Stratification of Patients with Multiple Myeloma: State-of-the-Art and Prospects

AYu Aksenova1, AS Zhuk2, EI Stepchenkova1,3, SV Gritsaev4

1 Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, Russian Federation, 199034

2 ITMO National Research University, 49 lit. A Kronverkskii pr-t, Saint Petersburg, Russian Federation, 197101

3 NI Vavilov Institute of General Genetics, Saint Petersburg branch, 7/9 Universitetskaya nab., Saint Petersburg, Russian Federation, 199034

4 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024

For correspondence: Anna Yurevna Aksenova, PhD in Biology, 17 Botanicheskaya ul., Saint Petersburg, Russian Federation, 198504; Tel.: +7(812)428-40-09; e-mail: a.aksenova@spbu.ru; Sergei Vasilevich Gritsaev, MD, PhD, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024; Tel.: +7(812)717-54-68; e-mail: gritsaevsv@mail.ru

For citation: Aksenova AYu, Zhuk AS, Stepchenkova EI, Gritsaev SV. Stratification of Patients with Multiple Myeloma: State-of-the-Art and Prospects. Clinical oncohematology. 2022;15(3):259–70. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-259-270


ABSTRACT

In recent years, there has been a substantial progress in improving progression-free survival (PFS) and quality of life of multiple myeloma (MM) patients. This has become possible through implementation of novel drugs into clinical practice which were developed on the basis of multiomic molecular genetic studies in MM. The results of these studies also enabled to assess genetic heterogeneity of tumor cells in MM. That allowed to identify types and prevalence of single-nucleotide variations, structural chromosomal aberrations, and abnormal copy numbers of chromosomes in the genome of malignant plasma cells. It was shown that MM patients can have quite different spectra of detected genetic defects in the tumor. High genetic disease heterogeneity is one of the major causes of differences in drug efficacy and PFS. The present review comprehensively discusses the value of some chromosomal aberrations in risk stratification of MM patients. It describes the most prevalent aberrations, also those associated with high and low risk of early MM progression which have already been included in different international prognostic scores. Besides, the additional aberrations were determined which are potentially applicable in clinical practice. Special attention was paid to risk assessment in case a number of different chromosome rearrangements are identified in a patient. The review outlines challenges and prospects of dealing with the information on chromosome rearrangements in choosing the most optimal treatment strategy and assessing of its efficacy. In this context, emphasis is laid on integrating genetic data and such clinical parameters as age, comorbidity, renal failure, bone lesions, indications for autologous hematopoietic stem cell transplantation, etc.

Keywords: multiple myeloma, international staging systems, chromosome rearrangements, R-ISS, R2-ISS, mSMART, MASS.

Received: March 28, 2022

Accepted: June 5, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Бессмельцев C.C. Множественная миелома (патогенез, клиника, диагностика, дифференциальный диагноз). Часть I. Онкогематология. 2013;3(6):237–57.
    [Bessmeltsev SS. Multiple myeloma (pathogenesis, clinical features, diagnosis, differential diagnosis). Part I. Onkogematologiya. 2013;3(6):237–57. (In Russ)]
  2. Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95(5):548–67. doi: 10.1002/ajh.25791.
  3. Binder M, Nandakumar B, Rajkumar SV, et al. Mortality trends in multiple myeloma after the introduction of novel therapies in the United States. Leukemia. 2021;36(3):801–8. doi: 10.1038/s41375-021-01453-5.
  4. Chalopin T, Vallet N, Theisen O, et al. No survival improvement in patients with high-risk multiple myeloma harbouring del(17p) and/or t(4;14) over the two past decades. Br J Haematol. 2021;194(3):635–8. doi: 10.1111/bjh.17488.
  5. Aksenova AY, Zhuk AS, Lada AG, et al. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers. 2021;13(23):5949. doi: 10.3390/cancers13235949.
  6. Rasillo A, Tabernero MD, Sanchez ML, et al. Fluorescence in situ hybridization analysis of aneuploidization patterns in monoclonal gammopathy of undetermined significance versus multiple myeloma and plasma cell leukemia. Cancer. 2003;97(3):601–9. doi: 10.1002/cncr.11100.
  7. Rajkumar SV, Kumar S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020;10(9):94. doi: 10.1038/s41408-020-00359-2.
  8. Walker BA, Wardell CP, Murison A, et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 2015;6:6997. doi: 10.1038/ncomms7997.
  9. Rustad EH, Yellapantula V, Leongamornlert D, et al. Timing the initiation of multiple myeloma. Nat Commun. 2020;11(1):1–14. doi: 10.1038/s41467-020-15740-9.
  10. Plowright EE, Li Z, Bergsagel PL, et al. Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood. 2000;95(3):992–8.
  11. Alvarez JV, Frank DA. Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol Ther. 2004;3(11):1045–50. doi: 10.4161/cbt.3.11.1172.
  12. Ramlee MK, Wang J, Toh WX, Li S. Transcription regulation of the human telomerase reverse transcriptase (hTERT) gene. Genes. 2016;7(8):50. doi: 10.3390/genes7080050.
  13. Marango J, Shimoyama M, Nishio H, et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood. 2008;111(6):3145–54. doi: 10.1182/blood-2007-06-092122.
  14. Xie Z, Chng WJ. MMSET: Role and therapeutic opportunities in multiple myeloma. Biomed Res Int. 2014;2014:636514. doi: 10.1155/2014/636514.
  15. Dutta AK, Fink JL, Grady JP, et al. Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia. 2019;33(2):457–68. doi: 10.1038/s41375-018-0206-x.
  16. Maura F, Bolli N, Rustad EH, et al. Moving from Cancer Burden to Cancer Genomics for Smoldering Myeloma: A Review. JAMA Oncol. 2020;6(3):425–32. doi: 10.1001/jamaoncol.2019.4659.
  17. Maura F, Bolli N, Angelopoulos N, et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun. 2019;10(1):1–12. doi: 10.1038/s41467-019-11680-1.
  18. Konigsberg R, Ackermann J, Kaufmann H, et al. Deletions of chromosome 13q in monoclonal gammopathy of undetermined significance. Leukemia. 2000;14(11):1975–9. doi: 10.1038/sj.leu.2401909.
  19. Avet-Loiseau H, Li JY, Morineau N, et al. Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myelome. Blood. 1999;94(8):2583–9.
  20. Shaughnessy J, Tian E, Sawyer J, et al. High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood. 2000;96(4):1505–11. doi: 10.1182/blood.v96.4.1505.
  21. Walker BA, Leone PE, Chiecchio L, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116(15). doi: 10.1182/blood-2010-04-279596.
  22. Chavan SS, He J, Tytarenko R, et al. Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker. Blood Cancer J. 2017;7(2):e535. doi: 10.1038/bcj.2017.12.
  23. Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132(6):587–97. doi: 10.1182/blood-2018-03-840132.
  24. Manier S, Salem KZ, Park J, et al. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14(2):100–13. doi: 10.1038/nrclinonc.2016.122.
  25. Lode L, Eveillard M, Trichet V, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica. 2010;95(11):1973–6. doi: 10.3324/haematol.2010.023697.
  26. Oliva S, De Paoli L, Ruggeri M, et al. A longitudinal analysis of chromosomal abnormalities in disease progression from MGUS/SMM to newly diagnosed and relapsed multiple myeloma. Ann Hematol. 2021;100(2):437–43. doi: 10.1007/s00277-020-04384-w.
  27. Lopez-Corral L, Gutierrez NC, Vidriales MB, et al. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clin Cancer Res. 2011;17(7):1692–700. doi: 10.1158/1078-0432.CCR-10-1066.
  28. Mikulasova A, Smetana J, Wayhelova M, et al. Genomewide profiling of copy-number alteration in monoclonal gammopathy of undetermined significance. Eur J Haematol. 2016;97(6):568–75. doi: 10.1111/EJH.12774.
  29. Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5(1):1–13. doi: 10.1038/ncomms3997.
  30. Walker BA, Boyle EM, Wardell CP, et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol. 2015;33(33):3911–20. doi: 10.1200/JCO.2014.59.1503.
  31. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  32. Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: The experience of the Intergroupe Francophone du Myelome. Blood. 2007;109(8):3489–95. doi: 10.1182/blood-2006-08-040410.
  33. Jovanovic KK, Escure G, Demonchy J, et al. Deregulation and targeting of TP53 pathway in multiple myeloma. Front Oncol. 2019;8:665. doi: 10.3389/fonc.2018.00665.
  34. Walker BA, Mavrommatis K, Wardell CP, et al. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019;33(1):159–70. doi: 10.1038/s41375-018-0196-8.
  35. Chin M, Sive JI, Allen C, et al. Prevalence and timing of TP53 mutations in del(17p) myeloma and effect on survival. Blood Cancer J. 2017;7(9):e610. doi: 10.1038/bcj.2017.76.
  36. Corre J, Perrot A, Caillot D, et al. del(17p) without TP53 mutation confers a poor prognosis in intensively treated newly diagnosed patients with multiple myeloma. Blood. 2021;137(9):1192–5. doi: 10.1182/blood.2020008346.
  37. Martello M, Poletti A, Borsi E, et al. Clonal and subclonal TP53 molecular impairment is associated with prognosis and progression in multiple myeloma. Blood Cancer J. 2022;12(1):15. doi: 10.1038/S41408-022-00610-Y.
  38. Абрамова Т.В., Обухова Т.Н., Грибанова Е.О. и др. Структура и значение цитогенетических перестроек у больных множественной миеломой. Гематология и трансфузиология. 2021;66(1):54–67. doi: 10.35754/0234-5730-2021-66-1-54-67.
    [Abramova TV, Obukhova TN, Gribanova EO, et al. Structure and significance of cytogenetic abnormalities in patients with multiple myeloma. Russian journal of hematology and transfusiology. 2021;66(1):54–67. doi: 10.35754/0234-5730-2021-66-1-54-67. (In Russ)]
  39. Schmidt TM, Fonseca R, Usmani SZ. Chromosome 1q21 abnormalities in multiple myeloma. Blood Cancer J. 2021;11(4):1–11. doi: 10.1038/s41408-021-00474-8.
  40. Shi L, Wang S, Zangari M, et al. Over-expression of CKS1B activates both MEK/ERK and JAK/STAT3 signaling pathways and promotes myeloma cell drug-resistance. Oncotarget. 2010;1(1):22–33. doi: 10.18632/ONCOTARGET.105.
  41. Schmidt TM, Barwick BG, Joseph N, et al. Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. 2019;9(12):94. doi: 10.1038/s41408-019-0254-0.
  42. Neben K, Lokhorst HM, Jauch A, et al. Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood. 2012;119(4):940–8. doi: 10.1182/blood-2011-09-379164.
  43. Minguela A, Vasco-Mogorron MA, Campillo JA, et al. Predictive value of 1q21 gain in multiple myeloma is strongly dependent on concurrent cytogenetic abnormalities and first-line treatment. Am J Cancer Res. 2021;11(9):4438.
  44. Giri S, Huntington SF, Wang R, et al. Chromosome 1 abnormalities and survival of patients with multiple myeloma in the era of novel agents. Blood Adv. 2020;4(10):2245–53. doi: 10.1182/bloodadvances.2019001425.
  45. Weinhold N, Salwender HJ, Cairns DA, et al. Chromosome 1q21 abnormalities refine outcome prediction in patients with multiple myeloma – a meta-analysis of 2,596 trial patients. Haematologica. 2021;106(10):2754–8. doi: 10.3324/HAEMATOL.2021.278888.
  46. Shaughnessy J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27 Kip1 and an aggressive clinical course in multiple myeloma. Hematology. 2005;10(Suppl 1):117–26. doi: 10.1080/10245330512331390140.
  47. Hanamura I. Gain/amplification of chromosome arm 1q21 in multiple myeloma. Cancers. 2021;13(2):1–16. doi: 10.3390/cancers13020256.
  48. Mikulasova A, Wardell CP, Murison A, et al. The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma. Haematologica. 2017;102(9):1617–25. doi: 10.3324/haematol.2017.163766.
  49. Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: Incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108(5):1724–32. doi: 10.1182/blood-2006-03-009910.
  50. Greipp PR, Miguel JS, Dune BGM, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–20. doi: 10.1200/JCO.2005.04.242.
  51. Dimopoulos MA, Barlogie B, Smith TL, Alexanian R. High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med. 1991;115(12):931–5. doi: 10.7326/0003-4819-115-12-931.
  52. Terpos E, Katodritou E, Roussou M, et al. High serum lactate dehydrogenase adds prognostic value to the international myeloma staging system even in the era of novel agents. Eur J Haematol. 2010;85(2):114–9. doi: 10.1111/J.1600-0609.2010.01466.X.
  53. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–21. doi: 10.1038/LEU.2009.174.
  54. Chng WJ, Dispenzieri A, Chim CS, et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28(2):269–77. doi: 10.1038/LEU.2013.247.
  55. Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: A report from international myeloma working group. J Clin Oncol. 2015;33(26):2863–9. doi: 10.1200/JCO.2015.61.2267.
  56. Boyd KD, Ross FM, Chiecchio L, et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia. 2012;26(2):349–55. doi: 10.1038/LEU.2011.204.
  57. Ravi G, Gonsalves WI. Current diagnosis, risk stratification and treatment paradigms in newly diagnosed multiple myeloma. Cancer Treat Res Commun. 2021;29:100444. doi: 10.1016/J.CTARC.2021.100444.
  58. Wallington-Beddoe CT, Mynott RL. Prognostic and predictive biomarker developments in multiple myeloma. J Hematol Oncol. 2021;14(1):1–15. doi: 10.1186/S13045-021-01162-7.
  59. Mikhael JR, Dingli D, Roy V, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo stratification of myeloma and risk-adapted therapy (mSMART) consensus guidelines 2013. Mayo Clin Proc. 2013;88(4):360–76. doi: 10.1016/J.MAYOCP.2013.01.019.
  60. Dispenzieri A, Rajkumar SV, Gertz MA, et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc. 2007;82(3):323–41. doi: 10.4065/82.3.323.
  61. Cho HJ, Jung SH, Jo JC, et al. Development of a new risk stratification system for patients with newly diagnosed multiple myeloma using R-ISS and 18F-FDG PET/CT. Blood Cancer J. 2021;11(12):190. doi: 10.1038/S41408-021-00577-2.
  62. Galieni P, Travaglini F, Vagnoni D, et al. The detection of circulating plasma cells may improve the Revised International Staging System (R-ISS) risk stratification of patients with newly diagnosed multiple myeloma. Br J Haematol. 2021;193(3):542–50. doi: 10.1111/BJH.17118.
  63. Mellors PW, Binder M, Ketterling RP, et al. Metaphase cytogenetics and plasma cell proliferation index for risk stratification in newly diagnosed multiple myeloma. Blood Adv. 2020;4(10):2236. doi: 10.1182/BLOODADVANCES.2019001275.
  64. Terpos E, Katodritou E, Tsiftsakis E, et al. Cystatin-C is an independent prognostic factor for survival in multiple myeloma and is reduced by bortezomib administration. Haematologica. 2009;94(3):372–9. doi: 10.3324/HAEMATOL.2008.000638.
  65. Zhang J, Jiang Y, Guo D, et al. The role of cystatin C in multiple myeloma. Int J Lab Hematol. 2022;44(1):135–41. doi: 10.1111/IJLH.13695.
  66. Chen X, Liu L, Chen M, et al. A Five-Gene Risk Score Model for Predicting the Prognosis of Multiple Myeloma Patients Based on Gene Expression Profiles. Front Genet. 2021;12:785330. doi: 10.3389/FGENE.2021.785330/BIBTEX.
  67. Rangel-Pozzo A, Yu PLI, Lal S, et al. Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma. Cancers. 2021;13(8):1969. doi: 10.3390/CANCERS13081969.
  68. D’Agostino M, Lahuerta J-J, Wester R, et al. A New Risk Stratification Model (R2-ISS) in Newly Diagnosed Multiple Myeloma: Analysis of Mature Data from 7077 Patients Collected By European Myeloma Network within Harmony Big Data Platform. Blood. 2020;136(Suppl 1):34–7. doi: 10.1182/blood-2020-137021.
  69. Abdallah NH, Binder M, Rajkumar SV, et al. A simple additive staging system for newly diagnosed multiple myeloma. Blood Cancer J. 2022;12(1):21. doi: 10.1038/S41408-022-00611-X.
  70. Dimopoulos MA, Moreau P, Terpos E, et al. Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. HemaSphere. 2021;5(2):e528. doi: 10.1097/HS9.0000000000000528.
  71. Touzeau C, Maciag P, Amiot M, Moreau P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia. 2018;32(9):1899–907. doi: 10.1038/s41375-018-0223-9.
  72. Paner A, Patel P, Dhakal B. The evolving role of translocation t(11;14) in the biology, prognosis, and management of multiple myeloma. Blood Rev. 2020;41:100643. doi: 10.1016/j.blre.2019.100643.
  73. Greenberg AJ, Rajkumar S V, Therneau TM, et al. Relationship between initial clinical presentation and the molecular cytogenetic classification of myeloma. Leukemia. 2014;28(2):398–403. doi: 10.1038/LEU.2013.258.
  74. Abdallah N, Rajkumar SV, Greipp P, et al. Cytogenetic abnormalities in multiple myeloma: association with disease characteristics and treatment response. Blood Cancer J. 2020;10(8):1–9. doi: 10.1038/s41408-020-00348-5.
  75. Sato S, Kamata W, Okada S, Tamai Y. Clinical and prognostic significance of t(4;14) translocation in multiple myeloma in the era of novel agents. Int J Hematol. 2021;113(2):207–13. doi: 10.1007/S12185-020-03005-6.
  76. Shah MY, Martinez-Garcia E, Phillip JM, et al. MMSET/WHSC1 enhances DNA damage repair leading to an increase in resistance to chemotherapeutic agents. Oncogene. 2016;35(45):5905–15. doi: 10.1038/onc.2016.116.
  77. Jaksic W, Trudel S, Chang H, et al. Clinical outcomes in t(4;14) multiple myeloma: a chemotherapy-sensitive disease characterized by rapid relapse and alkylating agent resistance. J Clin Oncol. 2005;23(28):7069–73. doi: 10.1200/JCO.2005.17.129.
  78. Avet-Loiseau H, Leleu X, Roussel M, et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol. 2010;28(30):4630–4. doi: 10.1200/JCO.2010.28.3945.
  79. An G, Xu Y, Shi L, et al. Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica. 2014;99(2):353–9. doi: 10.3324/haematol.2013.088211.
  80. Caro J, Al Hadidi S, Usmani S, et al. How to Treat High-Risk Myeloma at Diagnosis and Relapse. Am Soc Clin Oncol Educ Book. 2021;41(41):291–309. doi: 10.1200/edbk_320105.
  81. Marneni N, Chakraborty R. Current Approach to Managing Patients with Newly Diagnosed High-Risk Multiple Myeloma. Curr Hematol Malig Rep. 2021;16(2):148–61. doi: 10.1007/S11899-021-00631-7.
  82. Rajkumar SV. Sequencing of myeloma therapy: Finding the right path among many standards. Hematol Oncol. 2021;39(Suppl 1):68–72. doi: 10.1002/HON.2848.
  83. Bal S, Giri S, Godby KN, Costa LJ. New regimens and directions in the management of newly diagnosed multiple myeloma. Am J Hematol. 2021;96(3):367–78. doi: 10.1002/AJH.26080.
  84. Ntanasis-Stathopoulos I, Gavriatopoulou M, Kastritis E, et al. Multiple myeloma: Role of autologous transplantation. Cancer Treat Rev. 2020;82:101929. doi: 10.1016/j.ctrv.2019.101929.
  85. Cavo M, Gay F, Beksac M, et al. Autologous haematopoietic stem-cell transplantation versus bortezomib–melphalan–prednisone, with or without bortezomib–lenalidomide–dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 2020;7(6):e456–e468. doi: 10.1016/S2352-3026(20)30099-5.
  86. Vaxman I, Visram A, Kapoor P, et al. Outcomes of multiple myeloma patients with del 17p undergoing autologous stem cell transplantation. Am J Hematol. 2021;96(1):E35–E38. doi: 10.1002/AJH.26023.
  87. Gagelmann N, Eikema DJ, de Wreede LC, et al. Upfront stem cell transplantation for newly diagnosed multiple myeloma with del(17p) and t(4;14): a study from the CMWP-EBMT. Bone Marrow Transplant. 2021;56(1):210–7. doi: 10.1038/S41409-020-01007-W.
  88. Srour SA, Saliba RM, Bashir Q, et al. Influence of Overlapping Genetic Abnormalities on Treatment Outcomes of Multiple Myeloma. Transplant Cell Ther. 2021;27(3):243.e1–243.e6. doi: 10.1016/j.jtct.2020.10.021.
  89. Croft J, Ellis S, Sherborne AL, et al. Copy number evolution and its relationship with patient outcome—an analysis of 178 matched presentation-relapse tumor pairs from the Myeloma XI trial. Leukemia. 2021;35(7):2043–53. doi: 10.1038/s41375-020-01096-y.
  90. Perrot A, Lauwers-Cances V, Tournay E, et al. Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J Clin Oncol. 2019;37(19):1657–65. doi: 10.1200/JCO.18.00776.
  91. Shah V, Sherborne AL, Walker BA, et al. Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients. Leukemia. 2018;32(1):102–10. doi: 10.1038/LEU.2017.179.
  92. Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–5. doi: 10.1182/BLOOD-2011-11-390658.
  93. Chretien ML, Corre J, Lauwers-Cances V, et al. Understanding the role of hyperdiploidy in myeloma prognosis: Which trisomies really matter? Blood. 2015;126(25):2713–9. doi: 10.1182/blood-2015-06-650242.
  94. Hebraud B, Magrangeas F, Cleynen A, et al. Role of additional chromosomal changes in the prognostic value of t(4;14) and del(17p) in multiple myeloma: the IFM experience. Blood. 2015;125(13):2095–100. doi: 10.1182/BLOOD-2014-07-587964.
  95. Takamatsu H, Yamashita T, Kurahashi S, et al. Clinical Implications of t(11;14) in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation. Biol Blood Marrow Transplant. 2019;25(3):474–9. doi: 10.1016/J.BBMT.2018.11.003.
  96. John L, Krauth MT, Podar K, Raab MS. Pathway-directed therapy in multiple myeloma. Cancers. 2021;13(7):1668. doi: 10.3390/cancers13071668.
  97. Leow CCY, Low MSY. Targeted therapies for multiple myeloma. J Pers Med. 2021;11(5):334. doi: 10.3390/jpm11050334.
  98. Goldman-Mazur S, Vesole DH, Jurczyszyn A. Clinical implications of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematol Pol. 2021;52(1):18–28. doi: 10.5603/AHP.2021.0004.
  99. Cardona-Benavides IJ, de Ramon C, Gutierrez NC. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells. 2021;10(2):336. doi: 10.3390/cells10020336.
  100. Mao XH, Zhuang JL, Zhao DD, et al. IgH translocation with undefined partners is associated with superior outcome in multiple myeloma patients. Eur J Haematol. 2020;105(3):326–34. doi: 10.1111/ejh.13440.
  101. Hassan H, Szalat R. Genetic predictors of mortality in patients with multiple myeloma. Appl Clin Genet. 2021;14:241–54. doi: 10.2147/TACG.S262866.
  102. Sessa M, Cavazzini F, Cavallari M, et al. Tangle of genomic aberrations drives multiple myeloma and correlates with clinical aggressiveness of the disease: a comprehensive review from a biological perspective to clinical trial results. Genes. 2020;11(12):1–24. doi: 10.3390/GENES11121453.
  103. Jackson GH, Pawlyn C, Cairns DA, et al. Carfilzomib, lenalidomide, dexamethasone, and cyclophosphamide (KRdc) as induction therapy for transplant-eligible, newly diagnosed multiple myeloma patients (Myeloma XI+): Interim analysis of an open-label randomised controlled trial. PLOS Med. 2021;18(1):e1003454. doi: 10.1371/JOURNAL.PMED.1003454.
  104. Qiang YW, Ye S, Chen Y, et al. MAF protein mediates innate resistance to proteasome inhibition therapy in multiple myeloma. Blood. 2016;128(25):2919–30. doi: 10.1182/BLOOD-2016-03-706077.
  105. Rajkumar VS. Multiple myeloma: selection of initial chemotherapy for symptomatic disease. Available from: https://www.uptodate.com/contents/multiple-myeloma-selection-of-initial-chemotherapy-for-symptomatic-disease (accessed 23.03.2022).
  106. Qiang YW, Ye S, Huang Y, et al. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma. BMC Cancer. 2018;18(1):1–13. doi: 10.1186/S12885-018-4602-4/FIGURES/6.
  107. Mateos MV, Martinez BP, Gonzalez-Calle V. High-risk multiple myeloma: how to treat at diagnosis and relapse? Hematology. 2021;2021(1):30–6. doi: 10.1182/HEMATOLOGY.2021000229.
  108. Sonneveld P, Avet-Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood. 2016;127(24):2955–62. doi: 10.1182/blood-2016-01-631200.
  109. Costa LJ, Usmani SZ. Defining and Managing High-Risk Multiple Myeloma: Current Concepts. J Natl Compr Canc Netw. 2020;18(12):1730–7. doi: 10.6004/JNCCN.2020.7673.
  110. Jurczyszyn A, Charlinski G, Suska A, Vesole DH. The importance of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematol Pol. 2021;52(4):361–70. doi: 10.5603/AHP.2021.0069.
  111. Garifullin A, Voloshin S, Shuvaev V, et al. Significance of Modified Risk Stratification Msmart 3.0 and Autologous Stem Cell Transplantation for Patients with Newly Diagnosed Multiple Myeloma. Blood. 2019;134(Suppl_1):5593. doi: 10.1182/BLOOD-2019-130092.

Quality of Life and Efficacy of Triplet IxaRd Therapy in Relapsed/Refractory Multiple Myeloma: Results of a Multi-Center Pilot Real-World Study

TI Ionova1,2, OYu Vinogradova3,4,5, YuB Kochkareva3, EE Markova3, KD Kaplanov6, MN Shirokova6,7, TV Shelekhova8, AN Levanov8, AV Kopylova9, OYu Li10, TA Mitina11, OA Rukavitsyn12, PI Simashova12, LV Anchukova13, EN Babich14, SA Volkova15, DB Dasheeva16, MV Demchenkova17, SK Dubov18, TV Esenina19, LE Ivanova17, TL Kravchuk20, EV Rimashevskaya21, MT Savinova22, NO Saraeva23, NM Porfirieva1, TP Nikitina1,2, VV Ptushkin3

1 Multinational Center for Quality of Life Research, 1 Artilleriiskaya ul., Saint Petersburg, Russian Federation, 191014

2 Saint Petersburg State University Hospital, 154 Fontanki nab., Saint Petersburg, Russian Federation, 198103

3 Moscow Municipal Center for Hematology, SP Botkin City Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

4 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova ul., Moscow, Russian Federation, 117997

5 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela ul., Moscow, Russian Federation, 117997

6 SP Botkin City Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

7 Volgograd Regional Clinical Oncology Dispensary, 78 Zemlyachki ul., Volgograd, Russian Federation, 400138

8 VI Razumovskii Saratov State Medical University, 112 Bolshaya Kazach’ya ul., Saratov, Russian Federation, 410012

9 Lipetsk Municipal Hospital No. 3 “Svobodnyi sokol”, 10 Ushinskogo ul., Lipetsk, Russian Federation, 398007

10 Sakhalin Regional Clinical Hospital, 430 Mira pr-t, Yuzhno-Sakhalinsk, Russian Federation, 693004

11 MF Vladimirskii Moscow Regional Research Clinical Institute, 61/2 Shchepkina ul., Moscow, Russian Federation, 129110

12 NN Burdenko Main Military Clinical Hospital, 3 Gospital’naya pl., Moscow, Russian Federation, 105094

13 Vologda Regional Clinical Hospital, 17 Lechebnaya ul., Vologda, Russian Federation, 160002

14 Yugry District Clinical Hospital, 40 Kalinina ul., Khanty-Mansiisk, Russian Federation, 628011

15 Privolzhsky Research Medical University, 10/1 Minina i Pozharskogo pl., Nizhny Novgorod, Russian Federation, 603005

16 Zabaikalsky Krai Oncology Dispensary, 104 Leningradskaya ul., Chita, Russian Federation, 672027

17 Irkutsk Regional Cancer Center, 32 Frunze ul., Irkutsk, Russian Federation, 664035

18 Krai Clinical Hospital No. 2, 55 Russkaya ul., Vladivostok, Russian Federation, 690105

19 Amurskaya Regional Clinical Hospital, 26 Voronkova ul., Blagoveshchensk, Russian Federation, 675000

20 Tomsk National Research Medical Center, 5 Kooperativnyi per., Tomsk, Russian Federation, 634009

21 Russian Medical Academy of Postgraduate Education, 38 Smolnaya ul., Moscow, Russian Federation, 125445

22 Municipal Clinical Hospital No. 16, 121 Gagarina ul., Kazan, Russian Federation, 420039

23 Irkutsk Regional Clinical Hospital, 100 Yubileinyi mikroraion, Irkutsk, Russian Federation, 664049

For correspondence: Tatyana Pavlovna Nikitina, MD, PhD, 1 Artilleriiskaya ul., Saint Petersburg, Russian Federation, 191014; Tel.: +7(962)710-17-12; e-mail: qolife@mail.ru

For citation: Ionova TI, Vinogradova OYu, Kochkareva YuB, et al. Quality of Life and Efficacy of Triplet IxaRd Therapy in Relapsed/Refractory Multiple Myeloma: Results of a Multi-Center Pilot Real-World Study. Clinical oncohematology. 2022;15(3):240–52. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-240-252


ABSTRACT

Aim. To study quality of life (QoL) indicators and symptom profile as well as treatment satisfaction of patients with relapsed/refractory multiple myeloma (r/r MM) on triplet therapy based on ixazomib combined with lenalidomide and dexamethasone (IxaRd); to assess efficacy and safety of IxaRd protocol in real-world clinical practice.

Materials & Methods. The study enrolled 40 patients with confirmed r/r MM diagnosis, aged > 18 years, at 18 Russian health care institutions. They received at least one line of prior therapy and were IxaRd-eligible. Clinical and QoL indicators were assessed according to the RAND SF-36, and symptoms were evaluated using the ESAS-R questionnaire prior to IxaRd therapy and in 1, 3, 6, 9, 12, 15, and 18 months after its start. Besides, patients filled out checklists for assessment of treatment satisfaction at all time-points after therapy onset. The analysis of clinical IxaRd efficacy included assessment of treatment response by IMWG 2011 criteria, as well as response duration, overall survival (OS), and progression-free survival (PFS). The analysis of IxaRd safety was based on reporting adverse events (AEs), including severe ones (SAEs). To analyze patient-reported QoL and symptom changes during follow-up, GEE was used. To determine clinically meaningful changes, an effect size was calculated.

Results. The study included 40 r/r MM patients (mean age 63 ± 9 years, 65 % women). Median disease duration before IxaRd therapy onset was 55 months (range 2–99 months). 60 % of patients had IIIA/IIIB Durie-Salmon stage. With the median IxaRd duration of 7.5 months, clinical benefit rate was 71.8 %. Complete response was reported in 7.7 % of patients, stringent complete response in 2.6 % of patients, very good partial response in 5.1 % of patients, partial response in 30.8 % of patients, and minor response was achieved in 25.6 % of patients. Stable disease was reported in 15.4 % of patients, and disease progression was identified in 10.3 % patients, including immunochemical relapse in 1 patient. The median response duration was 16.3 months (95% confidence interval [95% CI] 15.4–17.3 months), the median PFS was 10.6 months (95% CI 6.3–16.3 months). The median OS was not reached; the 1-year OS after IxaRd therapy onset was 85.2 % (95% CI 71–99 %). AEs on IxaRd therapy were reported in 55 % of patients, SAEs were reported in 3 (7.5 %) patients. Positive QoL changes were observed on IxaRd therapy. QoL improvement was meaningful in terms of physical functioning, role-physical functioning, general health, vitality, and mental health, compared to baseline. Moreover, a considerable decrease of pain, fatigue, and nausea was revealed. On the whole, 87.5 % of patients were satisfied with the triplet IxaRd therapy.

Conclusion. The results of the present pilot study demonstrate efficacy and safety of the triplet IxaRd therapy (all per os) in real-world clinical practice from r/r MM patients’ and physicians’ perspective. Our data testify to the importance of patients’ feedback in the evaluation of therapy efficacy.

Keywords: multiple myeloma, relapsed/refractory, ixazomib, quality of life, real-world clinical practice.

Received: March 16, 2022

Accepted: June 6, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Менделеева Л.П., Вотякова О.М., Рехтина И.Г. и др. Множественная миелома. Современная онкология. 2020;22(4):6–28. doi: 10.26442/18151434.2020.4.200457.
    [Mendeleeva LP, Votiakova OM, Rekhtina IG., et al. Multiple myeloma. Journal of Modern Oncology. 2020;22(4):6–28. doi: 26442/18151434.2020.4.200457. (In Russ)]
  2. Dimopoulos MA, Moreau P, Terpos E, et al. Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021;32(3):309–22. doi: 10.1016/j.annonc.2020.11.014.
  3. Costa LJ, Omel J, Brown EE. Recent Trends in Multiple Myeloma Incidence and Survival By Age, Race and Ethnicity in the US. Blood. 2016;128(22):4774. doi: 10.1182/blood.V128.22.4774.4774.
  4. Bazarbachi AH, Al Hamed R, Malard F, et al. Relapsed refractory multiple myeloma: a comprehensive overview. Leukemia. 2019;33:2343–57. doi: 10.1038/s41375-019-0561-2.
  5. Novik A, Salek S, Ionova T (eds). Guidelines. Patient-reported outcomes in hematology. Genoa: Forum service editore; 2012. 203 p.
  6. Sonneveld P, Verelst SG, Lewis P, et al. Review of health-related quality of life data in multiple myeloma patients treated with novel agents. Leukemia. 2013;27(10):1959–69. doi: 10.1038/leu.2013.185.
  7. Kvam AK, Waage A. Health-related quality of life in patients with multiple myeloma – does it matter? Haematologica. 2015;100(6):704–5. doi: 10.3324/haematol.2015.127860.
  8. Nielsen LK, Jarden M, Andersen CL, et al. A systematic review of health-related quality of life in longitudinal studies of myeloma patients. Eur J Haematol. 2017;99(1):3–17. doi: 10.1111/ejh.12882.
  9. Galinsky J, Richard S. Patient Reported Outcome Measures (PROMs) in myeloma: are they fit for the future? 2018. Myeloma UK; 2018.
  10. Sonneveld P, De Witb E, Moreau P. How have evolutions in strategies for the treatment of relapsed/refractory multiple myeloma translated into improved outcomes for patients? Cri Rev Oncol Hematol. 2017;112:153–70. doi: 10.1016/j.critrevonc.2017.02.007.
  11. Cook G, Zweegman S, Mateos MV, et al. A question of class: treatment options for patients with relapsed and/or refractory multiple myeloma. Crit Rev Oncol Hematol. 2018;121:74–89. doi: 10.1016/j.critrevonc.2017.11.016.
  12. Tabayashi T. Management of multiple myeloma in the relapsed/refractory patient. Rinsho Ketsueki. 2019;60(9):1257–64. doi: 10.11406/rinketsu.60.1257.
  13. Рехтина И.Г., Менделеева Л.П. Эффективность помалидомидсодержащих программ у больных множественной миеломой при рефрактерности к леналидомиду. Онкогематология. 2019;14(1):8–13. doi: 10.17650/1818-8346-2019-14-1-8-13.
    [Rekhtina IG, Mendeleeva LP. Efficiency of pomalidomide therapy in patients with multiple myeloma refractory to lenalidomide. Oncohematology 2019;14(1):8–13. doi: 10.17650/1818-8346-2019-14-1-8-13. (In Russ)]
  14. Жеребцова В.А., Воробьев В.И., Гемджян Э.Г. и др. Карфилзомиб, леналидомид и дексаметазон в терапии рецидивов и рефрактерного течения множественной миеломы в реальной клинической практике. Терапевтический архив. 2021;93(7):785–92. doi: 10.26442/00403660.2021.07.200956.
    [Zherebtsova VA, Vorobyev VI, Gemdzhian EG, et al. Carfilzomib, lenalidomide and dexamethasone in relapsed/refractory multiple myeloma patients: the real-life experience. Terapevticheskii arkhiv. 2021;93(7):785–92. doi: 10.26442/00403660.2021.07.200956. (In Russ)]
  15. Moreau P, Masszi T, Grzasko N, et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;374(17):1621–34. doi: 10.1056/NEJMoa1516282.
  16. Brayer J, Baz R. The potential of ixazomib, a second generation proteasome inhibitor, in the treatment of multiple myeloma. Ther Adv Hematol. 2017;8(7):209–20. doi: 10.1177/2040620717710171.
  17. Richardson PG, Kumar S, Laubach JP, et al. New developments in the management of relapsed/refractory multiple myeloma – the role of ixazomib. J Blood Med. 2017;8:107–21. doi: 10.2147/jbm.s102328.
  18. Семочкин С.B. Иксазомиб в лечении рецидивирующей множественной миеломы. Медицинский совет. 2018;10:84–91. doi: 10.21518/2079-701X-2018-10-84-91.
    [Semochkin SV. Ixazomib in the treatment of relapsed multiple myeloma. Meditsinskiy sovet. 2018;10:84–91. doi: 10.21518/2079-701X-2018-10-84-91. (In Russ)]
  19. Ludwig H, Ponisch W, Knop S, et al. Quality of life in patients with relapsed/refractory multiple myeloma during ixazomib-thalidomide-dexamethasone induction and ixazomib maintenance therapy and comparison to the general population. Leuk Lymphoma. 2020;61(2):377–86. doi: 10.1080/10428194.2019.1666381.
  20. Пядушкина Е.А., Деркач Е.В., Игнатьева В.И. и др. Организационно-экономические аспекты применения триплетов в терапии рецидивирующей и рефрактерной множественной миеломы в условиях российского здравоохранения. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021;14(2):136–50. doi: 10.17749/2070-4909/farmakoekonomika.2021.098.
    [Pyadushkina ЕА, Derkach ЕV, Ignatyeva VI, et al. Organizational and economic aspects of triplet therapy of relapsed/refractory multiple myeloma in the Russian healthcare setting. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2021;14(2):136–50. doi: 10.17749/2070-4909/farmakoekonomika.2021.098. (In Russ)]
  21. Davies F, Rifkin R, Costello C, et al. Real-world comparative effectiveness of triplets containing bortezomib (B), carfilzomib (C), daratumumab (D), or ixazomib (I) in relapsed/refractory multiple myeloma (RRMM) in the US Ann Hematol. 2021;100:2325–37. doi: 10.1007/s00277-021-04534-8.
  22. Terpos E, Ramasamy K, Maouche N, et al. Real-world effectiveness and safety of ixazomib-lenalidomide-dexamethasone in relapsed/refractory multiple myeloma. Ann Hematol. 2020;99(5):1049–61. doi: 10.1007/s00277-020-03981-z.
  23. Yang Y, Xia ZJ, Zhang WH, et al. The efficacy and safety profile of ixazomib/lenalidomide/dexamethasone in relapsed/refractory multiple myeloma: a multicenter real-world study in China. Zhonghua Xue Ye Xue Za Zhi. 2021;42(8):628–34. doi: 10.3760/cma.j.issn.0253-2727.2021.08.003.
  24. Hajek R, Minarik J, Straub J, et al. Ixazomib-lenalidomide-dexamethasone in routine clinical practice: effectiveness in relapsed/refractory multiple myeloma. Future Oncol. 2021;17(19):2499–512. doi: 10.2217/fon-2020-1225.
  25. Varga G, Nagy Z, Demeter J, et al. Real World Efficacy and Safety Results of Ixazomib Lenalidomide and Dexamethasone Combination in Relapsed/Refractory Multiple Myeloma: Data Collected from the Hungarian Ixazomib Named Patient Program. Pathol Oncol Res. 2019;25(4):1615–20. doi: 10.1007/s12253-019-00607-2.
  26. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]
  27. Durie BGM, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measure myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36(3):842–54. doi: 10.1002/1097-0142(197509)36:3<842::aid-cncr2820360303>3.0.co;2-u.
  28. Greipp PR, San Miguel JF, Durie BG, et al. International Staging System for Multiple Myeloma. J Clin Oncol. 2005;23(15):3412–20. doi: 10.1200/JCO.2005.04.242.
  29. Rajkumar SV, Harousseau J-L, Durie B, et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. 2011;117(18):4691–5. doi: 10.1182/blood-2010-10-299487.
  30. Common Terminology Criteria for Adverse Evens (CTCAE 4) Version 4.0. Available from: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE4.032010-06-14QuickReference5х7.pdf (accessed 28.03.2022).
  31. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 10.1016/0021-9681(87)90171-8.
  32. Hays RD, Sherbourne CD, Mazel RM. User’s manual for medical outcomes study (MOS) core measures of health-related quality of life. RAND Corporation, 1995; MR-162-RC. Available from: www.rand.org (accessed 28.03.2022).
  33. Novik AA, Ionova TI, Kishtovich AV, et al. Stratification of patients using QoL parameters by the method of integral profiles. Quality Life Res. 2003;12(7):770.
  34. Bruera E, Kuehn N, Miller MJ, et al. The Edmonton Symptom Assessment System (ESAS): a simple method of the assessment of palliative care patients. J Palliat Care. 1991;7:6–9.
  35. Watanabe SM, Nekolaichuk C, Beaumont C, et al. A multi-centre comparison of two numerical versions of the Edmonton Symptom Assessment System in palliative care patients. J Pain Symptom Manage. 2011;41(2):456–68. doi: 10.1016/j.jpainsymman.2010.04.020.
  36. Atkinson MJ, Sinha A, Hass SL, et al. Validation of a general measure of treatment satisfaction, the Treatment Satisfaction Questionnaire for Medication (TSQM), using a national panel study of chronic disease. Health Qual Life Outcomes. 2004;2:12. doi: 10.1186/1477-7525-2-12.
  37. Morris SB, DeShon RP. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol Methods. 2002;7(1):105–25. doi: 10.1037/1082-989x.7.1.105.
  38. Angst F, Aeschlimanna A, Angst J. The minimal clinically important difference raised the significance of outcome effects above the statistical level, with methodological implications for future studies. J Clin Epidemiol. 2017;82:128–36. doi: 10.1016/j.jclinepi.2016.11.016.
  39. Revicki D, Hays RD, Cella DE, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol. 2008;61(2):102–9. doi: 10.1016/j.jclinepi.2007.03.012.
  40. Виноградова О.Ю., Птушкин В.В., Черников М.В. и др. Эпидемиология множественной миеломы в городе Москва. Терапевтический архив. 2019;91(7):83–92. doi: 10.26442/00403660.2019.07.000305.
    [Vinogradova OYu, Ptushkin VV, Chernikov MV, et al. Epidemiology of multiple myeloma in city Moscow. Terapevticheskii arkhiv. 2019;91(7):83–92. doi: 10.26442/00403660.2019.07.000305. (In Russ)]
  41. Семочкин С.В. Длительная непрерывная терапия как новая стратегия лечения рецидивирующей или рефрактерной множественной миеломы. Онкогематология. 2020;15(2):29–41. doi: 10.17650/1818-8346-2020-15-2-29-41.
    [Semochkin SV. Long-term continuous treatment as a new strategy for relapsed or refractory multiple myeloma. Oncohematology. 2020;15(2):29–41. doi: 10.17650/1818-8346-2020-15-2-29-41. (In Russ)]
  42. Семочкин С.В. Новые ингибиторы протеасомы в терапии множественной миеломы. Онкогематология. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40.
    [Semochkin SV. New proteasome inhibitors in the management of multiple myeloma. Oncohematology. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40. (In Russ)]
  43. Pozzi S, Bari A, Pecherstorfer M, Vallet S. Management of Adverse Events and Supportive Therapy in Relapsed/Refractory Multiple Myeloma. Cancers. 2021;13(19):4978. doi: 10.3390/cancers13194978.

Evaluation of Heterozygosity Loss in STR-Loci of Tumor DNA in Multiple Myeloma Patients with Plasmacytoma Based on the Molecular Analysis of Complex Archival Tumor Samples

EE Nikulina1, MV Firsova1, NV Risinskaya1, YaA Kozhevnikova2, MV Solov’ev1, TV Abramova1, TN Obukhova1, AM Kovrigina1, AB Sudarikov1, LP Mendeleeva1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 Faculty of Fundamental Medicine, MV Lomonosov Moscow State University, 27-1 Lomonosovskii pr-t, Moscow, Russian Federation, 119192

For correspondence: Elena Evgen’evna Nikulina, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: lenysh2007@rambler.ru

For citation: Nikulina EE, Firsova MV, Risinskaya NV, et al. Evaluation of Heterozygosity Loss in STR-Loci of Tumor DNA in Multiple Myeloma Patients with Plasmacytoma Based on the Molecular Analysis of Complex Archival Tumor Samples. Clinical oncohematology. 2022;15(2):156–66. (In Russ).

DOI: 10.21320/2500-2139-2022-15-2-156-166


ABSTRACT

Background. Multiple myeloma (MM) is a hematological malignancy with plasma cells as substrate. Sometimes MM is characterized by plasmacytomas, i.e., intra- and extraosseous tumors. A paraffin block containing plasmacytoma substrate provides valuable material to be used for analyzing the molecular biological characteristics of tumor. STR-profiling is a method for simultaneous evaluation of DNA degradation and integral assessment of tumor genome stability.

Aim. To describe STR-profiles of plasmacytoma DNA isolated from archival samples and to assess the integral stability of tumor genome against control DNA of patients.

Materials & Methods. The retrospective study enrolled 10 MM patients with plasmacytoma (7 women and 3 men) aged 34–62 years (median 53.5 years) who were treated at the National Research Center for Hematology from 2013 to 2021. Paired tumor/control DNA samples were obtained from all 10 patients.

Results. The present paper takes the first step in attempting a large-scale molecular genetic study of MM and provides first findings on the loss of heterozygosity (LOH) in plasmacytoma genome. All 10 patients showed LOH variants with different allelic loads having either deletion/quantitatively neutral LOH or duplication of one of the two alleles and involving 1–8 STR-loci. In plasmacytoma substrate the number of loci with LOH tended to be higher in the group with MM relapses compared with plasmacytomas identified at disease onset. According to the data analysis, LOH was frequently (in 4 out of 10 cases) detected on chromosomes 1 (1q42), 6 (6q14), 7 (7q21.11), 13 (13q31.1), and 21 (21q21.1).

Conclusion. The present paper shows the effectiveness of molecular analysis of DNAs being isolated from complex archival material consisting of paraffin blocks with plasmacytomas.

Keywords: multiple myeloma, plasmacytoma, loss of heterozygosity, STR-profiling.

Received: October 25, 2021

Accepted: January 28, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–е548. doi: 10.1016/S1470-2045(14)70442-5.
  2. Rosinol L, Beksac M, Zamagni E, et al. Expert review on soft-tissue plasmacytomas in multiple myeloma: definition, disease assessment and treatment considerations. Br J Haematol. 2021;194(3):496–507. doi: 10.1111/bjh.17338.
  3. Blade J, de Larrea FC, Rosinol L, et al. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol. 2011;29(28):3805–12. doi: 10.1200/JCO.2011.34.9290.
  4. Weinstock M, Ghobrial IM. Extramedullary multiple myeloma. Leuk Lymphoma. 2013;54(6):1135–41. doi: 10.3109/10428194.2012.740562.
  5. Mitsiades CS, McMillin DW, Klippel S, et al. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am. 2007;21(6):1007–34. doi: 10.1016/j.hoc.2007.08.007.
  6. Vande Broek I, Vanderkerken K, Van Camp B, Van Riet I. Extravasation and homing mechanisms in multiple myeloma. Clin Exp Metastasis. 2008;25(4):325–34. doi: 10.1007/s10585-007-9108-4.
  7. Dahl IM, Rasmussen T, Kauric G, Husebekk A. Differential expression of CD56 and CD44 in the evolution of extramedullary myeloma. Br J Haematol. 2002;116(2):273–7. doi: 10.1046/j.1365-2141.2002.03258.x.
  8. Фирсова М.В., Менделеева Л.П., Ковригина А.М. и др. Экспрессия молекулы адгезии CD56 на опухолевых плазматических клетках в костном мозге как фактор прогноза при множественной миеломе. Клиническая онкогематология. 2019;12(4):377–84. doi: 10.21320/2500-2139-2019-12-4-377-384.
    [Firsova MV, Mendeleeva LP, Kovrigina AM, et al. Expression of Adhesion Molecule CD56 in Tumor Plasma Cells in Bone Marrow as a Prognostic Factor in Multiple Myeloma. Clinical oncohematology. 2019;12(4):377–84. doi: 10.21320/2500-2139-2019-12-4-377-384. (In Russ)]
  9. Paydas S, Zorludemir S, Baslamisli F, et al. Vascular endothelial growth factor (VEGF) expression in plasmacytoma. Leuk Lymphoma. 2002;43(1):139–43. doi: 10.1080/10428190210203.
  10. Rasche L, Chavan SS, Stephens OW, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017;8(1):1–11. doi: 10.1038/s41467-017-00296-y.
  11. Weinstock M, Aljawai Y, Morgan EA, et al. Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation. Br J Haematol. 2015;169(6):851–8. doi: 10.1111/bjh.13383.
  12. Firsova MV, Mendeleeva LP, Kovrigina AM, et al. Plasmacytoma in patients with multiple myeloma: morphology and immunohistochemistry. BMC Cancer. 2020;20(1):346. doi: 10.1186/s12885-020-06870-w.
  13. Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905. doi: 10.1038/nature08822.
  14. Sidorova JV, Biderman BV, Nikulina EE, Sudarikov AB. A simple and efficient method for DNA extraction from skin and paraffin-embedded tissues applicable to T-cell clonality assays. Exp Dermatol. 2012;21(1):57–60. doi: 10.1111/j.1600-0625.2011.01375.x.
  15. Григорук О.Г., Пупкова Е.Э., Базулина Л.М., Лазарев А.Ф. Проведение молекулярно-генетических исследований с использованием ДНК клеток опухоли, полученных из цитологических препаратов. Лабораторная служба. 2017;6(1):23–8. doi: 10.17116/labs20176123-28.
    [Grigoruk OG, Pupkova EE, Bazulina LM, Lazarev AF. The execution of molecular genetic tests using DNA of tumor cells obtained from cytologic preparations. Laboratory Service. 2017;6(1):23–8. doi: 10.17116/labs20176123-28. (In Russ)]
  16. Сидорова Ю.В., Сорокина Т.В., Бидерман Б.В. и др. Определение минимальной остаточной болезни у больных В-клеточным хроническим лимфолейкозом методом пациент-специфичной ПЦР. Клиническая лабораторная диагностика. 2011;12:22–35.
    [Sidorova YuV, Sorokina TV, Biderman BV, et al. Minimal residual disease detection in patients with B-cell chronic lymphocytic leukemia by patient-specific PCR. Klinicheskaya laboratornaya diagnostika. 2011;12:22–35. (In Russ)]
  17. Вязовская Н.С., Русинова Г.Г., Азизова Т.В. и др. Возможность выделения ДНК из архивных тканей, полученных при аутопсии, для молекулярно-генетических исследований. Архив патологии. 2014;76(2):46–7.
    [Vyazovskaya NS, Rusinova GG, Azizova TV, et al. Possibility of DNA isolation from archived autopsy tissues for molecular genetic studies. Arkhiv patologii. 2014;76(2):46–7. (In Russ)]
  18. Ваганова А.Н. Гистотехнические решения для повышения качества препаратов нуклеиновых кислот, выделенных из парафиновых блоков. Гены и клетки. 2014;9(2):96–101.
    [Vaganova AN. Histotechnical solutions for quality improvement of nucleic acid specimens isolated from paraffin blocks. Geny i kletki. 2014;9(2):96–101. (In Russ)]
  19. Gouveia GR, Ferreira SC, Ferreira JE, et al. Comparison of two methods of RNA extraction from formalin-fixed paraffin-embedded tissue specimens. Biomed Res Int. 2014;2014:151724. doi: 10.1155/2014/151724.
  20. Liu Y, Jelloul F, Zhang Y, et al. Genetic Basis of Extramedullary Plasmablastic Transformation of Multiple Myeloma. Am J Surg Pathol. 2020;44(6):838–48. doi: 10.1097/PAS.0000000000001459.
  21. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467–72. doi: 10.1038/nature09837.
  22. Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25(1):91–101. doi: 10.1016/j.ccr.2013.12.015.
  23. Rasmussen T, Kuehl M, Lodahl M, et al. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood. 2005;105(1):317–23. doi: 10.1182/blood-2004-03-0833.
  24. Hu Y, Chen W, Wang J. Progress in the identification of gene mutations involved in multiple myeloma. Onco Targets Ther. 2019;12:4075–80. doi: 10.2147/OTT.S205922.
  25. Broderick P, Chubb D, Johnson DC, et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat Genet. 2011;44(1):58–61. doi: 10.1038/ng.993.
  26. Barwick BG, Gupta VA, Vertino PM, Boise LH. Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Front Immunol. 2019;10:1121. doi: 10.3389/fimmu.2019.01121.
  27. Walker BA, Leone PE, Jenner MW, et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood. 2006;108(5):1733–43. doi: 10.1182/blood-2006-02-005496.
  28. Pawlyn C, Loehr A, Ashby C, et al. Loss of heterozygosity as a marker of homologous repair deficiency in multiple myeloma: a role for PARP inhibition? Leukemia. 2018;32(7):1561–6. doi: 10.1038/s41375-018-0017-0.
  29. Kim M, Lee SH, Kim J, et al. Copy number variations could predict the outcome of bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. Genes Chromosomes Cancer. 2015;54(1):20–7. doi: 10.1002/gcc.22213.

Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma with Renal Impairment

MV Firsova, LP Mendeleeva, MV Solov’ev, DA Mironova, LA Kuzmina, VG Savchenko

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Maiya Valerevna Firsova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: firs-maia@yandex.ru

For citation: Firsova MV, Mendeleeva LP, Solov’ev MV, et al. Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma with Renal Impairment. Clinical oncohematology. 2022;15(1):97–106. (In Russ).

DOI: 10.21320/2500-2139-2022-15-1-97-106


ABSTRACT

Aim. To study the efficacy and adverse event spectrum of high-dose chemotherapy with subsequent autologous hematopoietic stem cell transplantation (auto-HSCT) in multiple myeloma (MM) patients with acute renal impairment, including hemodialysis (HD) dependence.

Materials & Methods. The retrospective single-center study enrolled 64 MM patients (30 men and 34 women) with renal impairment, aged 19–65 years (median 54 years), who received auto-HSCT in the period from 2013 to 2019. Newly diagnosed patients had a median creatinine of 462 µmol/L and a median glomerular filtration rate of 10 ml/min/1,73 m2 (CKD-EPI). HD dependence was reported in 23 (36 %) patients on diagnosis date. As a result of the induction therapy, in 13 (57 %) out of 23 patients HD could be discontinued. Prior to auto-HSCT, overall antitumor response was 91 % (complete remission was 45 %), overall renal response was 80 % (complete renal response was 28 %). In the course of auto-HSCT 10 patients remained HD dependent. Two groups were analyzed: “HD–” (program HD-independent patients during auto-HSCT, n = 54) and “HD+” (program HD-dependent recipients of auto-HSCT, n = 10).

Results. Herpes virus infection reactivation and reversible toxic encephalopathy were observed significantly more often in “HD+” than in “HD–” group (30 % vs. 6 %, = 0.04 and 20 % vs. 0 %, = 0.02, respectively). HD-dependent patients required red blood cell transfusion significantly more often than HD-independent patients (100 % vs. 35 % of cases; = 0.0001). In 100 days after auto-HSCT, overall antitumor response increased from 91 % to 96 %, the rate of complete remission increased from 45 % to 64 %. After auto-HSCT the rate of complete renal response increased from 28 % to 34 %, however, overall renal response remained within the range of 80 %. After auto-HSCT, in a single case HD was discontinued. As a result of the treatment, 14 (61 %) patients became HD-independent. Transplantation-associated mortality was not reported. During median follow-up of 48 months, 5-year overall survival was 70 % and 5-year disease-free survival was 42 %.

Conclusion. Auto-HSCT is a feasible, safe, and effective treatment of MM patients with acute renal impairment. Induction therapy with subsequent auto-HSCT resulted in less need for HD which was 36 % at MM onset and 14 % on completing the treatment.

Keywords: multiple myeloma, auto-HSCT, hemodialysis, acute renal impairment, cast nephropathy.

Received: July 8, 2021

Accepted: November 28, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Dimopoulos MA, Sonneveld P, Leung N, et al. International Myeloma Working Group Recommendations for the Diagnosis and Management of Myeloma-Related Renal Impairment. J Clin Oncol. 2016;34(13):1544–57. doi: 10.1200/JCO.2015.65.0044.
  2. Knudsen LM, Hjorth M, Hippe E. Renal failure in multiple myeloma: reversibility and impact on the prognosis. Nordic Myeloma Study Group. Eur J Haematol. 2000;65(3):175–81. doi: 10.1034/j.1600-0609.2000.90221.x.
  3. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–е548. doi: 10.1016/S1470-2045(14)70442-5.
  4. Yadav P, Cook M, Cockwell P. Current Trends of Renal Impairment in Multiple Myeloma. Kidney Dis (Basel). 2016;1(4):241–57. doi: 10.1159/000442511.
  5. Blade J, Fernandez-Llama P, Bosch F, et al. Renal failure in multiple myeloma: presenting features and predictors of outcome in 94 patients from a single institution. Arch Intern Med. 1998;158(17):1889–93. doi: 10.1001/archinte.158.17.1889.
  6. Mendeleeva LP, Solovev M, Alexeeva A, et al. Multiple Myeloma in Russia (First Results of the Registration Trial). Blood. 2017;130(S1):5408.
  7. Kastritis E, Terpos E, Dimopoulos MA. Current treatments for renal failure due to multiple myeloma. Expert Opin Pharmacother. 2013;14(11):1477–95. doi: 10.1517/14656566.2013.803068.
  8. Sengul S, Zwizinski C, Simon EE, et al. Endocytosis of light chains induces cytokines through activation of NF-kappaB in human proximal tubule cells. Kidney Int. 2002;62(6):1977–88. doi: 10.1046/j.1523-1755.2002.00660.x.
  9. Рехтина И.Г., Казарина Е.В., Столяревич Е.С. и др. Морфологические и иммуногистохимические предикторы почечного ответа на терапию у пациентов с миеломной каст-нефропатией и острым повреждением почек с потребностью в диализе. Терапевтический архив. 2020;92(7):63–9. doi: 10.26442/00403660.2020.07.000776.
    [Rekhtina IG, Kazarina EV, Stolyarevich ES, et al. Morphological and immunohistochemical predictors of renal response to therapy patients with myeloma cast nephropathy and dialysis-dependent acute kidney injury. Terapevticheskii arkhiv. 2020;92(7):63–9. doi: 10.26442/00403660.2020.07.000776. (In Russ)]
  10. Dimopoulos MA, Delimpasi S, Katodritou E, et al. Significant improvement in the survival of patients with multiple myeloma presenting with severe renal impairment after the introduction of novel agents. Ann Oncol. 2014;25(1):195–200. doi: 10.1093/annonc/mdt483.
  11. Khan R, Apewokin S, Grazziutti M, et al. Renal insufficiency retains adverse prognostic implications despite renal function improvement following Total Therapy for newly diagnosed multiple myeloma. Leukemia. 2015;29(5):1195–201. doi: 10.1038/leu.2015.15.
  12. Uttervall K, Duru AD, Lund J, et al. The use of novel drugs can effectively improve response, delay relapse and enhance overall survival in multiple myeloma patients with renal impairment. PLoS One. 2014;9(7):e101819. doi: 10.1371/journal.pone.0101819.
  13. Badros A, Barlogie B, Siegel E, et al. Results of autologous stem cell transplant in multiple myeloma patients with renal failure. Br J Haematol. 2001;114(4):822–9. doi: 10.1046/j.1365-2141.2001.03033.x.
  14. Lee CK, Zangari M, Barlogie B, et al. Dialysis-dependent renal failure in patients with myeloma can be reversed by high-dose myeloablative therapy and autotransplant. Bone Marrow Transplant. 2004;33(8):823–8. doi: 10.1038/sj.bmt.1704440.
  15. Фирсова М.В., Менделеева Л.П., Соловьев М.В. и др. Трансплантация аутологичных стволовых клеток крови больным множественной миеломой, осложненной диализ-зависимой почечной недостаточностью. Терапевтический архив. 2020;92(7):70–6. doi: 10.26442/00403660.2020.07.000777.
    [Firsova MV, Mendeleeva LP, Solovev MV, et al. Autologous haematopoietic stem cell transplantation in patients with multiple myeloma complicated by dialysis-dependent renal failure. Terapevticheskii arkhiv. 2020;92(7):70–6. doi: 10.26442/00403660.2020.07.000777. (In Russ)]
  16. Durie BG, Harousseau JL, Miguel JS, et al. International Myeloma Working Group. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–73. doi: 10.1038/sj.leu.2404284.
  17. Dimopoulos MA, Terpos E, Chanan-Khan A, et al. Renal impairment in patients with multiple myeloma: a consensus statement on behalf of the International Myeloma Working Group. J Clin Oncol. 2010;28(33):4976–84. doi: 10.1200/JCO.2010.30.8791.
  18. Waszczuk-Gajda A, Lewandowski Z, Drozd-Sokolowska J, et al. Autologous peripheral blood stem cell transplantation in dialysis-dependent multiple myeloma patients-DAUTOS Study of the Polish Myeloma Study Group. Eur J Haematol. 2018;101(4):475–85. doi: 10.1111/ejh.13101.
  19. Ecotiere L, Thierry A, Debiais-Delpech C, et al. Prognostic value of kidney biopsy in myeloma cast nephropathy: a retrospective study of 70 patients. Nephrol Dial Transplant. 2016;31(1):64–72. doi: 10.1093/ndt/gfv283.
  20. Roussou M, Kastritis E, Migkou M, et al. Treatment of patients with multiple myeloma complicated by renal failure with bortezomib-based regimens. Leuk Lymphoma. 2008;49(5):890–5. doi: 10.1080/10428190801930506.
  21. St Bernard R, Chodirker L, Masih-Khan E, et al. Efficacy, toxicity and mortality of autologous SCT in multiple myeloma patients with dialysis-dependent renal failure. Bone Marrow Transplant. 2015;50(1):95–9. doi: 10.1038/bmt.2014.226.
  22. Li AY, Atenafu EG, Bernard RS, et al. Toxicity and survival outcomes of autologous stem cell transplant in multiple myeloma patients with renal insufficiency: an institutional comparison between two eras. Bone Marrow Transplant. 2020;55(3):578–85. doi: 10.1038/s41409-019-0697-8.
  23. Parikh GC, Amjad AI, Saliba RM, et al. Autologous hematopoietic stem cell transplantation may reverse renal failure in patients with multiple myeloma. Biol Blood Marrow Transplant. 2009;15(7):812–6. doi: 10.1016/j.bbmt.2009.03.021.
  24. Tosi P, Zamagni E, Ronconi S, et al. Safety of autologous hematopoietic stem cell transplantation in patients with multiple myeloma and chronic renal failure. Leukemia. 2000;14(7):1310–3. doi: 10.1038/sj.leu.2401819.
  25. Bird JM, Fuge R, Sirohi B, et al. The clinical outcome and toxicity of high-dose chemotherapy and autologous stem cell transplantation in patients with myeloma or amyloid and severe renal impairment: a British Society of Blood and Marrow Transplantation study. Br J Haematol. 2006;134(4):385–90. doi: 10.1111/j.1365-2141.2006.06191.x.
  26. Knudsen LM, Nielsen B, Gimsing P, Geisler C. Autologous stem cell transplantation in multiple myeloma: outcome in patients with renal failure. Eur J Haematol. 2005;75(1):27–33. doi: 10.1111/j.1600-0609.2005.00446.x.
  27. Mohyuddin GR, Abbasi S, Okoniewski M, et al. Inpatient mortality of patients with multiple myeloma and renal impairment undergoing autologous stem cell transplantation. Eur J Haematol. 2020;105(5):571–7. doi: 10.1111/ejh.13487.
  28. Rios-Tamayo R, Sainz J, Martinez-Lopez J, et al. Early mortality in multiple myeloma: the time-dependent impact of comorbidity: A population-based study in 621 real-life patients. Am J Hematol. 2016;91(7):700–4. doi: 10.1002/ajh.24389.
  29. Boenink R, Stel VS, Waldum-Grevbo BE, et al. Data from the ERA-EDTA Registry were examined for trends in excess mortality in European adults on kidney replacement therapy. Kidney Int. 2020;98(4):999–1008. doi: 10.1016/j.kint.2020.05.039.
  30. Antlanger M, Dust T, Reiter T, et al. Impact of renal impairment on outcomes after autologous stem cell transplantation in multiple myeloma: a multi-center, retrospective cohort study. BMC Cancer. 2018;18(1):1008. doi: 10.1186/s12885-018-4926-0.

Molecular Profiling and Minimal Residual Disease Monitoring in Multiple Myeloma Patients: A Literature Review

AV Semyanikhina1,2, EE Tolstykh1

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 NP Bochkov Research Centre for Medical Genetics, 1 Moskvorech’e str., Moscow, Russian Federation, 115522

For correspondence: Aleksandra Vladimirovna Semyanikhina, MD, PhD, 23 Kashirskoye sh., Moscow, Russian Federation, Российская Федерация, 115478; Tel.: +7(926)371-21-56; e-mail: alexandra_silina@mail.ru

For citation: Semyanikhina AV, Tolstykh EE. Molecular Profiling and Minimal Residual Disease Monitoring in Multiple Myeloma Patients: A Literature Review. Clinical oncohematology. 2021;14(4):436–43. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-436-443


ABSTRACT

A personalized approach is a promising tool for malignant neoplasm (MN) treatment. Gaining success and benefit assessment of this approach were considerably facilitated by the implementation of the new generation sequencing techniques which allow to obtain comprehensive information on the tumor genome and transcriptome state with identifying potential biomarkers and targets for directed drug action. Despite the exponential growth in the number of sequenced tumor genomes, some of them are not subject of active clinical studies, although obviously and increasingly require optimization of current treatment regimens. One of these pathologies is multiple myeloma (MM). Considerable advances in its diagnosis and treatment have substantially increased survival rates. However, MM cannot be removed from the list of fatal diseases, yet. It is a neoplasm which needs to be further studied and explored for implementation of new treatment strategies, most of which would be based on pheno- and genotypic characteristics of tumor cells. The present review deals with the state of the art in the study of the MM molecular genetic profile, minimal residual disease (MRD) monitoring as well as potentials of the new generation sequencing for MRD diagnosis, prognosis, estimation, and search for predictors aimed at chemotherapy optimization.

Keywords: multiple myeloma, new generation sequencing, minimal residual disease.

Received: May 21, 2021

Accepted: August 29, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edition. Lyon: IARC Press; 2017. 592 p.
  2. Brigle K, Rogers B. Pathobiology and Diagnosis of Multiple Myeloma. Semin Oncol Nurs. 2017;33(3):225–36. doi: 10.1016/j.soncn.2017.05.012.
  3. Naymagon L, Abdul-Hay M. Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol Oncol. 2016;9(1):52. doi: 10.1186/s13045-016-0282-1.
  4. Castaneda O, Baz R. Multiple Myeloma Genomics – A Concise Review. Acta Med Acad. 2019;48(1):57–67. doi: 10.5644/ama2006-124.242.
  5. Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma. Nat Rev Dis Primers. 2017;3(1):17046. doi: 10.1038/nrdp.2017.46.
  6. Поддубная И.В., Савченко В.Г., Каприн А.Д. Клинические рекомендации. Множественная миелома. М., 2020. 222 с.
    [Poddubnaya IV, Savchenko VG, Kaprin AD. Klinicheskie rekomendatsii. Mnozhestvennaya mieloma. (Clinical guidelines. Multiple myeloma.) Moscow; 2020. 222 p. (In Russ)]
  7. Bolli N, Genuardi E, Ziccheddu B, et al. Next-Generation Sequencing for Clinical Management of Multiple Myeloma: Ready for Prime Time? Front Oncol. 2020;25(10):a189. doi: 10.3389/fonc.2020.00189.
  8. Chng WJ, Van Wier SA, Ahmann GJ, et al. A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood. 2005;106(6):2156–61. doi: 10.1182/blood-2005-02-0761.
  9. Lai JL, Zandecki M, Mary JY, et al. Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood. 1995;85(9):2490–7. doi: 10.1182/blood.v85.9.2490.bloodjournal8592490.
  10. Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12(5):335–48. doi: 10.1038/nrc3257.
  11. Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–5. doi: 10.1182/blood-2011-11-390658.
  12. Kumar SK, Rajkumar SV. The multiple myelomas – current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 2018;15(7):409–21. doi: 10.1038/s41571-018-0018-y.
  13. Binder M, Rajkumar SV, Ketterling RP, et al. Prognostic implications of abnormalities of chromosome 13 and the presence of multiple cytogenetic high-risk abnormalities in newly diagnosed multiple myeloma. Blood Cancer J. 2017;7(9):e600. doi: 10.1038/bcj.2017.83.
  14. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–21. doi: 10.1038/leu.2009.174.
  15. Bergsagel PL, Kuehl WM, Zhan F, et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106(1):296–303. doi: 10.1182/blood-2005-01-0034.
  16. Kuiper R, van Duin M, van Vliet MH, et al. Prediction of high- and low-risk multiple myeloma based on gene expression and the International Staging System. Blood. 2015;126(17):1996–2004. doi: 10.1182/blood-2015-05-644039.
  17. Shaughnessy JD Jr, Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109(6):2276–84. doi: 10.1182/blood-2006-07-038430.
  18. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467–72. doi: 10.1038/nature09837.
  19. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33. doi: 10.1056/NEJMoa1200710.
  20. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  21. Raab MS, Lehners N, Xu J, et al. Spatially divergent clonal evolution in multiple myeloma: overcoming resistance to BRAF inhibition. Blood. 2016;127(17):2155–7. doi: 10.1182/blood-2015-12-686782.
  22. Keats JJ, Chesi M, Egan JB, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120(5):1067–76. doi: 10.1182/blood-2012-01-405985.
  23. Zhao S, Choi M, Heuck C, et al. Serial exome analysis of disease progression in premalignant gammopathies. Leukemia. 2014;28(7):1548–52. doi: 10.1038/leu.2014.59.
  24. Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014;28(2):384–90. doi: 10.1038/leu.2013.199.
  25. Miller A, Asmann Y, Cattaneo L, et al. High somatic mutation and neoantigen burden are correlated with decreased progression-free survival in multiple myeloma. Blood Cancer J. 2017;7(9):e612. doi: 10.1038/bcj.2017.94.
  26. Benson DM Jr. Checkpoint inhibition in myeloma. Hematology Am Soc Hematol Educ Program. 2016;2016(1):528–33. doi: 10.1182/asheducation-2016.1.528.
  27. Walker BA, Boyle EM, Wardell CP, et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol. 2015;33(33):3911–20. doi: 10.1200/JCO.2014.59.1503.
  28. Mailankody S, Kazandjian D, Korde N, et al. Baseline mutational patterns and sustained MRD negativity in patients with high-risk smoldering myeloma. Blood Adv. 2017;1(22):1911–8. doi: 10.1182/bloodadvances.2017005934.
  29. Manier S, Sacco A, Leleu X, et al. Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012;2012:1–5. doi: 10.1155/2012/157496.
  30. Misund K, Keane N, Stein CK, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia. 2020;34(1):322–6. doi: 10.1038/s41375-019-0543-4.
  31. Sive JI, Feber A, Smith D, et al. Global hypomethylation in myeloma is associated with poor prognosis. Br J Haematol. 2016;172(3):473–5. doi: 10.1111/bjh.13506.
  32. Bollati V, Fabris S, Pegoraro V, et al. Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis. 2009;30(8):1330–5. doi: 10.1093/carcin/bgp149.
  33. Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69. doi: 10.1038/nrc1840.
  34. Van Beers EH, van Vliet MH, Kuiper R, et al. Prognostic Validation of SKY92 and Its Combination With ISS in an Independent Cohort of Patients With Multiple Myeloma. Clin Lymphoma Myel Leuk. 2017;17(9):555–62. doi: 10.1016/j.clml.2017.06.020.
  35. Paiva B, Vidriales MB, Cervero J, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. 2008;112(10):4017–23. doi: 10.1182/blood-2008-05-159624.
  36. Paiva B, Martinez-Lopez J, Vidriales MB, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol. 2011;29(12):1627–33. doi: 10.1200/JCO.2010.33.1967.
  37. Paiva B, Gutierrez NC, Rosinol L, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. 2012;119(3):687–91. doi: 10.1182/blood-2011-07-370460.
  38. Munshi NC, Avet-Loiseau H, Rawstron AC, et al. Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma: A Meta-analysis. JAMA Oncol. 2017;3(1):28–35. doi: 10.1001/jamaoncol.2016.3160.
  39. Gambella M, Omede P, Spada S, et al. Minimal residual disease by flow cytometry and allelic-specific oligonucleotide real-time quantitative polymerase chain reaction in patients with myeloma receiving lenalidomide maintenance: A pooled analysis. Cancer. 2019;125(5):750–60. doi: 10.1002/cncr.31854.
  40. Perrot A, Lauwers-Cances V, Corre J, et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood. 2018;132(23):2456–64. doi: 10.1182/blood-2018-06-858613.
  41. Mateos MV, Dimopoulos MA, Cavo M, et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N Engl J Med. 2018;378(6):518–28. doi: 10.1056/NEJMoa1714678.
  42. Langerak AW, Groenen PJ, Bruggemann M, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26(10):2159–71. doi: 10.1038/leu.2012.246.
  43. Van der Velden VH, Cazzaniga G, Schrauder A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21(4):604–11. doi: 10.1038/sj.leu.2404586.
  44. Corradini P, Voena C, Tarella C, et al. Molecular and clinical remissions in multiple myeloma: role of autologous and allogeneic transplantation of hematopoietic cells. J Clin Oncol. 1999;17(1):208–15. doi: 10.1200/JCO.1999.17.1.208.
  45. Sarasquete ME, Garcia-Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90(10):1365–72.
  46. Martinez-Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9. doi: 10.1182/blood-2014-01-550020.
  47. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e346. doi: 10.1016/S1470-2045(16)30206-6.
  48. Lohr JG, Kim S, Gould J, et al. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med. 2016;8(363):363ra147. doi: 10.1126/scitranslmed.aac7037.
  49. Mishima Y, Paiva B, Shi J, et al. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Rep. 2017;19(1):218–24. doi: 10.1016/j.celrep.2017.03.025.
  50. Manier S, Park J, Capelletti M, et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9(1):1691. doi: 10.1038/s41467-018-04001-5.
  51. Zamagni E, Nanni C, Mancuso K, et al. PET/CT Improves the Definition of Complete Response and Allows to Detect Otherwise Unidentifiable Skeletal Progression in Multiple Myeloma. Clin Cancer Res. 2015;21(19):4384–90. doi: 10.1158/1078-0432.CCR-15-0396.
  52. Паива Б., Видриалес М.Б., Алмейда Х. и др. Оценка эффекта лечения при множественной миеломе: клиническое значение мониторинга МОЗ. Иммунология гемопоэза. 2012;10(1):34–77.
    [Paiva B, Vidriales MB, Almeida J, et al. Treatment response assessment in multiple myeloma: clinical significance of MRD monitoring. Immunologiya gemopoeza. 2012;10(1):34–77. (In Russ)]
  53. Kumar SK. Targeted Management Strategies in Multiple Myeloma. Cancer J. 2019;25(1):59–64. doi: 10.1097/PPO.0000000000000353.
  54. Multiple Myeloma Research Consortium. Myeloma-Developing Regimens Using Genomics (MyDRUG). Available from: https://clinicaltrials.gov/ct2/show/NCT03732703 (accessed 2.06.2021).

Infectious Complications in Multiple Myeloma under Current Epidemiological Conditions: A Literature Review

IL Davydkin, EV Mordvinova, TP Kuzmina

Samara State Medical University, 89 Chapaevskaya str., Samara, Russian Federation, 443099

For correspondence: Elizaveta Vladimirovna Mordvinova, 89 Chapaevskaya str., Samara, Russian Federation, 443099; Tel.: +7(917)037-52-10, e-mail: liza.mordvinova.94@mail.ru

For citation: Davydkin IL, Mordvinova EV, Kuzmina TP. Infectious Complications in Multiple Myeloma under Current Epidemiological Conditions: A Literature Review. Clinical oncohematology. 2021;14(3):386–90. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-386-390


ABSTRACT

The review outlines current views on immune system in multiple myeloma (MM) and the basic pathogens inducing infectious complications in such patients. Although in recent years there has been considerable progress in studying molecular mechanisms of the MM development (pathogenesis), methods of its diagnosis, treatment, and prediction of outcomes, one of the main causes of death within this group of patients is infectious complications. In this context, it would be relevant to further study immune disorders and the spectrum of infectious pathogens common in the MM patient cohort. The study and correction of immunological status can contribute to improving the MM outcomes, which in turn will lead to increased life expectancy.

Keywords: multiple myeloma, immunological status, infectious complications, COVID-19.

Received: March 12, 2021

Accepted: June 8, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Davydkin IL, Kuzmina TP, Naumova KV, et al. Endothelial dysfunction in patients with lymphoproliferative disorders and its changes in the course of polychemotherapy. Russ Open Med J. 2020;9(3):309–15. doi: 10.15275/rusomj.2020.0309.
  2. Joshua DE, Bryant C, Dix C, et al. Biology and therapy of multiple myeloma. Med J Aust. 2019;210(8):1–6. doi: 10.5694/mja2.50129.
  3. Smith L, McCourt O, Henrich M, et al. Multiple myeloma and physical activity: a scoping review. BMJ Open. 2015;5(11):1–10. doi: 10.1136/bmjopen-2015-009576.
  4. Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018.
    [Kaprin AD, Starinskii VV, Petrova GV, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2017 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2017 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; (In Russ)]
  5. Alemu A, Richards JO, Oaks MK, Thompson MA. Vaccination in Multiple Myeloma: Review of Current Literature. Clin Lymphoma Myel Leuk. 2016;16(9):495–502. doi: 10.1016/j.clml.2016.06.006.
  6. Berlotti P, Pierre A, Rome S, Faiman B. Evidence-based guidelines for preventing and managing side effects of multiple myeloma. Semin Oncol Nurs. 2017;33(3):332–47. doi: 10.1016/j.soncn.2017.05.008.
  7. Teh BW, Slavin MA, Harrison SJ, Worth LJ. Prevention of viral infections in patients with multiple myeloma: the role of antiviral prophylaxis and immunization. Expert Rev Anti-Infect Ther. 2015;13(11):1325–36. doi: 10.1586/14787210.2015.1083858.
  8. Kastritis E, Zagouri F, Symeonidis A, et al. Preserved levels of uninvolved immunoglobulins are independently associated with favorable outcome in patients with symptomatic multiple myeloma. 2014;28(10):2075–9. doi: 10.1038/leu.2014.110.
  9. Mian H, Grant ShJ, Engelhardt M, et al. Caring for older adults with multiple myeloma during the COVID-19 pandemic: Perspective from the International Forum for Optimizing Care of Older Adults with Myeloma. J Geriatr Oncol. 2020;11(5):764–8. doi: 10.1016/j.jgo.2020.04.008.
  10. Brioli A, Klaus M, Sayer H, et al. The risk of infections in multiple myeloma before and after the advent of novel agents: a 12-year survey. Ann 2019;98(3):713–22. doi: 10.1007/s00277-019-03621-1.
  11. Guzdar A, Costello C. Supportive Care in Multiple Myeloma. Curr Hematol Malig Rep. 2020;15(2):56–61. doi: 10.1007/s11899-020-00570-9.
  12. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79. doi: 10.1111/j.1365-2141.2007.06705.x.
  13. Teh BW, Harrison SJ, Worth LJ, et al. Infection risk with immunomodulatory and proteasome inhibitor–based therapies across treatment phases for multiple myeloma: A systematic review and meta-analysis. Eur J Cancer. 2016;67:21–37. doi: 10.1016/j.ejca.2016.07.025.
  14. Dhakal B, D’Souza A, Chhabra S, Hari P. Multiple myeloma and COVID-19. Leukemia. 2020;34(7):1961–3. doi: 10.1038/s41375-020-0879-9.
  15. Girmenia C, Cavo M, Offidani M, et al. Management of infectious complications in multiple myeloma patients: Expert panel consensus-based recommendations. Blood Rev. 2019;34:84–94. doi: 10.1016/j.blre.2019.01.001.
  16. Nix EB, Hawdon N, Gravelle S, et al. Risk of invasive Haemophilus influenzae type b (Hib) disease in adults with secondary immunodeficiency in the post-Hib vaccine era. Clin Vacc Immunol. 2012;19(5):766–71. doi: 10.1128/CVI.05675-11.
  17. Blimark, C, Holmberg E, Mellqvist UH, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica. 2014;100(1):107–13. doi: 10.3324/haematol.2014.107714.
  18. Truong Q, Veltri L, Kanate AS, et al. Impact of the duration of antiviral prophylaxis on rates of varicella-zoster virus reactivation disease in autologous hematopoietic cell transplantation recipients. Ann Hematol. 2013;93(4):677–82. doi: 10.1007/s00277-013-1913-z.
  19. Teh BW, Worth LJ, Harrison SJ, et al. The timing and clinical predictors of herpesvirus infections in patients with myeloma in the setting of antiviral prophylaxis. Available from: file:///Users/user/Downloads/EV0439.pdf (accessed 13.04.2021).
  20. Teh BW, Worth LJ, Harrison SJ, et al. Risks and burden of viral respiratory tract infections in patients with multiple myeloma in the era of immunomodulatory drugs and bortezomib: experience at an Australian Cancer Hospital. Supp Care Cancer. 2015;23(7):1901–6. doi: 10.1007/s00520-014-2550-3.
  21. Nahi H, Chrobok M, Gran C, et al. Infectious complications and NK cell depletion following daratumumab treatment of multiple myeloma. PLoS One. 2019;14(2):e0211927. doi: 10.1371/journal.pone.0211927.
  22. Bruno G, Saracino A, Monno L, Angarano G. The Revival of an “Old” Marker: CD4/CD8 Ratio. AIDS Rev. 2017;19(2):81–8.
  23. Tramontana AR, George B, Hurt AC, et al. Oseltamivir Resistance in Adult Oncology and Hematology Patients Infected with Pandemic (H1N1) 2009 Virus, Australia. Emerg Infect Dis. 2010;16(7):1068–75. doi: 10.3201/eid1607.091691.
  24. Hirsch HH, Martino R, Ward KN, et al. Fourth European Conference on Infections in Leukaemia (ECIL-4): Guidelines for Diagnosis and Treatment of Human Respiratory Syncytial Virus, Parainfluenza Virus, Metapneumovirus, Rhinovirus, and Coronavirus. Clin Infect Dis. 2012;56(2):258–66. doi: 10.1093/cid/cis844.
  25. Charil A, Samur MK, Martinez-Lopez J, et al. Clinical features associated with COVID-19 outcome in multiple myeloma: first results from the International Myeloma Society data set. 2020;136(26):3033–40. doi: 10.1182/blood.2020008150.
  26. Cook G, Ashcroft AJ, Pratt G, et al. Real-world assessment of the clinical impact of symptomatic infection with severe acute respiratory syndrome coronavirus (COVID-19 disease) in patients with multiple myeloma receiving systemic anti-cancer therapy. Br J Haematol. 2020;190(2):e83–e86. doi: 10.1111/bjh.16874.
  27. Hultcrantz M, Richter J, Rosenbaum C, et al. COVID-19 infections and outcomes in patients with multiple myeloma in New York City: a cohort study from five academic centers. Blood Cancer Discov. 2020;1(3):234–43. doi: 10.1158/2643-3230.bcd-20-0102.
  28. Wang B, Van Oekelen O, Mouhieddine TH, et al. A tertiary center experience of multiple myeloma patients with COVID-19: lessons learned and the path forward. J Hematol Oncol. 2020;13(1):94. doi: 10.1186/s13045-020-00934-x.

Multiple Myeloma and Dendritic Cell Vaccines

IV Gribkova, AA Zavyalov

Research Institute for Healthcare Organization and Medical Management, 9 Sharikopodshipnikovskaya str., Moscow, Russian Federation, 115088

For correspondence: Irina Vladimirovna Gribkova, PhD in Biology, 9 Sharikopodshipnikovskaya str., Moscow, Russian Federation, 115088; Tel.: +7(916)078-73-90; e-mail: igribkova@yandex.ru

For citation: Gribkova IV, Zavyalov AA. Multiple Myeloma and Dendritic Cell Vaccines. Clinical oncohematology. 2021;14(3):370–7. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-370-377


ABSTRACT

Despite advances in the treatment of multiple myeloma, most of patients after its completion retain minimal residual disease (MRD-positive status), which increases the risk of relapse. Antigen-specific immunotherapy of tumors contributes to improving the clinical outcomes in such patients by the killing of cancer drug resistant clone of tumor cells without any damage to normal tissues. Dendritic cells (DC) are antigen-presenting elements with the main function of antigen-capturing, processing, and presenting them to naive T-lymphocytes for the activation of immune response against the captured antigen. The unique ability of DC to activate T-helpers and cytotoxic T-lymphocytes as well as to target thereby the immune reactions was used in developing DC-based tumor immunotherapy. This approach suggests the implementation of the so-called ‘DC-vaccines’. The clinical trials performed by now also showed the results of using DC-vaccines in various tumors including hematological ones. On the whole, according to the studies DC-vaccines are characterized by satisfactory safety profile, moderate immunological activity, and moderate clinical efficacy. The present review provides the results of clinical trials dealing with the use of DC-based vaccines in multiple myeloma patients. Besides, the potentials of improving the clinical efficacy of this therapy are discussed.

Keywords: multiple myeloma, dendritic cells, DC-vaccines, hematological malignancies, immunotherapy.

Received: March 9, 2021

Accepted: June 11, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Семочкин С.В. Новые ингибиторы протеасомы в терапии множественной миеломы. Онкогематология. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40.
    [Semochkin SV. New proteasome inhibitors in the management of multiple myeloma. Onkogematologiya. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40. (In Russ)]
  2. Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol. 2017;183:181–90. doi: 10.1016/j.clim.2017.08.016.
  3. Mody N, Dubey S, Sharma R, et al. Dendritic cell-based vaccine research against cancer. Expert Rev Clin Immunol. 2015;11(2):213–32. doi: 10.1586/1744666X.2015.987663.
  4. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52. doi: 10.1038/32588.
  5. Ito T, Liu YJ, Kadowaki N. Functional diversity and plasticity of human dendritic cell subsets. Int J Hematol. 2005;81(3):188–96. doi: 10.1532/IJH97.05012.
  6. Qian X, Wang X, Jin H. Cell transfer therapy for cancer: past, present, and future. J Immunol Res. 2014;2014:1–9. doi: 10.1155/2014/525913.
  7. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265–77. doi: 10.1038/nrc3258.
  8. Марков О.В., Миронова Н.Л., Власов В.В., Зенкова М.А. Противоопухолевые вакцины на основе дендритных клеток: от экспериментов на животных моделях до клинических испытаний. Acta Naturae. 2017;9(3):29–41.
    [Markov OV, Mironova NL, Vlasov VV, Zenkova МА. Antitumor vaccines based on dendritic cells: from experiments using animal tumor models to clinical trials. Acta Naturae. 2017;9(3):29–41. (In Russ)]
  9. Богданова И.М., Постовалова Е.А. Клеточная иммунотерапия в онкологии. Противоопухолевые вакцины на основе дендритных клеток. Клиническая и экспериментальная морфология. 2017;22(3):62–73.
    [Bogdanova IM, Postovalova EA. Cellular immunotherapy in oncology. Antitumor vaccines based on dendritic cells. Klinicheskaya i eksperimental’naya morfologiya. 2017;22(3):62–73. (In Russ)]
  10. Yi Q, Szmania S, Freeman J, et al. Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br J Haematol. 2010;150(5):554–64. doi: 10.1111/j.1365-2141.2010.08286.x.
  11. Hobo W, Strobbe L, Maas F, et al. Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients. Cancer Immunol Immunother. 2013;62(8):1381–92. doi: 10.1007/s00262-013-1438-2.
  12. Jung SH, Lee HJ, Lee YK, et al. A phase I clinical study of autologous dendritic cell therapy in patients with relapsed or refractory multiple myeloma. Oncotarget. 2017;8(25):41538–48. doi: 10.18632/oncotarget.14582.
  13. Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, et al. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant. 2000;6(6):621–7. doi: 10.1016/s1083-8791(00)70027-9.
  14. Yi Q, Desikan R, Barlogie B, Munshi N. Optimizing dendritic cell-based immunotherapy in multiple myeloma. Br J Haematol. 2002;117(2):297–305. doi: 10.1046/j.1365-2141.2002.03411.x.
  15. Rosenblatt J, Vasir B, Uhl L, et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood. 2011;117(2):393–402. doi: 10.1182/blood-2010-04-277137.
  16. Kitawaki T. DC-based immunotherapy for hematological malignancies. Int J Hematol. 2014;99(2):117–22. doi: 10.1007/s12185-013-1496-4.
  17. Reichardt VL, Okada CY, Liso A, et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood. 1999;93(7):2411–9. doi: 10.1182/blood.v93.7.2411.
  18. Massaia M, Borrione P, Battaglio S, et al. Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. Blood. 1999;94(2):673–83. doi: 10.1182/blood.v94.2.673.
  19. Lim SH, Bailey-Wood R. Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int J Cancer. 1999;83(2):215–22. doi: 10.1002/(sici)1097-0215(19991008)83:2<215::aid-ijc12>3.0.co;2-q.
  20. Cull G, Durrant L, Stainer C, et al. Generation of anti-idiotype immune responses following vaccination with idiotype-protein pulsed dendritic cells in myeloma. Br J Haematol. 1999;107(3):648–55. doi: 10.1046/j.1365-2141.1999.01735.x.
  21. Titzer S, Christensen O, Manzke O, et al. Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects. Br J Haematol. 2000;108(4):805–16. doi: 10.1046/j.1365-2141.2000.01958.x.
  22. Lacy MQ, Mandrekar S, Dispenzieri A, et al. Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol. 2009;84(12):799–802. doi: 10.1002/ajh.21560.
  23. Rollig C, Schmidt C, Bornhauser M, et al. Induction of cellular immune responses in patients with stage-I multiple myeloma after vaccination with autologous idiotype-pulsed dendritic cells. J Immunother. 2011;34(1):100–6. doi: 10.1097/CJI.0b013e3181facf48.
  24. Rosenblatt J, Avivi I, Vasir B, et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res. 2013;19(13):3640–8. doi: 10.1158/1078-0432.CCR-13-0282.
  25. Palumbo A, Rajkumar SV, San Miguel JF, et al. International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. J Clin Oncol. 2014;32(6):587–600. doi: 10.1200/JCO.2013.48.7934.
  26. Richter J, Neparidze N, Zhang L, et al. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood. 2013;121(3):423–30. doi: 10.1182/blood-2012-06-435503.
  27. Kolb HJ, Schattenberg A, Goldman JM, et al.; European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86(5):2041–50. doi: 10.1182/blood.v86.5.2041.bloodjournal8652041.
  28. Goulmy Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol Rev. 1997;157(1):125–40. doi: 10.1111/j.1600-065x.1997.tb00978.x.
  29. Oostvogels R, Kneppers E, Minnema MC, et al. Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients. Bone Marrow Transplant. 2017;52(2):228–37. doi: 10.1038/bmt.2016.250.
  30. Franssen LE, Roeven MWH, Hobo W, et al. A phase I/II minor histocompatibility antigen-loaded dendritic cell vaccination trial to safely improve the efficacy of donor lymphocyte infusions in myeloma. Bone Marrow Transplant. 2017;52(10):1378–83. doi: 10.1038/bmt.2017.118.
  31. Weinstock M, Rosenblatt J, Avigan D. Dendritic Cell Therapies for Hematologic Malignancies. Mol Ther Methods Clin Dev. 2017;5:66–75. doi: 10.1016/j.omtm.2017.03.004.
  32. Wilgenhof S, Corthals J, Heirman C, et al. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol. 2016;34(12):1330–8. doi: 10.1200/JCO.2015.63.4121.
  33. Ribas A, Comin-Anduix B, Chmielowski B, et al. Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin Cancer Res. 2009;15(19):6267–76. doi: 10.1158/1078-0432.CCR-09-1254.
  34. Emens LA, Machiels JP, Reilly RT, Jaffee EM. Chemotherapy: friend or foe to cancer vaccines? Curr Opin Mol Ther. 2001;3(1):77–84.
  35. Emens LA. Chemoimmunotherapy. Cancer J. 2010;16(4):295–303. doi: 10.1097/PPO.0b013e3181eb5066.
  36. Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–65. doi: 10.1093/jnci/djs629.
  37. Demaria S, Formenti SC. Radiotherapy effects on anti-tumor immunity: implications for cancer treatment. Front Oncol. 2013;3:128. doi: 10.3389/fonc.2013.00128.
  38. Chi KH, Liu SJ, Li CP, et al. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother. 2005;28(2):129–35. doi: 10.1097/01.cji.0000154248.74383.5e.
  39. Shibamoto Y, Okamoto M, Kobayashi M, et al. Immune-maximizing (IMAX) therapy for cancer: Combination of dendritic cell vaccine and intensity-modulated radiation. Mol Clin Oncol. 2013;1(4):649–54. doi: 10.3892/mco.2013.108.
  40. de Haas N, de Koning C, Spilgies L, et al. Improving cancer immunotherapy by targeting the STATe of MDSCs. Oncoimmunology. 2016;5(7):e1196312. doi: 10.1080/2162402X.2016.1196312.
  41. Butt AQ, Mills KH. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene. 2014;33(38):4623–31. doi: 10.1038/onc.2013.432.
  42. Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021;3. В печати.
    [Gribkova IV, Zavyalov AA. Chimeric antigen receptor T‑cell therapy of B-cell non-Hodgkin’s lymphoma: opportunities and challenges. Voprosy onkologii. 2021;3. In print. (In Russ)]
  43. Грибкова И.В., Завьялов А.А. CAR Т-клетки для лечения хронического лимфоцитарного лейкоза: обзор литературы. Клиническая онкогематология. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230.
    [Gribkova IV, Zavyalov AA. CAR-Т Cells for the Treatment of Chronic Lymphocytic Leukemia: Literature Review. Clinical oncohematology. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230. (In Russ)]
  44. Stripecke R, Cardoso AA, Pepper KA, et al. Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage–colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses. Blood. 2000;96(4):1317–26. doi: 10.1182/blood.v96.4.1317.
  45. Sundarasetty BS, Singh VK, Salguero G, et al. Lentivirus-induced dendritic cells for immunization against high-risk WT1(+) acute myeloid leukemia. Hum Gene Ther. 2013;24(2):220–37. doi: 10.1089/hum.2012.128.

Polymorphism of Interleukins and Tumor Necrosis Factor α Genes in Multiple Myeloma Patients with Autologous Hematopoietic Stem Cell Transplantation

SP Svitina, ZhYu Sidorova, II Kostroma, AA Zhernyakova, AV Chechetkin, ZhV Chubukina, SV Gritsaev, SI Kapustin, SS Bessmeltsev

Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Pavlovna Svitina, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; e-mail: shvetikova@gmail.com

For citation: Svitina SP, Sidorova ZhYu, Kostroma II, et al. Polymorphism of Interleukins and Tumor Necrosis Factor α Genes in Multiple Myeloma Patients with Autologous Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2021;14(3):340–6. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-340-346


ABSTRACT

Aim. To assess polymorphism value of interleukins (IL6, IL1B, IL10) and tumor necrosis factor α (TNF) genes in multiple myeloma (MM) patients who received autologous hematopoietic stem cell transplantation (auto-HSCT).

Materials & Methods. The study enrolled 37 MM patients (15 men and 22 women) aged 38–66 years (mean age 54.5 ± 6.4 years), who received auto-HSCT. After transplantation, partial (PR), very good partial (VGPR), and complete (CR) responses were reported in 11, 7, and 19 patients, respectively. In 23 (62.2 %) patients CD34+ cell collection on the day of the first leukocytapheresis session exceeded the suboptimal level of 2.5 × 106/kg. The control group included 236 healthy subjects. Genotyping by PCR with subsequent analysis of restriction fragment length polymorphism of amplified products was performed. To identify between-group differences in genotype distribution, Fisher’s exact test with measurements of odds ratio (OR) and рvalue was used.

Results. The study group of patients was distinguished from the control group by more than twofold increased proportion of homozygous IL1B –31C (OR 2.7; = 0.029). The proportion of heterozygous –174G/C allelic variant of IL6 gene in the subgroup of patients with CR after auto-HSCT was considerably higher than in patients with VGPR and PR (OR 5.6; = 0.022). In the subgroup of patients with CD34+ cell collection > 2.5 × 106/kg the proportion of those with IL10 –592C/C genotype was twice as high as in patients with lower CD34+ cell collection (OR 3.9; = 0.091).

Conclusion. The present study confirms the relationship of –31C/Т polymorphism in IL1B gene in homozygous state with higher MM risk. It proved the association of –174G/C polymorphism in IL6 gene and –592C/A polymorphism in IL10 gene with the chosen criteria for auto-HSCT efficacy. To precisely clarify the value of variants in the above genes for predicting chemotherapy effect in MM, further studies involving more patients are required.

Keywords: multiple myeloma, genes polymorphism, immune response, cytokines, autologous hematopoietic stem cell transplantation.

Received: March 4, 2021

Accepted: June 10, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Бессмельцев С.С. Множественная миелома (патогенез, клиника, диагностика, дифференциальный диагноз). Часть Клиническая онкогематология. 2013;6(3):237–57.
    [Bessmeltsev SS. Multiple myeloma (pathogenesis, clinical features, diagnosis, differential diagnosis). Part I. Klinicheskaya onkogematologiya. 2013;6(3):237–57. (In Russ)]
  2. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]
  3. Грицаев С.В., Кузяева А.А., Бессмельцев С.С. Отдельные аспекты аутологичной трансплантации гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2017;10(1):7–12. doi: 10.21320/2500-2139-2017-10-1-7-12.
    [Gritsaev SV, Kuzyaeva AA, Bessmel’tsev SS. Certain Aspects of Autologous Hematopoietic Stem Cell Transplantation in Patients with Multiple Myeloma. Clinical oncohematology. 2017;10(1):7–12. doi: 10.21320/2500-2139-2017-10-1-7-12. (In Russ)]
  4. Бессмельцев С.С. Множественная миелома (лечение первичных больных): обзор литературы и собственные данные. Часть Клиническая онкогематология. 2013;6(4):379–414.
    [Bessmeltsev SS. Multiple myeloma (management of newly diagnosed patients): literature review and our on data. Part II. Klinicheskaya onkogematologiya. 2013;6(4):379–414. (In Russ)]
  5. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома. Современный взгляд на проблему. Алматы: Коста, 2007. 480 c.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma. Sovremennyi vzglyad na problemu. (Multiple myeloma. Current view on the problem.) Almaty: Kosta Publ.; 2007. 480 p. (In Russ)]
  6. Назарова Е.Л., Минаева Н.В., Хоробрых М.Н. и др. Прогностическое значение генетических маркеров в оценке эффективности индукционной терапии, включающей аутологичную трансплантацию гемопоэтических стволовых клеток, у больных множественной миеломой. Клиническая онкогематология. 2018;11(1):54–69. doi: 10.21320/2500-2139-2018-11-1-54-69.
    [Nazarova EL, Minaeva NV, Khorobrykh MN, et al. Prognostic Value of Genetic Markers for Efficacy Estimation of Induction Treatment Including Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma Patients. Clinical oncohematology. 2018;11(1):54–69. doi: 10.21320/2500-2139-2018-11-1-54-69. (In Russ)]
  7. Vangsted AJ, Klausen TW, Ruminski W, et al. The polymorphism IL-1β T-31C is associated with a longer overall survival in patients with multiple myeloma undergoing auto-SCT. Bone Marrow Transplant. 2009;43(7):539–45. doi: 10.1038/bmt.2008.351.
  8. Kasamatsu T, Saitoh T, Ino R, et al. Polymorphism of IL-10 receptor β affects the prognosis of multiple myeloma patients treated with thalidomide and/or bortezomib. Hematol Oncol. 2017;35(4):711–18. doi: 10.1002/hon.2322.
  9. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl Acids Res. 1988;16(3):1215–8. doi: 10.1093/nar/16.3.1215.
  10. Mullis KB, Faloona FA. Specific synthesis of DNA via a polymerase-catalysed chain reaction. Methods Enzymol. 1987;155:335–50. doi: 10.1016/0076-6879(87)55023-6.
  11. Zheng C, Huang DR, Bergenbrant S, et al. Interleukin 6, tumor necrosis factor alpha, interleukin 1 beta and interleukin 1 receptor antagonist promoter or coding gene polymorphisms in multiple myeloma. Br J Haematol. 2000;109(1):39– doi: 10.1046/j.1365-2141.2000.01963.x.
  12. Wang X, Jiang F, Liang Y, et al. Interleukin-1β -31C/T and -511T/C Polymorphisms Were Associated with Preeclampsia in Chinese Han Population. PLoS One. 2014;9(9):1– doi: 10.18632/oncotarget.23472.
  13. Alexander DD, Mink PJ, Adami HO, et al. Multiple myeloma: a review of the epidemiologic literature. Int J Cancer. 2007;120(S12):40–61. doi: 10.1002/ijc.22718.
  14. Павлова А.А., Павлова И.Е., Бубнова Л.Н. и др. Взаимосвязь однонуклеотидного полиморфизма генов цитокинов и клинико-лабораторных показателей у больных множественной миеломой. Медицинская иммунология. 2019;21(4):703–14. doi: 10.15789/1563-0625-2019-4-703-714.
    [Pavlova AA, Pavlova IE, Bubnova LN, et al. Relationship between single nucleotide polymorphisms in cytokine genes and clinical laboratory parameters in patients with multiple myeloma. Meditsinskaya Immunologiya. 2019;21(4):703–14. doi: 10.15789/1563-0625-2019-4-703-714. (In Russ)]
  15. Ghobrial IM. Myeloma as a model for the process of metastasis: implications for therapy. Blood. 2012;120(1):20–30. doi: 10.1182/blood-2012-01-379024.
  16. Насонов Е.Л. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2018;56:19–27. doi: 10.14412/1995-4484-2018-19-27.
    [Nasonov EL. The role of interleukin 1 in the development of human diseases. Nauchno-Prakticheskaya Revmatologiya. 2018;56:19–27. doi: 10.14412/1995-4484-2018-19-27. (In Russ)]
  17. Costes V, Portier M, Lu ZY, et al. Interleukin-1 in multiple myeloma: producer cells and their role in the control of IL-6 production. Br J Haematol. 1998;103(4):1152–60. doi: 10.1046/j.1365-2141.1998.01101.x.
  18. Lacy MQ, Donovan KA, Heimbach JK, et al. Comparison of interleukin-1 beta expression by in situ hybridization in monoclonal gammopathy of undetermined significance and multiple myeloma. Blood. 1999;93(1):300–5. doi: 10.1182/blood.V93.1.300.
  19. Xiong Y, Donovan KA, Kline MP, et al. Identification of two groups of smoldering multiple myeloma patients who are either high or low producers of interleukin-1. J Interferon Cytokine Res. 2006;26(2):83–95. doi: 0.1089/jir.2006.26.83.
  20. Honemann D, Chatterjee M, Savino R, et al. The IL-6 receptor antagonist SANT-7 overcomes bone marrow stromal cell-mediated drug resistance of multiple myeloma cells. Int J Cancer. 2001;93(5):674–80. doi: 10.1002/ijc.1388.
  21. Lauta VM. A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer. 2003;97(10):2440–52. doi: 10.1002/cncr.11072.
  22. Chakraborty B, Vishnoi G, Gowda SH, Goswami B. Interleukin-6 gene-174 G/C promoter polymorphism and its association with clinical profile of patients with multiple myeloma. Asia Pac J Clin Oncol. 2014;13(5):402–7. doi: 10.1111/ajco.12290.
  23. Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem. 2000;275(24):18138–44. doi: 10.1074/jbc.M000379200.
  24. Ray A, Sassone-Corsi P, Sehgal PB. A multiple cytokine- and second messenger-responsive element in the enhancer of the human interleukin-6 gene: similarities with c-fos gene regulation. Mol Cell Biol. 1989;9(12):5537–47. doi: 10.1128/mcb.9.12.5537.
  25. Duch CR, Figueiredo MS, Ribas C, et al. Analysis of polymorphism at site -174 G/C of interleukin-6 promoter region in multiple myeloma. Braz J Med Biol Res. 2007;40(2):265–7. doi: 10.1590/s0100-879х2007000200014.
  26. Mazur G, Bogunia-Kubik K, Wrobel T, et al. IL-6 and IL-10 promoter gene polymorphisms do not associate with the susceptibility for multiple myeloma. Immunol Lett. 2005;96(2):241–6. doi: 10.1016/j.imlet.2004.08.015.
  27. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl Acids Res. 1988;16(3):1215–8. doi: 10.1093/nar/16.3.1215.
  28. Banu C, Moise A, Arion CV, et al. Cytokine Gene Polymorphisms support diagnostic monitoring of Romanian multiple myeloma patients. J Med Life. 2011;4(3):264–8.
  29. Rousset F, Garcia E, Defrance T, et al. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci USA. 1992;89(5):1890–3. doi: 10.1073/pnas.89.5.1890.
  30. Taga K, Tosato G. IL-10 inhibits human T cell proliferation and IL-2 production. J Immunol. 1992;148(4):1143–8.
  31. Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol Rev. 2008;226(1):205–18. doi: 10.1111/j.1600-065X.2008.00706.x.
  32. Kingo K, Ratsep R, Koks S, et al. Influence of genetic polymorphisms on interleukin-10 mRNA expression and psoriasis susceptibility. J Dermatol Sci. 2005;37(2):111–3. doi: 10.1016/j.jdermsci.2004.10.002.
  33. Howell MW. Interleukin-10 Gene Polymorphisms and Cancer. Madame Curie Bioscience Database [Internet]. Landes Bioscience; 2000–2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6117/ (accessed 4.03.2021).
  34. Sabouri AH, Saito M, Lloyd AL, et al. Polymorphism in the interleukin-10 promoter affects both provirus load and the risk of human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J Infect Dis. 2004;190(7):1279–85. doi: 10.1086/423942.
  35. Zhang X, Hei P, Deng L, Lin J. Interleukin-10 gene promoter polymorphism and their protein production in peritoneal fluid in patients with endometriosis. Mol Hum Reprod. 2007;13(2):135–40. doi: 10.1093/molehr/gal106.

Potential Predictors and Response Quality after Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma

II Kostroma1, ZhYu Sidorova1, NYu Semenova1, AA Zhernyakova1, RR Sabitova1, SP Svitina1, EI Stepchenkova2,3, SS Bessmeltsev1, AV Chechetkin1, SV Gritsaev1

1 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

2 Saint Petersburg State University, 7/9 Universitetskaya emb., Saint Petersburg, Russian Federation, 199034

3 NI Vavilov Institute of General Genetics, Saint Petersburg branch, 7/9 Universitetskaya emb., Saint Petersburg, Russian Federation, 199034

For correspondence: Ivan Ivanovich Kostroma, MD, PhD, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; Tel.: +7(921)784-82-82; e-mail: obex@rambler.ru

For citation: Kostroma II, Sidorova ZhYu, Semenova NYu, et al. Potential Predictors and Response Quality after Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma. Clinical oncohematology. 2021;14(3):333–9. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-333-339


ABSTRACT

Aim. To assess the rate of cases without antitumor response quality improvement after high-dose chemotherapy (HDCT) with autologous hematopoietic stem cell transplantation (auto-HSCT) in multiple myeloma (MM). To assess the rate of allelic variants of IL1B, IL6, IL10, TNF genes and the status of hematopoietic niche cells as potential predictors of auto-HSCT efficacy.

Materials & Methods. A retrospective analysis was based on the data of 84 MM patients who received 112 auto-HSCTs, including 84 first and 28 repeated courses. Response variants were estimated according to IWG criteria. Molecular profiling of IL1B, IL6, IL10, and TNF genes was performed using polymerase chain reaction (PCR) with subsequent analysis of restriction fragment length polymorphism of PCR products. To analyze the status of hematopoietic niche cells histological, immunohistochemical, and morphometric methods were applied.

Results. The first auto-HSCT yielded response quality improvement in 29 (54.7 %) out of 84 patients. The rate of complete response was significantly higher in patients who showed very good partial response before HDCT with auto-HSCT, than in patients with partial response (PR), i.e., 57.9 % and 18.2 %, respectively (р = 0.005). No differences were identified in the groups of patients with other clinical and hematological parameters. After the second auto-HSCT in 4 out of 6 patients with PR the response variant did not change. A significant decrease of MM activity was associated with IL6 (–174С) mutant allele carrier status of 81.3 % vs. 41.6 % in the group with the unchanged response variant (р = 0.05). Response quality improvement was also related to a large number of cells on the endosteum in histological specimens of bone marrow (р = 0.038).

Conclusion. The carrier status of IL6 (–174С) pathologic allele as well as the number of cells on the endosteum in histological specimens of bone marrow can be regarded as predictors of response quality improvement or lack thereof in MM patients after auto-HSCT.

Keywords: multiple myeloma, autologous hematopoietic stem cell transplantation, IL6 gene, hematopoietic niche.

Received: January 29, 2021

Accepted: May 30, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Legarda MA, Cejalvo MJ, de la Rubia J. Recent advances in the treatment of patients with multiple myeloma. Cancers (Basel). 2020;12(12):3576. doi: 10.3390/cancers12123576.
  2. Gulla A, Anderson KC. Multiple myeloma: the (r)evolution of current therapy and a glance into future. 2020;105(10):2358–67. doi: 10.3324/haematol.2020.247015.
  3. Munshi NC, Avet-Loiseau H, Anderson KC, et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020;4(25):5988–99. doi: 10.1182/bloodadvances.2020002827.
  4. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]
  5. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]
  6. Attal M, Harousseau J-L, Facon T, et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med. 2003;349(26):2495–502. doi: 10.1056/NEJMoa032290.
  7. Cavo M, Tosi P, Zamagni E, et al. Prospective, randomized study of single compared with double autologous stem-cell transplantation for multiple myeloma: Bologna 96 clinical study. J Clin Oncol. 2007;25(17):2434–41. doi: 10.1200/JCO.2006.10.2509.
  8. Mai TR, Benner F, Bertsch U, et al. Single versus tandem high-dose melphalan followed by autologous blood stem cell transplantation in multiple myeloma: long-term results from the phase III GMMG-HD2 trial. Br J Haematol. 2016;173(5):731–41. doi: 10.1111/bjh.13994.
  9. Blocka J, Hielscher T, Goldschmidt H, Hillengass J. Response improvement rather than response status after first autologous stem cell transplantation is a significant prognostic factor for survival benefit from tandem compared with single transplantation in multiple myeloma patients. Biol Blood Marrow Transplant. 2020;26(7):1280–7. doi: 10.1016/j.bbmt.2020.03.006.
  10. Грицаев С.В., Кострома И.И., Жернякова А.А. и др. Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2019;12(3):282–8. doi: 10.21320/2500-2139-2019-12-3-282-288.
    [Gritsaev SV, Kostroma II, Zhernyakova AA, et al. Experience with the Use of Thio/Mel Conditioning Regimen Prior to Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma. Clinical oncohematology. 2019;12(3):282–8. doi: 10.21320/2500-2139-2019-12-3-282-288. (In Russ)]
  11. Кострома И.И., Жернякова А.А., Запреева И.М. и др. Опыт включения карфилзомиба в состав режима кондиционирования при выполнении аутологичной трансплантации гемопоэтических стволовых клеток больным множественной миеломой. Гематология и трансфузиология. 2020;65(1, прил. 1):155.
    [Kostroma II, Zhernyakova AA, Zapreeva IM, et al. Experience with the inclusion of carfilzomib into the conditioning regimen when performing autologous stem cell transplantation in patients with multiple myeloma. Gematologiya i transfuziologiya. 2020;65(1, Suppl 1):155. (In Russ)]
  12. Gagelmann N, Kroger N. The role of novel agents for consolidation after autologous transplantation in newly diagnosed multiple myeloma: a systematic review. Ann Hematol. 2020;100(2):405–19. doi: 10.1007/s00277-020-04316-8.
  13. Durie BGM, Harousseau JL, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–73. doi: 10.1038/sj.leu.2404284.
  14. Rajkumar SV, Harousseau JL, Durie B, et al. Consensus recommendations for the uniform reporting of clinical trials: Report of the International Myeloma Workshop Consensus Panel 1. Blood. 2011;117(18):4691–5. doi: 10.1182/blood-2010-10-299487.
  15. Martinez-Lopez J, Blade J, Mateos MV, et al. Long-term prognostic significance of response in multiple myeloma after stem cell transplantation. Blood. 2011;118(3):529–34. doi: 10.1182/blood-2011-01-332320.
  16. Brioli A, vom Hofe F, Rucci P, et al. Melphalan 200 mg/m2 does not increase toxicity and improves survival in comparison to reduced doses of melphalan in multiple myeloma patients. Bone Marrow Transplant. 2020. Published online ahead of print. doi: 10.1038/s41409-020-01170-0.
  17. Katragadda L, McCullough LM, Dai Y, et al. Effect of melphalan 140 mg/m2 vs 200 mg/m2 on toxicities and outcomes in multiple myeloma patients undergoing single autologous stem cell transplantation-a single center experience. Clin Transplant. 2016;30(8):894–900. doi: 10.1111/ctr.12762.
  18. Ghilardi G, Pabst T, Jeker B, et al. Melphalan dose in myeloma patients ≥ 65 years of age undergoing high-dose therapy and autologous stem cell transplantation: a multicentric observational registry study. Bone Marrow Transplant. 2019;54(7):1029–37. doi: 10.1038/s41409-018-0379-y.
  19. Кострома И.И., Жернякова А.А., Запреева И.М. и др. Ретроспективный анализ выживаемости больных множественной миеломой после трансплантации аутологичных гемопоэтических стволовых клеток. Клиническая онкогематология. 2021;14(1):73–9. doi: 10.21320/2500-2139-2021-14-1-73-79.
    [Kostroma II, Zhernyakova AA, Zapreeva IM, et al. Retrospective survival analysis of multiple myeloma patients after autologous hematopoietic stem cell transplantation. Clinical oncohematology. 2021;14(1):73–9. doi: 10.21320/2500-2139-2021-14-1-73-79. (In Russ)]
  20. Bygrave C, Pawlyn C, Davies F, et al. Early relapse after high-dose melphalan autologous stem cell transplant predicts inferior survival and is associated with high disease burden and genetically high-risk disease in multiple myeloma. Br J Haematol. 2020. Published online ahead of print. doi: 10.1111/bjh.16793.
  21. Dhakal B, D’Souza A, Callander N, et al. Novel prognostic scoring system for autologous hematopoietic cell transplantation in multiple myeloma. Br J Haematol. 2020;191(3):442–52. doi: 10.1111/bjh.16987.
  22. Paiva B, van Dongen JJ, Orfao A. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood. 2015;125(20):3059–68. doi: 10.1182/blood-2014-11-568907.
  23. Lee B-H, Park Y, Kim JH, et al. PD-L1 expression in bone marrow plasma cells as a biomarker to predict multiple myeloma prognosis: developing a nomogram-based prognostic model. Sci Rep. 2020;10(1):12641. doi: 10.1038/s41598-020-69616-5.
  24. Soliman AM, Lin TS, Mahakkanukrauh P, Das S. Role of microRNAs in diagnosis, prognosis, and management of multiple myeloma. Int J Mol Sci. 2020;21(20):7539. doi: 10.3390/ijms21207539.
  25. Duch CR, Figueiredo MS, Ribas C, et al. Analysis of polymorphism at site -174 G/C of interleukin-6 promoter region in multiple myeloma. Braz J Med Biol Res. 2007;40(2):265–7. doi: 10.1590/s0100-879х2007000200014.
  26. Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol Rev. 2008;226(1):205–18. doi: 10.1111/j.1600-065X.2008.00706.x.
  27. Типтева Т.А., Чумакова О.С., Бакланова Т.Н. и др. Однонуклеотидный полиморфизм С(-592)А гена интерлейкина-10 ассоциирован с аортальным стенозом. Кремлевская медицина. Клинический вестник. 2017;1:24–31.
    [Tipteva TA, Chumakova OS, Baklanova TN, et al. Single-nucleotide polymorphism С(-592)А of interleukin-10 gene is associated with aortic stenosis. Kremlevskaya meditsina. Klinicheskii vestnik. 2017;1:24–31. (In Russ)]
  28. Ругаль В.И., Бессмельцев С.С., Семенова Н.Ю. и др. Характеристика микроокружения костного мозга при множественной миеломе до и после терапии. Сибирский научный медицинский журнал. 2019;39(1):112–8. doi: 10.15372/SSMJ
    [Rugal VI, Bessmeltsev SS, Semenova NYu, et al. Characteristics of bone marrow microenvironment in multiple myeloma before and treatment. Sibirskii nauchnyi meditsinskii zhurnal. 2019;39(1):112–8. doi: 10.15372/SSстMJ20190116. (In Russ)]
  29. Ellis SL, Grassinger J, Jones A, et al. The relationship between bone, hemopoietic stem cells, and vasculature. Blood. 2011;118(6):1516–24. doi: 10.1182/blood-2010-08-303800.
  30. Покровская О.С., Менделеева Л.П., Капланская И.Б. и др. Ангиогенез в костном мозге больных множественной миеломой на различных этапах высокодозной химиотерапии. Клиническая онкогематология. 2010;3(4):347–53.
    [Pokrovskaya OS, Mendeleeva LP, Kaplanskaya IB, et al. Bone marrow angiogenesis in patients with multiple myeloma at different stages of high-dose therapy. Klinicheskaya onkogematologiya. 2010;3(4):347–53. (In Russ)]

Obesity as a Poor Prognostic Factor in Multiple Myeloma

ES Mikhailov1, GN Salogub1, SS Bessmeltsev2

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Evgenii Sergeevich Mikhailov, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(812)702-37-49; e-mail: mikhailov_md@bk.ru

For citation: Mikhailov ES, Salogub GN, Bessmeltsev SS. Obesity as a Poor Prognostic Factor in Multiple Myeloma. Clinical oncohematology. 2021;14(3):315–20. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-315-320


ABSTRACT

Aim. To assess the impact of obesity and overweight on the outcomes of multiple myeloma (MM) treatment.

Materials & Methods. The present retrospective study enrolled 214 patients with newly diagnosed MM. The median age was 59 years (range 29–89 years), male patients accounted for 40.2 %. The analysis focused on complication incidence, overall survival, and time to the second-line therapy depending on body mass index (BMI) at disease onset.

Results. In the groups of patients with BMI > 35 kg/m2 and BMI ≤ 35 kg/m2 the median overall survival was 42 and 95 months, respectively (hazard ratio [HR] 0.17; 95% confidence interval [95% CI] 0.08–0.37; < 0.05). In the group of patients with obesity ≥ grade 2 the median time to the second-line therapy was 25 months, being less than in the group of patients with BMI ≤ 35 kg/m2 (43 months; HR 0.58; 95% CI 0.31–0.99; < 0.05). As a result of therapy, the incidence of corticosteroid-associated hyperglycemia and infectious complications as well as the rate of delayed initiation of the next cycle and dose reduction of anticancer drugs were significantly higher in patients with BMI > 35 kg/m2 (< 0.05).

Conclusion. Obesity ≥ grade 2 is a poor prognostic factor for complications and is associated with diminishing outcomes of ММ treatment. Accompanying morbid obesity leads to a higher incidence of therapy complications longer intervals between chemotherapy courses and drug dose reduction.

Keywords: multiple myeloma, obesity, prognosis, survival.

Received: March 9, 2021

Accepted: June 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. World Health Organization. Obesity and overweight. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed 9.03.2021).
  2. Luma A, Ahmsd HA. Relationships between Obesity and Cardiovascular Diseases in Four Southern States and Colorado. J Health Care Poor Underserved. 2011;22(Suppl 4):61–72. doi: 10.1353/hpu.2011.0166.
  3. Barnes AS. The Epidemic of Obesity and Diabetes: trends and treatments. Tex Heart Inst J. 2011;38(2):142–4.
  4. De Pergola G, Silvestris F. Obesity as a Major Risk Factor for Cancer. J Obes. 2013;2013:291546. doi: 10.1155/2013/291546.
  5. Morris EV, Edwards CM. Adipokines, adiposity, and bone marrow adipocytes: Dangerous accomplices in multiple myeloma. J Cell Physiol. 2018;233(12):9159–66. doi: 10.1002/jcp.26884.
  6. Chang SH, Luo S, Thomas TS, et al. Obesity and the Transformation of Monoclonal Gammopathy of Undetermined Significance to Multiple Myeloma: A Population-Based Cohort Study. J Natl Cancer Inst. 2016;109(5):djw264. doi: 10.1093/jnci/djw264.
  7. Vivek R, Swaika A, Kumar S, et al. Influence of Obesity on Outcomes of Patients with Relapsed Refractory Multiple Myeloma. Clin Lymphoma Myel Leuk. 2016;17(1):e139–e140. doi: 10.1016/j.clml.2017.03.252.
  8. Sonderman JS, Bethea TN, Kitahara CM, et al. Multiple Myeloma Mortality in Relation to Obesity Among African Americans. J Natl Cancer Inst. 2016;108(10):djw120. doi: 10.1093/jnci/djw120.
  9. Harvey RD, Kaufman JL, Heffner LT, et al. Impact of obesity on response in 751 myeloma patients receiving lenalidomide, bortezomib, and dexamethasone (RVd) induction. J Clin Oncol. 2018;36(15);8046. doi: 10.1200/JCO.2018.36.15_suppl.8046.
  10. Li Q-F, Zhang Q-K, Wei X-F, et al. Correlation of Body Mass Index, ABO Blood Group with Multiple Myeloma. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2020;28(4):1261–6. doi: 10.19746/j.cnki.issn.1009-2137.2020.04.030.
  11. Moore DC, Ringley JT, Nix D, et al. Impact of Body Mass Index on the Incidence of Bortezomib-induced Peripheral Neuropathy in Patients With Newly Diagnosed Multiple Myeloma. Clin Lymphoma Myel Leuk. 2020;20(3):168–73. doi: 10.1016/j.clml.2019.08.012.
  12. Nath CE, Trotman J, Nivison-Smith I, et al. Melphalan exposure and outcome in obese and non-obese adults with myeloma. A study of pharmacokinetics and pharmacodynamics. Bone Marrow Transplant. 2020;55(9):1862–4. doi: 10.1038/s41409-020-0832-6.
  13. National Cancer Institute. Common Terminology Criteria for Adverse Events (version 5.0). 2017. Available from: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/СTCAE_v5_Quick_Reference_8.5х11.pdf (accessed 9.03.2021).
  14. Kinlen D, Cody D, O’Shea D. Complications of obesity. Int J Med. 2018;111(7):437–43. doi: 10.1093/qjmed/hcx152.
  15. Donihi AC, Raval D, Saul M, еt al. Prevalence and predictors of corticosteroid-related hyperglycemia in hospitalized patients. Endocr Pract. 2006;12(4):358–62. doi: 10.4158/EP.12.4.358.
  16. Huttunen R, Syrjanen J. Obesity and the risk and outcome of infection. Int J Obes. 2013;37(3):333–40. doi: 10.1038/ijo.2012.62.
  17. Griggs JJ, Mangu PB, Anderson H. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2012;30(13):1553–61. doi: 10.1200/JCO.2011.39.9436.
  18. Beason TS, Chang SH, Sanfilippo KM. Influence of body mass index on survival in veterans with multiple myeloma. Oncologist. 2013;18(10):1074–9. doi: 10.1634/theoncologist.2013-0015.
  19. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]