Rearrangement of 11q23 Chromosome Region in Acute Myeloid Leukemias in Children

EV Fleishman1, OI Sokova1, AV Popa1, GA Tsaur2,3,4, LN Konstantinova1, OM Plekhanova2, MV Strigaleva2, ES Nokhrina2, VS Nemirovchenko1, OR Arakaev2,3

1 NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 District Children’s Hospital No. 1, 32 S. Deryabinoy str., Yekaterinburg, Russia, 620149

3 Research Institute of Medical Cell Technologies, 22a Karla Marksa str., Yekaterinburg, Russia, 620026

4 The First President of Russia BN Yeltsin Ural Federal University, 19 Mira str., Yekaterinburg, Russia, 620002

For correspondence: Elena Vol’fovna Fleishman, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)323-57-22; e-mail: flesok@yandex.ru

For citation: Fleishman EV, Sokova OI, Popa AV, et al. Rearrangement of 11q23 Chromosome Region in Acute Myeloid Leukemias in Children. Clinical oncohematology. 2016;9(4):446–55 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-446-455


ABSTRACT

Aim. To study characteristics of 11q23 involvement, age-specific differences in the incidence of these chromosomal markers in acute myeloid leukemias (AML) in children, and to determine their prognostic significance in patients treated according to the protocols applied in leading Russian pediatric hematological clinics.

Methods. The chromosomal analysis of bone marrow and peripheral blood cells has been performed prior to initiation of treatment in 395 children with primary AML aged from 0 to 16 years. The patients were treated in pediatric hematological clinics of Moscow and Moscow Region and in Yekaterinburg District Children’s Hospital No. 1. Clinical outcomes of 300 followed-up pediatric patients treated with similar modern therapy protocols were analyzed to evaluate the prognostic impact of 11q23/MLL abnormalities. To determine the incidence of 11q23/MLL rearrangements in AML of different age groups, we examined not only children, but also adult patients (= 212).

Results. In AML, the frequency of changes in the 11q23 region exceeded 40 % in children aged from 0 to 2 years. The frequency decrease with age and in patients over 40 years it was only 2 %. Significant heterogeneity of changes in karyotypes with 11q23/MLL rearrangements was observed: both various translocations with different regions of other chromosomes, and 11q23 deletions were detected. In addition, a great variability of numerical and structural additional chromosomal abnormalities was observed. The 10-year relapse-free survival rates (30.4 ± 6.7 %) and overall survival rates (35.1 ± 7.0 %) in AML with changes in the 11q23 region (= 61) were significantly lower than those in patients from the intermediate risk group (n = 103): 48.9 ± 5.8 % and 43.8 ± 7.5 %, respectively (= 0.035). The data are close to those in the high-risk group (n = 44): 35.9 ± 8.1 % and 38.3 ± 7.6 %, respectively. The study failed to confirm the published data that t(9;11) is a more favorable prognostic factor, and that t(6;11) and t(10;11) are less favorable ones than all other 11q23 translocations. Our results did not confirm a negative prognostic effect of additional chromosome abnormalities associated with 11q23 rearrangements.

Conclusion. Pediatric AML patients with 11q23 abnormalities should be included in a high-risk group if therapy is performed according protocols applied in leading hematological centers of Russia.


Keywords: pediatric acute myeloid leukemias, 11q23/MLL rearrangements, risk groups.

Received: May 12, 2016

Accepted: June 15, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Mitelman F. Catalog of chromosome aberrations in cancer. 5th edition. Willey-Liss; 1995.
  2. Heim S, Mitelman F. Cancer Cytogenetics. 2nd edition. Wiley-Liss; 1995.
  3. Heim S, Mitelman F. Cancer Cytogenetics. Chromosomal and Molecular Genetic Aberrations of Tumor Cells. 3rd edition. Wiley-Blackwell; 2009.
  4. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  5. Marshalek R. MLL leukemia and future treatment strategies. Arch Pharm Chem Life Sci. 2015;348(4):1–8. doi: 10.1002/ardp.201400449.
  6. Balgobind BV, Zwaan CM, Pieters R, van den Heuvel-Eibrink MM. The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia. 2011;25(8):1239–48. doi: 10.1038/leu.2011.90.
  7. Meyer C, Hoffmann J, Burmeister T, et al. The MLL recombinome of acute leukemias in 2013. Leukemia. 2013;27(11):2165–76. doi: 10.1038/leu.2013.135.
  8. Balgobind BV, Raimondi SC, Harbott J, et al. Novel prognostic subgroups in childhood 11q23/MLL – rearranged acute myeloid leukemia: results of an International retrospective study. Blood. 2009;114(12):2489–96. doi: 10.1182/blood-2009-04-
  9. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome of 1,612 patients entered into the MRC AML 10 trial. Blood. 1998;92(7):2322–33.
  10. Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United kingdom Medical Research Council trials. Blood. 2010;116(3):354–65. doi: 10.1182/blood-2009-11-
  11. Mrozek K, Heinonen K, Lawrence D, et al. Adult patients with de novo acute myeloid leukemia and t(9;11)(p22;q23) have a superior outcome to patients with other translocations involving band 11q23: a Cancer and Leukemia Group Study. Blood. 1997;90(11):4532–8.
  12. Rubnitz JE, Raimondi SC, Tong X, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol. 2002;20(9):2302–9. doi: 1200/jco.2002.08.400.
  13. von Neuhoff C, Reinhardt D, Sander A, et al. Prognostic impact of specific chromosomal aberrations in large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol. 2010;28(16):2682–8. doi: 1200/jco.2009.25.6321.
  14. Blum W, Mrozek K, Ruppert AS, et al. Adult de novo acute myeloid leukemia with t(6;11)(q27;q23). Cancer. 2004;101(6):1420–7. doi: 10.1002/cncr.20489.
  15. Karol SE, Coustan-Smith E, Cao X, et al. Prognostic factors in children with acute myeloid leukemia and excellent response to remission induction therapy. Br J Haematol. 2015;168(1):94–101. doi: 1111/bjh.13107.
  16. Coenen EA, Raimondi SC, Harbott J, et al. Prognostic significance of additional cytogenetic aberrations in 733 de novo pediatric 11q23/MLL-rearranged AML patients: results of an international study. Blood. 2011;117(26):7102–11. doi: 1182/blood-2010-12-328302.
  17. Schaffer L, McGovan-Jordan J, Schmid M. ISCN. An International System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013. pp. doi: 10.1002/ajmg.a.35995.
  18. Цаур Г.А., Наседкина Т.В., Попов А.М. и др. Время достижения молекулярной ремиссии как фактор прогноза у детей первого года жизни острым лимфобластным лейкозом. Онкогематология. 2010;2:46–54.
    [Tsaur GA, Nasedkina TV, Popov AM, et al. Time required to achieve molecular remission as a prognostic factor in children of the first year of life with acute lymphoblastic leukemia. Onkogematologiya. 2010;2:46–54. (In Russ)]
  19. Meyer C, Schneider B, Reichel M, et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA. 2005;102(2):449–54. doi: 10.1073/pnas.0406994102.
  20. Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457–81. doi: 1080/01621459.1958.10501452.
  21. Meyer С, Kowarz E, Hofmann J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia. 2009;23(8):1490–9. doi: 10.1038/leu.2009.33.
  22. Ross M, Mahfouz R, Onciu M, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood. 2004;104(12):3679–87. doi: 10.1182/blood-2004-03-1154.
  23. Shih L, Liang D, Fu J, et al. Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement. Leukemia. 2006;20:218–23. doi: 10.1038/sj.leu.2404024.
  24. Balgobind B, Hollink I, Reinhardt D, et al. Low frequency of MLL-partial tandem duplications in paediatric acute myeloid leukaemia using MLPA as a novel DNA screenings technique. Eur J Cancer. 2010;46(10):1892–9. doi: 10.1016/j.ejca.2010.02.019.
  25. Shimada A, Taki T, Tabuchi K, et al. Tandem duplications of MLL and FLT3 are correlated with poor prognoses in pediatric acute myeloid leukemia: a study of the Japanese childhood AML Cooperative Study Group. Pediatr Blood Cancer. 2008;50(2):264–9. doi: 10.1002/pbc.21318.
  26. Steudel C, Wermke M, Schaich M, et al. Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Gene Chromos Cancer. 2003;37(3):237–51. doi: 10.1002/gcc.10219.
  27. Rege-Cambrin G, Giugliano E, Michaux L, et al. Trisomy 11 in myeloid malignancies is associated with internal tandem duplication of both MLL and FLT3 genes. Haematologica. 2005;90(2):262–4.
  28. Swansbury GJ, Slater R, Bain BJ, et al. Hematological malignancies with t(9;11)(p21-22;q23) – laboratory and clinical study of 125 cases. European 11q23 Workshop participants. Leukemia. 1998;12(5):792–800. doi: 10.1038/sj.leu.2401014.
  29. Harrison CJ, Hills RK, Moorman AV, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML10 and 12. J Clin Oncol. 2010;28(16):2674–81. doi: 10.1200/jco.2009.24.8997.
  30. Pession A, Masetti R, Rizzari C, et al. Results of the ALEOP AML 2002/01 multicenter prospective trial for the treatment of children with acute myeloid leukemia. Blood. 2013;122(2):170–8. doi: 10.1182/blood-2013-03-491621.
  31. Schoch C, Schnittger S, Klaus M, et al. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosome, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood. 2003;102(7):2395–402. doi: 10.1182/blood-2003-02-0434.
  32. Tamai H, Yamaguchi H, Hamaguchi H, et al. Clinical features of adult acute leukemia with 11q23 abnormalities in Japan: A co-operative multicenter study. Int J Hematol. 2008;87(2):193–200. doi: 10.1007/s12185-008-0034-
  33. Balgobind BV, Zwaan CM, Reinhardt D, et al. High BRE expression in pediatric MLL-rearranged AML is associated with favorable outcome. Leukemia. 2010;24(12):2048–55. doi: 10.1038/leu.2010.211.
  34. Balgobind BV, Lugthart S, Hollink IH, et al. EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia. 2010;24(5):942–9. doi: 10.1038/leu.2010.47.
  35. Ho PA, Alonzo TA, Gerbing RB, et al. High EVI1 expression is associated with MLL rearrangements and predicts decreased survival. Br J Haematol. 2013;62(5):670–7. doi: 1111/bjh.12444.
  36. Chen C, Armstrong S. Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond. Exp Hematol. 2015;43(8):673–84. doi: 10.1016/j.exphem.2015.05.012.
  37. Nguyen AT, Taranova O, He J, Zhang Y. DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood. 2011;117(25):6912–22. doi: 10.1182/blood-2011-02-
  38. Stein EM, Garcia-Manero G, Rizzieri DA, et al. The DOT1L Inhibitor EPZ-5676: safety and activity in relapsed/refractory patients with MLL-rearranged leukemia. [Internet] Available from: http://www.epizyme.com/wp-content/uploads/2014/12/ASH-EPZ-5676-Presentation-Final.pdf. (accessed 10.05.2016).

Role of c-MYC, BCL2, and BCL6 Expression in Pathogenesis of Diffuse Large B-Cell Lymphoma

A.E. Misyurina1, V.A. Misyurin2, E.A. Baryakh1, A.M. Kovrigina1, S.K. Kravchenko1

1 Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: A.E. Misyurina, Graduate student 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel: +7(909)637-32-49; e-mail: anna.lukina1@gmail.com

For citation: Misyurina A.E., Misyurin V.A., Baryakh E.A., Kovrigina A.M., Kravchenko S.K. Role of c-MYC, BCL2, and BCL6 Expression in Pathogenesis of Diffuse Large B-Cell Lymphoma. Klin. Onkogematol. 2014; 7(4): 512–521 (In Russ.).


ABSTRACT

According to modern concepts based on results of examination of the gene expression profile, there are several subtypes of diffuse large B cell lymphoma (DLBCL): germinal center B cell-like (GCB) and activated B cell-like (ABC) lymphomas. Genes c-MYC, BCL6, and BCL2 are key regulators of B-cell germinal (follicular) differentiation. Genetic abnormalities with their participation are most common in molecular pathogenesis of DLBCL. A total level of activity as well as mechanisms that lead to overexpression each of these genes and production of corresponding proteins have an impact on a disease prognosis. We assume that quantitative assay of c-MYC, BCL6, and BCL2 gene expression, as well as proteins encoded by these genes, can allow to determine high risk DLBCL patients with great accuracy.


Keywords: diffuse large B cell lymphoma, molecular subtypes, risk groups, c-MYC, BCL6, BCL2.

Accepted: September 8, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow S.H., Campo E., Harris N.L. et al (eds.). WHO Classification of Tumors of Haematopoetic and Lymphoid Tissues. Lyon: IARC, 2008: 233–4.
  2. Frick M., Dorken B., Lenz G. New insights into the biology of molecular subtypes of diffuse large B-cell lymphoma and Burkitt lymphoma. Best Pract. Res. Clin. Haematol. 2012; 25(1): 3–12.
  3. Alizadeh A.A., Eisen M.B., Davis R.E. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000; 403: 503–11.
  4. Rosenwald A., Wright G., Chan W.C. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002; 346(25): 1937–47.
  5. Alizadeh A.A., Eisen M.B., Davis R.E. et al. The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harbor Symp. Quant. Biol. 1999; 62: 71–8.
  6. Lenz G., Wright G., Dave S.S. et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 2008; 359(22): 2313–23.
  7. Rosenwald A., Wright G., Leroy K. et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J. Exp. Med. 2003; 198(6): 851–62.
  8. Savage K.J., Monti S., Kutok J.L. et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003; 102(12): 3871–9.
  9. Wright G., Tan B., Rosenwald A. et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA. 2003; 100: 9991–6.
  10. Muller A.M., Medvinsky A., Strouboulis J., Grosveld F., Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994; 1: 291–301.
  11. Melchers F. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat. Rev. Immunol. 2005; 5: 578–84.
  12. van Zelm M.C., Szczepanski T., van der Burg M., van Dongen J.J. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J. Exp. Med. 2007; 204: 645–55.
  13. Martin F., Oliver A.M., Kearney J.F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001; 14: 617–29.
  14. Chen J., Trounstine M., Alt F.W. et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol. 1993; 5: 647–56.
  15. Teng G., Papavasiliou F.N. Immunoglobulin somatic hypermutation. Annu. Rev. Genet. 2007; 41: 107–20.
  16. Liu Y.J., Arpin C. Germinal center development. Immunol. Rev. 1997; 156: 111–26.
  17. Yuan D. Regulation of IgM and IgD synthesis in B lymphocytes. II. Translational and post-translational events. J. Immunol. 1984; 132: 1566–70.
  18. Yasodha N. The Biology of the Germinal Center. ASH Education Book. 2007; 1: 210–5.
  19. Komori T., Okada A., Stewart V., Alt F.W. Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science. 1993; 261: 1171–5.
  20. Willenbrock K., Jungnickel B., Hansmann M.L., Kuppers R. Human splenic marginal zone B cells lack expression of activation-induced cytidine deaminase. Eur. J. Immunol. 2005; 35: 3002–7.
  21. Raghavan S.C., Hsieh C.L., Lieber M.R. Both V(D)J coding ends but neither signal end can recombine at the bcl-2 major breakpoint region, and the rejoining is ligase IV dependent. Mol. Cell. Biol. 2005; 15: 6475–84.
  22. Luscher B. MAD1 and its life as a MYC antagonist: an update. Eur. J. Cell. Biol. 2012; 91(6–7): 506–14.
  23. McDuff F.O., Naud J.F., Montagne M., Sauve S., Lavigne P. The Max homodimeric b-HLH-LZ significantly interferes with the specific heterodimerization between the c-Myc and Max b-HLH-LZ in absence of DNA: a quantitative analysis. J. Mol. Recognit. 2009; 22(4): 261–9.
  24. Dang C.V. MYC on the path to cancer. Cell. 2012; 149(1): 22–35.
  25. Luscher B., Vervoorts J. Regulation of gene transcription by the oncoprotein MYC. Gene. 2012; 494(2): 145–60.
  26. Meyer N., Penn L.Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer. 2008; 8(12): 976–90.
  27. Keller U.B., Old J.B., Dorsey F.C. et al. Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphoma agenesis. EMBO. J. 2007; 26(10): 2562–74.
  28. Bueno M.J., Malumbres M. MicroRNAs and the cell cycle. Biochim. Biophys. Acta. 2011; 1812(5): 592–601.
  29. Nie Z., Hu G., Wei G. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012; 151(1): 68–79.
  30. Lin C.Y., Loven J., Rahl P.B. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012; 151(1): 56–67.
  31. Lin Y., Wong K., Calame K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science. 1997; 276(5312): 596–9.
  32. Basso K., Dalla-Favera R. BCL6: master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis. Adv. Immunol. 2010; 105: 193–210.
  33. Phan R.T., Saito M., Basso K., Niu H., Dalla-Favera R. BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat. Immunol. 2005; 6(10): 1054–60.
  34. Niu H., Ye B.H., Dalla-Favera R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 1998; 12(13): 1953–61.
  35. Phan R.T., Saito M., Kitagawa Y., Means A.R., Dalla-Favera R. Genotoxic stress regulates expression of the proto-oncogene Bcl6 in germinal center B cells. Nat. Immunol. 2007; 8(10): 1132–9.
  36. Phan R.T., Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004; 432(7017): 635–9.
  37. Basso K., Saito M., Sumazin P. et al. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood. 2010; 115(5): 975–84.
  38. Wagner S.D., Ahearne M., Ko Ferrigno P. The role of BCL6 in lymphomas and routes to therapy. Br. J. Haematol. 2011; 152(1): 3–12.
  39. Basso K., Dalla-Favera R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol. Rev. 2012; 247(1): 172–83.
  40. Merino R., Ding L., Veis D.J. et al. Developmental regulation of the Bcl-2 protein and susceptibility to cell death in B lymphocytes. EMBO. J. 1994; 13: 683–91.
  41. McDonnell T.J., Nunez G., Platt F.M. et al. Deregulated Bcl-2-immunoglobulin transgene expands a resting but responsive immunoglobulin M and D-expressing B-cell population. Mol. Cell. Biol. 1990; 10: 1901–7.
  42. McDonnell T.J., Deane N., Platt F.M. et al. Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell. 1989; 57: 79–88.
  43. Veis D.J., Sorenson C.M., Shutter J.R. et al. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993; 75: 229–40.
  44. Wilson W.H., Teruya-Feldstein J., Fest T. et al. Relationship of p53, bcl-2, and tumor proliferation to clinical drug resistance in non-Hodgkin’s lymphomas. Blood. 1997; 89: 601–9.
  45. Monti S., Savage K.J., Kutok J.L. et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood. 2005; 105(5): 1851–61.
  46. Dent A.L., Shaffer A.L., Yu X. et al. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997; 276(5312): 589–92.
  47. Никитин Е.А. Патогенез зрелоклеточных лимфатических опухолей. Материалы конгрессов и конференций. VIII Российский онкологический конгресс [Электронный документ] (http://www.rosoncoweb.ru/library/ congress/ru/08/19.php). [Nikitin E.A. Pathogenesis of mature cell lymphomas. Materialy kongressov i konferentsii. VIII Rossiiskii onkologicheskii kongress (Materials of congresses and conferences. VIII Russian oncological congress). Available at: http://www. rosoncoweb.ru/library/congress/ru/08/19.php (In Russ.)]
  48. Davis R.E., Brown K.D., Siebenlist U. et al. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 2001; 194(12): 1861–74.
  49. Jost P.J., Ruland J. Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood. 2007; 109(7): 2700–7.
  50. Ngo V.N., Davis R.E., Lamy L. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature. 2006; 441(7089): 106–10.
  51. Rawlings D.J., Sommer K., Moreno-Garcia M.E. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat. Rev. Immunol. 2006; 6(11): 799–812.
  52. Lenz G., Davis R.E., Ngo V.N. et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008; 319(5870): 1676–9.
  53. Davis R.E., Ngo V.N., Lenz G. et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010; 463(7277): 88–92.
  54. Compagno M., Lim W.K., Grunn A. et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009; 459(7247): 717–21.
  55. Kato M., Sanada M., Kato I. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature. 2009; 459(7247): 712–6.
  56. Ding B.B., Yu J.J., Yu R.Y. et al. Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large Bcell lymphomas. Blood. 2008; 111(3): 1515–23.
  57. Lam L.T., Wright G., Davis R.E. et al. Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-{kappa}B pathways in subtypes of diffuse large B-cell lymphoma. Blood. 2008; 111(7): 3701–13.
  58. Ngo V.N., Young R.M., Schmitz R. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011; 470(7332): 115–9.
  59. Bea S., Zettl A., Wright G. et al. Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve geneexpression-based survival prediction. Blood. 2005; 106(9): 3183–90.
  60. Boerma E.G., Siebert R., Kluin P.M., Baudis M. Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of today’s knowledge. Leukemia. 2009; 23(2): 225–34.
  61. Salaverria I., Zettl A., Bea S. et al. Chromosomal alterations detected by comparative genomic hybridization in subgroups of gene expression-defined Burkitt’s lymphoma. Haematologica. 2008; 93(9): 1327–34.
  62. Scholtysik R., Kreuz M., Klapper W. et al. Detection of genomic aberrations in molecularly defined Burkitt’s lymphoma by array-based, high resolution, single nucleotide polymorphism analysis. Haematologica. 2010; 95(12): 2047–55.
  63. Pasqualucci L., Neumeister P., Goossens T. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001; 412(6844): 341–6.
  64. Hemann M.T., Bric A., Teruya-Feldstein J. et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature. 2005; 436(7052): 807–11.
  65. Giulino-Roth L., Wang K., MacDonald T.Y. et al. Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood. 2012; 120(26): 5181–4.
  66. Bhatia K., Huppi K., Spangler G. et al. Point mutations in the c-Myc transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nat. Genet. 1993; 5(1): 56–61.
  67. Snuderl M., Kolman O.K., Chen Y.B. et al. B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am. J. Surg. Pathol. 2010; 34(3): 327–40.
  68. Le Gouill S., Talmant P., Touzeau C. et al. The clinical presentation and prognosis of diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC rearrangement. Haematologica. 2007; 92(10): 1335–42.
  69. Li S., Lin P., Fayad L.E. et al. B-cell lymphomas with B-cell lymphomas with MYC/8q24 rearrangements and IGH@BCL2/t(14;18)(q32;q21): an aggressive disease with heterogeneous histology, germinal center B-cell immunophenotype and poor outcome. Mod. Pathol. 2012; 25(1): 145–56.
  70. Klapper W., Stoecklein H., Zeynalova S. et al. Structural aberrations affecting the MYC locus indicate a poor prognosis independent of clinical risk factors in diffuse large B-cell lymphomas treated within randomized trials of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Leukemia. 2008; 22(12): 2226–9.
  71. Savage K.J., Johnson N.A., Ben-Neriah S. et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009; 114(17): 3533–7.
  72. Horn H., Ziepert M., Becher C. et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood. 2013; 121(12): 2253–63.
  73. Barrans S., Crouch S., Smith A. et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J. Clin. Oncol. 2010; 28(20): 3360–5.
  74. Valera A., Lopez-Guillermo A., Cardesa-Salzman T. et al. MYC protein expression and genetic alterations have prognostic impact in diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica. 2013; 98(10): 1554–62.
  75. Hummel M., Bentink S., Berger H. et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N. Engl. J. Med. 2006; 354(23): 2419–30.
  76. Salaverria I., Siebert R. The gray zone between Burkitt’s lymphoma and diffuse large B-cell lymphoma from a genetics perspective. J. Clin. Oncol. 2011; 29(14): 1835–43.
  77. Bertrand P., Bastard C., Maingonnat C. et al. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas. Leukemia. 2007; 21(3): 515–23.
  78. Tomita N. BCL2 and MYC Dual-Hit Lymphoma/Leukemia. J. Clin. Exp. Hematopathol. 2011; 51(1): 7–12.
  79. Johnson N.A., Savage K.J., Ludkovski O. et al. Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival. Blood. 2009; 114(11): 2273–9.
  80. Snuderl M., Kolman O.K., Chen Y.B. et al. B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am. J. Surg. Pathol. 2010; 34(3): 327–40.
  81. Hoeller S., Copie-Bergman C. Grey Zone Lymphomas: Lymphomas with Intermediate Features. Advances in Hematology 2012. http://dx.doi. org/10.1155/2012/460801.
  82. Tauro S., Cochrane L., Lauritzsen G.F. et al. Dose-intensified treatment of Burkitt lymphoma and B-cell lymphoma unclassifiable, (with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma) in young adults (< 50 years): A comparison of two adapted BFM protocols. Am. J. Hematol. 2010; 85(4): 261–3.
  83. Kobayashi T., Tsutsumi Y., Sakamoto N. et al. Double-hit Lymphomas Constitute a Highly Aggressive Subgroup in Diffuse Large B-cell Lymphomas in the Era of Rituximab. Jpn. J. Clin. Oncol. 2012; 42(11): 1035–42.
  84. Fanidi A., Harrington E.A., Evan G.I. Cooperative in reactions between c-myc and bcl-2 protooncogenes. Nature. 1992; 359: 554–6.
  85. Vaux D.L., Cory S., Adams J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988; 335(6189): 440–2.
  86. Zhaohui J., Stratford M.W., Fengqin G., Tammy F., Xingming D. Bcl2 suppresses DNA repair by enhancing c-myc transcriptional activity. J. Biol. Chem. 2005; 281: 14446–56.
  87. Masao N., Shinobu T., Keiichiro H., Osamu T., Masao S. Synergistic effect of Bcl2, Myc and Ccnd1 transforms mouse primary B cells into malignant cells. Haematologica. 2011; 96(9): 1318–26.
  88. DeoCampo N.D., Wilson M.R., Trosko J.E. Cooperation of bcl-2 and myc in the neoplastic transformation of normal rat liver epithelial cells is related to the down-regulation of gap junction-mediated intercellular communication. Carcinogenesis. 2000; 21(8): 1501–6.
  89. Leucci E., Cocco M., Onnis A. et al. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J. Pathol. 2008; 216(4): 440–50.
  90. Onnis A., De Falco G., Antonicelli G. et al. Аlteration of microRNAs regulated by c-MYC in Burkitt lymphoma. PLoS One. 2010; 5(9); e12960.
  91. Stasik C.J., Nitta H., Zhang W. et al. Increased MYC gene copy number correlates with increased mRNA levels in diffuse large B-cell lymphoma. Haematologica. 2010; 95(4): 597–603.
  92. Schrader A., Bentink S., Spang R. et al. High MYC activity is an independent negative prognostic factor for DLBCL. Cancer. 2012; 131(4): 348–61.
  93. Yoon S.O., Jeon Y.K., Paik J.H. et al. MYC translocation and an increased copy number predict poor prognosis in adult DLBCL, especially in GCB-type. Histopathology. 2008; 53(2): 205–17.
  94. Mossafa H., Damotte D., Jenabian A. et al. Non-Hodgkin lymphomas with Burkitt-like cells are associated with c-Myc amplification and poor prognosis. Leuk. Lymphoma. 2006; 47(9): 1885–93.
  95. Martin-Subero J.I., Odero M.D., Hernandez R. et al. Amplification of IGH/ MYC fusion in clinically aggressive IGH/BCL2-positive germinal center B-cell lymphomas. Genes Chromosomes Cancer. 2005; 43(4): 414–23.
  96. Tapia G., Lopez R., Munoz-Marmol A.M. et al. Immunohistochemical detection of MYC protein correlates with MYC gene status in aggressive B-cell lymphoma. Histopathology. 2011; 59(4): 672–8.
  97. Green T.M., Nielsen O., de SK. et al. High levels of nuclear MYC protein predict the presence of MYC rearrangement in diffuse large B-cell lymphoma. Am. J. Surg. Pathol. 2012; 36(4): 612–9.
  98. Johnson N.A., Slack G.W., Savage K.J. et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J. Clin. Oncol. 2012; 30(28): 3452–9.
  99. Kluk M.J., Chapuy B., Sinha P. et al. Immunohistochemical detection of MYC-driven diffuse large B-cell lymphomas. PLoS One. 2012; 7(4): e33813.
  100. Testoni M., Kwee I., Greiner T.C. et al. Gains of MYC locus and outcome in patients with diffuse large B-cell lymphoma treated with R-CHOP. Br. J. Haematol. 2011; 155(2): 274–7.
  101. Hu S., Xu-Monette Z.Y., Tzankov A. et al. MYC/BCL2 protein co-expression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2013; 121(20): 4021–31.
  102. Piris M.A., Pezzella F., Martinez-Montero J.C. et al. p53 and bcl-2 expression in high-grade B-cell lymphomas: Correlation with survival time. Br. J. Cancer. 1994; 69: 337–41.
  103. Tang S.C., Visser L., Hepperle B. et al. Clinical significance of bcl-2-MBR gene rearrangement and protein expression in diffuse large-cell non-Hodgkin’s lymphoma: An analysis of 83 cases. J. Clin. Oncol. 1994; 12: 149–54.
  104. Barrans S.L., Carter I., Owen R.G. et al. Germinal center phenotype and bcl-2 expression combined with the International Prognostic Index improves patient risk stratification in diffuse large B-cell lymphoma. Blood. 2002; 99: 1136–43.
  105. Colomo L., Lopez-Guillermo A., Perales M. et al. Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma. Blood. 2003; 101: 78–84.
  106. Gascoyne R.D., Adomat S.A., Krajewski S. et al. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood. 1997; 90: 244–51.
  107. Martinka M., Comeau T., Foyle A. et al. Prognostic significance of t(14;18) and bcl-2 gene expression in follicular small cleaved cell lymphoma and diffuse large cell lymphoma. Clin. Invest. Med. 1997; 20: 364–70.
  108. Hill M.E., MacLennan K.A., Cunningham D.C. et al. Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in dif- fuse large cell non-Hodgkin’s lymphoma: A British National Lymphoma Investigation Study. Blood. 1996; 88: 1046–51.
  109. Kramer M.H., Hermans J., Wijburg E. et al. Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood. 1998; 92: 3152–62.
  110. Hermine O., Haioun C., Lepage E. et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma: Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood. 1996; 87: 265–72.
  111. Iqbal J., Neppalli V.T., Wright G., Dave B.J. BCL2 Expression Is a Prognostic Marker for the Activated B-Cell–Like Type of Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2006; 24(6): 961–8.
  112. Green T.M., Young K.H., Visco C. et al. Immunohistochemical DoubleHit Score Is a Strong Predictor of Outcome in Patients With Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J. Clin. Oncol. 2012; 30(28): 3460–7.
  113. Johnson N.A., Slack G.W., Savage K.J. et al. Concurrent Expression of MYC and BCL2 in Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J. Clin. Oncol. 2012; 30(28): 3452–9.
  114. Valera A., Lopez-Guillermo A., Cardesa-Salzmann T. et al. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica. 2013; 98(10): 1554–62.