Value of PD-L1 Protein Expression in the Combined Prognostic Model of Diffuse Large B-Cell Lymphoma

SV Samarina1, NYu Semenova2, NV Minaeva1, DA Dyakonov1, VA Rosin1, EV Vaneeva1, SV Gritsaev2

1 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Valerevna Samarina, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; Tel.: +7(8332)25-46-88; e-mail: samarinasv2010@mail.ru

For citation: Samarina SV, Semenova NYu, Minaeva NV, et al. Value of PD-L1 Protein Expression in the Combined Prognostic Model of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2021;14(3):308–14. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-308-314


ABSTRACT

Aim. To study the value of PD-L1 protein expression in the combined model of diffuse large B-cell lymphoma (DLBCL) after administration of R-СHOP induction immunochemotherapy.

Materials & Methods. A retrospective analysis was based on the data of 85 DLBCL patients. The median age was 59 years (Q1–Q3: 29–83). Each patient received at least 2–6 courses of R-СHOP immunochemotherapy. The median follow-up period was 17 months. The optimal cut-off threshold for assessing the proportion of tumor cells expressing PD-L1 protein was determined by the САRT (Classification and Regression Tree) method.

Results. Patients were divided into three groups depending on IPI (International Prognostic Index) risk and immunohistochemical subtype (Hans algorithm) using CART. In group 1 with immunohistochemical GCB subtype and any IPI risk, except for the high one, low PD-L1 expression measured in terms of the DLBCL expressing tumor cell count, was identified in 21 (84 %) patients, 4 (16 %) patients showed overexpression. In case of low PD-L1 expression the 2-year progression-free survival (PFS) was 76 % (median not reached). In 4 patients with protein overexpression, the life duration after DLBCL diagnosed was 4, 16, 2, and 6 months, respectively. In group 2 with immunohistochemical non-GCB subtype and any IPI risk, except for the high one, 27 (67.5 %) patients showed low, and 13 (32.5 %) patients showed high PD-L1 expression. The analysis of the 2-year PFS resulted in no significant differences in groups with different relative counts of РD-L1 expressing tumor cells, i.e., 46 % and 49 %, respectively (= 0.803). In case of low (< 24.5 % tumor cells) PD-L1 expression, the 2-year overall survival (OS) was better than in patients with overexpression (≥ 24.5 % tumor cells), i.e., 87 % vs. 52 %, respectively (= 0.049). In group 3 with IPI high risk irrespective of immunohistochemical subtype, the proportion of PD-L1 expressing cells was higher than cut-off threshold (≥ 24.5 %) in 9 (45 %) patients, low protein expression was identified in 11 (55 %) patients. Deaths were reported in all patients of group 3 showing PD-L1 overexpression. In case of low protein expression the proportion of patients alive was 46 % (= 0.002). None of the patients with high PD-L1 expression lived longer than 2 years. In those with low PD-L1 expression the 2-year OS was 66 % (= 0.008).

Conclusion. Overexpression of PD-L1 by DLBCL tumor cells together with high IPI progression risk and non-GCB tumor subtype is associated with the worst OS and PFS. It can probably be accounted for by insufficient efficacy of R-СHOP induction immunochemotherapy in patients with high IPI risk. With this presumption, the PD-L1 expressing tumor cell count can be regarded as an important additional criterion for stratification of DLBCL patients into risk groups. Adding this new parameter to already established ones would probably contribute to differentiated approach to the choice of chemotherapy strategy at the onset of this aggressive lymphoma.

Keywords: diffuse large B-cell lymphoma, PD-L1 expression, overall survival, progression-free survival.

Received: January 29, 2021

Accepted: May 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. NCCN Clinical Practice Guidelines in Oncology. Non-Hodgkin’s lymphomas. Version 4. 2020. Available from: https://www.nccn.org/patients/guidelines/content/PDF/nhl-diffuse-patient.pdf (accessed 29.01.2021).
  2. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. (In Russ)]
  3. Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology Am Soc Hematol Educ Program. 2011;2011(1):498–505. doi: 10.1182/asheducation-2011.1.498.
  4. Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443–59. doi: 10.3322/caac.21357.
  5. Tilly H, Vitolo U, Walewski J, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii78–vii82. doi: 10.1093/annonc/mds273.
  6. Wight JC, Chong G, Grigg AP, et al. Prognostication of diffuse large B-cell lymphoma in the molecular era: moving beyond the IPI. Blood Rev. 2018;32(5):400–15. doi: 10.1016/j.blre.2018.03.005.
  7. Shipp MA, Harrington DP, Anderson JR, et al. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.
  8. Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematology Am Soc Hematol Educ Program. 2016;2016(1):366–78. doi: 10.1182/asheducation-2016.1.366.
  9. Vassilakopoulos TP, Chatzidimitriou C, Asimakopoulos JV, et al. Immunotherapy in Hodgkin Lymphoma: Present Status and Future Strategies. Cancers. 2019;11(8):1071. doi: 10.3390/cancers11081071.
  10. Vardhana S, Younes A. The immune microenvironment in Hodgkin lymphoma: T cells, B cells, and immune checkpoints. Haematologica. 2016;101(7):794–802. doi: 10.3324/haematol.2015.132761.
  11. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26(1):677–704. doi: 10.1146/annurev.immunol.26.021607.090331.
  12. Kiyasu J, Miyoshi H, Hirata A, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. 2015;126(19):2193–201. doi: 10.1182/blood-2015-02-629600.
  13. Kwon D, Kim S, Kim PJ, et al. Clinicopathological analysis of programmed cell death 1 and programmed cell death ligand 1 expression in the tumour microenvironments of diffuse large B cell lymphomas. Histopathology. 2016;68(7):1079–89. doi: 10.1111/his.12882.
  14. Wu C, Zhu Y, Jiang J, et al. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 2006;108(1):19–24. doi: 10.1016/j.acthis.2006.01.003.
  15. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv. doi: 10.1126/scitranslmed.aad7118.
  16. Hu L-Y, Xu X-L, Rao H-L, et al. Expression and clinical value of programmed cell death-ligand 1 (PD-L1) in diffuse large B cell lymphoma: a retrospective study. Chin J Cancer. 2017;36(1):94. doi: 10.1186/s40880-017-0262-z.
  17. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27(3):409–16. doi: 10.1093/annonc/mdv615.
  18. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия. 2017;4(1):49–55. doi: 10.15690/onco.v4i1684.
    [Klyuchagina YuI, Sokolova ZA, Baryshnikova MA. Role of PD-1 receptor and its ligands PD-L1 and PD-L2 in cancer immunotherapy. Onkopediatriya. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. (In Russ)]
  19. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi: 10.1038/nrc3239.
  20. Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–91. doi: 10.1093/annonc/mdv383.
  21. Thompson RH, Kuntz SM, Leibovich BC, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66(7):3381–5. doi: 10.1158/0008-5472.CAN-05-4303.
  22. Xie M, Huang X, Ye X, Qian W. Prognostic and clinicopathological significance of PD-1/PD-L1 expression in the tumor microenvironment and neoplastic cells for lymphoma. Intern Immunopharmacol. 2019;77:105999. doi: 10.1016/j.intimp.2019.105999.
  23. Самарина С.В., Лучинин А.С., Минаева Н.В. идр. Иммуногистохимический подтип и параметры международного прогностического индекса в новой модели прогноза диффузной B-крупноклеточной лимфомы. Клиническая онкогематология. 2019;12(4):385–90. doi: 10.21320/2500-2139-2019-12-4-385-390.
    [Samarina SV, Luchinin AS, Minaeva NV, et al. Immunohistochemical Subtype and Parameters of International Prognostic Index in the New Prognostic Model of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(4):385–90. doi: 10.21320/2500-2139-2019-12-4-385-390. (In Russ)]
  24. Xing W, Dresser K, Zhang R, et al. PD-L1 expression in EBV-negative diffuse large B-cell lymphoma: clinicopathologic features and prognostic implications. Oncotarget. 201613;7(37):59976–86. doi: 10.18632/oncotarget.11045.
  25. Younes A, Burke J, Cheson B, et al. Safety and efficacy of atezolizumab in combination with rituximab plus chop in previously untreated patients with diffuse large B-cell lymphoma (DLBCL): updated analysis of a phase I/II study. 2018;132(Suppl 1):2969. doi: 10.1182/blood-2018-99-116678.