Correlation of the Number of TGFβF1-Expressing Atypical Megakaryocytes with the Degree of Bone Marrow Stroma Fibrosis and Osteosclerosis in Patients with Essential Thrombocythemia and Different Stages of Primary Myelofibrosis

DI Chebotarev, AM Kovrigina, AL Melikyan

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Dmitrii Ilich Chebotarev, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(916)091-27-09; e-mail: chebadmitry@gmail.com

For citation: Chebotarev DI, Kovrigina AM, Melikyan AL. Correlation of the Number of TGFβF1-Expressing Atypical Megakaryocytes with the Degree of Bone Marrow Stroma Fibrosis and Osteosclerosis in Patients with Essential Thrombocythemia and Different Stages of Primary Myelofibrosis. Clinical oncohematology. 2022;15(1):76–84. (In Russ).

DOI: 10.21320/2500-2139-2022-15-1-76-84


ABSTRACT

Background. As morphological pattern of bone marrow (BM) biopsy samples at advanced stages of clonal evolution in essential thrombocythemia (ET) appears similar to that in the development of post-thrombocythemic myelofibrosis and primary myelofibrosis (PMF), the expression of fibrogenesis factors by atypical megakaryocytes (MKC) acquires increased interest.

Aim. To study the expression of the transforming growth factor TGFβF1 by atypical MKC; to relate the number of TGFβF1-positive MKCs with the degree of BM stroma fibrosis and trabecular bone changes in patients with ET and different PMF stages.

Materials & Methods. BM biopsy samples of ET and PMF patients, obtained before cytoreductive therapy, were subjected to histochemical study with Gomori stain and Masson trichrome as well as to CD42b and TGFβF1 antibody immunohistochemical assays. The degree of myelofibrosis and osteosclerosis was estimated by semi-quantitative method in accordance with the European Consensus guidelines. The morphological characteristics of atypical MKC included the comparative evaluation of nuclear-cytoplasmic ratio.

Results. The number of MKCs with high nuclear-cytoplasmic ratio was significantly higher in BM biopsy samples of patients with pre-fibrosis/early PMF (pre-PMF) stage and fibrosis stage of PMF (f-PMF) compared with BM biopsy samples of ET patients. The analysis of TGFβF1 expression showed different numbers of positive MKCs in the study groups. The matching of the number of TGFβF1-positive MKCs with the degree of myelofibrosis and osteosclerosis, with no regard to nosologic entities, revealed significant moderate correlation between these features (r = 0.431, = 0.001 и r = 0.499, = 0.001, respectively). In 55 % of pre-PMF patients’ BM biopsy samples, histochemical study with Masson trichrome stain visualized minimal immature osteoid deposits on bone trabeculae. Similar changes were also identified in f-PMF patients’ BM biopsy samples, whereas the ET patients’ samples featured none of them.

Conclusion. The results of the study prove that the pathological clone of MKC with TGFβF1 expression affects myelofibrosis and osteosclerosis processes whose manifestation in BM biopsy samples is associated with the number of TGFβF1-expressing atypical MKCs.

Keywords: primary myelofibrosis, pre-fibrosis and fibrosis stages, essential thrombocythemia, osteosclerosis, TGFβF1, pathomorphology, immunohistochemistry.

Received: August 12, 2021

Accepted: November 30, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Swerdlow S, Campo E, Harris N, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC Press; 2017. рр. 174–7.
  2. Kreipe H, Busche G, Bock O, Hussein K. Myelofibrosis: molecular and cell biological aspects. Fibrogen Tiss Repair. 2012;5(Suppl 1):S21. doi: 10.1186/1755-1536-5-S1-S21.
  3. Buhr T, Choritz H, Georgii A. The impact of megakaryocyte proliferation of the evolution of myelofibrosis. Histological follow-up study in 186 patients with chronic myeloid leukaemia. Virchows Arch A Pathol Anat Histopathol. 1992;420(6):473–8. doi: 10.1007/BF01600251.
  4. Martyre MC. Platelet PDGF and TGF-β Levels in Myeloproliferative Disorders. Leuk Lymphoma. 1991;6(1):1–6. doi: 10.3109/10428199109064872.
  5. Wang JC. Importance of plasma matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinase (TIMP) in development of fibrosis in agnogenic myeloid metaplasia. Leuk Lymphoma. 2005;46(9):1261–8. doi: 10.1080/10428190500126463.
  6. Bock O, Loch G, Schade U, et al. Aberrant expression of transforming growth factor beta-1 (TGF beta-1) per se does not discriminate fibrotic from non-fibrotic chronic myeloproliferative disorders. J Pathol. 2005;205(5):548–57. doi: 10.1002/path.1744.
  7. Agarwal A, Morrone K, Bartenstein M, et al. Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig. 2016;3:5. doi: 10.3978/j.issn.2306-9759.2016.02.03.
  8. Jacquelin S, Kramer F, Mullally A, Lane SW. Murine Models of Myelofibrosis. Cancers (Basel). 2020;12(9):2381. doi: 10.3390/cancers12092381.
  9. Thiele J, Kvasnicka HM, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  10. Krystal G, Lam V, Dragowska W, et al. Transforming growth factor beta 1 is an inducer of erythroid differentiation. J Exp Med. 1994;180(3):851–60. doi: 10.1084/jem.180.3.851.
  11. Wickenhauser C, Hillienhof A, Jungheim K, et al. Detection and quantification of transforming growth factor beta (TGF-beta) and platelet-derived growth factor (PDGF) release by normal human megakaryocytes. Leukemia. 1995;9(2):310–5.
  12. Sennikov SV, Eremina LV, Samarin DM, et al. Cytokine gene expression in erythroid cells. Eur Cytokine Netw. 1996;7(4):771–4.
  13. Di Giandomenico S, Kermani P, Molle N, et al. Megakaryocyte TGFβ1 partitions erythropoiesis into immature progenitor/stem cells and maturing precursors. Blood. 2020;136(9):1044–54. doi: 10.1182/blood.2019003276.
  14. Tang Y, Hu M, Xu Y, et al. Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-β Theranostics. 2020;10(5):2229–42. doi: 10.7150/thno.40559.
  15. Malara A, Abbonante V, Zingariello M, et al. Megakaryocyte contribution to bone marrow fibrosis: many arrows in the quiver. Mediterr J Hematol Infect Dis. 2018;10(1):e2018068. doi: 10.4084/MJHID.2018.068.
  16. Bonewald LF, Mundy GR. Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res. 1990;250:261–76. doi: 10.1097/00003086-199001000-00036.
  17. Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4(1):16009. doi: 10.1038/boneres.2016.9.
  18. Jann J, Gascon S, Roux S, Faucheux N. Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci. 2020;21(20):7597. doi: 10.3390/ijms21207597.
  19. Zhang Z, Zhang X, Zhao D, et al. TGF β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Mol Med Rep. 2019;19(5):3505–18. doi: 10.3892/mmr.2019.10051.
  20. Murshed M. Mechanism of Bone Mineralization. Cold Spring Harb Perspect Med. 2018;8(12):a031229. doi: 10.1101/cshperspect.a031229.
  21. Чеботарев Д.И., Ковригина А.М., Меликян А.Л., Кузьмина Л.А. Сравнительная характеристика изменений клеточного состава, стромы костного мозга и трабекулярной кости при трансплантации аллогенных гемопоэтических стволовых клеток у больных первичным миелофиброзом. Гематология и трансфузиология. 2021;66(1):68–78. doi: 10.35754/0234-5730-2021-66-1-68-78.
    [Chebotarev DI, Kovrigina AM, Melikyan AL, Kuzmina LA. Comparative characteristics of bone marrow cell composition, stroma, and trabecular bone in allogenic hematopoietic stem cell transplantation in patients with primary myelofibrosis. Russian journal of hematology and transfusiology. 2021;66(1):68–78. doi: 10.35754/0234-5730-2021-66-1-68-78. (In Russ)]
  22. Szuber N, Mudireddy M, Nicolosi M, et al. 3023 Mayo Clinic Patients With Myeloproliferative Neoplasms: Risk-Stratified Comparison of Survival and Outcomes Data Among Disease Subgroups. Mayo Clin Proc. 2019;94(4):599–610. doi: 10.1016/j.mayocp.2018.08.022.

Overt and Masked Polycythemia Vera Within the Scope of Ph-Negative Myeloproliferative Diseases

ZhV Tratsevskaya, AM Kovrigina, DI Chebotarev, AL Melikyan, AO Abdullaev, AB Sudarikov

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Prof. Alla Mikhailovna Kovrigina, PhD in Biology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

For citation: Tratsevskaya ZhV, Kovrigina AM, Chebotarev DI, et al. Overt and Masked Polycythemia Vera Within the Scope of Ph-negative Myeloproliferative Diseases. Clinical oncohematology. 2020;13(1):58–66 (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-58-66


ABSTRACT

Aim. To study the structure of Ph-negative myeloproliferative diseases (Ph– MPD) and to identify morphological markers for diagnosing masked polycythemia vera (PV).

Materials & Methods. Bone marrow core biopsy samples from the database of pathology department of National Research Center for Hematology within the period from January 2014 to June 2017 provided the basis for analyzing the diagnosed Ph– MPD cases. The trial included the bone marrow core biopsy samples of the patients treated and followed-up not only at the National Research Center for Hematology but also at other medical centers in the Russian Federation in the context of clinical, laboratory and molecular data.

Results. In 1611 Ph– MPD patients PV prevailed corresponding to 40.6 % of all cases. In the PV group the masked form was diagnosed in 29 % of patients. Primary myelofibrosis (PMF) was diagnosed in 26.6 % of all patients including 10 % of cases with pre-fibrosis/early stage. The 3d most frequent disorder was essential thrombocythemia (ET) which corresponded to 16 %. JAK2 driver mutation was identified in all 654 PV patients. In 4 cases out of them exon 12 mutation was detected. A similar mutation was found out in PMF (53 %) and ET (60 %). In 36 % of PMF patients and 27 % of ET patients CALR mutation was detected. MPL mutation was identified in 4 % of PMF cases and was not discovered in ET. Triple negative patients were identified in 7 % of PMF and 13 % of ET cases. The designation of “myeloproliferative disease unclassifiable” can be applied to 16.8 % of cases. The trial deals with morphological criteria for diagnosing masked PV during examination of bone marrow core biopsy samples. In 30 % of patients with masked PV (according to the 2017 WHO classification) and splenomegaly (> 14 cm) portal vein thrombosis was identified.

Conclusion. In the Ph– MPD group PV diagnosis prevailed (40.6 %). The histological analysis of bone marrow core biopsy samples of the patients with the masked PV accounting for 29 % of all PV cases, revealed morphological features typical of overt PV. Histological analysis of bone marrow is a reliable method for diagnosing overt and masked PV. Among morphological characteristics of the bone marrow of patients with masked PV and portal vein thrombosis special attention should be paid to the MF-1 grade of reticulin fibrosis (29 % of cases) and loose clusters of megakaryocytes (71.4 %).

Keywords: Ph-negative myeloproliferative disease/neoplasms, masked polycythemia vera, pathomorphology, bone marrow core biopsy.

Received: September 14, 2019

Accepted: December 12, 2019

Read in PDF


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Lyon: IARC Press; 2017. 585 p.

  2. Gianelli U, Bossi A, Cortinovis I, et al. Reproducibility of the WHO histological criteria for the diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. Mod Pathol. 2014;27(6):814–22. doi: 10.1038/modpathol.2013.196.

  3. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.

  4. Pietra D, Rumi E, Ferretti VV, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30(2):431–8. doi: 10.1038/leu.2015.277.

  5. Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–7. doi: 10.1038/leu.2014.3.

  6. Zamora L, Xicoy B, Cabezon M, et al. Co-existence of JAK2 V617F and CALR mutations in primary myelofibrosis. Leuk Lymphoma. 2015;56(10):2973–4. doi: 10.3109/10428194.2015.1015124.

  7. Lin Y, Liu E, Sun Q, et al. The prevalence of JAK2, MPL, and CALR mutations in Chinese patients with BCR-ABL1-negative myeloproliferative neoplasms. Am J Clin Path. 2015;144(1):165–71. doi: 10.1309/AJCPALP51XDIXDDV.

  8. Ahmed RZ, Rashid M, Ahmed N, et al. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms – Do They Designate a New Subtype? Asian Pacif J Cancer Prevent. 2016;17(3):923–6. doi: 10.7314/apjcp.2016.17.3.923.

  9. Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22(2):157–70. doi: 10.1016/j.stem.2018.01.011.

  10. Shlush LI. Age-related clonal hematopoiesis. Blood. 2018;131(5):496–504. doi: 10.1182/blood-2017-07-746453.

  11. Steensma DP, Bejar R. Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16. doi: 10.1182/blood-2015-03-631747.

  12. Gianelli U, Iurlo A, Vener C, et al. The Significance of Bone Marrow Biopsy and JAK2V617F Mutation in the Differential Diagnosis Between the “Early” Prepolycythemic Phase of Polycythemia Vera and Essential Thrombocythemia. Am J Clin Pathol. 2008;130(3):336–42. doi: 10.1309/6BQ5K8LHVYAKUAF4.

  13. Thiele J, Kvasnicka HM, Zankovich R, Diehl V. The value of bone marrow histology in differentiating between early stage polycythemia vera and secondary (reactive) polycythemias. Haematologica. 2001;86(4):368–74.

  14. Barbui T, Thiele J, Vannucchi AM, et al. Rethinking the diagnostic criteria of polycythemia vera. Leukemia. 2013;28(6):1191–5. doi: 10.1038/leu.2013.380.

  15. Thiele J, Kvasnicka HM, Diehl V. Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol. 2005;113(4):213–9. doi: 10.1159/000084673.

  16. Barbui T, Thiele J, Carobbio A, et al. Masked polycythemia vera diagnosed according to WHO and BCSH classification. Am J Hematol. 2014;89(2):199–202. doi: 10.1002/ajh.23617.

  17. Kvasnicka HM, Orazi A, Thiele J, et al. European LeukemiaNet study on the reproducibility of bone marrow features in masked polycythemia vera and differentiation from essential thrombocythemia. Am J Hematol. 2017;92(10):1062–7. doi 10.1002/ajh.24837.

  18. Ковригина А.М., Байков В.В. Истинная полицитемия: новая концепция диагностики и клинические формы. Клиническая онкогематология. 2016;9(2):115–22. doi: 10.21320/2500-2139-2016-9-2-115-122.

    [Kovrigina AM, Baikov VV. Polycythemia Vera: New Diagnostic Concept and Its Types. Clinical oncohematology. 2016;9(2):115–22. doi: 10.21320/2500-2139-2016-9-2-115-122. (In Russ)]

  19. Spivak JL, Silver RT. The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: An alternative proposal. Blood. 2008;112(2):231–9. doi: 10.1182/blood-2007-12-128454.

  20. Silver RT, Chow W, Orazi A, et al. Evaluation of WHO criteria for diagnosis of polycythemia vera: A prospective analysis. Blood. 2013;122(11):1881–6. doi: 10.1182/blood-2013-06-508416.

  21. McMullin MF, Reilly JT, Campbell P, et al. Amendment to the guideline for diagnosis and investigation of polycythaemia/erythrocytosis. Br J Haematol. 2007;138(6):821–2. doi: 10.1111/j.1365-2141.2007.06741.x.

  22. Murphy S. Diagnostic criteria and prognosis in polycythemia vera and essential thrombocythemia. Semin Hematol. 1999;36(1 Suppl 2):9–13.

  23. Lussana F, Carobbio A, Randi ML, et al. A lower intensity of treatment may underlie the increased risk of thrombosis in young patients with masked polycythaemia Vera. Br J Haematol. 2014;167(4):541–6. doi: 10.1111/bjh.13080.

  24. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;62(1, прил. 1):25–60. doi: 10.18821/0234-5730-2017-62-1-S1-1-60.

    [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2016). Gematologiya i transfuziologiya. 2017;62(1 Suppl 1):25–60. doi: 10.18821/0234-5730-2017-62-1-S1-1-60. (In Russ)]

  25. Суборцева И.Н., Колошейнова Т.И., Пустовая Е.И. и др. Истинная полицитемия: обзор литературы и собственные данные. Клиническая онкогематология. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412.

    [Subortseva IN, Kolosheinova TI, Pustovaya EI, et al. Polycythemia Vera: Literature Review and Own Data. Clinical oncohematology. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412. (In Russ)]

  26. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Myeloproliferative neoplasms: Morphology and clinical practice. Am J Hematol. 2016;91(4):430–3. doi: 10.1002/ajh.24288.

  27. Wong WJ, Hasserjian RP, Pinkus GS, et al. JAK2, CALR, MPL and ASXL1 mutational status correlates with distinct histological features in Philadelphia chromosome-negative myeloproliferative neoplasms. Haematologica. 2018;103(2):e63–e68. doi: 10.3324/haematol.2017.178988.

  28. Alvarez-Larran A, Ancochea A, Gracia M, et al. WHO-histological criteria for myeloproliferative neoplasms: reproducibility, diagnostic accuracy and correlation with gene mutations and clinical outcomes. Br J Haematol. 2014;166(6):911–9. doi: 10.1111/bjh.12990.

Diagnosis of Pediatric-Type Follicular Lymphoma in Young Adults (Own Data)

AM Kovrigina, LV Plastinina, SK Kravchenko, ES Nesterova, TN Obukhova

Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Alla Mikhailovna Kovrigina, DSci, Professor, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel: +7(495)612-62-12; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM, Plastinina LV, Kravchenko SK, et al. Diagnosis of Pediatric-Type Follicular Lymphoma in Young Adults (Own Data). Clinical oncohematology. 2017;10(1):52–60 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-52-60


ABSTRACT

Aim. Pathomorphological, immunophenotypical and clinical characteristics of a new clinico-morphological form of pediatric-type follicular lymphoma (FL) in young adults discovered in 2008 (WHO classification).

Background. FL is a heterogeneous disease according to its morphological, immunophenotypical and molecular-genetic characteristics. FL de novo includes transformed FL, FL without t(14;18), FL with diffuse growth associated with del(1p.36) and TNFRSF14 mutation. Pediatric-type FL in young adults is poorly studied; and it is especially interesting because of its clinical diversity and molecular-genetic heterogeneity of FL, in general.

Methods. Biopsy materials taken from 5 patients (aged 18–25 years; median age: 22 years; the female/male ratio 3:2) were included in the study; all patients were examined, diagnosed and treated in the Hematology Research Center over the period from 2012 to 2016. Clinical stage I with isolated involvement a palatine tonsil or an inguinal lymph node was diagnosed in 4/5 patients; clinical stage II with involvement of a palatine tonsil and cervical lymph node was diagnosed in 1/5 patients. Morphological, immunophenotypical and FISH tests were performed with paraffin blocks.

Results. The morphological pattern was typical for FL 3B (n = 2) and FL 3 with blastoid nucleus morphology (n = 3). Immunophenotypical features demonstrated an intermediate position between FL 3 de novo and transformed FL 3. No BCL-2 rearrangement was detected in any observation.

Conclusion. The comparison of our data on characteristics of pediatric-type FL with those published in the literature demonstrated that lack or weak expression (< 30 % of tumor substrate cells) of MUM1 was the key feature of the experimental group of young adults with pediatric-type FL. This, in turn, indicates the absence of IRF4 rearrangements and possible presence of other genetic abnormalities. The clinical, morphological, and immunophenotypical characteristics broaden the FL heterogeneity spectrum in young adults.

Keywords: pediatric-type follicular lymphoma, follicular lymphoma, young adults, pathomorphology, immunohictochemistry, MUM1.

Received: August 14, 2016

Accepted: November 27, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Lennert K, Stein H, Mohri N, et al. Malignant Lymphomas Other than Hodgkin’s Disease: Histology, Cytology, Ultrastructure, Immunology. Berlin, Heidelberg: Springer-Verlag; 1978. 833 p. doi: 10.1016/0092-8674(79)90172-7.
  2. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  3. Anderson JR, Armitage JO, Weisenburger DD. Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s Lymphoma Classification. Project Ann Oncol. 1998;9(7):717–20.
  4. Gallagher CJ, Gregory WM, Jones AE, et al. Follicular lymphoma: Prognostic factors for response and survival. J Clin Oncol. 1986;4(10):1470–80.
  5. Bastion Y, Sebban C, Berger F, et al. Incidence, predictive factors, and outcome of lymphoma transformation in follicular lymphoma patients. J Clin Oncol. 1997;15(4):1587–94.
  6. Montoto S, Davies AJ, Matthews J, et al. Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J Clin Oncol. 2007;25(17):2426–33. doi: 10.1200/jco.2006.09.3260.
  7. Montoto, S., Fitzgibbon J. Transformation of indolent B-cell lymphomas. J Clin Oncol. 2011;29(4):1827–34. doi: 10.1200/JCO.2010.32.7577.
  8. Hirt C, Weitmann K, Schuler F, et al. Circulating t(14;18)-positive cells in healthy individuals: association with age and sex but not with smoking. Leuk Lymphoma. 2013;54(12):2678–84. doi: 10.3109/10428194.2013.788177.
  9. Weigert O, Kopp N, Lane AA, et al. Molecular ontogeny of donor derived follicular lymphomas occurring after hematopoietic cell transplantation. Cancer Discov. 2012;2(1):47–55. doi: 10.1158/2159-8290.cd-11-0208.
  10. Leich E, Salaverria I, Bea S, et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood. 2009;114(4):826–34. doi: 10.1182/blood-2009-01-198580.
  11. Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. J Clin Invest. 2012;122(10):3424–31. doi: 10.1172/jci63186.
  12. Katzenberger T, Kalla J, Leich E, et al. A distinctive subtype of t(14;18)-negative nodal follicular non- Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113(5):1053–61. doi: 10.1182/blood-2008-07-168682.
  13. Pasqualucci L, Khiabanian H, Fangazio M, et al. Genetics of Follicular Lymphoma Transformation. Cell Reports. 2014;6(1):130–40. doi: 10.1016/j.celrep.2013.12.027.
  14. Bouska A, McKeithan TW, Deffenbacher KE, et al. Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood. 2014;123(11):1681–90. doi: 10.1182/blood-2013-05-500595.
  15. Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99(6):1959–64. doi: 10.1182/blood.v99.6.1959.
  16. Swerdlow SH. Pediatric follicular lymphomas, marginal zone lymphomas, and marginal zone hyperplasia. Am J Clin Pathol. 2004;122(Suppl 1):S98–S109. doi: 10.1309/4bknake4d7ct3c1b.
  17. Oschlies I, Salaverria I, Mahn F, et al. Pediatric follicular lymphoma—a clinico-pathological study of a population-based series of patients treated within the Non-Hodgkin’s Lymphoma—Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica. 2010;95(2):253–9. doi: 10.3324/haematol.2009.013177.
  18. Liu Q, Salaverria I, Pittaluga S, et al. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol. 2013;37(3):333–43. doi: 10.1097/pas.0b013e31826b9b57.
  19. Louissaint A, Ackerman A, Dias-Santagata D, et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood. 2012;120(12):2395–404. doi: 10.1182/blood-2012-05-429514.
  20. Guo Y, Karube K, Kawano R, et al. Low-grade follicular lymphoma with t(14;18) presents a homogeneous disease entity otherwise the rest comprises minor groups of heterogeneous disease entities with Bcl2 amplification, Bcl6 translocation or other gene aberrances. Leukemia. 2005;19(6):1058–63. doi: 10.1038/sj.leu.2403738.
  21. Katzenberger T, Ott G, Klein T, et al. Cytogenetic alterations affecting BCL6 are predominantly found in follicular lymphomas grade 3B with a diffuse large B-cell component. Am J Pathol. 2004;165(2):481–90. doi: 10.1016/s0002-9440(10)63313-5.
  22. Salaverria I, Siebert R. Follicular lymphoma grade 3B. Best Pract Res Clin Haematol. 2011;24(2):111–9. doi: 10.1016/j.beha.2011.02.002.
  23. Ngan BY, Chen-Levy Z, Weiss LM, et al. Expression in non- Hodgkin lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med. 1988;318(25):1638–44. doi: 10.1056/nejm198806233182502.
  24. Adam P, Baumann R, Schmidt J, et al. The BCL2 E17 and SP66 antibodies discriminate 2 immunophenotypically and genetically distinct subgroups of conventionally BCL2-“negative” grade 1/2 follicular lymphomas. Hum Pathol. 2014;44(9):1817–26. doi: 10.1016/j.humpath.2013.02.004.
  25. Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99(6):1959–64. doi: 10.1182/blood.v99.6.1959.
  26. Willis SN, Good-Jacobson KL, Curtis J, et al. Transcription Factor IRF4 Regulates Germinal Center Cell Formation through a B Cell–Intrinsic Mechanism. J Immunol. 2014;192(7):3200–6. doi: 10.4049/jimmunol.1303216.
  27. Karube K, Guo Y, Suzumiya J, et al. CD10- MUM1+ follicular lymphoma lacks BCL2 gene translocation and shows characteristic biologic and clinical features. Blood. 2007;109(7):3076–9. doi: 10.1182/blood-2006-09-045989.
  28. Sweetenham JW, Goldman B, LeBlanc ML, et al. Prognostic value of regulatory T cells, lymphoma-associated macrophages, and MUM-1 expression in follicular lymphoma treated before and after the introduction of monoclonal antibody therapy: a Southwest Oncology Group Study. Ann Oncol. 2010;21(6):1196–202. doi: 10.1093/annonc/mdp460.
  29. Xerri L, Bachy E, Fabiani B, et al; LYSA study. Identification of MUM1 as a prognostic immunohistochemical marker in follicular lymphoma using computerized image analysis. Hum Pathol. 2014;45(10):2085–93. doi: 10.1016/j.humpath.2014.06.019.
  30. Salaverria I, Philipp C, Oschlies I, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118(1):139–47. doi: 10.1182/blood-2011-01-330795.
  31. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.
  32. Quintanilla-Martinez L, Sander B, Chan JK, et al. Indolent lymphomas in the pediatric population: follicular lymphoma, IRF4/MUM1+ lymphoma, nodal marginal zone lymphoma and chronic lymphocytic leukemia. Virchows Arch. 2016;468(2):141–57. doi: 10.1007/s00428-015-1855-z.
  33. Jaffe ES. Follicular lymphomas: a tapestry of common and contrasting threads. Haematologica. 2013;98(8):1163–5. doi: 10.3324/haematol.2013.086678.
  34. Martin-Guerrero I, Salaverria I, Burkhardt B, et al. Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas. Haematologica 2013;98(8):1237–41. doi: 10.3324/haematol.2012.073916.
  35. Launay E, Pangault C, Bertrand P, et al. High rate of TNFRSF14 gene alterations related to 1p36 region in de novo follicular lymphoma and impact on prognosis. Leukemia. 2012;26(3):559–62. doi: 10.1038/leu.2011.266.

 

Principles of Pathomorphological Differential Diagnosis of Myelodysplastic Syndromes

AM Kovrigina1, SA Glinkina1, VV Baikov2

1 Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022

For correspondence: Alla Mikhailovna Kovrigina, PhD, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM, Glinkina SA, Baikov VV. Principles of Pathomorphological Differential Diagnosis of Myelodysplastic Syndromes. Clinical oncohematology. 2015;8(1):62–8 (In Russ).


ABSTRACT

The article dwells on the diagnosis of myelodysplastic syndromes (MDS) in bone marrow trephine biopsies. The paper describes problems of a complex approach to differential diagnostics of MDS and non-clonal/reactive changes in hematopoiesis. It is emphasized that clinical and laboratory data, as well as data on patient’s medical history should be submitted to a pathologist. The authors substantiate the algorithm for the morphological investigation of a bone marrow trephine bioptate, including evaluation of cellularity, stromal patterns, and morphological signs of dysplasia. The diagnostic value of histochemistry and immunohistochemistry is discussed.


Keywords: myelodysplastic syndrome, bone marrow trephine biopsy, pathomorphology, differential diagnostics.

Received: October 22, 2014

Accepted: November 10, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  2. Boultwood J, Wainscoat JS. Gene silencing by DNA methylation in haematological malignancies. Br J Haematol. 2007;138(1):3–11. doi: 10.1111/j.1365-2141.2007.06604.x.
  3. Cazzola M, Porta MG, Malcovati L. The genetic basis of myelodysplasia and its clinical relevance. Blood. 2013;122(25):4021–34. doi: 10.1182/blood-2013-09-381665.
  4. Lindsley RC, Elbert BL. Molecular pathophysiology of myelodysplastic syndromes. Annu Rev Pathol. 2013;8(1):21–47. doi: 10.1146/annurev-pathol-011811-132436.
  5. Maciejewski JP, Mufti GJ. Whole genome scanning as a cytogenetic tool in hematologic malignancies. Blood. 2008;112(4):965–74. doi: 10.1182/blood-2008-02-130435.
  6. Mohamedali A, Gаken J, Twine NA, et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood. 2007;110(9):3365–73. doi: 10.1182/blood-2007-03-079673.
  7. Raza A, Galili N. The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Cancer. 2012;12(12):849–59. doi: 10.1038/nrc3321.
  8. Smith AE, Mohamedali AM, Kulasekararaj A, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010;116(19):3923–32. doi: 10.1182/blood-2010-03-274704.
  9. Thol F, Friesen I, Damm F, et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011;29(18):2499–506. doi: 10.1200/jco.2010.33.4938.
  10. Thol F, Kade S, Schlarmann C, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119(15):3578–84. doi: 10.1182/blood-2011-12-399337.
  11. Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9. doi: 10.1038/nature10496.
  12. Koca E, Buyukasik Y, Cetiner D, et al. Copper deficiency with increased hematogones mimicking refractory anemia with excess blasts. Leuk Res. 2008;32(3):495–9. doi: 10.1016/j.leukres.2007.06.023.
  13. Steensma DP. Dysplasia has a differential diagnosis: distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors. Curr Hematol Malig Rep. 2012;7(4):310–20. doi: 10.1016/j.leukres.2007.06.023.
  14. Tanaka N, Kim JS, Newell JD, et al. Rheumatoid arthritis-related lung diseases: CT findings. Radiology. 2004;232(1):81–91. doi: 10.1148/radiol.2321030174.
  15. Song Y, Du X, Hao F, et al. Immunosuppressive therapy of cyclosporin A for severe benzene-induced haematopoetic disorders and a 6-month follow-up. Chem Biol Interact. 2010;186(1):96–102. doi: 10.1016/j.cbi.2010.03.049.
  16. Komrokji RS, Moffitt HL, Padron E. Deletion 5q MDS: Molecular and therapeutic implications. Best Pract Res Clin Haematol. 2013;26(4):365–75. doi: 10.1016/j.beha.2013.10.013.
  17. Ковригина А.М., Байков В.В. Принципы патоморфологической дифференциальной диагностики первичного миелофиброза. Москва, Санкт-Петербург, 2014. 63 с.
    [Kovrigina AM, Baikov VV. Printsipy patomorfologicheskoi differentsial’noi diagnostiki pervichnogo mielofibroza. (Principles of pathomorphological differential diagnosis of primary myelofibrosis.) Moscow, Saint Petersburg; 2014. 63 p. (In Russ)]
  18. Foucar K. Myelodysplastic/Myeloproliferative Neoplasms. Am J Clin Pathol. 2009;132(2):281–9. doi: 10.1309/AJCPJ71PTVIKGEVT.
  19. Wang SA. Diagnosis of myelodysplastic syndromes in cytopenic patients. Hematol Oncol Clin North Am. 2011;25(5):1085–110. doi: 10.1016/j.hoc.2011.09.009.
  20. Thiele J, Kvasnicka H-M, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  21. Baur AS, Meuge-Moraw C, Schmidt PM, et al. CD34/QBEND10 immunostaining in bone marrow biopsies: an additional parameter for the diagnosis and classification of myelodysplastic syndromes. Eur J Haematol. 2000;64(2):71–9.
  22. Horny HP, Sotlar K, Valent P. Diagnostic value of histology and immunohistochemistry in myelodysplastic syndromes. Leuk Res. 2007;31(12):1609–16. doi: 10.1016/j.leukres.2007.05.010.
  23. Valent P, Horny HP. Minimal diagnostic criteria for myelodysplastic syndromes and separation from ICUS and IDUS: update and open questions. Eur J Clin Invest. 2009;39(7):548–53. doi: 10.1111/j.1365-2362.2009.02151.x.
  24. Valent P, Jager E, Mitterbauer-Hohendanner G, et al. Idiopathic bone marrow dysplasia of unknown significance (IDUS): definition, pathogenesis, follow up, and prognosis. Am J Cancer Res. 2011;1:531–41.
  25. Wimazal F, Fonatsch C, Thalhammer R. Idiopathic cytopenia of undetermined significance (ICUS) versus low risk MDS: The diagnostic interface. Leuk Res. 2007;31(11):1461–8. doi: 10.1016/j.leukres.2007.03.015.