Practical Aspects of the Use of Carfilzomib in Multiple Myeloma

SV Semochkin1,2, GN Salogub3, SS Bessmeltsev4, KD Kaplanov5

1 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

2 Municipal Clinical Hospital No. 52, 3 Pekhotnaya str., Moscow, Russian Federation, 123182

3 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

4 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

5 Volgograd Regional Clinical Oncology Dispensary No. 1, 78 Zemlyachki str., Volgograd, Russian Federation, 400138

For correspondence: Prof. Sergei Vyacheslavovich Semochkin, MD, PhD, 3 Pekhotnaya str., Moscow, Russian Federation, 123182; Tel./fax: +7(495)369-00-36; e-mail: semochkin_sv@rsmu.ru

For citation: Semochkin SV, Salogub GN, Bessmeltsev SS, Kaplanov KD. Practical Aspects of the Use of Carfilzomib in Multiple Myeloma. Clinical oncohematology. 2019;12(1):21–31.

DOI: 10.21320/2500-2139-2019-12-1-21-31


ABSTRACT

Carfilzomib (Kyprolis®, Amgen), a second-generation proteasome inhibitor, is capable of covalent bonding and irreversible inhibition of the 20S proteasome chymotrypsin-like activity. In 2016 this drug was approved in Russia for monotherapy of relapsed refractory multiple myeloma (MM) and in combination with lenalidomide and dexamethasone (KRd) or only with dexamethasone (Kd) for treatment of patients with relapsed MM after at least one line of prior therapy. The present review outlines mechanism, clinical efficacy, and adverse effects of carfilzomib according to the data of a phase II (monotherapy) trial and two key randomized phase III (carfilzomib combined with other drugs) trials. The ASPIRE trial demonstrated that adding carfilzomib to the combination of lenalidomide and dexamethasone (KRd) significantly improves progression-free survival (PFS) compared with the Rd original regimen (median 26.3 vs. 17.6 months; hazard ratio [HR] 0.69; = 0.0001). Median overall survival (OS) was 48.3 months (95% confidence interval [95% CI] 42.4–52.8 months) for KRd vs. 40.4 months (95% CI 33.6–44.4 months) for Rd (HR 0.79; = 0.0045). The ENDEAVOR trial showed that as compared with combination of bortezomib and dexamethasone (Vd) the carfilzomib + dexamethasone (Kd) regimen significantly improves PFS (median 18.7 vs. 9.4 months; HR 0.53; < 0.0001) and OS (47.6 vs. 40.0 months; HR 0.79; = 0.010) as well. The present review also discusses how carfilzomib is to be used in special patient groups (with renal failure and high cytogenetic risk).

Keywords: carfilzomib, proteasome inhibitor, lenalidomide, bortezomib, multiple myeloma, renal failure, cytogenetic risk.

Received: May 12, 2018

Accepted: December 28, 2018

Read in PDF 


REFERENCES

  1. Siegel D, Martin T, Wang M, et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood. 2012;120(14):2817–25. doi: 10.1182/blood-2012-05-425934.

  2. Siegel D, Martin T, Nooka A, et al. Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica. 2013;98(11):1753–61. doi: 10.3324/haematol.2013.089334.

  3. Badros AZ, Vij R, Martin T, et al. Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia. 2013;27(8):1707–14. doi: 10.1038/leu.2013.29.

  4. Wang TF, Ahluwalia R, Fiala MA, et al. The characteristics and outcomes of patients with multiple myeloma dual refractory or intolerant to bortezomib and lenalidomide in the era of carfilzomib and pomalidomide. Leuk Lymphoma. 2014;55(2):337–41. doi: 10.3109/10428194.2013.803547.

  5. Moreau P. How I treat myeloma with new agents. Blood. 2017;130(13):1507–13. doi: 10.1182/blood-2017-05-743203.

  6. Dimopoulos MA, Moreau P, Palumbo A, et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol. 2016;17(1):27–38. doi: 10.1016/S1470-2045(15)00464-7.

  7. Stewart AK, Rajkumar SV, Dimopoulos MA, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52. doi: 10.1056/NEJMoa1411321.

  8. Gea J, Agusti A, Roca J. Pathophysiology of muscle dysfunction in COPD. J Appl Physiol. 2013;114(9):1222–34. doi: 10.1152/japplphysiol.00981.2012.

  9. Ciehanover A, Hod Y, Hershko A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun. 2012;425(3):565–70. doi: 10.1016/j.bbrc.2012.08.025.

  10. Nobel Prize in Chemistry 2004. Nobelprize.org. Nobel Media AB 2014. Available from: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2004/ (accessed 10.01.2018).

  11. Vincenz L, Jager R, O’Dwyer M, Samali A. Endoplasmic reticulum stress and the unfolded protein response: targeting the Achilles heel of multiple myeloma. Mol Cancer Ther. 2013;12(6):831–43. doi: 10.1158/1535-7163.MCT-12-0782.

  12. Hasinoff BB. Progress curve analysis of the kinetics of slow-binding anticancer drug inhibitors of the 20S proteasome. Arch Biochem Biophys. 2018;639:52–8. doi: 10.1016/j.abb.2017.12.020.

  13. Kuhn DJ, Chen Q, Voorhees PM, et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007;110(9):3281–90. doi: 10.1182/blood-2007-01-065888.

  14. Accardi F, Toscani D, Bolzoni M, et al. Mechanism of action of bortezomib and the new proteasome inhibitors on myeloma cells and the bone microenvironment: impact on myeloma-induced alterations of bone remodeling. Biomed Res Int. 2015;2015:1–13. doi: 10.1155/2015/172458.

  15. Wang Z, Yang J, Kirk C, et al. Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metab Dispos. 2013;41(1):230–7. doi: 10.1124/dmd.112.047662.

  16. Alsina M, Trudel S, Furman RR, et al. A phase I single-agent study of twice-weekly consecutive-day dosing of the proteasome inhibitor carfilzomib in patients with relapsed or refractory multiple myeloma or lymphoma. Clin Cancer Res. 2012;18(17):4830–40. doi: 10.1158/1078-0432.ccr-11-3007.

  17. Squifflet P, Michiels S, Siegel D, et al. Relationship between carfilzomib dose and efficacy outcomes in patients with relapsed and/or refractory multiple myeloma. Clin Lymph Myel Leuk. 2015;15(11):680–6. doi: 10.1016/j.clml.2015.09.005.

  18. Papadopoulos KP, Siegel DS, Vesole DH, et al. Phase I study of 30-minute infusion of carfilzomib as single agent or in combination with low-dose dexamethasone in patients with relapsed and/or refractory multiple myeloma. J Clin Oncol. 2015;33(7):732–9. doi: 10.1200/JCO.2013.52.3522.

  19. Hajek R, Masszi T, Petrucci MT, et al. A randomized phase III study of carfilzomib vs low-dose corticosteroids with optional cyclophosphamide in relapsed and refractory multiple myeloma (FOCUS). Leukemia. 2017;31(1):107–14. doi: 10.1038/leu.2016.176.

  20. Dimopoulos MA, Stewart AK, Masszi T, et al. Carfilzomib-lenalidomide-dexamethasone vs lenalidomide-dexamethasone in relapsed multiple myeloma by previous treatment. Blood Cancer J. 2017;7(4):e554. doi: 10.1038/bcj.2017.31.

  21. Stewart KA, Siegel D, Ludwig H, et al. Overall Survival (OS) of Patients with Relapsed/Refractory Multiple Myeloma (RRMM) Treated with Carfilzomib, Lenalidomide, and Dexamethasone (KRd) Versus Lenalidomide and Dexamethasone (Rd): Final Analysis from the Randomized Phase 3 Aspire Trial. Blood (ASH Annual Meeting Abstracts). 2017;130(Suppl 1): Abstract 743.

  22. Stewart AK, Dimopoulos MA, Masszi T, et al. Health-Related Quality of Life Results From the Open-Label, Randomized, Phase III ASPIRE Trial Evaluating Carfilzomib, Lenalidomide, and Dexamethasone Versus Lenalidomide and Dexamethasone in Patients With Relapsed Multiple Myeloma. J Clin Oncol. 2016;34(32):3921–30. doi: 10.1200/JCO.2016.66.9648.

  23. Dimopoulos MA, Goldschmidt H, Niesvizky R, et al. Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18(10):1327–37. doi: 10.1016/S1470-2045(17)30578-8.

  24. Gavriatopoulou M, Terpos E, Kastritis E, Dimopoulos MA. Current treatments for renal failure due to multiple myeloma. Expert Opin Pharmacother. 2016;17(16):2165–77. doi: 10.1080/14656566.2016.1236915.

  25. Yadav P, Cook M, Cockwell P. Current Trends of Renal Impairment in Multiple Myeloma. Kidney Dis. 2016;1(4):241–57. doi: 10.1159/000442511.

  26. Рехтина И.Г., Менделеева Л.П., Бирюкова Л.С. Диализзависимая почечная недостаточность у больных множественной миеломой: факторы обратимости. Терапевтический архив. 2015;87(7):72–6. doi: 10.17116/terarkh201587772-76.

    [Rekhtina IG, Mendeleeva LP, Biryukova LS. Dialysis-dependent renal failure in patients with multiple myeloma: Reversibility factors. Terapevticheskii arkhiv. 2015;87(7):72–6. doi: 10.17116/terarkh201587772-76. (In Russ)]

  27. Dimopoulos MA, Sonneveld P, Leung N, et al. International Myeloma Working Group Recommendations for the Diagnosis and Management of Myeloma-Related Renal Impairment. J Clin Oncol. 2016;34(13):1544–57. doi: 10.1200/JCO.2015.65.0044.

  28. Stansfield LC, Gonsalves WI, Buadi FK. The use of novel agents in multiple myeloma patients with hepatic impairment. Fut Oncol. 2015;11(3):501–10. doi: 10.2217/fon.14.270.

  29. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26(1):149–57. doi: 10.1038/leu.2011.196.

  30. Sonneveld P, Avet-Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. Blood. 2016;127(24):2955–62. doi: 10.1182/blood-2016-01-631200.

  31. Jakubowiak AJ, Siegel DS, Martin T, et al. Treatment outcomes in patients with relapsed and refractory multiple myeloma and high-risk cytogenetics receiving single-agent carfilzomib in the PX-171-003-A1 study. Leukemia. 2013;27(12):2351–6. doi: 10.1038/leu.2013.152.

  32. Avet-Loiseau H, Fonseca R, Siegel D, et al. Carfilzomib significantly improves the progression-free survival of high-risk patients in multiple myeloma. Blood. 2016;128(9):1174–80. doi: 10.1182/blood-2016-03-707596.

  33. Stessman HA, Baughn LB, Sarver A, et al. Profiling bortezomib resistance identifies secondary therapies in a mouse myeloma model. Mol Cancer Ther. 2013;12(6):1140–50. doi: 10.1158/1535-7163.MCT-12-1151.

  34. Berenson JR, Hilger JD, Yellin O, et al. Replacement of bortezomib with carfilzomib for multiple myeloma patients progressing from bortezomib combination therapy. Leukemia. 2014;28(7):1529–36. doi: 10.1038/leu.2014.27.

  35. Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;375(8):754–66. doi: 10.1056/NEJMoa1606038.

  36. Moreau Ph, Oriol A, Kaufman JL, et al. Daratumumab, Lenalidomide, and Dexamethasone (DRd) Versus Lenalidomide and Dexamethasone (Rd) in Relapsed or Refractory Multiple Myeloma (RRMM) Based on Prior Treatment History, Renal Function, and Cytogenetic Risk: Subgroup Analyses of Pollux. Blood (ASH Annual Meeting Abstracts). 2017;130(Suppl 1): Abstract 1883.

  37. Dimopoulos MA, Lonial S, White D, et al. Elotuzumab plus lenalidomide/dexamethasone for relapsed or refractory multiple myeloma: ELOQUENT-2 follow-up and post-hoc analyses on progression-free survival and tumour growth. Br J Haematol. 2017;178(6):896–905. doi: 10.1111/bjh.14787.

  38. Grandin EW, Ky B, Cornell RF, et al. Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. J Card Fail. 2015;21(2):138–44. doi: 10.1016/j.cardfail.2014.11.008.

  39. Бессмельцев С.С., Карягина Е.В., Стельмашенко Л.В. и др. Частота, характеристика и методы лечения периферической нейропатии у больных множественной миеломой, получающих бортезомиб (велкейд). Онкогематология. 2008;3(3):52–62.

    [Bessmeltsev SS, Karyagina EV, Stelmashenko LV, et al. Incidence, characteristics, and treatments of peripheral neuropathy in multiple myeloma patients receiving bortezomib (velcade). Onkogematologiya. 2008;3(3):52–62. (In Russ)]

  40. Скворцова Н.В., Поспелова Т.И., Нечунаева И.Н. и др. Эффективность повторной терапии бортезомибом у пациентов с рефрактерными и рецидивирующими формами множественной миеломы. Сибирский научный медицинский журнал. 2013;33(1):76–81.

    [Skvortsova NV, Pospelova TI, Nechunaeva IN, et al. Antitumor activity of bortezomib retreatment in relapsed or refractory multiple myeloma patients. Sibirskii nauchnyi meditsinskii zhurnal. 2013;33(1):76–81. (In Russ)]

  41. Rosenthal A, Luthi J, Belohlavek M, et al. Carfilzomib and the cardiorenal system in myeloma: an endothelial effect? Blood Cancer J. 2016;6(1):e384. doi: 10.1038/bcj.2015.112.

  42. Atrash S, Tullos A, Panozzo S, et al. Cardiac complications in relapsed and refractory multiple myeloma patients treated with carfilzomib. Blood Cancer J. 2015;5(1):e272. doi: 10.1038/bcj.2014.93.

  43. Danhof S, Schreder M, Rasche L, et al. ‘Real-life’ experience of preapproval carfilzomib-based therapy in myeloma – analysis of cardiac toxicity and predisposing factors. Eur J Haematol. 2016;97(1):25–32. doi: 10.1111/ejh.12677.

  44. Berenson JR, Cartmell A, Bessudo A, et al. CHAMPION-1: a phase 1/2 study of once-weekly carfilzomib and dexamethasone for relapsed or refractory multiple myeloma. Blood. 2016;127(26):3360–8. doi: 10.1182/blood-2015-11-683854.

  45. Chari A, Hajje D. Case series discussion of cardiac and vascular events following carfilzomib treatment: possible mechanism, screening, and monitoring. BMC Cancer. 2014;14(1):915. doi: 10.1186/1471-2407-14-915.

  46. Sullivan MR, Danilov AV, Lansigan F, Dunbar NM. Carfilzomib associated thrombotic microangiopathy initially treated with therapeutic plasma exchange. J Clin Apher. 2015;30(5):308–10. doi: 10.1002/jca.21371.

  47. Yui JC, Van Keer J, Weiss BM, et al. Proteasome inhibitor associated thrombotic microangiopathy. Am J Hematol. 2016;91(9):E348–52. doi: 10.1002/ajh.24447.

  48. Григорьева В.Н., Стамо А.П., Авдонина Ю.Д., Беляков К.М. Особенности поражения периферической нервной системы при множественной миеломе. Неврологический журнал. 2013;18(2):4–10.

    [Grigor’eva VN, Stamo AP, Avdonina YuD, Belyakov KM. Characteristics of lesions in the peripheral nervous system in multiple myeloma. Nevrologicheskii zhurnal. 2013;18(2):4–10. (In Russ)]

  49. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2).

    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2). (In Russ)]

  50. Lataifeh AR, Nusair A. Fatal pulmonary toxicity due to carfilzomib (Kyprolis). J Oncol Pharm Pract. 2016;22(5):720–4. doi: 10.1177/1078155215588630.

  51. Cai X, Bhattacharyya S, Plitt A, et al. Management of posterior reversible encephalopathy syndrome induced by carfilzomib in a patient with multiple myeloma. J Clin Oncol. 2016;34(2):e1–5. doi: 10.1200/JCO.2013.49.6166.

  52. Скворцова В.И., Губский Л.В., Мельникова Е.А. Синдром задней обратимой энцефалопатии. Журнал неврологии и психиатрии им. C.C. Корсакова. 2010;110(5):104–9.

    [Skvortsova VI, Gubskii LV, Mel’nikova EA. Posterior reversible encephalopathy syndrome. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2010;110(5):104–9. (In Russ)]

The Use of Pomalidomide in the Treatment of Relapsed/Refractory Multiple Myeloma in Patients with Renal Failure

IG Rekhtina, MV Nareiko, LP Mendeleeva

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Irina Germanovna Rekhtina, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-49-66; e-mail: rekhtina.i@blood.ru

For correspondence: Rekhtina IG, Nareiko MV, Mendeleeva LP. The Use of Pomalidomide in the Treatment of Relapsed/Refractory Multiple Myeloma in Patients with Renal Failure. Clinical oncohematology. 2018;11(4):283–7.

DOI: 10.21320/2500-2139-2018-11-4-283-287


ABSTRACT

The present review includes data on efficacy and safety of pomalidomide, an immunomodulating 3rd generation drug used for treatment of relapsed and refractory multiple myeloma patients with renal failure. The results of multicenter randomized trials proved similar efficacy and comparable safety profile in patients with normal renal function and patients with moderate and/or severe renal failure. All patients received the standard starting dose. Pomalidomide dose needs to be reduced in response to hematological toxicity. The paper provides practical guidelines on the use of pomalidomide and treatment of adverse events adopted by consensus of international experts. Current approaches to multiple myeloma with renal failure, and the use of pomalidomide in particular, are demonstrated by means of a clinical case.

Keywords: multiple myeloma, pomalidomide, renal failure.

Received: March 28, 2018

Accepted: July 16, 2018

Read in PDF 


REFERENCES

  1. Qian Y, Bhowmik D, Bond C, et al. Renal impairment and use of nephrotoxic agents in patients with multiple myeloma in the clinical practice setting in the United States. Cancer Med. 2017;6(7):1523–30. doi: 10.1002/cam4.1075.

  2. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2).

    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2). (In Russ)]

  3. Имновид® (инструкция по медицинскому применению). Будри, Швейцария: Celgene International, Sarl. Доступно по: https://www.vidal.ru/drugs/imnovid__44356. Ссылка активна на 30.06.2018.

    [Imnovid® (package insert). Boudry, Switzerland: Celgene International, Sarl. Available from: https://www.vidal.ru/drugs/imnovid__44356. (accessed 30.06.2018) (In Russ)]

  4. Dimopoulos MA, Palumbo A, Corradini P, et al. Safety and efficacy of pomalidomide plus low-dose dexamethasone in STRATUS (MM-010): a phase 3b study in refractory multiple myeloma. Blood. 2016;128(4):497–503. doi: 10.1182/blood-2016-02-700872.

  5. Richardson PG, Siegel DS, Vij R, et al. Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: a randomized phase 2 study. Blood. 2014;123(12):1826–32. doi: 10.1182/blood-2014-04-566661.

  6. Miguel JS, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomized, open-label, phase 3 trial. Lancet Oncol. 2013;14(11):1055–66. doi: 10.1016/S1470-2045(13)70380-2.

  7. Siegel DS, Weisel KC, Dimopoulosc MA, et al. Pomalidomide plus low-dose dexamethasone in patients with relapsed/refractory multiple myeloma and moderate renal impairment: a pooled analysis of three clinical trials. Leuk Lymphoma. 2016:57(12):2833–8. doi: 10.1080/10428194.2016.1177181.

  8. Matous J, Siegel DS, Lonial S, et al. A Phase 1 Study of the Pharmacokinetics (PK) and Safety of Pomalidomide + Low Dose Dexamethasone (POM+LODEX) in Patients (PTS) With Relapsed or Refractory Multiple Myeloma (RRMM) and Renal Impairment (RI). Clin Lymph Myel Leuk. 2015;15:e265. doi: 10.1016/j.clml.2015.07.557.

  9. Sonneveld P, Dimopoulos M, Ramasamy K, et al. Treatment (Tx) With Pomalidomide (POM) and Low-Dose Dexamethasone (LoDEX) in Patients (Pts) With Relapsed or Refractory Multiple Myeloma (RRMM) and Renal Impairment (RI) Including Those on Dialysis. Clin Lymph Myel Leuk. 2015;15:e265. doi: 10.1016/j.clml.2015.07.556.

  10. Weisel K, Dimopoulos M, Van de Donk N, et al. Phase 2 Multicenter Study of Pomalidomide (POM) Plus Low-Dose Dexamethasone (LoDEX) in Patients (Pts) With Relapsed/Refractory Multiple Myeloma (RRMM) and Renal Impairment (RI): An Updated Safety Analysis. Clin Lymph Myel Leuk. 2017;17(1):e145. doi: 10.1016/j.clml.2017.03.261.

  11. Sonneveld P, Weisel K, Van de Donk N et al. MM-013 phase 2 multicenter study of pomalidomide plus low-dose dexamethasone in patients with RRMM and renal impairment. 22nd Congress of the European Hematology Association (EHA). 2017. Abstract P343.

  12. Li Y, Wang X, O’Mara E, et al. Population pharmacokinetics of pomalidomide in patients with relapsed or refractory multiple myeloma with various degrees of impaired renal function. Clin Pharmacol Adv Appl. 2017;9:133–45. doi: 10.2147/CPAA.S144606.

  13. Dimopoulos M, Leleu X, Palumbo A, et al. Expert panel consensus statement on the optimal use of pomalidomide in relapsed and refractory multiple myeloma. Leukemia. 2014;28(8):1573–85. doi: 10.1038/leu.2014.60.

New Aspects of Pathophysiology and Pathomorphology of Renal Lesions in Malignant Tumors

B.T. Dzhumabaeva, L.S. Biryukova

Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Boldukyz Tolgonbaevna Dzhumabaeva, DSci, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)613-24-68; e-mail: bola.blood@yandex.ru

For citation: Dzhumabaeva BT, Biryukova LS. New Aspects of Pathophysiology and Pathomorphology of Renal Lesions in Malignant Tumors. Clinical oncohematology. 2015;8(4):390–396 (In Russ).

DOI: 10.21320/2500-2139-2015-8-4-390-396


ABSTRACT

Glomerular injuries associated with malignancy are rare and they are morphologically heterogeneous. Although the pathophysiologic interrelations between a tumor and glomerulopathy are not clear, molecular mechanisms of paraneoplastic glomerulopathies and pathologic features of renal lesions in solid tumors, lymphoproliferative and myeloproliferative disorders have been discovered over recent decades.


Keywords: membranous nephropathy, immunotactoid glomerulopathy, minimal-change glomerulopathy, fibrillary glomerulonephritis, renal failure, anti-PLA2R1 antibody, c-mip protein.

Received: March 19, 2015

Accepted: October 23, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Klein U, Dalla-Favera R. New insights into the pathogenesis of chronic lymphocytic leukemia. Semin Cancer Biol. 2010;20:377–83. doi: 10.1016/j.semcancer.2010.10.012.
  2. Barcos M, Lane W, Gomez GA, et al. An autopsy study of 1206 acute and chronic leukemias (1958 to 1982). Cancer. 1987;60:827–37. doi: 10.1002/1097-0142(19870815)60:4<827::aid-cncr2820600419>3.0.co;2-a.
  3. Norris HJ, Wiener J. The renal lesions in leukemia. Am J Med Sci. 1961;241:512–8. doi: 10.1097/00000441-196104000-00016.
  4. Schwartz JB, Shamsuddin AM. The effects of leukemic infiltrates in various organs in chronic lymphocytic leukemia. Hum Pathol. 1981;12:432–40. doi: 10.1016/s0046-8177(81)80023-8.
  5. Puolijoki H, Mustonen J, Pettersson E, et al. Proteinuria and haematuria are frequently present in patients with lung cancer. Nephrol Dial Transplant. 1989;4:947–50. doi: 10.1016/0169-5002(90)90194-q.
  6. Sawyer N, Wadsworth J, Wijnen M, Gabriel R. Prevalence, concentration, and prognostic importance of proteinuria in patients with malignancies. Br Med J. (Clin Res Ed) 1988;296:1295–8. doi: 10.1136/bmj.296.6632.1295.
  7. Da’as N, Polliack A, Cohen Y, et al. Kidney involvement and renal manifestations in non-Hodgkin’s lymphoma and lymphocytic leukemia: a retrospective study in 700 patients. Eur J Haematol. 2001;67:158–64. doi: 10.1034/j.1600-0609.2001.5790493.x.
  8. Lee JC, Yamauchi H, Hopper J Jr. The association of cancer and the nephrotic syndrome. Ann Intern Med. 1966;64:41–51. doi: 10.7326/0003-4819-64-1-41.
  9. Birkeland SA, Storm HH. Glomerulonephritis and malignancy: A population-based analysis. Kidney Int. 2003;63:716–21. doi: 10.1046/j.1523-1755.2003.00771.x.
  10. Jorgensen L, Heuch I, Jenssen T, Jacobsen BK. Association of albuminuria and cancer incidence. J Am Soc Nephrol. 2008;19:992–8. doi: 10.1681/asn.2007060712.
  11. Eagen JW. Glomerulopathies of neoplasia. Kidney Int. 1977;11:297–303. doi: 10.1038/ki.1977.47.
  12. Lefaucheur C, Stengel B, Nochy D, et al. GN-PROGRESS Study Group. Membranous nephropathy and cancer: Epidemiologic evidence and determinants of high-risk cancer association. Kidney Int. 2006;70:1510–7. doi: 10.1038/sj.ki.5001790.
  13. Bacchetta J, Juillard L, Cochat P, Droz JP. Paraneoplastic glomerular diseases and malignancies. Crit Rev Oncol Hematol. 2009;70:39–58. doi: 10.1016/j.critrevonc.2008.08.003.
  14. Ronco PM. Paraneoplastic glomerulopathies: new insights into an old entity. Kidney Int. 1999;56:355–77. doi: 10.1046/j.1523-1755.1999.00548.x.
  15. Bjorneklett R, Vikse BE, Svarstad E, et al. Long-term risk of cancer in membranous nephropathy patients. Am J Kidney Dis. 2007;50:396–403. doi: 10.1053/j.ajkd.2007.06.003.
  16. Burstein DM, Korbet SM, Schwartz MM. Membranous glomerulonephritis and malignancy. Am J Kidney Dis. 1993;22:5–10. doi: 10.1016/s0272-6386(12)70160-9.
  17. Alpers CE, Cotran RS. Neoplasia and glomerular injury. Kidney Int. 1986;30:465–73. doi: 10.1038/ki.1986.209.
  18. Beck LH Jr. Membranous nephropathy and malignancy. Semin Nephrol. 2010;30:635–44. doi: 10.1016/j.semnephrol.2010.09.011.
  19. Beck LH Jr, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361:11–21. doi: 10.1056/nejmoa0810457.
  20. Ohtani H, Wakui H, Komatsuda A, et al. Distribution of glomerular IgG subclass deposits in malignancy-associated membranous nephropathy. Nephrol Dial Transplant. 2004;19:574–9. doi: 10.1093/ndt/gfg616.
  21. Qin W, Beck LH Jr, Zeng C, et al. Anti-phospholipase A2 receptor antibody in membranous nephropathy. J Am Soc Nephrol. 2011;22:1137–43. doi: 10.1681/asn.2010090967.
  22. Vindrieux D, Augert A, Girard CA, et al. PLA2R1 mediates tumor suppression by activating JAK2. Cancer Res. 2013;73(20):6334–45. doi: 10.1158/0008-5472.can-13-0318.
  23. Kowalewska J, Nicosia RF, Smith KD, et al. Patterns of glomerular injury in kidneys infiltrated by lymphoplasmacytic neoplasms. Hum Pathol. 2011;42:896–903. doi: 10.1016/j.humpath.2010.09.009.
  24. Sun J, Yang Q, Lu Z, et al. Distribution of lymphoid neoplasms in China: analysis of 4,638 cases according to the World Health Organization classification. Am J Clin Pathol. 2012;138:429–34. doi: 10.1309/ajcp7yltqpusdq5c.
  25. Cohen LJ, Rennke HG, Laubach JP, Humphreys BD. The spectrum of kidney involvement in lymphoma: a case report and review of the literature. Am J Kidney Dis. 2010;56:1191–6. doi: 10.1053/j.ajkd.2010.07.009.
  26. Rault R, Holley JL, Banner BF, el-Shahawy M. Glomerulonephritis and non-Hodgkin’s lymphoma: a report of two cases and review of the literature. Am J Kidney Dis. 1992;20:84–9. doi: 10.1016/s0272-6386(12)80323-4.
  27. Stokes MB, Wood B, Alpers CE. Membranoproliferative glomerulonephritis associated with low-grade B cell lymphoma presenting in the kidney. Clin Nephrol. 2002;57:303–9. doi: 10.5414/cnp57303.
  28. Канин В.С., Молоствова В.З., Езерский Д.В. и др. Случай развития острой почечной недостаточности при лимфобластной лимфосаркоме. Проблемы гематологии и переливания крови. 1997;3:39–42.
    [Kanin VS, Molostvova VZ, Ezerskii DV, et al. Case of acute renal failure associated with lymphoblast lymphosarcoma. Problemy gematologii i perelivaniya krovi. 1997;3:39–42. (In Russ)]
  29. Malbrain ML, Lambrecht GT, Daelemans R, et al. Acute renal failure due to bilateral lymphomatous infiltrates. Primary extranodal non-Hodgin’s lymphoma of the kidney: does it really exist? Clin Nephrol. 1994;42:163–9.
  30. O’Riordan E, Reeve R, Hougton JB, et al. Primary bilateral T-cell renal lymphoma presenting with sudden loss of renal function. Nephrol Dial Transplant. 2001;16:1487–9. doi: 10.1093/ndt/16.7.1487.
  31. Truong LD, Soroka S, Sheth AV, et al. Primary renal lymphoma presenting as acute renal failure. Am J Kidney Dis. 1987;16:502–6. doi: 10.1016/s0272-6386(87)80077-x.
  32. Джумабаева Б.Т., Бирюкова Л.С., Гемджян Э.Г. и др. Опыт терапии хронического лейкоза, сопровождающегося почечной недостаточностью. Терапевтический архив. 2014;12:37–41.
    [Dzhumabaeva BT, Biryukova LS, Gemdzhyan EG, et al. Experience of treatment of chronic leukemia accompanied with renal failure. Terapevticheskii arkhiv. 2014;12:37–41. (In Russ)]
  33. Джумабаева Б.Т., Никитин Е.А., Капланская И.Б. и др Хронический лимфолейкоз и рак почки: обзор литературы и собственные клинические наблюдения. Клиническая онкогематология. 2013;6(1):68–73.
    [Dzhumabaeva BT, Nikitin EA, Kaplanskaya IB, et al. Chronic lymphocytic leukemia and renal cancer: literature review and own clinical observations. Klinicheskaya onkogematologiya. 2013;6(1):68–73. (In Russ)]
  34. Shi SF, Zhou FD, Zou WZ, Wang HY. Acute kidney injury and bilateral symmetrical enlargement of the kidneys as first presentation of B-cell lymphoblastic lymphoma. Am J Kidney Dis. 2012;60:1044–8. doi: 10.1053/j.ajkd.2012.05.023.
  35. Yeo SC, Chuah KL, Lee HY, Liew A. An unusual case of glomerulonephritis in a patient with non-Hodgkin mucosal associated lymphoid tissue (MALT) B-cell lymphoma. BMC Nephrol. 2013;14:158. doi: 10.1186/1471-2369-14-158.
  36. Eisterer W, Neyer U, Hilbe W, et al. Effect of cyclosporin A in a patient with refractory nephrotic syndrome associated with B chronic lymphocytic leukemia. Nephron. 1996;72(3):468–71. doi: 10.1159/000188915.
  37. Moulin B, Ronco PM, Mougenot B, et al. Glomerulonephritis in chronic lymphocytic leukemia and related B-cell lymphomas. Kidney Int. 1992;42(1):127–35. doi: 10.1038/ki.1992.270.
  38. Mallouk A, Pham PT, Pham PC. Concurrent FSGS and Hodgkin’s lymphoma: case report and literature review on the link between nephrotic glomerulopathies and hematological malignancies. Clin Exp Nephrol. 2006;10(4):284–9. doi: 10.1007/s10157-006-0437-4.
  39. Hanada K, Shirai S, Ito T, et al. Three cases of nephrotic syndrome associated with hematological malignancies characterized by glomerular endocapillary proliferation and massive inflammatory cell infiltration. Clin Nephrol. 2014;81(4):277–82. doi: 10.5414/cn107744.
  40. Nasr SH, Fidler ME, Cornell LD, et al. Immunotactoid glomerulopathy: clinicopathologic and proteomic study. Nephrol. Dial Transplant. 2012;27(11):4137–46. doi: 10.1093/ndt/gfs348.
  41. Monti G, Galli M, Invernizzi F, et al. Cryoglobulinaemias: a multi-centre study of the early clinical and laboratory manifestations of primary and secondary disease. GISC. Italian Group for the Study of Cryoglobulinaemias. QJM. 1995;88:115–26.
  42. Nasr SH, Markowitz GS, Stokes MB, et al. Proliferative glomerulonephritis with monoclonal IgG deposits: A distinct entity mimicking immune-complex glomerulonephritis. Kidney Int. 2004;65:85–96. doi: 10.1111/j.1523-1755.2004.00365.x.
  43. Plager J, Stutzman L. Acute nephrotic syndrome as a manifestation of active Hodgkin’s disease. Report of four cases and review of the literature. Am J Med. 1971;50:56–66. doi: 10.1016/0002-9343(71)90205-1.
  44. Kramer P, Sizoo W, Twiss EE. Nephrotic syndrome in Hodgkin’s disease. Report of five cases and review of the literature. Nethrol J Med. 1981;24:114–9.
  45. Kofman T, Zhang SY, Copie-Bergman C. et. al. Minimal change nephrotic syndrome associated with non-Hodgkin lymphoid disorders: a retrospective study of 18 cases. Medicine. 2014;93(24):350–8. doi: 10.1097/md.0000000000000206.
  46. Audard V, Larousserie F, Grimbert P, et al. Minimal change nephrotic syndrome and classical Hodgkin’s lymphoma: Report of 21 cases and review of the literature. Kidney Int. 2006;69:2251–60. doi: 10.1038/sj.ki.5000341.
  47. Moorthy AV, Zimmerman SW, Burkholder PM. Nephrotic syndrome in Hodgkin’s disease. Evidence for pathogenesis alternative to immune complex deposition. Am J Med. 1976;61:471–7. doi: 10.1016/0002-9343(76)90349-1.
  48. Shalhoub RJ. Pathogenesis of lipoid nephrosis: A disorder of T-cell function. The Lancet. 1974;2:556–60. doi: 10.1016/s0140-6736(74)91880-7.
  49. Grimbert P, Valanciute A, Audard V, et al. Truncation of C-mip (Tc-mip), a new proximal signaling protein, induces c-maf Th2 transcription factor and cytoskeleton reorganization. J Exp Med. 2003;198:797–807. doi: 10.1084/jem.20030566.
  50. Audard V, Zhang SY, Copie-Bergman C, et al. Occurrence of minimal change nephrotic syndrome in classical Hodgkin lymphoma is closely related to the induction of c-mip in Hodgkin-Reed Sternberg cells and podocytes. Blood. 2010;115:3756–62. doi: 10.1182/blood-2009-11-251132.
  51. Zhang SY, Kamal M, Dahan K, et al. C-mip impairs podocyte proximal signaling and induces heavy proteinuria. Sci Signal. 2010;3:39. doi: 10.1126/scisignal.2000678.
  52. Randall RE, Williamson WC Jr, Mullinax F, et al. Manifestations of systemic light chain deposition. Am J Med. 1976;60:293–9. doi: 10.1016/0002-9343(76)90440-x.
  53. Bridoux F, Hugue V, Coldefy O, et al. Fibrillary glomerulonephritis and immunotactoid (microtubular) glomerulopathy are associated with distinct immunologic features. Kidney Int. 2002;62:1764–75. doi: 10.1046/j.1523-1755.2002.00628.x.
  54. Galesic K, Horvatic I, Tisljar M, et al. Fibrillary glomerulonephritis and immunotactoid glomerulopathy: case reports. Lijec Vjesn. 2011;133(9–10):315–9.
  55. Fogo A, Qureshi N, Horn RG. Morphologic and clinical features of fibrillary glomerulonephritis versus immunotactoid glomerulopathy. Am J Kidney Dis. 1993;22(3):367–77. doi: 10.1016/s0272-6386(12)70138-5.
  56. Da’as N, Kleinman Y, Polliack A, et al. Immunotactoid glomerulopathy with massive bone marrow deposits in a patient with IgM kappa monoclonal gammopathy and hypocomplementemia. Am J Kidney Dis. 2001;38:395–9. doi: 10.1053/ajkd.2001.26108.
  57. Garcia-Pacheco I, Khan A, Venkat KK. Rapidly progressive glomerulonephritis in a patient with Waldenstrom’s macroglobulinemia. Clin Nephrol. 2005;64:396–9. doi: 10.5414/cnp64396.
  58. Nakamoto Y, Imai H, Hamanaka S, et al. IgM monoclonal gammopathy accompanied by nodular glomerulosclerosis, urine-concentrating defect, and hyporeninemic hypoaldosteronism. Am J Nephrol. 1985;5:53–8. doi: 10.1159/000166905.
  59. Audard V, Georges B, Vanhille P, et al. Renal lesions associated with IgM-secreting monoclonal proliferations: Revisiting the disease spectrum. Clin J Am Soc Nephrol. 2008;3:1339–49. doi: 10.2215/cjn.01600408.
  60. Morel-Maroger L, Basch A, Danon F, et al. Pathology of the kidney in Waldenstrom’s macroglobulinemia. Study of sixteen cases. N Engl J Med. 1970;283:123–9. doi: 10.1056/nejm197007162830304.
  61. Au WY, Chan KW, Lui SL, et al. Focal segmental glomerulosclerosis and mesangial sclerosis associated with myeloproliferative disorders. Am J Kidney Dis. 1999;34:889–93. doi: 10.1016/s0272-6386(99)70047-8.
  62. Said SM, Leung N, Sethi S, et al. Myeloproliferative neoplasms cause glomerulopathy. Kidney Int. 2011;80:753–9. doi: 10.1038/ki.2011.147.
  63. Мухин Н.А., Хасабов Н.Н. Паранеопластические нефропатии. В кн.: Нефрология. Руководство для врачей. Под ред. И.Е. Тареевой. М.: Медицина, 2000.
    [Mukhin NA, Khasabov NN. Paraneoplastic nephropathies. In: Tareeva IE, ed. Nefrologiya. Rukovodstvo dlya vrachei. (Nephrology. Manual for physicians.) Moscow: Meditsina Publ.; 2000. (In Russ)]
  64. Козловская Л.В., Туганбекова С.К., Сейсенбеков Т.З. и др. Паранеопластическое поражение почек при солидных опухолях. Нефрология и диализ. 2002;2:76–82.
    [Kozlovskaya LV, Tuganbekova SK, Seisenbekov TZ, et al. Paraneoplastic renal lesions associated with solid tumors. Nefrologiya i dializ. 2002;2:76–82. (In Russ)]

 

Chronic lymphocytic leukemia and renal cell carcinoma: literature review and case reports

B.T. Dzhumabaeva, E.A. Nikitin, I.B. Kaplanskaya, E.E. Zybunova, L.S. Biryukova,

FSBI «Haematological Research Center» Russian Ministry of Health, Moscow, Russian Federation


ABSTRACT

Renal cell carcinoma which had acceded to the CLL, induces the progression of lymphatic tumours and contributes to the rapid development of renal failure. The surgical removal of the affected renal not eliminates the progression of CLL. Monotherapy by alkylating agents is not effective, while bendamustine therapy allows to reach the positive result.


Keywords: Chronic lymphocytic leukemia (CLL), Renal cell carcinoma, renal failure, bendamustine.

Read in  PDF (RUS)pdficon


REFERENCES

  1. Manusow D., Weinerman B.H. Subsequent neoplasia in chronic lymphocytic leukemia. JAMA 1975; 232: 267–9.
  2. Santoro A., Rilke F., Franchi F. et al. Primary malignant neoplasms associated with chronic lymphocytic leukemia. Tumori 1980; 66: 431–7.
  3. Mellemgaard A., Geisler C.H., Storm H.H. Risk of kidney cancer and other second solid malignancies in patients with chronic lymphocytic leukemia. Eur. J. Haematol. 1994; 53: 218–27.
  4. Molica S., Alberti A. Second neoplasms in chronic lymphocytic leukemia: analysis of incidence as a function of the length of follow-up. Haematologica 1989; 74(5): 481–5.
  5. Kyasa M.J., Hazlett L., Parrish R.S., Schichman S.A., Zent C.S. Veterans with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) have a markedly increased rate of second malignancy, which is the most common cause of death. Leuk. Lymphoma 2004; 45: 507–13.
  6. Greene M.H., Hoover R.N., Fraumeni J.F. et al. Subsequent cancer in patients with chronic lymphocytic leukemia — a possible immunologic mechanism. J. Natl. Cancer Inst. 1978; 61: 337–40.
  7. Hisada M., Biggar R.J., Greene M.H. et al. Solid tumors after chronic lymphocytic leukemia. Blood 2001; 98: 1979–81.
  8. Mauro F.R., Foa R., Giannarelli D. et al. Clinical characteristics and outcome of young chronic lymphocytic leukemia patients: a single institution study of 204 cases. Blood 1999; 94: 448–54.
  9. Suzuki K., Maekawa I., Mikuni C. et al. Prognosis in 75 cases of chronic lymphocytic leukemia and second malignancies. Rinsho Ketsueki. 1997; 38: 740–4.
  10. Parekh K., Rusch V., Kris M. The clinical course of lung carcinoma in patients with chronic lymphocytic leukemia. Cancer 1999; 86: 1720–3.
  11. Pigeaud-Klessens M.L., van der Valk P. Multiple neoplasms: a case report. Orbit. 2002; 21: 145–8.
  12. Prosvic P., Dulicek P., Odrazka K. et al. Asynchronous occurrence of three neoplastic diseases: chronic B-cell lymphatic leukemia, renal carcinoma and prostatic adenocarcinoma. Rozhl. Chir. 2003; 82: 583–6.
  13. Тravis L.B., Curtis R.E., Boice J.D. et al. Second cancers following nonHodgkin’s lymphoma. Cancer 1991; 67: 2002–9.
  14. Travis L.B., Curtis R.E., Glimelius B. et al. Second cancers among long-term survivors of non-Hodgkin’s lymphoma. J. Natl. Cancer Inst. 1993; 85: 1932–7.
  15. Anderson C.M., Puszatai L., Palmer J.L., Cabanillas F. Coincidental renal cell carcinoma and non-Hodgkin’s lymphoma: the M. D. Anderson experience and review of literature. J. Urol. 1998; 159: 714–6.
  16. Sendi P., Schonenberger A., Bargetzi M. Chronic lymphocytic leukemia and loss of strength in the right arm—not a typical combination. Praxis (Bern 1994). 2007; 96(18): 729–32.
  17. Kunthur A., Wiernik P.H., Dutcher J.P. Renal parenchymal tumors and lymphoma in the same patient: case series and review of the literature. Am. J. Hematol. 2006; 81(4): 271–80.
  18. Deeb R., Zhang Z., Ghanem T. Metastatic renal cell carcinoma to the parotid gland in the setting of chronic lymphocytic leukemia. Case Report Med. 2012 Feb 19.
  19. Sampalo A., Navas G., Medina F. et al. Chronic lymphocytic leukemia B cells inhibit spontaneous Ig production by autologous bone marrow cells: role of CD95-CD95L interaction. Blood 2000; 96: 3168–74.
  20. Orfao A., Gonzalez M., San Miguel J.F. et al. Surface phenotype and immunoglobulin levels in B-cell chronic lymphocytic leukaemia. Haematologia (Budap.) 1990; 23: 49–56.
  21. Varan A., Buyukpamukcu M., Ersov F. et al. Malignant solid tumors associated with congenital immunodeficiency disorders. Pediatr. Hematol. Oncol. 2004; 21: 441–51.
  22. Perri R.T., Kay N.E. Abnormal T cell function in early-stage chronic lymphocytic leukemia (CLL) patients. Am. J. Hematol. 1986; 22: 55–61.
  23. Piszcz J., Oleksiuk J., Kloczko J. Gastric cancer in chronic lymphocytic leukaemia patient. Pol. Arch. Med. Wewn. 2005; 114: 1217–9.
  24. Hsu C.W., Krevsky B., Sigman L.M. et al. Rapid progression of Barrett’s esophagus to metastatic esophageal carcinoma in a patient with chronic lymphocytic leukemia. J. Clin. Gastroenterol. 1998; 27: 261–4.
  25. Brown J.R., Freedman A.S. Secondary solid tumors after autologous bone marrow transplantation in non-Hodgkin’s lymphoma. Am. J. Oncol. Rev. 2005; 4: 530–3.
  26. Morra E., Nosari A., Montillo M. Infectious complications in chronic lymphocytic leukaemia. Hematol. Cell Ther. 1999; 41: 145–51.
  27. Cheson B.D., Vena D.A., Barrett J. et al. Second malignancies as a consequence of nucleoside analog therapy for chronic lymphoid leukemias. J. Clin. Oncol. 1999; 17: 2454–60.
  28. Robak T. Monoclonal antibodies in the treatment of chronic lymphoid leukemias. Leuk. Lymphoma 2004; 45: 205–19.
  29. Callea V., Brugiatelli M., Stelitano C. et al. Incidence of second neoplasia in patients with B-cell chronic lymphocytic leukemia treated with chlorambucil maintenance chemotherapy. Leuk. Lymphoma. 2006; 47: 2314–20.
  30. Van R., Laneuville P., MacDonald D. et al. A Canadian perspective on bendamustine for the treatment of chronic lymphocytic leukemia and nonHodgkin lymphoma. Curr. Oncol. 2012; 19(3): 160–8.