probl. Cancer 2008; 32(4): 161–77.
  48. Brown V.I., Fang J., Alcorn K. et al. Rapamycin is active against B-precursor leukemia in vitro and in vivo, an effect that is modulated by IL-7-mediated signaling. Proc. Natl. Acad. Sci. USA 2003; 100(25): 15113–8.
  49. Fernandez D., Bonilla E., Mirza N., Niland B., Perl A. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 2006; 54(9): 2983–8.
  50. Bruyn G.A., Tate G., Caeiro F. et al.; RADD Study Group. Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: a 3-month, double-blind, randomised; placebo-controlled; parallel-group; proofof-concept study. Ann. Rheum. Dis. 2008; 67(8): 1090–5.
  51. Bobe P., Bonardelle D., Benihoud K. et al. Arsenic trioxide: A promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice. Blood 2006; 108(13): 3967–75.
  52. Dowdell K.C., Pesnicak L., Hoffmann V. et al. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, diminishes lymphoproliferation in the Fas deficient MRL/lpr–/– murine model of autoimmune lymphoproliferative syndrome (ALPS). Blood (ASH Annual. Meeting Abstracts) 2006; 108: 2497.
  53. Saouaf S.J., Li B., Zhang G., Shen Y. et al. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp. Mol. Pathol. 2009; 87(2): 99–104.
  54. Cooper N., Davies E.G., Thrasher A.J. Repeated courses of rituximab for autoimmune cytopenias may precipitate profound hypogammaglobulinaemia requiring replacement intravenous immunoglobulin. Br. J. Haematol. 2009; 146(1): 120–2.
  55. Rao V.K., Price S., Perkins K. et al. Use of rituximab for refractory cytopenias associated with autoimmune lymphoproliferative syndrome (ALPS). Pediatr. Blood Cancer 2009; 52(7): 847–52.
  56. Bleesing J.J., Straus S.E., Fleisher T.A. Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival. Pediatr. Clin. N. Am. 2000; 47(6): 1291–310.
  57. Cohen J.M., Sebire N.J., Harvey J. et al. Successful treatment of lymphoproliferative disease complicating primary immunodeficiency/immunodysregulatory disorders with reduced-intensity allogeneic stem-cell transplantation. Blood 2007; 110(6): 2209–14.
  58. Kahwash S.B., Fung B., Savelli S. et al. Autoimmune lymphoproliferative syndrome (ALPS): a case with congenital onset. Pediatr. Dev. Pathol. 2007; 10(4): 315–9.