Comparative Pathomorphology of Lymph Node Changes in Kikuchi-Fujimoto and Autoimmune Diseases with Lymphadenopathy: Own Experience

AM Kovrigina

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Prof. Alla Mikhailovna Kovrigina, PhD in Biology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM. Comparative Pathomorphology of Lymph Node Changes in Kikuchi-Fujimoto and Autoimmune Diseases with Lymphadenopathy: Own Experience. Clinical oncohematology. 2021;14(1):80–90. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-80-90


ABSTRACT

Background. Pathomorphological analysis of lymph node tissues in immune-mediated lymphadenopathies commonly presupposes differential diagnosis with tumors of lymphoid and myeloid tissues with partial lesions in lymph nodes. Besides, further study is required on pathogenetic relationship between autoimmune diseases with lymphadenopathy and Kikuchi-Fujimoto disease (KFD) with morphological substrate characterized by histiocytic necrotizing lymphadenitis.

Aim. To compare, based on biopsy material, morpho-immunohistochemical characteristics of changes in lymph node tissues in patients with pathomorphological diagnosis of KFD and in patients with autoimmune diseases with lymphadenopathy, i.e. systemic lupus erythematosus (SLE) and adult Still’s disease (ASD).

Materials & Methods. Morphological and immunohistochemical analyses were carried out on lymph node biopsies of 20 patients, 16 out of them with KFD (men/women 15:1, median age 26.5 years, range 18–47 years; in 44 % of cases lesions were only in cervical lymph nodes). In 2 female patients (aged 19 and 33 years) SLE was diagnosed based on clinical and laboratory data, and 2 patients (a woman aged 43 years and a man aged 25 years) were diagnosed with ASD.

Results. Morphological and immunohistochemical analyses detected three major cell populations similar in KFD and SLE and probably reflecting pathogenetic relationship of these diseases: histiocytes expressing myeloperoxidase (MPO+), CD123+ plasmacytoid dendritic cells, cytotoxic CD8+ T-cells, and granzyme B+. In 55 % of KFD cases and 2 SLE cases there were many activated CD30+ lymphoid cells clustered and scattered in the areas of cytotoxic T-cells.

Conclusion. To exclude SLE during subsequent additional examination of patients with morphological substrate characterized by histiocytic necrotizing lymphadenitis it is reasonable to use the term “Kikuchi-like changes” instead of KFD. When the data of immunohistochemical analysis in KFD, SLE, and ASD patients are compared, MPO+ histiocytes in lymph node tissue can serve as diagnostic immunohistochemical marker of immunoinflammatory process. If they are detected, differential diagnosis with myeloid sarcoma is required. CD30 expression by activated cytotoxic lymphoid cells was identified in SLE and in 55 % of KFD cases, which is another important common diagnostic characteristic of the substrate of two diseases (KFD and SLE) and requires differential diagnosis with anaplastic large-cell lymphoma and Hodgkin’s lymphoma. Within the analyzed group of 20 patients morphological substrate of lymph nodes in 2 ASD patients differed in its morphological and immunohistochemical parameters from that in KFD and SLE patients and was characterized by expanded paracortex and morpho-immunohistochemical characteristics of extrafollicular B-cell activation.

Keywords: morphology, immunohistochemistry, Kikuchi-Fujimoto disease, histiocytic necrotizing lymphadenitis, systemic lupus erythematosus, adult Still’s disease, CD30, myeloperoxidase.

Received: July 30, 2020

Accepted: December 2, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Jeon YK, Paik JH, Park SS, et al. Spectrum of lymph node pathology in adult onset Still’s disease; analysis of 12 patients with one follow up biopsy. J Clin Pathol. 2004;57(10):1052–6. doi: 10.1136/jcp.2004.018010.
  2. Cush JJ, Medsger TA, Christy WC, et al. Adult-onset Still’s disease. Arthrit Rheum. 1987;30(2):186–94. doi: 10.1002/art.1780300209.
  3. Kojima M, Nakamura S, Itoh H, et al Systemic Lupus Erythematosus (SLE) Lymphadenopathy Presenting with Histopathologic Features of Castleman’ Disease: A Pathologic Study of Five Cases. Pathol Res Pract. 1997;193(8):565–71 doi: 10.1016/S0344-0338(97)80015-5.
  4. Graef E, Magliulo D, Hollie N, et al. Clinical Characteristics of Lymphadenopathy in Systemic Lupus Erythematous: A Case Control Study from a Tertiary Care Center. Arthrit Rheumatol. 2019;71(Suppl 10): Abstract.
  5. Kikuchi M. Lymphadenitis showing focal reticulum cell hyperplasia with nuclear debris and phagocytosis. Nippon Ketsueki Gakkai Zasshi. 1972;35:379–80.
  6. Fujimoto Y, Kozima Y, Yamaguchi K. Cervical subacute necrotizing lymphadenitis. A new clinicopathological entity. Naika. 1972;20:920–7.
  7. Pileri S, Kikuchi M, Helbron D, Lennert K. Histiocytic necrotizing lymphadenitis without granulocytic infiltration. Virch Arch Pathol Anat. 1982;395(3):257–71. doi: 10.1007/bf00429352.
  8. Turner RR, Martin J, Dorfman RF. Necrotizing lymphadenitis. A study of 30 cases. Am J Surg Pathol. 1983;7(2):115–23.
  9. Feller AC, Lennert K, Stein H, et al. Immunohistology and etiology of histiocytic necrotizing lymphadenitis: report of three instructive cases. Histopathology. 1983;7(6):825–39. doi: 1111/j.1365–2559.1983.tb02299.x.
  10. Dorfman RF. Histiocytic necrotizing lymphadenitis of Kikuchi and Fujimoto. Arch Pathol Lab Med. 1987;111(11):1026–9.
  11. Sumiyoshi Y, Kikuchi M, Ohshima K, et al Human herpesvirus-6 genomes in histiocytic necrotizing lymphadenitis (Kikuchi’s disease) and other forms of lymphadenitis. Am J Clin Pathol. 1993;99(5):609–14. doi: 10.1093/ajcp/99.5.609.
  12. Huh J, Kang GH, Gong G, et al. Kaposi’s sarcoma associated herpesvirus in Kikuchi’s disease. Hum Pathol. 1998;29(10):1091–6. doi: 10.1016/S0046-8177(98)90419-1.
  13. Chiu CF, Chow KC, Lin TY, et al. Virus infection in patients with histiocytic necrotizing lymphadenitis in Taiwan. Detection of Epstein-Barr virus, type 1 human T-cell lymphotropic virus, and parvovirus B19. Am J Clin Pathol. 2000;113(6):774–81. doi: 10.1309/1A6Y-YCKP-5AVF-QTYR.
  14. Adoue D, Rauzy O, Rigal-Huguet F. Syndrome de Kikuchi, infection a Cytomegalovirus et maladie lupique. Rev Med Intern. 1997;18(4):338–42. doi: 10.1016/s0248-8663(97)84023-4.
  15. Imamura M, Ueno H, Matsuura A, et al. An ultrastructural study of subacute necrotizing lymphadenitis. Am J Pathol. 1982;107(3):292–9.
  16. Meyer O, Kahn MF, Grossin M, et al. Parvovirus B19 infection can induce histiocytic necrotizing lymphadenitis (Kikuchi’s disease) associated with systemic lupus erythematosus. Lupus. 1991;1(1):37–41. doi: 10.1177/096120339100100107.
  17. Lamzaf L, Harmouche H, Maamar M, et al. Kikuchi-Fujimoto disease: Report of 4 cases and review of the literature. Eur Ann Otorhinolaryngol Head Neck Dis. 2014;131(6):329–32. doi: 10.1016/j.anorl.2013.01.007.
  18. Ferrao E, Grade M, Arez L, et al. Kikuchi-Fujimoto’s disease associated to a systemic erythematosus lupus: a clinical case. Eur J Intern Med. 2003;14:S76. doi: 10.1016/S0953-6205(03)91417-8.
  19. Merwald-Fraenk H, Wiesent F, Dorfler R, et al. Lymphadenitis und systemischer Lupus erythematodes. Z Rheumatol. 2016,75(10):1028–31. doi: 10.1007/s00393-016-0170-7.
  20. Dumas G, Prendki V, Haroche J, et al. Kikuchi-Fujimoto disease: retrospective study of 91 cases and review of the literature. Medicine (Baltimore). 2014;93(24):372–82. doi: 10.1097/0000000000000220.
  21. Kishimoto K, Tate G, Kitamura T, et al. Cytologic features and frequency of plasmacytoid dendritic cells in the lymph nodes of patients with histiocytic necrotizing lymphadenitis (Kikuchi-Fujimoto disease). Diagn Cytopathol. 2010;38(7):521–6. doi: 10.1002/dc.21265.
  22. Lennert K, Remmele W. Karyometric research on lymph node cells in man. I. Germinoblasts, lymphoblasts & lymphocytes. Acta Haematol. 1958;19(2):99–113. doi: 10.1159/000205419.
  23. Ronnblom L, Alm GV. A pivotal role for the natural interferon alpha-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J Exp Med. 2001;194(12):F59–F64. doi: 10.1084/jem.194.12.f59.
  24. Pabon-Porras MA, Molina-Rios S, Florez-Suarez JB. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med. 2019;7:1–24. doi: 10.1177/2050312119876146.
  25. Barrat FJ, Su LJ. A pathogenic role of plasmacytoid dendritic cells in autoimmunity and chronic viral infection. Exp Med. 2019;216(9):1974–85. doi: 10.1084/jem.20181359.
  26. Rollins-Raval MA, Marafioti T, Swerdlow SH, Roth CG. The number and growth pattern of plasmacytoid dendritic cells vary in different types of reactive lymph nodes: an immunohistochemical study. Hum Pathol. 2013;44(6):1003–10. doi: 10.1016/j.humpath.2012.08.020.
  27. Katsiari CG, Liossis S-NC, Sfikakis PP. The Pathophysiologic Role of Monocytes and Macrophages in Systemic Lupus Erythematosus: A Reappraisal. Semin Arthrit Rheum. 2010;39(6):491–503. doi: 10.1016/j.semarthrit.2008.11.002.
  28. Ma W-T, Gao F, Gu K, et al. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol. 2019;10:1140. doi: 10.3389/fimmu.2019.01140.
  29. Pileri SA, Facchetti F, Ascani S, et al. Myeloperoxidase expression by histiocytes in Kikuchi’s and Kikuchi-like lymphadenopathy. Am J Pathol. 2001;159(3):915–24. doi: 10.1016/S0002-9440(10)61767-1.
  30. Strzepa A, Pritchard KA, Dittel BN. Myeloperoxidase: A new player in autoimmunity. Cell Immunol. 2017;317:1–8. doi: 10.1016/j.cellimm.2017.05.002.
  31. Pilichowska ME, Pinkus JL, Pinkus GS. Histiocytic Necrotizing Lymphadenitis (Kikuchi-Fujimoto Disease). Am J Clin Pathol. 2009;131(2):174–82. doi: 10.1309/AJCP7V1QHJLOTKKJ.
  32. Jang SJ, Min JH, Kim D, Yang WI. Myeloperoxidase positive histiocytes in subacute necrotizing lymphadenitis express both CD11c and CD163. Basic Appl Pathol. 2011;4(4):110–5. doi: 10.1111/j.1755-9294.2011.01114.x.
  33. Andersen MH, Schrama D, Straten PT, et al. Cytotoxic T cells. J Invest Dermatol. 2006;126(1):32–41. doi: 10.1038/sj.jid.5700001.
  34. Suarez-Fueyo A, Bradley SJ, Tsokos GC. T cells in Systemic Lupus Erythematosus. Curr Opin Immunol. 2016;43:32–8. doi: 10.1016/j.coi.2016.09.001.
  35. Tabata T, Takata K, Miyata-Takata T, et al. Characteristic Distribution Pattern of CD30-positive Cytotoxic T Cells Aids Diagnosis of Kikuchi-Fujimoto Disease. Appl Immunohistochem Mol Morphol. 2018;26(4):274–82. doi: 10.1097/pai.0000000000000411.
  36. Salman-Monte TC, Ruiz JP, Almirall M, et al. Lymphadenopathy syndrome in systemic lupus erythematosus: Is it Kikuchi-Fujimoto disease? Reumatol Clin. 2017;13(1):55–6. doi: 10.1016/j.reumae.2016.04.004.
  37. Sukswai N, Jung HR, Amr SS. Immunopathology of Kikuchi-Fujimoto Disease: A reappraisal using novel immunohistochemistry markers. Histopathology. 2020;77(2):262–74. doi: 10.1111/his.14050.

EBV-Positive Lymphoproliferative Diseases: A New Concept and Differential Diagnosis (Literature Review and Case Reports)

АM Kovrigina

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Professor Alla Mikhailovna Kovrigina, PhD in Biology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM. EBV-Positive Lymphoproliferative Diseases: A New Concept and Differential Diagnosis (Literature Review and Case Reports). Clinical oncohematology. 2018;11(4):326–37.

DOI: 10.21320/2500-2139-2018-11-4-326-337


ABSTRACT

In recent years increasing attention focuses on the concept of EBV-positive lymphoproliferative diseases related to primary or secondary immunodeficiency resulting from immunosuppressive therapy and persistent infections. Due to the progress of treatment methods in oncohematology and oncology this pathology also occurs as a delayed event when new surgical and therapeutic approaches are applied. The paper presents proof for the pathogenetic significance of Epstein-Barr virus (EBV) in the pathology under consideration with its various clinical manifestations and describes the evolution of knowledge on posttransplant lymphoproliferative disorders with their morphological classification underlying EBV+ lymphoproliferative diseases. The WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues revised in 2017 includes new forms of EBV+ lymphoproliferative diseases (mucocutaneous ulcer, T- and NK-cell childhood lymphoproliferative disorders including cutaneous and systemic forms of chronic active EBV infection) and EBV+ large B-cell lymphomas (unspecified and fibrin-associated diffuse large B-cell lymphomas). The paper summarizes major characteristics of these diseases and exemplifies them by the author’s own experience.

Keywords: B-, T-, NK-cell lymphoproliferative diseases, Epstein-Barr virus (EBV), immunodeficiency, immune imbalance, immunosuppression, morphology, diagnosis.

Received: July 20, 2018

Accepted: September 25, 2018

Read in PDF 


REFERENCES

  1. Ibrahim HA, Naresh KN. Posttransplant lymphoproliferative disorders. Adv Hematol. 2012;2012:230173. doi: 10.1155/2012/230173.

  2. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. 4th edition. Lyon: IARC Press; 2008.

  3. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edition. Lyon: IARC Press; 2017.

  4. Gratzinger D, Jaffe ES, Chadburn A. Primary/Congenital Immunodeficiency: 2015 SH/EAHP Workshop Report—Part 5. Am J Clin Pathol. 2017;147(2):204–16. doi: 10.1093/AJCP/AQW215.

  5. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702–3.

  6. Гурцевич В.Э. Роль вируса Эпштейна—Барр в онкогематологических заболеваниях человека. Клиническая онкогематология. 2010;3(3):222–32.

    [Gurtsevich VE. Role of Epstein-Barr virus in human hematological malignancies. Klinicheskaya onkogematologiya. 2010;3(3):222–32. (In Russ)]

  7. Tse E, Kwong Y-L. Epstein Barr virus-associated lymphoproliferative diseases: the virus as a therapeutic target. Exp Mol Med. 2015;47(1):e136. doi: 10.1038/emm.2014.102.

  8. Roschewski M, Wilson WH. EBV-associated lymphomas in adults. Best Pract Res Clin Haematol. 2012;25(1):75–89. doi: 10.1016/j.beha.2012.01.005.

  9. Shannon-Lowe C, Rickinson AB, Bell AI. Epstein–Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732):20160271. doi: 10.1098/rstb.2016.0271.

  10. Natkunam Y, Goodlad JR, Chadburn A, et al. EBV-Positive B-Cell Proliferations of Varied Malignant Potential: 2015 SH/EAHP Workshop Report—Part 1. Am J Clin Pathol. 2017;147(2):129–52. doi: 10.1093/AJCP/AQW214.

  11. Гаврилина О.А., Троицкая В.В., Звонков Е.Е. и др. Лимфопролиферативное EBV-позитивное заболевание с поражением центральной нервной системы, ассоциированное с иммуносупрессией после органной трансплантации: длительная ремиссия без химиотерапевтического лечения. Терапевтический архив. 2017;89(7):69–75. doi: 10.17116/terarkh201789769-75.

    [Gavrilina OA, Troitskaya VV, Zvonkov EE, et al. EBV-positive central nervous system lymphoproliferative disease associated with immunosuppression after organ transplantation: long-term remission without chemotherapy. Terapevticheskii arkhiv. 2017;89(7):69–75. doi: 10.17116/terarkh201789769-75. (In Russ)]

  12. Boyer DF, McKelvie PA, de Leval L, et al. Fibrin-associated EBV-positive large B-cell lymphoma: an indolent neoplasm with features distinct from diffuse large B-cell lymphoma associated with chronic inflammation. Am J Surg Pathol. 2017;41(3):299–312. doi: 10.1097/PAS.0000000000000775.

  13. Cohen M, De Matteo E, Narbaitz M, et al. Epstein-Barr virus presence in pediatric diffuse large B-cell lymphoma reveals a particular association and latency patterns: Analysis of viral role in tumor microenvironment. Int J Cancer. 2013;132(7):1572–80. doi: 10.1002/ijc.27845.

  14. Uccini S, Al-Jadiry MF, Scarpino S, et al. Epstein-Barr virus-positive diffuse large B-cell lymphoma in children: A disease reminiscent of Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly. Hum Pathol. 2015;46(5):716–24. doi: 10.1016/j.humpath.2015.01.011.

  15. Nicolae A, Pittaluga S, Abdullah S, et al. EBV-positive large B-cell lymphomas in young patients: A nodal lymphoma with evidence for a tolerogenic immune environment. Blood. 2015;126(7):863–72. doi: 10.1182/blood-2015-02-630632.

  16. Kunitomi A, Hasegawa Y, Asano N, et al. EBV-positive reactive hyperplasia progressed into EBV-positive diffuse large B-cell lymphoma of the elderly over a 6-year period. Intern Med. 2018;57(9):1287–90. doi: 10.2169/internalmedicine.9112-17.

  17. de la Hera Magallanes AI, Montes-Moreno S, Hernandez SG, et al. Early phase of Epstein-Barr virus (EBV)-positive diffuse large B cell lymphoma of the elderly mimicking EBV-positive reactive follicular hyperplasia. Histopathology. 2011;59(3):571–5. doi: 10.1111/j.1365-2559.2011.03950.x.

  18. Roberts TK, Chen X, Liao JJ. Diagnostic and therapeutic challenges of EBV-positive mucocutaneous ulcer: a case report and systematic review of the literature. Exp Hematol Oncol. 2016;5(1):13. doi: 10.1186/s40164-016-0042-5.

  19. Dojcinov SD, Venkataraman G, Raffeld M, et al. EBV positive mucocutaneous ulcer–a study of 26 cases associated with various sources of immunosuppression. Am J Surg Pathol. 2010;34(3):405–17. doi: 10.1097/PAS.0b013e3181cf8622.

  20. Docinov SD, Venkataraman G, Pittaluga S, et al. Age-related EBV-associated lymphoproliferative disorders in the Western population: a spectrum of reactive lymphoid hyperplasia and lymphoma. Blood. 2011;117(8):4726–35. doi: 10.1182/blood-2010-12-323238.

  21. Gratzinger D, Jong D, Jaffe ES, et al. T- and NK-Cell Lymphomas and Systemic Lymphoproliferative Disorders and the Immunodeficiency Setting: 2015 SH/EAHP Workshop Report—Part 4. Am J Clin Pathol. 2017;147(2):188–203. doi: 10.1093/AJCP/AQW213.