Prognostic Value of the PRAME Gene Expression in T-Cell Lymphoproliferative Disorders

EA Penskaya1, VA Misyurin2, AE Misyurina1, SK Kravchenko1, LG Gorenkova1, LV Plastinina1, VV Tikhonova2, YuP Finashutina2, NA Lyzhko2, NN Kasatkina2, LA Kesaeva2, ON Solopova2, AV Misyurin2

1 National Medical Hematology Research Center, 4a Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Vsevolod Andreevich Misyurin, PhD in Biology, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(985)436-30-19; e-mail: vsevolod.misyurin@gmail.com

For citation: Penskaya EA, Misyurin VA, Misyurina AE, et al. Prognostic Value of the PRAME Gene Expression in T-Cell Lymphoproliferative Disorders. Clinical oncohematology. 2019;12(1):73–78.

DOI: 10.21320/2500-2139-2019-12-1-73-78


ABSTRACT

Background. T-cell lymphomas (T-CL) represent a heterogeneous group of malignant lymphoproliferative disorders characterized by unfavorable prognosis. The cancer-testis PRAME gene is notable for its spontaneous expression in transformed cells as observed in solid tumors, B-cell lymphoproliferative and chronic myeloproliferative diseases. Activity and clinical significance of PRAME in T-CL was not studied before, which determines the relevance and provides ground for the present trial.

Aim. To assess the clinical significance of the PRAME gene expression in T-CL.

Materials & Methods. PRAME gene expression level was measured in samples of lymph nodes, blood, and bone marrow from 35 T-CL patients. Among them 3 patients received allogeneic hematopoietic stem cell transplantation, and 6 patients received autologous hematopoietic stem cell transplantation. A correlation was established between the PRAME expression in bone marrow and peripheral blood with morphological markers of disseminated disease with bone marrow lesions and leukemic blood. PRAME expression level was correlated with survival parameters and tumor proliferative activity (Ki-67).

Results. PRAME activity was observed in 21 (60 %) patients. PRAME hyperexpression is associated with advanced stages of disease (= 0.0734), bone marrow lesions (= 0.0289), leukemic blood (= 0.0187), worsening of the overall survival (OS) (p = 0.0787) and event-free survival (EFS) (p = 0.7185), also after hematopoietic stem cell transplantation (= 0.2661 for OS and = 0.0452 for EFS), and with a high Ki-67 expression level (= 0.0155).

Conclusion. PRAME expression in T-CL is often observed and related with unfavorable clinical prognosis.

Keywords: PRAME, T-cell lymphoproliferative disorders, prognostic value.

Received: April 24, 2018

Accepted: December 27, 2018

Read in PDF 


REFERENCES

  1. Greer JP, Kinney MC, Loughran TP Jr. T cell and NK cell lymphoproliferative disorders. Hematology. 2001;2001(1):259–81. doi: 10.1182/asheducation-2001.1.259.

  2. Bo J, Zhao Y, Zhang S, et al. Long-term outcomes of peripheral blood stem cell transplantation for 38 patients with peripheral T-cell lymphoma. J Cancer Res Ther. 2016;12(3):1189–97. doi: 10.4103/0973-1482.189235.

  3. Мангасарова Я.К., Магомедова А.У., Кравченко С.К. и др. Восьмилетний опыт лечения агрессивных В-крупноклеточных лимфом средостения. Терапевтический архив. 2013;85(7):50–6.

    [Mangasarova YaK, Magomedova AU, Kravchenko SK, et al. Eight-year experience in treating aggressive mediastinal large B-cell lymphomas. Terapevticheskii arkhiv. 2013;85(7):50–6. (In Russ)]

  4. Turgeon ML. Clinical hematology: theory and procedures. Hagerstown, MD: Lippincott Williams & Wilkins; 2005. pp. 283.

  5. Горенкова Л.Г., Пенская Е.А., Кравченко С.К. и др. Лечение резистентных форм грибовидного микоза и синдрома Сезари. Клиническая онкогематология. 2017;10(3):366–71. doi: 10.21320/2500-2139-2017-10-3-366-371.

    [Gorenkova LG, Penskaya EA, Kravchenko SK, et al. Treatment of Drug-Resistant Mycosis Fungoides and Sezary Syndrome. Clinical oncohematology. 2017;10(3):366–71. doi: 10.21320/2500-2139-2017-10-3-366-371. (In Russ)]

  6. Мисюрин В.А. Клиническое значение экспрессии гена PRAME при онкогематологических заболеваниях. Клиническая онкогематология. 2018;11(1):26–33. doi: 10.21320/2500-2139-2018-11-1-26-33.

    [Misyurin VA. Clinical Significance of the PRAME Gene Expression in Oncohematological Diseases. Clinical oncohematology. 2018;11(1):26–33. doi: 10.21320/2500-2139-2018-11-1-26-33. (In Russ)]

  7. Мисюрин В.А. Прогностическое значение экспрессии гена PRAME при солидных опухолях. Иммунология. 2018;39(1):67–73. doi: 10.18821/0206-4952-2018-39-1-67-73.

    [Misyurin VA. Prognostic value of prame’s gene expression in solid tumors. Immunology. 2018;39(1):67–73. doi: 10.18821/0206-4952-2018-39-1-67-73. (In Russ)]

  8. Мисюрин В.А., Лукина А.Е., Мисюрин А.В. и др. Особенности соотношения уровней экспрессии генов PRAME и PML/RARα в дебюте острого промиелоцитарного лейкоза. Российский биотерапевтический журнал. 2014;13(1):9–16.

    [Misyurin VA, Lukina AE, Misyurin AV, et al. A ratio between gene expression levels of PRAME and PML/RARα at the onset of acute promyelocytic leukemia. Rossiiskii bioterapevticheskii zhurnal. 2014;13(1):9–16. (In Russ)]

  9. Santamaria C, Chillon MC, Garcia-Sanz R, et al. The relevance of preferentially expressed antigen of melanoma (PRAME) as a marker of disease activity and prognosis in acute promyelocytic leukemia. Haematologica. 2008;93(12):1797–805. doi: 10.3324/haematol.13214.

  10. Doolan P, Clynes M, Kennedy S, et al. Prevalence and prognostic and predictive relevance of PRAME in breast cancer. Breast Cancer Res Treat. 2008;109(2):359–65. doi: 10.1007/s10549-007-9643-3.

  11. Nalini V, Segu R, Deepa PR, et al. Molecular insights on post-chemotherapy retinoblastoma by microarray gene expression analysis. Bioinform Biol Insights. 2013;7:289–306. doi: 10.4137/BBI.S12494.

  12. Mitsuhashi K, Masuda A, Wang YH, et al. Prognostic significance of PRAME expression based on immunohistochemistry for diffuse large B-cell lymphoma patients treated with R-CHOP therapy. Int J Hematol. 2014;100(1):88–95. doi: 10.1007/s12185-014-1593-z.

  13. Мисюрин В.А., Мисюрин А.В., Кесаева Л.А. и др. Новые маркеры прогрессирования хронического миелолейкоза. Клиническая онкогематология. 2014;7(2):206–12.

    [Misyurin VA, Misyurin AV, Kesaeva LA, et al. New molecular markers of CML progression. Klinicheskaya onkogematologiya. 2014;7(2):206–12. (In Russ)]

  14. Matsushita M, Ikeda H, Kizaki M, et al. Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br J Haematol. 2001;112(4):916–26. doi: 10.1046/j.1365-2141.2001.02670.x.

  15. Liggins AP, Lim SH, Soilleux EJ, et al. A panel of cancer-testis genes exhibiting broad spectrum expression in haematological malignancies. Cancer Immun. 2010;10:8.

  16. Wadelin FR, Fulton J, Collins HM, et al. PRAME is a golgi-targeted protein that associates with the Elongin BC complex and is upregulated by interferon-gamma and bacterial PAMPs. PLoS One. 2013;8(2):e58052. doi: 10.1371/journal.pone.0058052.

  17. Мисюрин В.А. Теория и практика иммунотерапии, направленной против антигена PRAME. Клиническая онкогематология. 2018;11(2):138–49. doi: 10.21320/2500-2139-2018-11-2-138-149. [Misyurin VA. Theory and practice of immunotherapy directed against the PRAME antigen. Clinical oncohematology. 2018;11(2):138–49. doi: 10.21320/2500-2139-2018-11-2-138-149. (In Russ)]

  18. Финашутина Ю.П., Мисюрин А.В., Ахлынина Т.В. и др. Получение рекомбинантного раково-тестикулярного белка PRAME и моноклональных антител к нему. Российский биотерапевтический журнал. 2015;4(3):29–36.

    [Finashutina YuP, Misyurin AV, Akhlynina TV, et al. Production of purified human recombinant antigen PRAME and specific monoclonal antibodies. Rossiiskii bioterapevticheskii zhurnal. 2015;(4)3:29–36. (In Russ)]

  19. Лыжко Н.А., Мисюрин В.А., Финашутина Ю.П. и др. Проявление цитостатического эффекта моноклональных антител к белку PRAME. Российский биотерапевтический журнал. 2016;15(4):53–8. doi: 10.17650/1726-9784-2016-15-4-53-58.

    [Lyzhko NA, Misyurin VA, Finashutina YuP, et al. Development of cytostatic effect of monoclonal antibodies to the protein PRAME. Rossiiskii bioterapevticheskii zhurnal. 2016;15(4):53–58. doi: 10.17650/1726-9784-2016-15-4-53-58. (In Russ)]

  20. Epping MT, Wang L, Plumb JA, et al. A functional genetic screen identifies retinoic acid signaling as a target of histone deacetylase inhibitors. Proc Natl Acad Sci USA. 2007;104(45):17777–82. doi: 10.1073/pnas.0702518104.

  21. Qin Y, Lu J, Bao L, et al. Bortezomib improves progression-free survival in multiple myeloma patients overexpressing preferentially expressed antigen of melanoma. Chinese Med J. 2014;127(9):1666–71.

  22. Гапонова Т.В., Менделеева Л.П., Мисюрин А.В. и др. Экспрессия опухолеассоциированных генов PRAME, WT1 и XIAP у больных множественной миеломой. Онкогематология. 2009;2:52–7.

    [Gaponova TV, Mendeleeva LP, Misyurin AV, et al. Expression of PRAME, WT1 and XIAP tumor-associated genes in patients with multiple myeloma. Onkogematologiya. 2009;2:52–7. (In Russ)]

  23. Вотякова О.М. Новые возможности лечения рецидивов и рефрактерной множественной миеломы (обзор литературы). Клиническая онкогематология. 2017;10(4):425–34. doi: 10.21320/2500-2139-2017-10-4-425-434.

    [Votyakova OM. New Possibilities of Treatment for Relapsed/Refractory Multiple Myeloma: A Literature Review. Clinical oncohematology. 2017;10(4):425–34. doi: 10.21320/2500-2139-2017-10-4-425-434. (In Russ)]

  24. Costessi A, Mahrour N, Tijchon E, et al. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters. EMBO J. 2011;30(18):3786–98. doi: 10.1038/emboj.2011.262.

Theory and Practice of Immunotherapy Directed against the PRAME Antigen

VA Misyurin

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Vsevolod Andreevich Misyurin, PhD in Biology, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(985)4363019; e-mail: vsevolod.misyurin@gmail.com

For citation: Misyurin VA. Theory and Practice of Immunotherapy Directed against the PRAME Antigen. Clinical oncohematology. 2018;11(2):138–49.

DOI: 10.21320/2500-2139-2018-11-2-138-149


ABSTRACT

The preferentially expressed antigen of melanoma (PRAME) is a significant target for monoclonal antibodies and an oncospecific marker known for its activity on all the tumor cell differentiation stages and its eliciting of a spontaneous T-cell response. Since PRAME protein is active in approximately every second patient with solid tumors and oncohematological diseases, anti-PRAME immunotherapy is very promising. In current review the mechanism of spontaneous immune response against PRAME is discussed as well as the role of this antigen in immunosurveillance. The review deals with the PRAME-specific T-cell genesis and risk assessment of immunotherapy directed against PRAME-positive cells. The risks and benefits of various immunotherapy approaches including the use of dendritic cell vaccines, PRAME vaccination, development of specific T-cells, and development of specific monoclonal antibodies were analysed. Possible causes of treatment failure are analysed, and methods of overcoming them are suggested. The literature search in the Pubmed, Scopus, and eLibrary databases, with the use of “PRAME” as a keyword was performed. Only publications related to various aspects of immunotherapy and anti-PRAME-specific agents were included in the review.

Keywords: PRAME, immunotherapy, dendritic cell vaccines, peptide vaccines, T-cell vaccines, therapeutic antibodies.

Received: December 19, 2017

Accepted: February 5, 2018

Read in PDF 


REFERENCES

  1. Lehmann F, Marchand M, Hainaut P, et al. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur J Immunol. 1995;25(2):340–7. doi: 10.1002/eji.1830250206.
  2. Ikeda H, Lethe B, Lehmann F, et al. Characterization of an Antigen That Is Recognized on a Melanoma Showing Partial HLA Loss by CTL Expressing an NK Inhibitory Receptor. Immunity. 1997;6(2):199–208. doi: 10.1016/s1074-7613(00)80426-4.
  3. Rezvani K, Yong AS, Tawab A, et al. Ex vivo characterization of polyclonal memory CD8 T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood. 2009;113(10):2245–55. doi: 10.1182/blood-2008-03-144071.
  4. Lutz M, Worschech A, Alb M, et al. Boost and loss of immune responses against tumor-associated antigens in the course of pregnancy as a model for allogeneic immunotherapy. Blood. 2015;125(2):261–72. doi: 10.1182/blood-2014-09-601302.
  5. LaVoy EC, Bollard CM, Hanley PJ, et al. A single bout of dynamic exercise enhances the expansion of MAGE-A4 and PRAME-specific cytotoxic T-cells from healthy adults. Exerc Immunol Rev. 2015;21:144–53.
  6. Saldanha-Araujo F, Haddad R, Zanette DL, et al. Cancer/Testis Antigen Expression on Mesenchymal Stem Cells Isolated from Different Tissues. Anticancer Res. 2010;30(12):5023–7. doi: 10.1007/978-94-007-4798-2_11.
  7. Kirkin AF, Dzhandzhugazyan K, Zeuthen J. The Immunogenic Properties of Melanoma-Associated Antigens Recognized by Cytotoxic T Lymphocytes. Exp Clin Immunogenet. 1998;15(1):19–32. doi: 10.1159/000019050.
  8. Luetkens T, Schafhausen P, Uhlich F, et al. Expression, epigenetic regulation, and humoral immunogenicity of cancer-testis antigens in chronic myeloid leukemia. Leuk Res. 2010;34(12):1647–55. doi: 10.1016/j.leukres.2010.03.039.
  9. Luetkens T, Kobold S, Cao Y, et al. Functional autoantibodies against SSX-2 and NY-ESO-1 in multiple myeloma patients after allogeneic stem cell transplantation. Cancer Immunol Immunother. 2014;63(11):1151–62. doi: 10.1007/s00262-014-1588-x.
  10. Kessler JH, Beekman NJ, Bres-Vloemans SA, et al. Efficient Identification of Novel HLA-A*0201–presented Cytotoxic T Lymphocyte Epitopes in the Widely Expressed Tumor Antigen PRAME by Proteasome-mediated Digestion Analysis. J Exp Med. 2001;193(1):73–88. doi: 10.1084/jem.193.1.73.
  11. Quintarelli C, Dotti G, Hasan ST, et al. High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood. 2011;117(12):3353–62. doi: 10.1182/blood-2010-08-300376.
  12. Kessler JH, Mommaas B, Mutis T, et al. Competition-Based Cellular Peptide Binding Assays for 13 Prevalent HLA Class I Alleles Using Fluorescein-Labeled Synthetic Peptides. Hum Immunol. 2003;64(2):245–55. doi: 10.1016/S0198-8859(02)00787-5.
  13. Kawahara M, Hori T, Matsubara Y, et al. Identification of HLA class I–restricted tumor-associated antigens in adult T cell leukemia cells by mass spectrometric analysis. Exp Hematol. 2006;34(11):1496–504. doi: 10.1016/j.exphem.2006.06.010.
  14. Kessler JH, Khan S, Seifert U, et al. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nat Immunol. 2011;12(1):45–53. doi: 10.1038/ni.1974.
  15. Grunebach F, Mirakaj V, Mirakaj V, et al. BCR-ABL Is Not an Immunodominant Antigen in Chronic Myelogenous Leukemia. Cancer Res. 2006;66(11):5892–900. doi: 10.1158/0008-5472.CAN-05-2868.
  16. Greiner J, Schmitt M, Li L, et al. Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood. 2006;108(13):4109–17. doi: 10.1182/blood-2006-01-023127.
  17. Weber G, Caruana I, Rouce RH, et al. Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia – implications for immunotherapy. Clin Cancer Res. 2013;19(18):5079–91. doi: 10.1158/1078-0432.CCR-13-0955.
  18. Schneider V, Zhang L, Rojewski M, et al. Leukemic progenitor cells are susceptible to targeting by stimulated cytotoxic T cells against immunogenic leukemia-associated antigens. Int J Cancer. 2015;137(9):2083–92. doi: 10.1002/ijc.29583.
  19. Babiak A, Steinhauser M, Gotz M, et al. Frequent T cell responses against immunogenic targets in lung cancer patients for targeted immunotherapy. Oncol Rep. 2014;31(1):384–90. doi: 10.3892/or.2013.2804.
  20. Greiner J, Ringhoffer M, Simikopinko O, et al. Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Exp Hematol. 2000;28(12):1413–22. doi: 10.1016/S0301-472X(00)00550-6.
  21. Griffioen M, Kessler JH, Borghi M, et al. Detection and Functional Analysis of CD8+ T Cells Specific for PRAME: a Target for T-Cell Therapy. Clin Cancer Res. 2006;12(10):3130–6. doi: 10.1158/1078-0432.CCR-05-2578.
  22. Yao J, Caballero OL, Yung WK, et al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol Res. 2014;2(4):371–9. doi: 10.1158/2326-6066.CIR-13-0088.
  23. Qin YZ, Zhu HH, Liu YR, et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leuk Lymphoma. 2013;54(7):1442–9. doi: 10.3109/10428194.2012.743656.
  24. Gutierrez-Cosio S, de la Rica L, Ballestar E, et al. Epigenetic regulation of PRAME in acute myeloid leukemia is different compared to CD34+ cells from healthy donors: Effect of 5-AZA treatment. Leuk Res. 2012;36(7):895–9. doi: 10.1016/j.leukres.2012.02.030.
  25. Greiner J, Ringhoffer M, Taniguchi M, et al. mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer. 2004;108(5):704–11. doi: 10.1002/ijc.11623.
  26. Paydas S, Tanriverdi K, Yavuz S, et al. PRAME mRNA Levels in Cases With Acute Leukemia: Clinical Importance and Future Prospects. Am J Hematol. 2005;79(4):257–61.
  27. Gerber JM, Qin L, Kowalski J, et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol. 2011;86(1):31–7. doi: 10.1002/ajh.21915.
  28. Yong AS, Keyvanfar K, Eniafe R, et al. Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukemia-associated antigens: implications for the graft-versus-leukemia effect and peptide vaccine-based immunotherapy. Leukemia. 2008;22(9):1721–7. doi: 10.1038/leu.2008.161.
  29. Steger B, Milosevic S, Doessinger G, et al. CD4+ and CD8+ T-cell reactions against leukemia-associated- or minor-histocompatibility-antigens in AML-patients after allogeneic SCT. Immunobiology. 2014;219(4):247–60. doi: 10.1016/j.imbio.2013.10.008.
  30. Doolan P, Clynes M, Kennedy S, et al. Prevalence and prognostic and predictive relevance of PRAME in breast cancer. Breast Cancer Res Treat. 2008;109(2):359–65. doi: 10.1007/s10549-007-9643-3.
  31. Altvater B, Kailayangiri S, Theimann N, et al. Common Ewing sarcoma-associated antigens fail to induce natural T cell responses in both patients and healthy individual. Cancer Immunol Immunother. 2014;63(10):1047–60. doi: 10.1007/s00262-014-1574-3.
  32. Hughes A, Clarson J, Tang C, et al. CML patients with deep molecular responses to TKI have restored immune effectors and decreased PD-1 and immune suppressors. Blood. 2017;129(9):1166–1176. doi: 10.1182/blood-2016-10-745992.
  33. Schmitt M, Li L, Giannopoulos K, et al. Chronic myeloid leukemia cells express tumor-associated antigens eliciting specific CD8+ T-cell responses and are lacking costimulatory molecules. Exp Hematol. 2006;34(12):1709–19. doi: 10.1016/j.exphem.2006.07.009.
  34. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8(1):59–73. doi: 10.1038/nri2216.
  35. Morandi F, Chiesa S, Bocca P, et al. Tumor mRNA–Transfected Dendritic Cells Stimulate the Generation of CTL That Recognize Neuroblastoma-Associated Antigens and Kill Tumor Cells: Immunotherapeutic Implications. Neoplasia. 2006;8(10):833–42. doi: 10.1593/neo.06415.
  36. Winkler C, Steingrube DS, Altermann W, et al. Hodgkin’s lymphoma RNA-transfected dendritic cells induce cancer/testis antigen-specific immune responses. Cancer Immunol Immunother. 2012;61(10):1769–79. doi: 10.1007/s00262-012-1239-z.
  37. Gerdemann U, Katari U, Christin AS, et al. Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma. Mol Ther. 2011;19(12):2258–68. doi: 10.1038/mt.2011.167.
  38. Mohamed YS, Bashawri LA, Vatte C, et al. The in vitro generation of multi-tumor antigen-specific cytotoxic T cell clones: Candidates for leukemia adoptive immunotherapy following allogeneic stem cell transplantation. Mol Immunol. 2016;77:79–88. doi: 10.1016/j.molimm.2016.07.012.
  39. Li L, Schmitt A, Reinhardt P, et al. Reconstitution of CD40 and CD80 in dendritic cells generated from blasts of patients with acute myeloid leukemia. Cancer Immun. 2003;3:8.
  40. Li L, Reinhardt P, Schmitt A, et al. Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother. 2005;54(7):685–93. doi: 10.1007/s00262-004-0631-8.
  41. Li L, Giannopoulos K, Reinhardt P, et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol. 2006;28(4):855–61. doi: 10.3892/ijo.28.4.855.
  42. Altvater B, Pscherer S, Landmeier S, et al. Activated human γδ T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens. Cancer Immunol Immunother. 2012;61(3):385–96. doi: 10.1007/s00262-011-1111-6.
  43. Matsushita M, Ikeda H, Kizaki M, et al. Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br J Haematol. 2001;112(4):916–26. doi: 10.1046/j.1365-2141.2001.02670.x.
  44. van den Ancker W, Ruben JM, Westers TM, et al. Priming of PRAME- and WT1-specific CD8+ T cells in healthy donors but not in AML patients in complete remission. Oncoimmunology. 2013;2(4):e23971. doi: 10.4161/onci.23971.
  45. Yao Y, Zhou J, Wang L, et al. Increased PRAME-Specific CTL Killing of Acute Myeloid Leukemia Cells by Either a Novel Histone Deacetylase Inhibitor Chidamide Alone or Combined Treatment with Decitabine. PLoS One. 2013;8(8):e70522. doi: 10.1371/journal.pone.0070522.
  46. Zhang M, Graor H, Visioni A, et al. T Cells Derived From Human Melanoma Draining Lymph Nodes Mediate Melanoma-specific Antitumor Responses In Vitro and In Vivo in Human Melanoma Xenograft Model. J Immunother. 2015;38(6):229–38. doi: 10.1097/CJI.0000000000000078.
  47. Yan M, Himoudi N, Basu BP, et al. Increased PRAME antigen-specific killing of malignant cell lines by low avidity CTL clones, following treatment with 5-Aza-20-Deoxycytidine. Cancer Immunol Immunother. 2011;60(9):1243–55. doi: 10.1007/s00262-011-1024-4.
  48. Quintarelli C, Dotti G, De Angelis B, et al. Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood. 2008;112(5):1876–85. doi: 10.1182/blood-2008-04-150045.
  49. Amir AL, van der Steen DM, van Loenen MM, et al. PRAME-Specific Allo-HLA–Restricted T Cells with Potent Antitumor Reactivity Useful for Therapeutic T-Cell Receptor Gene Transfer. Clin Cancer Res. 2011;17(17):5615–25. doi: 10.1158/1078-0432.CCR-11-1066.
  50. van Loenen MM, de Boer R, Hagedoorn RS, et al. Multi-cistronic vector encoding optimized safety switch for adoptive therapy with T-cell receptor-modified T cells. Gene Ther. 2013;20(8):861–7. doi: 10.1038/gt.2013.4.
  51. Spel L, Boelens JJ, van der Steen DM, et al. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma. Oncotarget. 2015;6(34):35770–81. doi: 10.18632/oncotarget.5657.
  52. Weber JS, Vogelzang NJ, Ernstoff MS, et al. A Phase 1 Study of a Vaccine Targeting Preferentially Expressed Antigen in Melanoma and Prostate-specific Membrane Antigen in Patients With Advanced Solid Tumors. J Immunother. 2011;34(7):556–67. doi: 10.1097/CJI.0b013e3182280db1.
  53. Garcon N, Silvano J, Kuper CF, et al. Non-clinical safety evaluation of repeated intramuscular administration of the AS15 immunostimulant combined with various antigens in rabbits and cynomolgus monkeys. J Appl Toxicol. 2016;36(2):238–56. doi: 10.1002/jat.3167.
  54. Gerard C, Baudson N, Ory T, et al. A Comprehensive Preclinical Model Evaluating the Recombinant PRAME Antigen Combined With the AS15 Immunostimulant to Fight Against PRAME-expressing Tumors. J Immunother. 2015;38(8):311–20. doi: 10.1097/CJI.0000000000000095.
  55. Pujol JL, De Pas T, Rittmeyer A, et al. Safety and Immunogenicity of the PRAME Cancer Immunotherapeutic in Patients with Resected Non–Small Cell Lung Cancer: A Phase I Dose Escalation Study. J Thorac Oncol. 2016;11(12):2208–17. doi: 10.1016/j.jtho.2016.08.120.
  56. Gutzmer R, Rivoltini L, Levchenko E, et al. Safety and immunogenicity of the PRAME cancer immunotherapeutic in metastatic melanoma: results of a phase I dose escalation study. ESMO Open. 2016;1(4):e000068.
  57. Blais N, Martin D, Palmantier RM. Vaccin. Patent PCT/EP2008/050290. Available from: https://patentscope.wipo.int/search/ru/detail.jsf?docId=WO2008087102&redirectedID=true. (accessed 08.12.2017).
  58. Chang AY, Dao T, Gejman RS, et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest. 2017;127(7):2705–18. doi: 10.1172/JCI92335.
  59. Pankov D, Sjostrom L, Kalidindi T, et al. In vivo immuno-targeting of an extracellular epitope of membrane bound preferentially expressed antigen in melanoma (PRAME). Oncotarget. 2017;8(39):65917–31. doi: 10.18632/oncotarget.19579.
  60. Финашутина Ю.П., Мисюрин А.В., Ахлынина Т.В. и др. Получение рекомбинантного раково-тестикулярного белка PRAME и моноклональных антител к нему. Российский биотерапевтический журнал. 2015;14(3):29–36.[Finashutina YuP, Misyurin AV, Akhlynina TV, et al. Production of recombinant PRAME cancer testis antigen and its specific monoclonal antibodies. Rossiiskii bioterapevticheskii zhurnal. 2015;14(3):29–36. (In Russ)]
  61. Мисюрин А.В., Финашутина Ю.П. Антигенная композиция и ее терапевтическое применение для профилактики и лечения онкологических заболеваний, рекомбинантная плазмидная ДНК, обеспечивающая синтез гибридного белка, а также способ получения белка. Патент РФ на изобретение № 2590701/13.04.29. Бюл. № 19. Доступно по: http://www.fips.ru/cdfi/fips.dll/en?ty=29&docid=2590701. Ссылка активна на 08.12.2017.[Misyurin AV, Finashutina YuP. Antigennaya kompozitsiya i ee terapevticheskoe primenenie dlya profilaktiki i lecheniya onkologicheskikh zabolevanii, rekombinantnaya plazmidnaya DNK, obespechivayushchaya sintez gibridnogo belka, a takzhe sposob polucheniya belka. Patent RUS No. 2590701/13.04.29. Byul. No. 19. Available from: http://www.fips.ru/cdfi/fips.dll/en?ty=29&docid=2590701. (accessed 08.12.2017) (In Russ)]
  62. Лыжко Н.А., Ахлынина Т.В., Мисюрин А.В. и др. Повышение уровня экспрессии гена PRAME в опухолевых клетках сопровождается локализацией белка в клеточном ядре. Российский биотерапевтический журнал. 2015;14(4):19–30.[Lyzhko NA, Ahlynina TV, Misyurin AV, et al. The increased PRAME expression in cancer cells is associated with deposit of the protein in cell nucleus. Rossiiskii bioterapevticheskii zhurnal. 2015;14(4):19–30. (In Russ)]
  63. Лыжко Н.А., Мисюрин В.А., Финашутина Ю.П. и др. Проявление цитостатического эффекта моноклональных антител к белку PRAME. Российский биотерапевтический журнал. 2016;15(4):53–8. doi: 10.17650/1726-9784-2016-15-4-53-58.[Lyzhko NA, Misyurin VA, Finashutina YuP, et al. Development of cytostatic effect of monoclonal antibodies to the protein PRAME. Rossiiskii bioterapevticheskii zhurnal. 2016;15(4):53–8. doi: 10.17650/1726-9784-2016-15-4-53-58. (In Russ)]
  64. Dillman RO. Cancer immunotherapy. Cancer Biother Radiopharm 2011;26:1–64. doi: 10.1089/cbr.2010.0902.
  65. Theisen D, Murphy K. The role of cDC1s in vivo: CD8 T cell priming through cross-presentation. F1000Res. 2017;6:98. doi: 10.12688/f1000research.9997.1.
  66. Epping MT, Wang L, Edel MJ, et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell. 2005;122(6):835–47. doi: 10.1016/j.cell.2005.07.003.
  67. De Carvalho DD, Mello BP, Pereira WO, Amarante-Mendes GP. PRAME/EZH2-mediated regulation of TRAIL: a new target for cancer therapy. Curr Mil Med. 2013;13(2):296–304. doi: 10.2174/1566524011313020006.
  68. Мисюрин В.А. Клиническое значение экспрессии гена PRAME при онкогематологических заболеваниях. Клиническая онкогематология. 2018;11(1):26–33. doi: 10.21320/2500-2139-2018-11-1-26-33.[Misyurin VA. Clinical Significance of the PRAME Gene Expression in Oncohematological Diseases. Clinical oncohematology.2018;11(1):26–33. doi: 10.21320/2500-2139-2018-11-1-26-33. (In Russ)]

Clinical Significance of the PRAME Gene Expression in Oncohematological Diseases

VA Misyurin

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Vsevolod Andreevich Misyurin, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(985)436-30-19; e-mail: vsevolod.misyurin@gmail.com

For citation: Misyurin AV. Clinical Significance of the PRAME Gene Expression in Oncohematological Diseases. Clinical oncohematology. 2018;11(1):26–33.

DOI: 10.21320/2500-2139-2018-11-1-26-33


ABSTRACT

Although the PRAME activity was first discovered in solid tumors, this gene is very frequently expressed in oncohematological diseases. PRAME can be regarded as a reliable biomarker of tumor cells. Determination of PRAME transcripts is used in residual disease monitoring and molecular relapse diagnostics. Experimentation with PRAME expressing lines of leukemia cells yielded controversial results. Therefore, it is hardly possible to estimate the prognostic value of PRAME activity in oncohematological diseases. In chronic myeloproliferative disease and chronic myeloid leukemia, however, PRAME activity proves to be a predictor of negative prognosis, and on the contrary, it can be regarded as a positive prognostic factor in acute myeloid or lymphoid leukemia. Despite many clinical studies prognostic value of PRAME expression in some diseases requires further investigation. The present literature review contains the data concerning PRAME expression in oncohematological diseases.

Keywords: PRAME, leukemia, lymphoma, prognosis.

Received: September 14, 2017

Accepted: December 2, 2017

Read in PDF 


REFERENCES

  1. Ikeda H, Lethe B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity. 1997;6(2):199–208. doi: 10.1016/S1074-7613(00)80426-4.
  2. Greiner J, Ringhoffer M, Simikopinko O, et al. Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Exp Hematol. 2000;28(12):1413–22. doi: 10.1016/S0301-472X(00)00550-6.
  3. Epping MT, Wang L, Edel MJ, et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell. 2005;122(6):835–47. doi: 10.1016/j.cell.2005.07.003.
  4. De Carvalho DD, Mello BP, Pereira WO, Amarante-Mendes GP. PRAME/EZH2-mediated regulation of TRAIL: a new target for cancer therapy. Curr Mol Med. 2013;13(2):296–304. doi: 10.2174/156652413804810727.
  5. Costessi A, Mahrour N, Tijchon E, et al. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters. EMBO J. 2011;30(18):3786–98. doi: 10.1038/emboj.2011.262.
  6. Kim HL, Seo YR. Molecular and genomic approach for understanding the gene-environment interaction between Nrf2 deficiency and carcinogenic nickel-induced DNA damage. Oncol Rep. 2012;28(6):1959–67. doi: 10.3892/or.2012.2057.
  7. Yao J, Caballero OL, Yung WK, et al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol Res. 2014;2(4):371–9. doi: 10.1158/2326-6066.CIR-13-0088.
  8. van Baren N, Chambost H, Ferrant A, et al. PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br J Haematol. 1998;102(5):1376–9. doi: 10.1046/j.1365-2141.1998.00982.x.
  9. Oehler VG, Guthrie KA, Cummings CL, et al. The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells. Blood. 2009;114(15):3299–308. doi: 10.1182/blood-2008-07-170282.
  10. Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Epigenetic regulation of PRAME gene in chronic myeloid leukemia. Leuk Res. 2007;31(11):1521–8. doi: 10.1016/j.leukres.2007.02.016.
  11. Ortmann CA, Eisele L, Nuckel H, et al. Aberrant hypomethylation of the cancer–testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol. 2008;87(10):809–18. doi: 10.1007/s00277-008-0514-8.
  12. Gutierrez-Cosio S, de la Rica L, Ballestar E, et al. Epigenetic regulation of PRAME in acute myeloid leukemia is different compared to CD34+ cells from healthy donors: Effect of 5-AZA treatment. Leuk Res. 2012;36(7):895–9. doi: 10.1016/j.leukres.2012.02.030.
  13. Arons E, Suntum T, Margulies I, et al. PRAME expression in Hairy Cell Leukemia. Leuk Res. 2008;32(9):1400–6. doi: 10.1016/j.leukres.2007.12.010.
  14. Steinbach D, Schramm A, Eggert A, et al. Identification of a Set of Seven Genes for the Monitoring of Minimal Residual Disease in Pediatric Acute Myeloid Leukemia. Clin Cancer Res. 2006;12(8):2434–41. doi: 10.1158/1078-0432.CCR-05-2552.
  15. Matsushita M, Ikeda H, Kizaki M, et al. Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br J Haematol. 2001;112(4):916–26. doi: 10.1046/j.1365-2141.2001.02670.x.
  16. Tajeddine N, Millard I, Gailly P, Gala JL. Real-time RT-PCR quantification of PRAME gene expression for monitoring minimal residual disease in acute myeloblastic leukaemia. Clin Chem Lab Med. 2006;44(5):548–55. doi: 10.1515/CCLM.2006.106.
  17. Schneider V, Zhang L, Rojewski M, et al. Leukemic progenitor cells are susceptible to targeting by stimulated cytotoxic T cells against immunogenic leukemia-associated antigens. Int J Cancer. 2015;137(9):2083–92. doi: 10.1002/ijc.29583.
  18. Гапонова Т.В., Менделеева Л.П., Мисюрин А.В. и др. Экспрессия опухолеассоциированных генов PRAME, WT1 и XIAP у больных множественной миеломой. Онкогематология. 2009;2:52–7. [Gaponova TV, Mendeleeva LP, Misyurin AV, et al. Expression of PRAME, WT1 and XIAP tumor-associated genes in patients with multiple myeloma. Onkogematologiya. 2009;2:52–7. (In Russ)]
  19. Абраменко И.В., Белоус Н.И., Крячок И.А. и др. Экспрессия гена PRAME при множественной миеломе. Терапевтический архив. 2004;74(7):77–81. [Abramenko IV, Belous NI, Kryachok IA, et al. Expression of PRAME gene in multiple myeloma. Terapevticheskii arkhiv. 2004;74(7):77–81. (In Russ)]
  20. Мисюрин В.А., Мисюрин А.В., Кесаева Л.А. и др. Новые маркеры прогрессирования хронического миелолейкоза. Клиническая онкогематология. 2014;7(2):206–12. [Misyurin VA, Misyurin AV, Kesayeva LA, et al. New molecular markers of CML progression. Klinicheskaya onkogematologiya. 2014;7(2):206–12. (In Russ)]
  21. van Baren N, Brasseur F, Godelaine D, et al. Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood. 1999;94(4):1156–64.
  22. Pellat-Deceunynck C, Mellerin M., Labarriere N, et al. The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. Eur J Immunol. 2000;30(3):803–9. doi: 10.1002/1521-4141(200003)30:3<803:AID-IMMU803>3.0.CO;2-P.
  23. Andrade VC, Vettore AL, Felix RS, et al. Prognostic impact of cancer/testis antigen expression in advanced stage multiple myeloma patients. Cancer Immun. 2008;8:2.
  24. Qin Y, Lu J, Bao L, et al. Bortezomib improves progression-free survival in multiple myeloma patients overexpressing preferentially expressed antigen of melanoma. Chin Med J (Engl). 2014;127(9):1666–71. doi: 10.3760/cma.j.issn.0366-6999.20132356.
  25. Proto-Siqueira R, Falcao RP, de Souza CA, et al. The expression of PRAME in chronic lymphoproliferative disorders. Leuk Res. 2003;27(5):393–6. doi: 10.1016/S0145-2126(02)00217-5.
  26. Proto-Siqueira R, Figueiredo-Pontes LL, Panepucci RA, et al. PRAME is a membrane and cytoplasmic protein aberrantly expressed in chronic lymphocytic leukemia and mantle cell lymphoma. Leuk Res. 2006;30(11):1333–39. doi: 10.1016/j.leukres.2006.02.031.
  27. Paydas S, Tanriverdi K, Yavuz S, Seydaoglu G. PRAME mRNA levels in cases with chronic leukemia: Clinical importance and review of the literature. Leuk Res. 2007;31(3):365–9. doi: 10.1016/j.leukres.2006.06.022.
  28. Kawano R, Karube K, Kikuchi M, et al. Oncogene associated cDNA microarray analysis shows PRAME gene expression is a marker for response to anthracycline containing chemotherapy in patients with diffuse large B-cell lymphoma. J Clin Exp Hematop. 2009;49(1):1–7. doi: 10.3960/jslrt.49.1.
  29. Mitsuhashi K, Masuda A, Wang YH, et al. Prognostic significance of PRAME expression based on immunohistochemistry for diffuse large B-cell lymphoma patients treated with R-CHOP therapy. Int J Hematol. 2014;100(1):88–95. doi: 10.1007/s12185-014-1593-z.
  30. Schmitt M, Li L, Giannopoulos K, et al. Chronic myeloid leukemia cells express tumor-associated antigens eliciting specific CD8+ T-cell responses and are lacking costimulatory molecules. Exp Hematol. 2006;34(12):1709–19. doi: 10.1016/j.exphem.2006.07.009.
  31. Qian J, Zhu Z.H, Lin J, et al. Hypomethylation of PRAME promoter is associated with poor prognosis in myelodysplastic syndrome. Br J Haematol. 2011;154(1):153–5. doi: 10.1111/j.1365-2141.2011.08585.x.
  32. Ding K, Wang XM, Fu R, et al. PRAME Gene Expression in Acute Leukemia and Its Clinical Significance. Cancer Biol Med. 2012;9(1):73–6. doi: 10.3969/j.issn.2095-3941.2012.01.013.
  33. Greiner J, Ringhoffer M, Taniguchi M, et al. mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer. 2004;108(5):704–11. doi: 10.1002/ijc.11623.
  34. Li L, Reinhardt P, Schmitt A, et al. Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother. 2005;54(7):685–93. doi: 10.1007/s00262-004-0631-8.
  35. Atanackovic D, Luetkens T, Kloth B, et al. Cancer-testis antigen expression and its epigenetic modulation in acute myeloid leukemia. Am J Hematol. 2011;86(11):918–22. doi: 10.1002/ajh.22141.
  36. Gerber JM, Qin L, Kowalski J, et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol. 2011;86(1):31–7. doi: 10.1002/ajh.21915.
  37. Qin YZ, Zhu HH, Liu YR, et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leuk Lymphoma. 2013;54(7):1442–9. doi: 10.3109/10428194.2012.743656.
  38. Steinbach D, Viehmann S, Zintl F, Gruhn B. PRAME gene expression in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet. 2002;138(1):89–91. doi: 10.1016/S0165-4608(02)00582-4.
  39. Steinbach D, Hermann J, Viehmann S, et al. Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet. 2002;133(2):118–23. doi: 10.1016/S0165-4608(01)00570-2.
  40. Spanaki A, Perdikogianni C, Linardakis E, Kalmanti M. Quantitative assessment of PRAME expression in diagnosis of childhood acute leukemia. Leuk Res. 2007;31(5):639–42. doi: 10.1016/j.leukres.2006.06.006.
  41. Steinbach D, Bader P, Willasch A, et al. Prospective Validation of a New Method of Monitoring Minimal Residual Disease in Childhood Acute Myelogenous Leukemia. Clin Cancer Res. 2015;21(6):1353–9. doi: 10.1158/1078-0432.CCR-14-1999.
  42. Paydas S, Tanriverdi K, Yavuz S, et al. PRAME mRNA levels in cases with chronic leukemia: Clinical Importance and Future Prospects. Am J Hematol. 2005;79(4):257–61. doi: 10.1002/ajh.20425.
  43. Steinbach D, Pfaffendorf N, Wittig S, Gruhn B. PRAME expression is not associated with down-regulation of retinoic acid signaling in primary acute myeloid leukemia. Cancer Genet Cytogenet. 2007;177(1):51–4. doi: 10.1016/j.cancergencyto.2007.05.011.
  44. Santamaria C, Chillon MC, Garcia-Sanz R, et al. The relevance of preferentially expressed antigen of melanoma (PRAME) as a marker of disease activity and prognosis in acute promyelocytic leukemia. Haematologica. 2008;93(12):1797–805. doi: 10.3324/haematol.13214.
  45. Qin Y, Zhu H, Jiang B, et al. Expression patterns of WT1 and PRAME in acute myeloid leukemia patients and their usefulness for monitoring minimal residual disease. Leuk Res. 2009;33(3):384–90. doi: 10.1016/j.leukres.2008.08.026.
  46. Мисюрин В.А., Лукина А.Е., Мисюрин А.В. и др. Особенности соотношения уровней экспрессии генов PRAME и PML/RARa в дебюте острого промиелоцитарного лейкоза. Российский биотерапевтический журнал. 2014;13(1):9–16. [Misyurin VA, Lukina AE, Misyurin AV, et al. A ratio between gene expression levels of PRAME and PML/RARA at the onset of acute promyelocytic leukemia and clinical features of the disease. Rossiiskii bioterapevticheskii zhurnal. 2014;13(1):9–16. (In Russ)]
  47. Liberante FG, Pellagatti A, Boncheva V, et al. High and low, but not intermediate, PRAME expression levels are poor prognostic markers in myelodysplastic syndrome at disease presentation. Br J Haematol. 2013;162(2):282–5. doi: 10.1111/bjh.12352.
  48. Goellner S, Steinbach D, Schenk T, et al. Childhood acute myelogenous leukaemia: Association between PRAME, apoptosis- and MDR-related gene expression. Eur J Cancer. 2006;42(16):2807–14. doi: 10.1016/j.ejca.2006.06.018.
  49. Tajeddine N, Louis M, Vermylen C, et al. Tumor associated antigen PRAME is a marker of favorable prognosis in childhood acute myeloid leukemia patients and modifies the expression of S100A4, Hsp 27, p21, IL-8 and IGFBP-2 in vitro and in vivo. Leuk Lymphoma. 2008;49(6):1123–31. doi: 10.1080/10428190802035933.
  50. Santamaria CM, Chillon MC, Garcia-Sanz R, et al. Molecular stratification model for prognosis in cytogenetically normal acute myeloid leukemia. Blood. 2009;114(1):148–52. doi: 10.1182/blood-2008-11-187724.
  51. Ercolak V, Paydas S, Bagir E, et al. PRAME Expression and Its Clinical Relevance in Hodgkin’s Lymphoma. Acta Haematol. 2015;134(4):199–207. doi: 10.1159/000381533.
  52. Luetkens T, Kobold S, Cao Y, et al. Functional autoantibodies against SSX‐2 and NY‐ESO‐1 in multiple myeloma patients after allogeneic stem cell transplantation. Cancer Immunol Immunother. 2014;63(11):1151–62. doi: 10.1007/s00262-014-1588-x.
  53. Gunn SR, Bolla AR, Barron LL, et al. Array CGH analysis of chronic lymphocytic leukemia reveals frequent cryptic monoallelic and biallelic deletions of chromosome 22q11 that include the PRAME gene. Leuk Res. 2009;33(9):1276–81. doi: 10.1016/j.leukres.2008.10.010.
  54. Mraz M, Stano Kozubik K, Plevova K, et al. The origin of deletion 22q11 in chronic lymphocytic leukemia is related to the rearrangement of immunoglobulin lambda light chain locus. Leuk Res. 2013;37(7):802–8. doi: 10.1016/j.leukres.2013.03.018.
  55. Staege MS, Banning-Eichenseer U, Weissflog G, et al. Gene expression profiles of Hodgkin’s lymphoma cell lines with different sensitivity to cytotoxic drugs. Exp Hematol. 2008;36(7):886–96. doi: 10.1016/j.exphem.2008.02.014.
  56. Kewitz S, Staege MS. Knock-Down of PRAME Increases Retinoic Acid Signaling and Cytotoxic Drug Sensitivity of Hodgkin Lymphoma Cells. PLoS One. 2013;8(2):e55897. doi: 10.1371/journal.pone.0055897.
  57. Bea S, Salaverria I, Armengol L, et al. Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood. 2009;113(13):3059–69. doi: 10.1182/blood-2008-07-170183.
  58. Liggins AP, Lim SH, Soilleux EJ, et al. A panel of cancer-testis genes exhibiting broadspectrum expression in haematological malignancies. Cancer Immun. 2010;10:8.
  59. Radich JP, Dai H, Mao M, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA. 2006;103(8):2794–9. doi: 10.1073/pnas.0510423103.
  60. Luetkens T, Schafhausen P, Uhlich F, et al. Expression, epigenetic regulation, and humoral immunogenicity of cancer-testis antigens in chronic myeloid leukemia. Leuk Res. 2010;34(12):1647–55. doi: 10.1016/j.leukres.2010.03.039.
  61. Hughes A, Clarson J, Tang C, et al. CML patients with deep molecular responses to TKI have restored immune effectors and decreased PD-1 and immune suppressors. Blood. 2017;129(9):1166–76. doi: 10.1182/blood-2016-10-745992.
  62. Khateeb EE, Morgan D. Preferentially Expressed Antigen of Melanoma (PRAME) and Wilms’ Tumor 1 (WT 1) Genes Expression in Childhood Acute Lymphoblastic Leukemia, Prognostic Role and Correlation with Survival. Open Access Maced J Med Sci. 2015;3(1):57–62. doi: 10.3889/oamjms.2015.001.
  63. Zhang YH, Lu AD, Yang L, et al. PRAME overexpression predicted good outcome in pediatric B-cell acute lymphoblastic leukemia patients receiving chemotherapy. Leuk Res. 2017;52):43–9. doi: 10.1016/j.leukres.2016.11.005.
  64. McElwaine S, Mulligan C, Groet J, et al. Microarray transcript profiling distinguishes the transient from the acute type of megakaryoblastic leukaemia (M7) in Down’s syndrome, revealing PRAME as a specific discriminating marker. Br J Haematol. 2004;125(6):729–42. doi: 10.1111/j.1365-2141.2004.04982.x.
  65. Tanaka N, Wang YH, Shiseki M, et al. Inhibition of PRAME expression causes cell cycle arrest and apoptosis in leukemic cells. Leuk Res. 2011;35(9):1219–25. doi: 10.1016/j.leukres.2011.04.005.
  66. De Carvalho D.D, Binato R, Pereira W.O, et al. BCR-ABL-mediated upregulation of PRAME is responsible for knocking down TRAIL in CML patients. Oncogene. 2011;30(2):223–33. doi: 10.1038/onc.2010.409.
  67. Tajeddine N, Gala JL, Louis M, et al. Tumor-associated antigen preferentially expressed antigen of melanoma (PRAME) induces caspase-independent cell death in vitro and reduces tumorigenicity in vivo. Cancer Res. 2005;65(16):7348–55. doi: 10.1158/0008-5472.CAN-04-4011.
  68. Yan H, Zhao RM, Wang ZJ, et al. Knockdown of PRAME enhances adriamycin-induced apoptosis in chronic myeloid leukemia cells. Eur Rev Med Pharmacol Sci. 2015;19(24):4827–34. doi: 10.18632/oncotarget.9977.
  69. Xu Y, Yue Q, Wei H, Pan G. PRAME induces apoptosis and inhibits proliferation of leukemic cells in vitro and in vivo. Int J Clin Exp Pathol. 2015;8(11):14549–55.
  70. Xu Y, Rong LJ, Meng SL, et al. PRAME promotes in vitro leukemia cells death by regulating S100A4/p53 signaling. Eur Rev Med Pharmacol Sci. 2016;20(6):1057–63.
  71. Bullinger L, Schlenk RF, Gotz M, et al. PRAME-Induced Inhibition of Retinoic Acid Receptor Signaling-Mediated Differentiation – Possible Target for ATRA Response in AML without t(15;17). Clin Cancer Res. 2013;19(9):2562–71. doi: 10.1158/1078-0432.CCR-11-2524.

New molecular markers of CML progression

V.A. Misyurin1,2, A.V. Misyurin1,2, L.A. Kesayeva1,2, Yu.P. Finashutina1,2, Ye.N. Misyurina2, I.N. Soldatova1,2, A.A. Krutov2, N.A. Lyzhko1,2, T.V. Akhlynina1,2, A.Ye. Lukina3, T.I. Kolosheynova3, N.V. Novitskaya1, Ye.G. Arshanskaya4, Ye.G. Ovsyannikova5, R.A. Golubenko6, V.A. Lapin7, T.I. Pospelova8, V.A. Tumakov9, and A.Yu. Baryshnikov1

1 N.N. Blokhin Russian Cancer Research Center, Moscow, Russian Federation

2 GeneTechnology Medical Center, Moscow, Russian Federation

3 Hematology Research Center, RF Ministry of Health, Moscow, Russian Federation

4 Moscow Hematological City Center, S.P. Botkin City Clinical Hospital, Moscow, Russian Federation

5 Astrakhan State Medical Academy, Astrakhan, Russian Federation

6 Orel Regional Clinical Hospital, Orel, Russian Federation

7 Hematological Center, Yaroslavl City Clinical Hospital #1, Yaroslavl, Russian Federation

8 Novosibirsk State Medical University, Novosibirsk, Russian Federation

9 Ivanovo Regional Clinical Hospital #1, Ivanovo, Russian Federation


ABSTRACT

In the contrast to Ph’-negative chronic myeloproliferative disorders (cMPD), chronic myelogenous leukemia (CML) is prone to rather early transformation into the later stage disease, known as the acceleration phase (AP) and blast crisis (BC). Myeloproliferative disorders are termed myeloproliferative neoplasms in the WHO classification, 2008. Molecular mechanisms underlying CML progression are unclear and still being studied. Recently, it was shown that progression of some malignancies was associated with activation and hyperexpression of some genes from the cancer-testis (CT) family. In this study, we evaluated the gene expression profile of CT genes (GAGE1, NY-ESO-1, MAGEA1, SCP1, SEMG1, SPANXA1, SSX1 and PRAME) in the blood of patients with initially diagnosed cMPD, as well as in the blood and bone marrow of CML patients in CP, AP and BC. It was found that activation of these eight CT genes expression was strongly correlated with CML progression to AP and BP. These data suggest that at least some of CT genes can be involved in CML evolution towards the terminal phases. Expression of these genes can be used as an early molecular predictor of CML progression to AP and BC.


Keywords: cancer-testis genes, PRAME, gene expression, chronic myelogenous leukemia, chronic myeloproliferative diseases

Read in в PDF (RUS)pdficon


REFERENCES

  1. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood 1951; 6(4): 372–5.
  2. Tefferi A., Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J. Clin. Oncol. 2011; 29(5): 573–82.
  3. Rowley J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature 1973; 243(5405): 290–3.
  4. Scott L.M., Tong W., Levine R.L. et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 2007; 356(5): 459–68.
  5. Gabler K., Behrmann I., Haan C. JAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms. JAKSTAT 2013; 2(3): 250–5.
  6. Deininger M.W., Goldman J.M., Melo J.V. The molecular biology of chronic myeloid leukemia. Blood 2000; 96(10): 3343–56.
  7. Мисюрин А.В. Молекулярный патогенез миелопролиферативных за- болеваний. Клин. онкогематол. 2009; 2(3): 201–9. [Misyurin A.V. Molecular pathogenesis of myeloproliferative disorders. Klin. onkogematol. 2009; 2(3): 201–9. (In Russ.)].
  8. Tutaeva V., Misurin A.V., RoZenberg J.M. et al. Application of prv-1 mrna expression level and Jak2v617f mutation for the differentiating between polycytemia vera and secondary erythrocytosis and assessment of treatment by interferon or hydroxyurea. Hematology 2007; 12(6): 473–9.
  9. Heaney M.L., Soriano G. Acute myeloid leukemia following a myeloproliferative neoplasm: clinical characteristics, genetic features and effects of therapy. Curr. Hematol. Malig. Rep. 2013; 8(2): 116–22.
  10. Turkina A.G., Zabotina T.N., Kusnetzov S.V. et al. Studies of some mechanisms of drug resistence in chronic myeloid leukemia (CML). Adv. Exper. Med. Biol. 1999; 457: 477–88.
  11. Kremenetskaya O.S., Logacheva N.P., Baryshnikov A.Y. et al. Distinct effects of various p53 mutants on differentiation and viability of human K562 leukemia cells. Oncol. Res. 1997; 9: 155–66.
  12. Turkina A.G., Baryshnikov A.Y., Sedyakhina N.P. et al. Studies of Pglycoprotein in chronic myelogenous leukaemia patients: Expression, activity and correlations with CD34 antigen. Br. J. Haematol. 1996; 92: 88–96.
  13. Stavrovskaya A.A., Sedyakhina N.P., Stromskaya T. et al. Prognastic value of P-glicoprotein and correlation with CD34 antigen. Br. J. Heamatol. 1998; 28(5–6): 469–82.
  14. Барышников А.Ю. Взаимодействие опухоли и иммунной системы организма. Практ. онкол. 2003; 4(3): 127–30. [Baryshnikov A.Yu. Interaction between tumor and immune system. Prakt. onkol. 2003; 4(3): 127–30. (In Russ.)].
  15. Барышников А.Ю. Принципы и практика вакцинотерапии рака. Бюл. СО РАМН 2004; 2: 59–63. [Baryshnikov A.Yu. Principles and practice of cancer vaccine-prophylaxis. Byul. SO RAMN 2004; 2: 59–63. (In Russ.)].
  16. Барышников А.Ю., Демидов Л.В., Михайлова И.Н., Петенко Н.Н. Современные проблемы биотерапии опухолей. Вестн. Моск. онкол. общ. 2008; 1: 6–10. [Baryshnikov A.Yu., Demidov L.V., Mikhaylova I.N., Petenko N.N. Current issues of biotherapy for tumors. Vestn. Mosk. onkol. obshch. 2008; 1: 6–10. (In Russ.)]. 17. Michailova I.N., Morozova L.Ph., Golubeva V.A. et al. Cancer/testis genes expression in human melanoma cell lines. Melanoma Res. 2008; 18(5): 303–13.
  17. Turkina A.G., Logacheva N.P., Stromskaya T.P. et al. Studies of some mechanisms of drug resistance in chronic myeloid leukemia (CML). 3rd International Symposium on Drug Resistance in Leukemia and Lymphoma. Amsterdam, 1998. Drug resistance in leukemia and lymphoma III Book Series: advances in experimental medicine and biology. Ed. by G.J.L. Kaspers, R. Pieters, A.J.P. Veerman. 1999: 457, 477–88.
  18. Lim S.H., Zhang Y., Zhang J. Cancer-testis antigens: the current status on antigen regulation and potential clinical use. Am. J. Blood Res. 2012; 2(1): 29–35.
  19. Гапонова Т.В., Менделеева Л.П., Мисюрин А.В., Варламова Е.В., Савченко В.Г. Экспрессия опухолеассоциированных генов PRAME, WT1 и XIAP у больных множественной миеломой. Онкогематол. 2009; 2: 52–7. [Gaponova T.V., Mendeleyeva L.P., Misyurin A.V., Varlamova Ye.V., Savchenko V.G. Expression of PRAME, WT1 and XIAP tumor-associated genes in patients with multiple myeloma. Onkogematol. 2009; 2: 52–7. (In Russ.)].
  20. Абраменко И.В., Белоус Н.И., Крячок И.А. и др. Экспрессия гена PRAME при множественной миеломе. Тер. арх. 2004; 7: 77–81. [Abramenko I.V., Belous N.I., Kryachok I.A., et al. Expression of PRAME gene in multiple myeloma. Ter. arkh. 2004; 7: 77–81. (In Russ.)].
  21. Radich J.P., Dai H., Mao M. et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl. Acad. Sci. U S A 2006; 103(8): 2794–9.
  22. Демидова И.А., Савченко В.Г., Ольшанская Ю.В. и др. Аллогенная трансплантация костного мозга после режимов кондиционирования по- ниженной интенсивности в терапии больных гемобластозами. Тер. арх. 2003; 75(7): 15–21. [Demidova I.A., Savchenko V.G., Olshanskaya Yu.V., et al. Allogeneic bone martrow transplantation after reduced-intensity conditioning regimens in management of patients with hematological malignancies. Ter. arkh. 2003; 75(7): 15–21. (In Russ.)].
  23. Anguille S., Van Tendeloo V.F., Berneman Z.N. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 2012; 26(10): 2186–96.
  24. Lichtenegger F.S., Schnorfeil F.M., Hiddemann W., Subklewe M. Current strategies in immunotherapy for acute myeloid leukemia. Immunotherapy 2013; 5(1): 63–78.