Acute Myeloid Leukemia Patient-Derived Xenograft Models Generated with the Use of Immunodeficient NSG-SGM3 Mice

EV Baidyuk1, EV Belotserkovskaya1, LL Girshova1,2, VA Golotin1, KA Levchuk2, ML Vasyutina2, YaA Portnaya1, EV Shchelina2, OG Bredneva2, AV Petukhov1,2,3, AYu Zaritskey2, ON Demidov1,3

1 Institute of Cytology, 4 Tikhoretskii pr-t, Saint Petersburg, Russian Federation, 194064

2 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

3 Sirius University of Science and Technology, 1 Olimpiiskii pr-t, Sochi, Russian Federation, 354340

For correspondence: Ekaterina Viktorovna Baidyuk, PhD in Biology, 4 Tikhoretskii pr-t, Saint Petersburg, Russian Federation, 194064; e-mail: katya_bay@mail.ru; Ekaterina Vasilevna Belotserkovskaya, PhD in Biology, 4 Tikhoretskii pr-t, Saint Petersburg, Russian Federation, 194064; e-mail: belotserkovskaya.ev@gmail.com

For citation: Baidyuk EV, Belotserkovskaya EV, Girshova LL, et al. Acute Myeloid Leukemia Patient-Derived Xenograft Models Generated with the Use of Immunodeficient NSG-SGM3 Mice. Clinical oncohematology. 2021;14(4):414–25. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-414-425


ABSTRACT

Background. Up to the present the survival rates of acute myeloid leukemia (AML) patients have remained low. A successful OML management presupposes generating personalized models of the disease. The most promising research activity in this field is creation of AML patient-derived xenograft models using the advanced strain of immunodeficient humanized NSG-SGM3 mice.

Aim. To generate AML patient-derived xenograft models using immunodeficient NSG-SGM3 mice.

Materials & Methods. The creation of PDX models was based on bone marrow aspirates taken from 4 patients with newly diagnosed AML who were treated at the VA Almazov National Medical Research Center. Patient-derived tumor cells were transplanted to NSG-SGM3 mice. Test experiment consisted in injecting AML cells OCI-АМL2 and HL60 in NSG-SGM3 mice. The efficacy of tumor engraftment was evaluated in terms of physical condition of animals and laboratory tests (blood count, blood smear, PCR, and flow cytofluorometry).

Results. The engraftment of applied tumor cells derived from 4 AML patients was achieved in half (2 out of 4) of the mice. In 2 mice with successful transplantation leukocytosis was reported. Blast cells were identified in peripheral blood on Day 30 after transplantation. The mice with injected AML cells OCI-АМL2 and HL60 showed a more aggressive course of disease. Among tested approaches to evaluate tumor engraftment in mouse recipients, the PCR method was marked by highest sensitivity.

Conclusion. The use of immunodeficient humanized NSG-SGM3 mice enables successful generation of AML patient-derived xenograft models.

Keywords: xenograft model, immunodeficient humanized mice, AML, NSG-SGM3 mice.

Received: April 27, 2021

Accepted: August 1, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Saultz JN, Garzon R. Acute Myeloid Leukemia: A Concise Review. J Clin Med. 2016;5(3):33. doi: 10.3390/jcm5030033.
  2. Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29(5):487–94. doi: 10.1200/jco.2010.30.1820.
  3. Patel SA, Gerber JM. A User’s Guide to Novel Therapies for Acute Myeloid Leukemia. Clin Lymphoma Myel Leuk. 2020;20(5):277–88. doi: 10.1016/j.clml.2020.01.011.
  4. Levine RL. Molecular pathogenesis of AML: translating insights to the clinic. Best Pract Res Clin Haematol. 2013;26(3):245–8. doi: 10.1016/j.beha.2013.10.003.
  5. Mitra A, Mishra L, Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol. 2013;31(6):347–54. doi: 10.1016/j.tibtech.2013.03.006.
  6. Bruserud О, Gjertsen BT, Foss B, et al. New strategies in the treatment of acute myelogenous leukemia (AML): In vitro culture of AML cells—The present use in experimental studies and the possible importance for future therapeutic approaches. Stem Cells. 2001;19(1):1–11. doi: 10.1634/stemcells.19-1-1.
  7. Ryningen A, Stapnes C, Bruserud О. Clonogenic acute myelogenous leukemia cells are heterogeneous with regard to regulation of differentiation and effect of epigenetic pharmacological targeting. Leuk Res. 2007;31(9):1303–13. doi: 10.1016/j.leukres.2007.01.019.
  8. Непомнящих Т.С., Гаврилова Е.В., Максютов Р.А. Некоторые аспекты использования алло- и ксенографтных моделей при разработке противораковых вакцин и онколитических вирусов. Медицинская иммунология. 2019;21(2):221–30. doi: 10.15789/1563-0625-2019-2-221-230.
    [Nepomnyashchikh TS, Gavrilova EV, Maksyutov RA. Selected aspects of allo- and xenograft model applications for developing novel anti-cancer vaccines and oncolytic viruses. Medical Immunology (Russia). 2019;21(2):221–30. doi: 10.15789/1563-0625-2019-2-221-230. (In Russ)]
  9. Shan WL, Ma XL. How to establish acute myeloid leukemia xenograft models using immunodeficient mice. Asian Pacif J Cancer Prev. 2013;14(12):7057–63. doi: 10.7314/apjcp.2013.14.12.7057.
  10. Mambet C, Chivu-Economescu M, Matei L, et al. Murine models based on acute myeloid leukemia-initiating stem cells xenografting. World J Stem Cells. 2018;10(6):57–65. doi: 10.4252/wjsc.v10.i6.57.
  11. Wunderlich M, Mizukawa B, Chou FS, et al. AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. Blood. 2013;121(12):e90–e97. doi: 10.1182/blood-2012-10-464677.
  12. Saland E, Boutzen H, Castellano R, et al. A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia. Blood Cancer J. 2015;5(3):e297. doi: 10.1038/bcj.2015.19.
  13. Her Z, Yong KSM, Paramasivam K, et al. An improved pre-clinical patient-derived liquid xenograft mouse model for acute myeloid leukemia. J Hematol Oncol. 2017;10(1):162. doi: 10.1186/s13045-017-0532-x.
  14. Johanna I, Straetemans T, Heijhuurs S, et al. Evaluating in vivo efficacy – toxicity profile of TEG001 in humanized mice xenografts against primary human AML disease and healthy hematopoietic cells. J Immunother Cancer. 2019;7(1):69. doi: 10.1186/s40425-019-0558-4.
  15. Ruzicka M, Koenig LM, Formisano S, et al. RIG-I-based immunotherapy enhances survival in preclinical AML models and sensitizes AML cells to checkpoint blockade. Leukemia. 2020;34(4):1017–26. doi: 10.1038/s41375-019-0639-x.
  16. Wunderlich M, Chou F-S, Link KA, et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia. 2010;24(10):1785–8. doi: 10.1038/leu.2010.158.
  17. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98. doi: 10.1038/nri3311.
  18. Theocharides AP, Rongvaux A, Fritsch K, et al. Humanized hemato-lymphoid system mice. Haematologica. 2016;101(1):5–19. doi: 10.3324/haematol.2014.115212.
  19. Nara N, Miyamoto T. Direct and serial transplantation of human acute myeloid leukaemia into nude mice. Br J Cancer. 1982;45(5):778–82. doi: 10.1038/bjc.1982.120.
  20. Okada S, Vaeteewoottacharn K, Kariya R. Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models. Cells. 2019;8(8):889. doi: 10.3390/cells8080889.
  21. Sanchez PV, Perry RL, Sarry JE, et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia. 2009;23(11):2109–17. doi: 10.1038/leu.2009.143.
  22. Krevvata M, Shan X, Zhou C, et al. Cytokines increase engraftment of human acute myeloid leukemia cells in immunocompromised mice but not engraftment of human myelodysplastic syndrome cells. 2018;103(6):959–71. doi: 10.3324/haematol.2017.183202.
  23. Billerbeck E, Barry WT, Mu K, et al. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγ(null) humanized mice. Blood. 2011;117(11):3076–86. doi: 10.1182/blood-2010-08-301507.
  24. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-733196.
  25. Osman J, Murad AM, Chin SF, et al. Highly Sensitive and Reliable Human Sex Determination Using Multiplex PCR. Asia Pacif J Mol Med. 2014;4:1–4.
  26. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30. doi: 10.1038/nri2017.
  27. Voin V, Khalid S, Shrager S, et al. Neuroleukemiosis: Two Case Reports. Cureus. 2017;9(7):e1529. doi: 10.7759/cureus.1529.
  28. Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci. 2019;20(2):453. doi: 10.3390/ijms20020453.
  29. Agliano A, Martin-Padura I, Mancuso P, et al. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer. 2008;123(9):2222–7. doi: 10.1002/ijc.23772.
  30. Terpstra W, Prins A, Visser T, et al. Conditions for engraftment of human acute myeloid leukemia (AML) in SCID mice. 1995;9(9):1573–7.
  31. Lumkul R, Gorin N, Malehorn M, et al. Human AML cells in NOD/SCID mice: engraftment potential and gene expression. 2002;16(9):1818–26. doi: 10.1038/sj.leu.2402632.
  32. Martin-Padura I, Agliano A, Marighetti P, et al. Sex-related efficiency in NSG mouse engraftment. Blood. 2010;116(14):2616–7. doi: 10.1182/blood-2010-07-295584.
  33. Woiterski J, Ebinger M, Witte KE, et al. Engraftment of low numbers of pediatric acute lymphoid and myeloid leukemias into NOD/SCID/IL2Rcγnull mice reflects individual leukemogenecity and highly correlates with clinical outcome. Int J Cancer. 2013;133(7):1547–56. doi: 10.1002/ijc.28170.
  34. Ailles LE, Gerhard B, Kawagoe H, Hogge DE. Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood. 1999;94(5):1761–72. doi: 10.1182/blood.V94.5.1761.
  35. Pearce DJ, Taussig D, Zibara K, et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. 2006;107(3):1166–73. doi: 10.1182/blood-2005-06-2325.
  36. Monaco G, Konopleva M, Munsell M, et al. Engraftment of acute myeloid leukemia in NOD/SCID mice is independent of CXCR4 and predicts poor patient survival. Stem Cells. 2004;22(2):188–201. doi: 10.1634/stemcells.22-2-188.
  37. Rombouts WJ, Martens AC, Ploemacher RE. Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera model. Leukemia. 2000;14(5):889–97. doi: 10.1038/sj.leu.2401777.
  38. Culen M, Kosarova Z, Jeziskova I, et al. The influence of mutational status and biological characteristics of acute myeloid leukemia on xenotransplantation outcomes in NOD SCID gamma mice. J Cancer Res Clin Oncol. 2018;144(7):1239–51. doi: 10.1007/s00432-018-2652-2.

Technical Aspects of Minimal Residual Disease Detection by Multicolor Flow Cytometry in Acute Myeloid Leukemia Patients

IV Galtseva, YuO Davydova, NM Kapranov, KA Nikiforova, EN Parovichnikova

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Yuliya Olegovna Davydova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: 8(495)612-62-21; e-mail: juliya89mur@yandex.ru

For citation: Galtseva IV, Davydova YuO, Kapranov NM, et al. Technical Aspects of Minimal Residual Disease Detection by Multicolor Flow Cytometry in Acute Myeloid Leukemia Patients. Clinical oncohematology. 2021;14(3):503–12. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-503-512


ABSTRACT

Detection and monitoring of minimal residual disease (MRD) are essential components of programmed therapy.They are crucial for the choice of treatment strategy and for prognostic purposes practically in all hematologic diseases. MRD is often detected by multicolor flow cytometry, the method with fairly high specificity and sensitivity. However, to identify MRD in acute myeloid leukemia patients is one of the most challenging tasks flow cytometry specialists are faced with. Cytometric data analysis requires the expert knowledge of immunophenotype of all maturing bone marrow cells. Besides, MRD analysis in acute myeloid leukemia has not been standardized while approaches suggested by different studies vary considerably. The present paper reports the experience of MRD analysis, demonstrates the gating strategy, immunophenotype description of normal non-tumor hematopoietic cells, and presents some examples of MRD assessment. Additionally, panels of monoclonal antibodies are provided, along with an evaluation of their advantages and disadvantages.

Keywords: minimal residual disease, acute myeloid leukemias, flow cytometry, gating, immunophenotyping.

Received: June 9, 2021

Accepted: September 5, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003;21(24):4642–9. doi: 10.1200/JCO.2003.04.036.
  2. Pui CH, Campana D. New definition of remission in childhood acute lymphoblastic leukemia. Leukemia. 2000;14(5):783–5. doi: 10.1038/sj.leu.2401780.
  3. Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131(12):1275–91. doi: 10.1182/blood-2017-09-801498.
  4. Гальцева И.В., Давыдова Ю.О., Паровичникова Е.Н. Определение минимальной измеримой остаточной болезни у взрослых больных острыми лейкозами. Гематология и трансфузиология. 2020;65(4):460–72. doi: 10.35754/0234-5730-2020-65-4-460-472.
    [Galtseva IV, Davydova YO, Parovichnikova EN. Detection of measurable residual disease in adults with acute leukaemia. Russian journal of hematology and transfusiology. 2020;65(4):460–72. doi: 10.35754/0234-5730-2020-65-4-460-472. (In Russ)]
  5. Shen Z, Gu X, Mao W, et al. Influence of pre-transplant minimal residual disease on prognosis after Allo-SCT for patients with acute lymphoblastic leukemia: Systematic review and meta-analysis. BMC Cancer. 2018;18(1):755. doi: 10.1186/s12885-018-4670-5.
  6. Leung W, Pui C-H, Coustan-Smith E, et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood. 2012;120(2):468–72. doi: 10.1182/blood-2012-02-409813.
  7. Norkin M, Katragadda L, Zou F, et al. Minimal residual disease by either flow cytometry or cytogenetics prior to an allogeneic hematopoietic stem cell transplant is associated with poor outcome in acute myeloid leukemia. Blood Cancer J. 2017;7(12):634. doi: 10.1038/s41408-017-0007-x.
  8. Anthias C, Dignan FL, Morilla R, et al. Pre-transplant MRD predicts outcome following reduced-intensity and myeloablative allogeneic hemopoietic SCT in AML. Bone Marrow Transplant. 2014;49(5):679–83. doi: 10.1038/bmt.2014.9.
  9. Buckley SA, Wood BL, Othus M, et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica. 2017;102(5):865–73. doi: 10.3324/haematol.2016.159343.
  10. Wood BL. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry B Clin Cytom. 2016;90(1):47–53. doi: 10.1002/cyto.b.21239.
  11. Wood BL. Multicolor immunophenotyping: human immune system hematopoiesis. Methods Cell Biol. 2004;75:559–76. doi: 10.1016/s0091-679x(04)75023-2.
  12. Wood BL. Flow cytometric monitoring of residual disease in acute leukemia. In: Czader M, ed. Hematological Malignancies. Methods in Molecular Biology (Methods and Protocols). Vol. 999. Totowa: Humana Press; 2013. pp. 123–36. doi: 10.1007/978-1-62703-357-2_8.
  13. Лобанова Т.И., Гальцева И.В., Паровичникова Е.Н. Исследование минимальной остаточной болезни у пациентов с острыми миелоидными лейкозами методом многоцветной проточной цитофлуориметрии (обзор литературы). Онкогематология. 2018;13(1):83–102. doi: 10.17650/1818-8346-2018-13-1-83-102.
    [Lobanova TI, Galtseva IV, Parovichnikova EN. Minimal residual disease assesment in patients with acute myeloid leukemia by multicolour flow cytometry (literature review). Oncohematology. 2018;13(1):83–102. doi: 10.17650/1818-8346-2018-13-1-83-102. (In Russ)]
  14. Tien HF, Wang CH. CD7 positive hematopoietic progenitors and acute myeloid leukemia and other minimally differentiated leukemia. Leuk Lymphoma. 1998;31(1–2):93–8. doi: 10.3109/10428199809057588.
  15. Jorgensen JL, Chen SS. Monitoring of minimal residual disease in acute myeloid leukemia: methods and best applications. Clin Lymphoma Myeloma Leuk. 2011;11(Suppl 1):S49–53. doi: 10.1016/j.clml.2011.03.023.
  16. Jaso JM, Wang SA, Jorgensen JL, Lin P. Multi-color flow cytometric immunophenotyping for detection of minimal residual disease in AML: past, present and future. Bone Marrow Transplant. 2014;49(9):1129–38. doi: 10.1038/bmt.2014.99.
  17. Buldini B, Maurer-Granofszky M, Varotto E, Dworzak MN. Flow-cytometric monitoring of minimal residual disease in pediatric patients with acute myeloid leukemia: recent advances and future strategies. Front Pediatr. 2019;7:412. doi: 10.3389/fped.2019.00412.
  18. Wood BL. Acute myeloid leukemia minimal residual disease detection: the difference from normal approach. Curr Protoc Cytom. 2020;93(1):e73. doi: 10.1002/cpcy.73.
  19. Ostendorf BN, Flenner E, Florcken A, Westermann J. Phenotypic characterization of aberrant stem and progenitor cell populations in myelodysplastic syndromes. PLoS One. 2018;13(5):e0197823. doi: 10.1371/journal.pone.0197823.
  20. Goardon N, Marchi E, Atzberger A, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011;19(1):138–52. doi: 10.1016/j.ccr.2010.12.012.
  21. Shameli A, Dharmani-Khan P, Luider J, et al. Exploring blast composition in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms: CD45RA and CD371 improve diagnostic value of flow cytometry through assessment of myeloblast heterogeneity and stem cell aberrancy. Cytom Part B: Clin Cytom. 2020:1–16. doi: 10.1002/cyto.b.21983. Epub ahead of print.
  22. Bill M, van Kooten Niekerk BP, Woll SP, et al. Mapping the CLEC12A expression on myeloid progenitors in normal bone marrow; implications for understanding CLEC12A-related cancer stem cell biology. J Cell Mol Med. 2018;22(4):2311–8. doi: 10.1111/jcmm.13519.
  23. Eissens DN, Spanholtz J, van der Meer A, et al. Defining early human NK cell developmental stages in primary and secondary lymphoid tissues. PLoS One. 2012;7(2):e30930. doi: 10.1371/journal.pone.0030930.
  24. Stetler-Stevenson M, Paiva B, Stoolman L, et al. Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytom Part B: Clin Cytom. 2016;90(1):26–30. doi: 10.1002/cyto.b.21249.
  25. Palmieri R, Piciocchi A, Arena V, et al. Clinical relevance of- limit of detection (LOD) – limit of quantification (LOQ) – based flow cytometry approach for measurable residual disease (MRD) assessment in acute myeloid leukemia (AML). Blood. 2020;136(Suppl 1):37–8. doi: 10.1182/blood-2020-139557.

Carmustine in the Therapy of B-Cell Lymphomas

DA Koroleva, EE Zvonkov

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Daria Aleksandrovna Koroleva, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-44-72; e-mail: koroleva_12-12@mail.ru

For citation: Koroleva DA, Zvonkov EE. Carmustine in the Therapy of B-Cell Lymphomas. 2021;14(4):496–502. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-496-502


ABSTRACT

Aim. To analyze the efficacy and toxicity of different high-dose chemotherapy protocols for the purpose of determining the optimal conditioning regimen with autologous hematopoietic stem cell transplantation (auto-HSCT).

Materials & Methods. The present review provides the analysis of some comparative retrospective studies. The evidence-based analysis proceeded in two stages consisting of a search and then primary processing of available literature. The PubMed database was searched for publications for the period 2004–2020.

Results. In relapsed and refractory non-Hodgkin’s lymphomas as well as in Hodgkin’s lymphoma, the literature analysis demonstrated satisfactory efficacy of carmustine as part of BEAM conditioning. With the use of the BEAM conditioning regimen with subsequent auto-HSCT, up to 50 % of complete remissions were achieved in patients with non-Hodgkin’s lymphomas and up to 70 % in patients with Hodgkin’s lymphoma. Comparative studies show that despite concerns about severe toxicity, the use of carmustine was not associated with an increase in the incidence of adverse events. Lung and liver toxicity proved to be comparable with that of being observed while using alternative programs of high-dose chemotherapy and corresponded to 9 % and 6 % on LEAM and BEAM regimens, respectively. Besides, carmustine feasibility in primary diffuse large B-cell CNS lymphoma was considered and analyzed in the context of the lack of thiotepa.

Conclusion. High efficacy of carmustine as part of BEAM conditioning with subsequent auto-HSCT was proved in extremely unfavorable patients with relapsed and refractory non-Hodgkin’s lymphomas and Hodgkin’s lymphoma with an acceptable toxicity profile. The study of carmustine in the therapy of primary CNS lymphoma seems to be аn important area of clinical studies aimed at developing rational treatment options.

Keywords: carmustine, non-Hodgkin’s lymphomas, Hodgkin’s lymphoma, auto-HSCT, lomustine, thiotepa, primary diffuse large B-cell CNS lymphoma.

Received: July 15, 2021

Accepted: September 10, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Fleming AB, Saltzman WM. Pharmacokinetics of the carmustine implant. Clin Pharmacokinet. 2002;41(6):403–19. doi: 10.2165/00003088-200241060-00002.
  2. Damaj G, Cornillon J, Bouabdallah K, et al. Carmustine replacement in intensive chemotherapy preceding reinjection of autologous HSCs in Hodgkin and non-Hodgkin lymphoma: A review. Bone Marrow Transplant. 2017;52(7):941–9. doi: 10.1038/bmt.2016.340.
  3. Fenske TS, Zhang MJ, Carreras J, et al. Autologous or reduced-intensity conditioning allogeneic hematopoietic cell transplantation for chemotherapy-sensitive mantle-cell lymphoma: Analysis of transplantation timing and modality. J Clin Oncol. 2014;32(4):273–81. doi: 10.1200/jco.2013.49.2454.
  4. Dreyling M, Lenz G, Hoster E, et al. Early consolidation by myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL Network. Blood. 2005;105(7):2677–84. doi: 10.1182/blood-2004-10-3883.
  5. Wang TF, Fiala MA, Cashen AF, et al. A phase II study of V-BEAM as conditioning regimen before second auto-SCT for multiple myeloma. Bone Marrow Transplant. 2014;49(11):1366–70. doi: 10.1038/bmt.2014.163.
  6. Bachanova V, Burns LJ. Hematopoietic cell transplantation for Waldenstrom macroglobulinemia. Bone Marrow Transplant. 2012;47(3):330–6. doi: 10.1038/bmt.2011.105.
  7. Sharma A, Kayal S, Iqbal S, et al. Comparison of BEAM vs. LEAM regimen in autologous transplant for lymphoma at AIIMS. Springerplus. 2013;2(1):1–6. doi: 10.1186/2193-1801-2-489.
  8. Colita A, Colita A, Bumbea H, et al. LEAM vs. BEAM vs. CLV Conditioning Regimen for Autologous Stem Cell Transplantation in Malignant Lymphomas. Retrospective Comparison of Toxicity and Efficacy on 222 Patients in the First 100 Days After Transplant, On Behalf of the Romanian Society for Bon. Front Oncol. 2019;9:892. doi: 10.3389/fonc.2019.00892.
  9. Kothari J, Foley M, Peggs KS, et al. A retrospective comparison of toxicity and initial efficacy of two autologous stem cell transplant conditioning regimens for relapsed lymphoma: LEAM and BEAM. Bone Marrow Transplant. 2016;51(10):1397–9. doi: 10.1038/bmt.2016.134.
  10. Tsang ES, Villa D, Loscocco F, et al. High-dose Benda-EAM versus BEAM in patients with relapsed/refractory classical Hodgkin lymphoma undergoing autologous stem cell transplantation. Bone Marrow Transplant. 2019;54(3):481–4. doi: 10.1038/s41409-018-0328-9.
  11. Joffe E, Rosenberg D, Rozovski U, et al. Replacing carmustine by thiotepa and cyclophosphamide for autologous stem cell transplantation in Hodgkin’s and non-Hodgkin’s B-cell lymphoma. Bone Marrow Transplant. 2018;53(1):29–33. doi: 10.1038/bmt.2017.205.
  12. Duque-Afonso J, Ihorst G, Waterhouse M, et al. Comparison of reduced-toxicity conditioning protocols using fludarabine, melphalan combined with thiotepa or carmustine in allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2021;56(1):110–20. doi: 10.1038/s41409-020-0986-2.
  13. Puig N, De La Rubia J, Remigia MJ, et al. Morbidity and transplant-related mortality of CBV and BEAM preparative regimens for patients with lymphoid malignancies undergoing autologous stem-cell transplantation. Leuk Lymphoma. 2006;47(8):1488–94. doi: 10.1080/10428190500527769.
  14. Caimi PF, William BM, Rondon CH S, et al. Comparison of 2 Carmustine-Containing Regimens in the Rituximab Era: Excellent Outcomes Even in Poor-Risk Patients. Biol Blood Marrow Transplant. 2015;21(11):1926–31. doi: 10.1016/j.bbmt.2015.06.007.
  15. Kirschey S, Flohr T, Wolf HH, et al. Rituximab combined with DexaBEAM followed by high dose therapy as salvage therapy in patients with relapsed or refractory B-cell lymphoma: Mature results of a phase II multicentre study. Br J Haematol. 2015;168(6):824–34. doi: 10.1111/bjh.13234.
  16. Brandes AA, Tosoni A, Amista P, et al. How effective is BCNU in recurrent glioblastoma in the modern era? A phase II trial. Neurology. 2004;63(7):1281–4. doi: 10.1212/01.wnl.0000140495.33615.ca.
  17. Alnahhas I, Jawish M, Alsawas M, et al. Autologous Stem-Cell Transplantation for Primary Central Nervous System Lymphoma: Systematic Review and Meta-analysis. Clin Lymphoma Myel Leuk. 2019;19(3):е129–е141. doi: 10.1016/j.clml.2018.11.018.
  18. Omuro A, Correa DD, DeAngelis LM, et al. R-MPV followed by high-dose chemotherapy with TBC and autologous stem-cell transplant for newly diagnosed primary CNS lymphoma. 2015;125(9):1403–10. doi: 10.1182/blood-2014-10-604561.

Ibrutinib as First-Line Therapy in High-Risk Chronic Lymphocytic Leukemia: Case Reports

NV Kurkina, EA Repina

NP Ogarev National Research Mordovia State University, 68 Bolshevistskaya str., Saransk, Russian Federation, 430005

For correspondence: Nadezhda Viktorovna Kurkina, MD, PhD, 26А Ul’yanova str., Saransk, Russian Federation, 430032; Tel.: +7(927)172-48-63; e-mail: nadya.kurckina@yandex.ru

For citation: Kurkina NV, Repina EA. Ibrutinib as First-Line Therapy in High-Risk Chronic Lymphocytic Leukemia: Case Reports. Clinical oncohematology. 2021;14(4):488–95. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-488-495


ABSTRACT

In the selection of the optimal specific therapy in chronic lymphocytic leukemia (CLL), a crucial role is played by the determination of risk groups. The CLL International Prognostic Index takes account of unfavorable del(17p), del(11q) cytogenetic abnormalities, and/or TP53 gene mutations as well as the mutation status of immunoglobulin heavy chain variable region genes (IGHV). The absence of IGHV gene mutations is often associated with such prognostically unfavorable genetic markers as del(17p), del(11q), trisomy 12, and TP53 mutation. The combinations of this kind affect the prognosis and overall survival rate. Besides, in high-risk CLL the efficacy of therapy is rather low and the development of refractoriness is possible. In such patients the use of Bruton tyrosine kinase inhibitor as first-line therapy considerably increases the probability of long-term remission. The present paper provides the analysis of clinical and hematological efficacy and tolerance of ibrutinib as first-line therapy in high-risk CLL. Ibrutinib shows high efficacy and low toxicity. The use of ibrutinib as first-line therapy effectively reduces the probability of CLL progression, which is especially critical in high-risk patients, i.e., with 17p deletion and TP53 gene mutation.

Keywords: chronic lymphocytic leukemia, high-risk group, 17p deletion, TP53 gene mutation, ibrutinib, efficacy, toxicity.

Received: March 15, 2021

Accepted: August 30, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Wierda WG, Byrd JC, Abramson JS, et al. Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 4.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2020;18(2):185–217. doi: 10.6004/jnccn.2020.0006.
  2. Hallek MJ, Cheson BD, Catovsky D, Caligaris-Cappio F. IwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745–60. doi: 1182/blood-2017-09-806398.
  3. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018. С. 179–200.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. 179–200. (In Russ)]
  4. Fischer K, Bahlo J, Fink AM, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: Updated results of the CLL8 trial. Blood. 2016;127(2):208–15. doi: 1182/blood-2015-06-651125.
  5. Thompson PA, Tam CS, O’Brien SM, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHVmutated chronic lymphocytic leukemia. 2016;127(3):303–9. doi: 10.1182/blood-2015-09-667675.
  6. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: A randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–74. doi: 10.1016/S0140-6736(10)61381-5.
  7. International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–90. doi: 10.1016/S1470-2045(16)30029-8.
  8. Pflug N, Bahlo J, Shanafelt T, Eichhorst B. Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood. 2014;12(4):49–62. doi: 1182/blood-2014-02-556399.
  9. Zenz T, Eichhorst B, Busch R, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;28(29):4473–9. doi: 10.1200/JCO.2009.27.8762.
  10. Rossi D, Khiabanian H, Spina V, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. 2014;123(14):2139–47. doi: 10.1182/blood-2013-11-539726.
  11. Никитин Е.А., Судариков А.Б. Хронический лимфолейкоз высокого риска: история, определение, диагностика и лечение. Клиническая онкогематология. 2013;6(1):59–67.
    [Nikitin EA, Sudarikov AB. High­risk chronic lymphocytic leukemia: history, definition, diagnosis, and management. Klinicheskaya onkogematologiya. 2013;6(1):59–67. (In Russ)]
  12. Strati P, Shanafelt TD. Monoclonal B-cell lymphocytosis and early-stage chronic lymphocytic leukemia: Diagnosis, natural history, and risk stratification. Blood. 2015;126(4):454–62. doi: 10.1182/blood-2015-02-585059.
  13. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37. doi: 10.1056/NEJMoa1509388.
  14. Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL. N Engl J Med. 2018;379(26):2517–28. doi: 10.1056/NEJMoa1812836.

Systemic Т-Cell Lymphoproliferative Disease Associated with Epstein-Barr Virus: A Literature Review and a Case Report

EA Shalamova, AM Kovrigina, IA Shupletsova, EE Nikulina, VD Latyshev, NV Tsvetaeva

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Alla Mikhailovna Kovrigina, PhD in Biology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: kovrigina.alla@gmail.com

For citation: Shalamova EA, Kovrigina AM, Shupletsova IA, et al. Systemic Т-Cell Lymphoproliferative Disease Associated with Epstein-Barr Virus: A Literature Review and a Case Report. Clinical oncohematology. 2021;14(4):477–87. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-477-487


ABSTRACT

Epstein-Barr virus (EBV) is ubiquitous, being identified in 90–95 % of adults. Its reactivation in immunodeficiency conditions often leads to clonal transformation of В-lymphocytes and development of В-cell lymphoproliferative diseases (LPD) and В-cell lymphomas. At the same time, in the countries of North-East and East Asia, as well as Latin America, non-immunocompromised patients sometimes demonstrate the development of EBV-associated Т-cell lymphoproliferative diseases. The present paper reports a rare case of EBV-associated systemic T-LPD with lymphadenopathy, splenomegaly as well as acute autoimmune hemolytic anemia in a man of Caucasian race. Complex analysis of anamnestic, pathomorphological, and laboratory data allowed to distinguish this disease from Т-cell lymphoma and choose the appropriate patient management strategy.

Keywords: lymphoproliferative disease, Epstein-Barr virus, EBV+ T-LPD, diagnosis, pathomorphology.

Received: May 30, 2021

Accepted: September 2, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Smatti MK, Al-Sadeq DW, Ali NH, et al. Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene Among Healthy Population: An Update. Front Oncol. 2018;8:211. doi: 10.3389/fonc.2018.00211.
  2. Kuri A, Jacobs BM, Vickaryous N, et al. Epidemiology of Epstein-Barr virus infection and infectious mononucleosis in the United Kingdom. BMC Public Health. 2020;20(1):912. doi: 10.1186/s12889-020-09049-x.
  3. Rostgaard K, Balfour HH Jr, Jarrett R, et al. Primary Epstein-Barr virus infection with and without infectious mononucleosis. PLoS One. 2019;14(12):e0226436. doi: 10.1371/journal.pone.0226436.
  4. Montes-Mojarro IA, Kim WY, Fend F, Quintanilla-Martinez L. Epstein-Barr virus positive T and NK-cell lymphoproliferations: Morphological features and differential diagnosis. Semin Diagn Pathol. 2020;37(1):32–46. doi: 10.1053/j.semdp.2019.12.004.
  5. Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors. Front Oncol. 2019;9:713. doi: 10.3389/fonc.2019.00713.
  6. Pei Y, Lewis AE, Robertson ES. Current Progress in EBV-Associated B-Cell Lymphomas. Adv Exp Med Biol. 2017;1018:57–74. doi: 10.1007/978-981-10-5765-6_5.
  7. Martinez OM, Krams SM. The Immune Response to Epstein Barr Virus and Implications for Posttransplant Lymphoproliferative Disorder. 2017;101(9):2009–16. doi: 10.1097/TP.0000000000001767.
  8. Compagno F, Basso S, Panigari A, et al. Management of PTLD After Hematopoietic Stem Cell Transplantation: Immunological Perspectives. Front Immunol. 2020;11:567020. doi: 10.3389/fimmu.2020.567020.
  9. Ковригина А.М. ВЭБ-позитивные лимфопролиферативные заболевания: новая концепция, дифференциальная диагностика (обзор литературы и собственные наблюдения). Клиническая онкогематология. 2018;11(4):326–37. doi: 10.21320/2500-2139-2018-11-4-326-337.
    [Kovrigina AM. EBV-Positive Lymphoproliferative Diseases: A New Concept and Differential Diagnosis (Literature Review and Case Reports). Clinical oncohematology. 2018;11(4):326–37. doi: 10.21320/2500-2139-2018-11-4-326-337. (In Russ)]
  10. Kimura H, Fujiwara S. Overview of EBV-Associated T/NK-Cell Lymphoproliferative Diseases. Front Pediatr. 2019;6:417. doi: 10.3389/fped.2018.00417.
  11. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017. pp. 358–60.
  12. Coffey AM, Lewis A, Marcogliese AN, et al. A clinicopathologic study of the spectrum of systemic forms of EBV‐associated T‐cell lymphoproliferative disorders of childhood: A single tertiary care pediatric institution experience in North America. Pediatr Blood Cancer. 2019;66(8):e27798. doi: 10.1002/pbc.27798.
  13. Ohshima K, Kimura H, Yoshino T, et al. Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD. Pathol Int. 2008;58(4):209–17. doi: 10.1111/j.1440-1827.2008.02213.x.
  14. Kawamoto K, Miyoshi H, Suzuki T, et al. A distinct subtype of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorder: adult patients with chronic active Epstein-Barr virus infection-like features. 2018;103(6):1018–28. doi: 10.3324/haematol.2017.174177.
  15. Fujiwara S, Kimura H, Imadome K, et al. Current research on chronic active Epstein-Barr virus infection in Japan. Pediatr Int. 2014;56(2):159–66. doi: 10.1111/ped.12314.
  16. van Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317. doi: 10.1038/sj.leu.2403202.
  17. Чернова Н.Г., Сидорова Ю.В., Смирнова С.Ю. и др. Молекулярная диагностика ангиоиммунобластной Т-клеточной лимфомы. Терапевтический архив. 2019;91(7):63–9. doi: 10.26442/00403660.2019.07.000330.
    [Chernova NG, Sidorova YuV, Smirnova SYu, et al. Molecular diagnosis angioimmunoblastic T-cell lymphoma. Terapevticheskii arkhiv. 2019;91(7):63–9. doi: 10.26442/00403660.2019.07.000330. (In Russ)]
  18. Cohen JI, Jaffe ES, Dale JK, et al. Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. 2011;117(22):5835–49. doi: 10.1182/blood-2010-11-316745.
  19. Arai A. Advances in the Study of Chronic Active Epstein-Barr Virus Infection: Clinical Features Under the 2016 WHO Classification and Mechanisms of Development. Front Pediatr. 2019;7:14. doi: 10.3389/fped.2019.00014.
  20. Fournier B, Boutboul D, Bruneau J, et al. Rapid identification and characterization of infected cells in blood during chronic active Epstein-Barr virus infection. J Exp Med. 2020;217(11):e20192262. doi: 10.1084/jem.20192262.
  21. Kawabe S, Ito Y, Gotoh K, et al. Application of flow cytometric in situ hybridization assay to Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases. Cancer Sci. 2012;103(8):1481–8. doi: 10.1111/j.1349-7006.2012.02305.x.
  22. Paik JH, Choe JY, Kim H, et al. Clinicopathological categorization of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disease: an analysis of 42 cases with an emphasis on prognostic implications. Leuk Lymphoma. 2017;58(1):53–63. doi: 10.1080/10428194.2016.1179297.
  23. Kimura H. EBV in T-/NK-Cell Tumorigenesis. Adv Exp Med Biol. 2018;1045:459–75. doi: 10.1007/978-981-10-7230-7_21.
  24. Takada H, Imadome KI, Shibayama H, et al. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells. PLoS One. 2017;12(3):e0174136. doi: 10.1371/journal.pone.0174136.
  25. Okuno Y, Murata T, Sato Y, et al. Defective Epstein-Barr virus in chronic active infection and haematological malignancy. Nat Microbiol. 2019;4(3):404–13. doi: 10.1038/s41564-018-0334-0.
  26. Katano H, Ali MA, Patera AC, et al. Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. 2004;103(4):1244–52. doi: 10.1182/blood-2003-06-2171.
  27. Beer T, Dorion P. Angioimmunoblastic T-Cell Lymphoma Presenting with an Acute Serologic Epstein-Barr Virus Profile. Hematol Rep. 2015;7(2):5893. doi: 10.4081/hr.2015.5893.
  28. Steciuk MR, Massengill S, Banks PM. In immunocompromised patients, Epstein-Barr virus lymphadenitis can mimic angioimmunoblastic T-cell lymphoma morphologically, immunophenotypically, and genetically: a case report and review of the literature. Hum Pathol. 2012;43(1):127–33. doi: 10.1016/j.humpath.2011.02.024.
  29. Chiba S, Sakata-Yanagimoto M. Advances in understanding of angioimmunoblastic T-cell lymphoma. 2020;34(10):2592–606. doi: 10.1038/s41375-020-0990-y.
  30. Yabe M, Dogan A, Horwitz SM, Moskowitz AJ. Angioimmunoblastic T-Cell Lymphoma. In: Querfeld C, Zain J, Rosen S, eds. T-Cell and NK-Cell Lymphomas. Cancer Treatment and Research. Springer; Vol. 176. pp. 99–126. doi: 10.1007/978-3-319-99716-2_5.
  31. Kato S, Takahashi E, Asano N, et al. Nodal cytotoxic molecule (CM)-positive Epstein-Barr virus (EBV)-associated peripheral T cell lymphoma (PTCL): a clinicopathological study of 26 cases. 2012;61(2):186–99. doi: 10.1111/j.1365-2559.2012.04199.x.
  32. Jeon YK, Kim J-H, Sung J-Y, et al.; Hematopathology Study Group of the Korean Society of P. Epstein-Barr virus-positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features. Hum Pathol. 2015;46(7):981–90. doi: 10.1016/j.humpath.2015.03.002.
  33. Takahashi E, Asano N, Li C, et al. Nodal T/NK-cell lymphoma of nasal type: a clinicopathological study of six cases. 2008;52(5):585–96. doi: 10.1111/j.1365-2559.2008.02997.x.
  34. Ng SB, Chung TH, Kato S, et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. 2018;103(2):278–87. doi: 10.3324/haematol.2017.180430.
  35. Edwards ESJ, Bier J, Cole TS, et al. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. J Allergy Clin Immunol. 2019;143(1):276–291.e6. doi: 10.1016/j.jaci.2018.04.030.
  36. Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev. 2019;291(1):174–89. doi: 10.1111/imr.12791.
  37. Files JK, Boppana S, Perez MD, et al. Sustained cellular immune dysregulation in individuals recovering from SARS-CoV-2 infection. J Clin Invest. 2021;131(1):e140491. doi: 10.1172/JCI140491.
  38. Liu J, Yang X, Wang H, et al. The analysis of the long-term impact of SARS-CoV-2 on the cellular immune system in individuals recovering from COVID-19 reveals a profound NK/T cell impairment. mBio. 2021 (Preprint). doi: 10.1101/2020.08.21.20179358.
  39. Kovoor JG, Scott NA, Tivey DR, et al. Proposed delay for safe surgery after COVID-19. ANZ J Surg. 2021;91(4):495–506. doi: 10.1111/ans.16682.
  40. Dematapitiya C, Perera C, Chinthaka W, et al. Cold type autoimmune hemolytic anemia – a rare manifestation of infectious mononucleosis; serum ferritin as an important biomarker. BMC Infect Dis. 2019;19(1):68. doi: 10.1186/s12879-019-3722-z.
  41. Teijido J, Tillotson K, Liu JM. A Rare Presentation of Epstein-Barr Virus Infection. J Emerg Med. 2020;58(2):e71-e73. doi: 10.1016/j.jemermed.2019.11.043.
  42. Whitelaw F, Brook MG, Kennedy N, Weir WR. Haemolytic anaemia complicating Epstein-Barr virus infection. Br J Clin Pract. 1995;49(4):212–3.
  43. Aveiro M, Ferreira G, Matias C, et al. Hard-To-Treat Idiopathic Refractory Autoimmune Haemolytic Anaemia with Reticulocytopenia. Eur J Case Rep Intern Med. 2020;7(12):002112. doi: 10.12890/2020_002112.
  44. Fattizzo B, Giannotta JA, Serpenti F, Barcellini W. Difficult Cases of Autoimmune Hemolytic Anemia: A Challenge for the Internal Medicine Specialist. J Clin Med. 2020;9(12):3858. doi: 10.3390/jcm9123858.
  45. Barcellini W, Fattizzo B, Zaninoni A, et al. Clinical heterogeneity and predictors of outcome in primary autoimmune hemolytic anemia: a GIMEMA study of 308 patients. 2014;124(19):2930–6. doi: 10.1182/blood-2014-06-583021.
  46. Barcellini W, Fattizzo B. Clinical Applications of Hemolytic Markers in the Differential Diagnosis and Management of Hemolytic Anemia. Dis Markers. 2015;2015:635670. doi: 10.1155/2015/635670.
  47. Fink S, Tsai MH, Schnitzler P, et al. The Epstein–Barr virus DNA load in the peripheral blood of transplant recipients does not accurately reflect the burden of infected cells. Transpl Int. 2017;30(1):57–67. doi: 10.1111/tri.12871.
  48. Andrei G, Trompet E, Snoeck R. Novel Therapeutics for Epstein-Barr Virus. 2019;24(5):997. doi: 10.3390/molecules24050997.

Prediction of Treatment Efficacy in Relapsed Chronic Lymphocytic Leukemia

OB Kalashnikova, IS Moiseev, TL Gindina, EA Izmailova, MO Ivanova, EV Kondakova, NB Mikhailova, AD Kulagin

IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Olga Borisovna Kalashnikova, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; e-mail: o4290@yandex.ru

For citation: Kalashnikova OB, Moiseev IS, Gindina TL, et al. Prediction of Treatment Efficacy in Relapsed Chronic Lymphocytic Leukemia. Clinical oncohematology. 2021;14(4):466–76. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-466-476


ABSTRACT

Background. The emergence of signaling pathway inhibitors (SPI) considerably improved the prognosis in relapsed chronic lymphocytic leukemia (R-CLL). Nevertheless, some patients cannot achieve optimal and sustained response. TP53 gene defects determine the refractoriness to immunochemotherapy (ICT) and lower rates of progression-free survival on SPI therapy. However, the prognostic value of complex karyotype (CK) in CLL has long been disputed. In recent years, greater attention has been placed on the prognostic impact of CK in the context of SPI therapy.

Materials & Methods. The study included 180 patients who received the drug treatment for R-CLL (113 of them with ICT, 67 of them with SPI). Their age at the onset of second-line therapy, the response to first-line therapy, early (< 24 months) progression after first-line therapy, the number of therapy lines, and the presence of CK and TP53 gene defect were regarded as prognostic markers. Taking into account the clonal evolution in CLL, to assess the significance degree of the above predictors, Cox proportional hazards regression model with time-dependent variables was used.

Results. The following independent factors proved to significantly reduce the risk of death: response achieved immediately after first-line therapy (hazard ratio [HR] 0.38; 95% confidence interval [95% CI] 0.20–0.72; = 0.003) and the number of therapy lines (HR 0.56; 95% CI 0.37–0.86; = 0.008). Treatment with only ICT in first and subsequent lines was associated with increasing risk of death (HR 2.25; 95% CI 1.09–4.63; = 0.028). Genetic risks worsened the prognosis to a high degree of significance in the case of TP53 gene defect with excluded or unknown CK status (HR 10.54; 95% CI 4.25–26.17; < 0.001) as well as in the case of CK (HR 14.08; 95% CI 5.77–34.35; < 0.001). A significant predictor of poor outcome was reported to be the factor of unknown CK status without TP53 gene defect (HR 4.15; 95% CI 1.72–10.00; = 0.002). Neither relapse time after first-line therapy nor the age ≥ 65 years showed independent prognostic value.

Conclusion. Standard karyotyping of peripheral lymphocytes with specific stimulation establishes a clearer disease prognosis and suggests the optimal choice of R-CLL treatment strategy.

Keywords: chronic lymphocytic leukemia, response predictors, del(17p), TP53 mutations, complex karyotype, cytogenetic risk, immunochemotherapy, ibrutinib, venetoclax.

Received: March 29, 2021

Accepted: August 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745–60. doi: 10.1182/blood-2017-09-806398.
  2. Weide R, Feiten S, Chakupurakal G, et al. Survival improvement of patients with chronic lymphocytic leukemia (CLL) in routine care 1995–2017. Leuk Lymphoma. 2020;61(3):557–66. doi: 10.1080/10428194.2019.1680840.
  3. Thompson PA, Tam CS, O’Brien SM, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016;127(3):303–9. doi: 10.1182/blood-2015-09-667675.
  4. Chai-Adisaksopha C, Brown JR. FCR achieves long-term durable remissions in patients with IGHV-mutated CLL. Blood. 2017;130(21):2278–82. doi: 10.1182/blood-2017-07-731588.
  5. Galton DA, Israels LG, Nabarro JD, Till M. Clinical trials of p-(di-2-chloroethylamino)-phenylbutyric acid (CB 1348) in malignant lymphoma. Br Med J. 1955;2(4949):1172–6. doi: 10.1136/bmj.2.4949.1172.
  6. Shaw RK, Boggs DR, Silberman HR, Frei E. A study of prednisone therapy in chronic lymphocytic leukemia. Blood. 1961;17(2):182–9. doi: 10.1182/blood.v17.2.182.182.
  7. Montserrat E, Moreno C, Esteve J, et al. How I treat refractory CLL. Blood. 2006;107(4):1276–83. doi: 10.1182/blood-2005-02-0819.
  8. Tsimberidou AM, Keating MJ. Treatment of fludarabine-refractory chronic lymphocytic leukemia. Cancer. 2009;115(13):2824–36. doi: 10.1002/cncr.24329.
  9. Stilgenbauer S, Zenz T. Understanding and managing ultra high-risk chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program. 2010;2010(1):481–8. doi: 10.1182/asheducation-2010.1.481.
  10. Byrd JC, Furman RR, Coutre SE, et al. Ibrutinib Treatment for First-Line and Relapsed/Refractory Chronic Lymphocytic Leukemia: Final Analysis of the Pivotal Phase Ib/II PCYC-1102 Study. Clin Cancer Res. 2020;26(15):3918–27. doi: 10.1158/1078-0432.CCR-19-2856.
  11. Munir T, Brown JR, O’Brien S, et al. Final analysis from RESONATE: Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019;94(12):1353–63. doi: 10.1002/ajh.25638.
  12. Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2016;374(4):311–22. doi: 10.1056/NEJMoa1513257.
  13. Seymour JF, Kipps TJ, Eichhorst B, et al. Venetoclax-Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. N Engl J Med. 2018;378(12):1107–20. doi: 10.1056/NEJMoa1713976.
  14. Winqvist M, Asklid A, Andersson PO, et al. Real-world results of ibrutinib in patients with relapsed or refractory chronic lymphocytic leukemia: data from 95 consecutive patients treated in a compassionate use program. A study from the Swedish Chronic Lymphocytic Leukemia Group. Haematologica. 2016;101(12):1573–80. doi: 10.3324/haematol.2016.144576.
  15. Ibrutinib for relapsed/refractory chronic lymphocytic leukemia: a UK and Ireland analysis of outcomes in 315 patients. Haematologica. 2016;101(12):1563–72. doi: 10.3324/haematol.2016.147900.
  16. Sorror ML, Storer BE, Sandmaier BM, et al. Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. J Clin Oncol. 2008;26(30):4912–20. doi: 10.1200/JCO.2007.15.4757.
  17. Delgado J, Pillai S, Phillips N, et al. Does reduced-intensity allogeneic transplantation confer a survival advantage to patients with poor prognosis chronic lymphocytic leukaemia? A case-control retrospective analysis. Ann Oncol. 2009;20(12):2007–12. doi: 10.1093/annonc/mdp259.
  18. Poon ML, Fox PS, Samuels BI, et al. Allogeneic stem cell transplant in patients with chronic lymphocytic leukemia with 17p deletion: consult-transplant versus consult-no-transplant analysis. Leuk Lymphoma. 2015;56(3):711–5. doi: 10.3109/10428194.2014.930848.
  19. van Gelder M, Ziagkos D, de Wreede L, et al; CLL Subcommittee of the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplantation. Baseline Characteristics Predicting Very Good Outcome of Allogeneic Hematopoietic Cell Transplantation in Young Patients With High Cytogenetic Risk Chronic Lymphocytic Leukemia – A Retrospective Analysis From the Chronic Malignancies Working Party of the EBMT. Clin Lymphoma Myel Leuk. 2017;17(10):667–75.e2. doi: 10.1016/j.clml.2017.06.007.
  20. Kim HT, Ahn KW, Hu ZH, et al. Prognostic Score and Cytogenetic Risk Classification for Chronic Lymphocytic Leukemia Patients: Center for International Blood and Marrow Transplant Research Report. Clin Cancer Res. 2019;25(16):5143–55. doi: 10.1158/1078-0432.CCR-18-3988.
  21. Afanasyeva KS, Barabanshchikova MV, Bondarenko SN, et al. Indications for hematopoietic stem cell transplantation. Cell Ther Transplant. 2019;8(4):101–45. doi: 10.18620/ctt-1866-8836-2019-8-4-101-145.
  22. Moreno C. Standard treatment approaches for relapsed/refractory chronic lymphocytic leukemia after frontline chemoimmunotherapy. Hematology Am Soc Hematol Educ Program. 2020;2020(1):33–40. doi: 10.1182/hematology.2020000086.
  23. Baliakas P, Iskas M, Gardiner A, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89(3):249–55. doi: 10.1002/ajh.23618.
  24. Eichhorst B, Hallek M. Prognostication of chronic lymphocytic leukemia in the era of new agents. Hematology Am Soc Hematol Educ Program. 2016;2016(1):149–55. doi: 10.1182/asheducation-2016.1.149.
  25. Blanco G, Puiggros A, Baliakas P, et al. Karyotypic complexity rather than chromosome 8 abnormalities aggravates the outcome of chronic lymphocytic leukemia patients with TP53 aberrations. Oncotarget. 2016;7(49):80916–24. doi: 10.18632/oncotarget.13106.
  26. Jaglowski SM, Ruppert AS, Heerema NA, et al. Complex karyotype predicts for inferior outcomes following reduced-intensity conditioning allogeneic transplant for chronic lymphocytic leukaemia. Br J Haematol. 2012;159(1):82–7. doi: 10.1111/j.1365-2141.2012.09239.x.
  27. Rigolin GM, Cavallari M, Quaglia FM, et al. In CLL, comorbidities and the complex karyotype are associated with an inferior outcome independently of CLL-IPI. Blood. 2017;129(26):3495–8. doi: 10.1182/blood-2017-03-772285.
  28. Rigolin GM, Saccenti E, Guardalben E, et al. In chronic lymphocytic leukaemia with complex karyotype, major structural abnormalities identify a subset of patients with inferior outcome and distinct biological characteristics. Br J Haematol. 2018;181(2):229–33. doi: 10.1111/bjh.15174.
  29. Badoux XC, Keating MJ, Wang X, et al. Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. Blood. 2011;117(11):3016–24. doi: 10.1182/blood-2010-08-304683.
  30. Herling CD, Klaumunzer M, Rocha CK, et al. Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood. 2016;128(3):395–404. doi: 10.1182/blood-2016-01-691550.
  31. Le Bris Y, Struski S, Guieze R, et al. Major prognostic value of complex karyotype in addition to TP53 and IGHV mutational status in first-line chronic lymphocytic leukemia. Hematol Oncol. 2017;35(4):664–70. doi: 10.1002/hon.2349.
  32. Mato AR, Hill BT, Lamanna N, et al. Optimal sequencing of ibrutinib, idelalisib, and venetoclax in chronic lymphocytic leukemia: results from a multicenter study of 683 patients. Ann Oncol. 2017;28(5):1050–6. doi: 10.1093/annonc/mdx031.
  33. Mato AR, Thompson M, Allan JN, et al. Real-world outcomes and management strategies for venetoclax-treated chronic lymphocytic leukemia patients in the United States. Haematologica. 2018;103(9):1511–7. doi: 10.3324/haematol.2018.193615.
  34. Thompson PA, O’Brien SM, Wierda WG, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121(20):3612–21. doi: 10.1002/cncr.29566.
  35. Anderson MA, Tam C, Lew TE, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25):3362–70. doi: 10.1182/blood-2017-01-763003.
  36. Baliakas P, Puiggros A, Xochelli A, et al. Additional trisomies amongst patients with chronic lymphocytic leukemia carrying trisomy 12: the accompanying chromosome makes a difference. Haematologica. 2016;101(7):e299–е302. doi: 10.3324/haematol.2015.140202.
  37. Dierlamm J, Michaux L, Criel A, et al. Genetic abnormalities in chronic lymphocytic leukemia and their clinical and prognostic implications. Cancer Genet Cytogenet. 1997;94(1):27–35. doi: 10.1016/s0165-4608(96)00246-4.
  38. Dubuc AM, Davids MS, Pulluqi M, et al. FISHing in the dark: How the combination of FISH and conventional karyotyping improves the diagnostic yield in CpG-stimulated chronic lymphocytic leukemia. Am J Hematol. 2016;91(10):978–83. doi: 10.1002/ajh.24452.
  39. Haferlach C, Dicker F, Schnittger S, et al. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007;21(12):2442–51. doi: 10.1038/sj.leu.2404935.
  40. Haferlach C, Dicker F, Weiss T, et al. Toward a comprehensive prognostic scoring system in chronic lymphocytic leukemia based on a combination of genetic parameters. Genes Chromos Cancer. 2010;49(9):851–9. doi: 10.1002/gcc.20794.
  41. Puiggros A, Collado R, Calasanz MJ, et al. Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of TP53/ATM FISH deletions. Oncotarget. 2017;8(33):54297–303. doi: 10.18632/oncotarget.17350.
  42. Rigolin GM, del Giudice I, Formigaro L, et al. Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia: Clinical and biologic correlations. Genes Chromos Cancer. 2015;54(12):818–26. doi: 10.1002/gcc.22293.
  43. US Food and Drug Administration. Framework for FDA’s real-world evidence program. 2018. Available from: https://www.fda.gov/media/120060/download (accessed 3.06.2021).
  44. Personalized Medicine Coalition. Personalized Medicine at FDA: The Scope & Significance of Progress in 2019. Available from: http://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/PM_at_FDA_The_Scope_and_Significance_of_Progress_in_2019.pdf (accessed 3.06.2021).
  45. Khozin S, Blumenthal GM, Pazdur R. Real-world Data for Clinical Evidence Generation in Oncology. J Natl Cancer Inst. 2017;109(11):1–5. doi: 10.1093/jnci/djx187.
  46. Booth CM, Karim S, Mackillop WJ. Real-world data: towards achieving the achievable in cancer care. Nat Rev Clin Oncol. 2019;16(5):312–25. doi: 10.1038/s41571-019-0167-7.
  47. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56. doi: 10.1182/blood-2007-06-093906.
  48. Калашникова О.Б., Иванова М.О., Волков Н.П. и др. Факторы прогноза и эффективность терапии первой линии хронического лимфолейкоза: результаты 10-летнего наблюдения. Ученые записки Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова. 2020;27(3):80–96. doi: 10.24884/1607-4181-2020-27-3-80-96.
    [Kalashnikova ОB, Ivanova MO, Volkov NP, et al. Prognostic factors and effectiveness of the first-line therapy for chronic lymphocytic leukemia: results of 10-year follow-up. The Scientific Notes of the Pavlov University. 2020;27(3):80–96. doi: 10.24884/1607-4181-2020-27-3-80-96. (In Russ)]
  49. Ahn IE, Farber CM, Davids MS, et al. Early progression of disease as a predictor of survival in chronic lymphocytic leukemia. Blood Adv. 2017;1(25):2433–43. doi: 10.1182/bloodadvances.2017011262.
  50. Malcikova J, Tausch E, Rossi D, et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia–update on methodological approaches and results interpretation. Leukemia. 2018;32(5):1070–80. doi: 10.1038/s41375-017-0007-7.
  51. Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133(11):1205–16. doi: 10.1182/blood-2018-09-873083.
  52. Rosenquist R, Ghia P, Hadzidimitriou A, et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations. Leukemia. 2017;31(7):1477–81. doi: 10.1038/leu.2017.125.
  53. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–30. doi: 10.1038/nature15395.
  54. Amin NA, Malek SN. Gene mutations in chronic lymphocytic leukemia. Semin Oncol. 2016;43(2):215–21. doi: 10.1053/j.seminoncol.2016.02.002.
  55. Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506. doi: 10.1182/blood-2014-10-606038.
  56. Anderson MA, Tam C, Lew TE, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25):3362–70. doi: 10.1182/blood-2017-01-763003.
  57. Le Bris Y, Struski S, Guieze R, et al. Major prognostic value of complex karyotype in addition to TP53 and IGHV mutational status in first-line chronic lymphocytic leukemia. Hematol Oncol. 2017;35(4):664–70. doi: 10.1002/hon.2349.
  58. Deng J, Isik E, Fernandes SM, et al. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia. Leukemia. 2017;31(10):2075–84. doi: 10.1038/leu.2017.32.
  59. Tam CS, Siddiqi T, Allan JN, et al. Ibrutinib (Ibr) plus venetoclax (Ven) for first-line treatment of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL): results from the MRD cohort of the phase 2 CAPTIVATE Study. Blood. 2019;134(Suppl 1):35. doi: 10.1182/blood-2019-121424.
  60. Jain N, Keating M, Thompson P, et al. Ibrutinib and Venetoclax for First-Line Treatment of CLL. N Engl J Med. 2019;380(22):2095–103. doi: 10.1056/NEJMoa1900574.
  61. Rogers KA, Huang Y, Ruppert AS, et al. Phase 1b study of obinutuzumab, ibrutinib, and venetoclax in relapsed and refractory chronic lymphocytic leukemia. Blood. 2018;132(15):1568–72. doi: 10.1182/blood-2018-05-853564.
  62. Lampson BL, Tyekucheva S, Crombie JL, et al. Updated Safety and Efficacy Results from a Phase 2 Study of Acalabrutinib, Venetoclax and Obinutuzumab (AVO) for Frontline Treatment of Chronic Lymphocytic Leukemia (CLL). Blood. 2020;136(Suppl 1):20–1. doi: 10.1182/blood-2020-139864.

Results of the Russian Multi-Center Cooperative Prospective-Retrospective Observational Program for Hodgkin’s Lymphoma Treatment RNWOHG-HD1

IS Moiseev1, SM Alekseev2,24, NB Mikhailova1, KD Kaplanov3,21, MV Demchenkova4, LV Anchukova5, VV Baikov1, AM Belyaev2, YuA Vasil’eva6, NP Volkov1, YuN Vinogradova7, AYu Zaritskey8, AE Zdorov9, NV Il’in7, LO Kashintseva10, EV Kondakova1, PV Kotselyabina1, VA Lapin11, KV Lepik1, IV Lesechko12, VM Moiseenko13, GM Manikhas14, NV Medvedeva15, YuA Oleinik2, ES Pavlyuchenko16, KS Parfenova17, EV Patrakova18, AV Proidakov19, DV Saidullaeva20, EV Tarasova21, AL Shipaeva22, TV Shneider23, BV Afanasyev1

1 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

2 NN Petrov National Medical Cancer Research Center, 68 Leningradskaya str., Pesochnyi settlement, Saint Petersburg, Russian Federation, 197758

3 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

4 Regional Oncology Dispensary, 32 Frunze str., Irkutsk, Russian Federation, 664035

5 Vologda Regional Clinical Hospital, 17 Lechebnaya str., Vologda, Russian Federation, 160002

6 Pskov Oncology Dispensary, 15a Vokzalnaya str., Pskov, Russian Federation, 180004

7 AM Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya str., Pesochnyi settlement, Saint Petersburg, Russian Federation, 197758

8 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

9 VA Baranov Republican Hospital, 3 Pirogova str. (Perevalka district), Petrozavodsk, Republic of Karelia, Russian Federation, 185002

10 Tula Regional Clinical Hospital, 1a Yablochkova str., Tula, Russian Federation, 300053

11 Yaroslavl Regional Clinical Hospital, 7 Yakovlevskaya str., Yaroslavl, Russian Federation, 150062

12 Stavropol Krai Clinical Oncology Dispensary, 182a Oktyabrskaya str., Stavropol, Russian Federation, 355047

13 Saint Petersburg Clinical Applied Research Center for Specialized Types of Medical Care (Oncology), 68A Leningradskaya str., Pesochnyi settlement, Saint Petersburg, Russian Federation, 197758

14 Municipal Clinical Oncology Dispensary, 3/5 2-ya Berezovaya alley, Saint Petersburg, Russian Federation, 197022

15 Municipal Clinical Hospital No. 31, 3 Dinamo pr-t, Saint Petersburg, Russian Federation, 197110

16 EE Eikhvald Clinic, II Mechnikov North-Western State Medical University, 41 bld. 7 Kirochnaya str., Saint Petersburg, Russian Federation, 191123

17 Samara Regional Clinical Oncology Dispensary, 11 Solnechnaya str., Syzran, Russian Federation, 446020

18 Vologda Regional Clinical Hospital No. 2, 15 Danilova str., Cherepovets, Vologda Region, Russian Federation, 162602

19 Komi Republican Oncology Dispensary, 46 Nyuvchimskoe sh., Krasnozatonskii town settlement, Syktyvkar, Republic of Komi, Russian Federation, 167904

20 Tver Regional Oncology Dispensary, 57/37 15 let Oktyabrya str., Tver, Russian Federation, 170008

21 First Republican Clinical Hospital, 57 Votkinskoe sh., Izhevsk, Russian Federation, 426039

22 Volgograd Regional Clinical Oncology Dispensary, 78 Zemlyachki str., Volgograd, Russian Federation, 400138

23 Leningrad Regional Clinical Hospital, 45 bld. 2A Lunacharskogo pr-t, Saint Petersburg, Russian Federation, 194291

24 LD Roman Leningrad Regional Clinical Oncology Dispensary, 2 Zaozernaya str., Kuzmolovskii settlement, Vsevolozhskii district, Leningrad Region, Russian Federation, 188663

For correspondence: Ivan Sergeevich Moiseev, MD, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: 8(812)338-62-65; e-mail: moisiv@mail.ru

For citation: Moiseev IS, Alekseev SM, Mikhailova NB, et al. Results of the Russian Multi-Center Cooperative Prospective-Retrospective Observational Program for Hodgkin’s Lymphoma Treatment RNWOHG-HD1. Clinical oncohematology. 2021;14(4):455–65. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-455-465


ABSTRACT

Aim. The observational program was aimed at obtaining data on classical Hodgkin’s lymphoma (cHL) incidence in the Russian Federation, therapy options, and clinical outcomes of treatment. The aim of the prospective part of the program was to standardize the approaches to therapy and to compare its outcomes with off-protocol treatment.

Materials & Methods. The prospective-retrospective observational program for Hodgkin’s lymphoma treatment engaged 32 regional and federal centers. It included 218 patients, 21 out of them were included into the prospective part of the RNWOHG-HD1 (Russian North-West Oncology and Hematology Group — Hodgkin Disease Study 1) program. The median age was 36 years (range 22–87 years). cHL stages I/II were identified in 48 % of patients, III/IV stages were reported in 52 % of patients. The prospective part of the program used escalating protocol in patients with stages I/IIA and without risk factors and de-escalating protocol in patients with advanced stages. Overall (OS) and progression-free (PFS) survivals were analyzed in 160 and 152 patients, respectively. PET-CT was used to assess the response in 33 % of patients.

Results. The study used the following first-line chemotherapy regimens: ABVD in 42 %, BEACOPPst in 11 %, BEACOPP-14 in 17 %, BEACOPPesc in 25 %, and EACOPP in 1 % of cases. After the completion of first-line therapy objective response rate was 91 % including 61 % of complete responses. Response structure did not significantly differ in the groups of non-intensive therapy (ABVD and BEACOPPst), intensified regimens (BEACOPP-14, BEACOPPesc, and EACOPP), and treatment according to the RNWOHG-HD1 protocol (91 %, 92 %, and 96 %, respectively; = 0.7226). In the total cohort the 3-year OS was 97 % (95% confidence interval [95% CI] 94–99 %), PFS was 87 % (95% CI 80–92 %). The 3-year PFS did not differ in ABVD, BEACOPPst, BEACOPP-14, BEACOPPesc, and RNWOHG-HD1 recipients (= 0.37). International Prognostic Score (IPS) yielded significant results in PFS prediction for patients with IPS score of 5–6, but not for those with IPS score of 1–4 (= 0.0028).

Conclusion. The observational program showed that the majority of participating centers use the risk-adapted ABVD/BEACOPPesc approach which explains no difference in PFS being found with the use of these chemotherapy options. The study demonstrated the need for PET-CT to assess the response since the CT alone cannot distinguish between complete and partial responses in a considerable number of patients. The prospective unified program for cHL treatment may well be implemented in the Russian Federation.

Keywords: classical Hodgkin’s lymphoma, multi-center study, ABVD, BEACOPP, positron emission tomography, risk-adapted therapy.

Received: May 25, 2021

Accepted: August 30, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Савченко В.Г. Алгоритмы диагностики и протоколы лечения заболеваний системы крови. М.: Практика, 2018. Т. 2. С. 39–57.
    [Savchenko VG. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika Publ.; 2018. Vol. 2. pр. 39–57. (In Russ)]
  2. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. doi: 10.3322/caac.21387.
  3. Злокачественные новообразования в России в 2018 г. (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019. 250 с.
    [Kaprin AD, Starinskii VV, Petrova GV, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2018 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; 250 р. (In Russ)]
  4. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. (In Russ)]
  5. Roman E, Smith AG. Epidemiology of lymphomas. Histopathology. 2011;58(1):4–14. doi: 10.1111/j.1365-2559.2010.03696.x.
  6. Демина Е.А. Лимфома Ходжкина: от Томаса Ходжкина до наших дней. Клиническая онкогематология. 2008;1(2):114–8.
    [Demina EA. Hodgkin’s lymphoma: from Thomas Hodgkin till present days. Klinicheskaya onkogematologiya. 2008;1(2):114–8. (In Russ)]
  7. DeVita VT Jr, Carbone PP. Treatment of Hodgkin’s disease. Med Ann Dist Columbia. 1967;36(4):232–4.
  8. Bonadonna G, Viviani S, Bonfante V, et al. Survival in Hodgkin’s disease patients—report of 25 years of experience at the Milan Cancer Institute. Eur J Cancer. 2005;41(7):998–1006. doi: 10.1016/j.ejca.2005.01.006.
  9. Canellos GP, Anderson JR, Propert KJ, et al. Chemotherapy of advanced Hodgkin’s disease with MOPP, ABVD, or MOPP alternating with ABVD. N Engl J Med. 1992;327(21):1478–84. doi: 10.1056/NEJM199211193272102.
  10. Diehl V, Franklin J, Pfreundschuh M, et al.; German Hodgkin’s Lymphoma Study Group. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348(24):2386–95. doi: 10.1056/NEJMoa022473.
  11. Federico M, Luminari S, Iannitto E, et al. ABVD compared with BEACOPP compared with CEC for the initial treatment of patients with advanced Hodgkin’s lymphoma: results from the HD2000 Gruppo Italiano per lo Studio dei Linfomi Trial. J Clin Oncol. 2009;27(5):805–11. doi: 10.1200/JCO.2008.17.0910.
  12. Carde P, Karrasch M, Fortpied C, et al. Eight Cycles of ABVD Versus Four Cycles of BEACOPPescalated Plus Four Cycles of BEACOPPbaseline in Stage III to IV, International Prognostic Score ≥ 3, High-Risk Hodgkin Lymphoma: First Results of the Phase III EORTC 20012 Intergroup Trial. J Clin Oncol. 2016;34(17):2028–36. doi: 10.1200/JCO.2015.64.5648.
  13. Bauer K, Skoetz N, Monsef I, et al. Comparison of chemotherapy including escalated BEACOPP versus chemotherapy including ABVD for patients with early unfavourable or advanced stage Hodgkin lymphoma. Cochrane Database Syst Rev. 2011;8:CD007941. doi: 10.1002/14651858.CD007941.pub2.
  14. De Bruin ML, Huisbrink J, Hauptmann M, et al. Treatment-related risk factors for premature menopause following Hodgkin lymphoma. Blood. 2008;111(1):101–8. doi: 10.1182/blood-2007-05-090225.
  15. Hodgson DC, Gilbert ES, Dores GM, et al. Long-term solid cancer risk among 5-year survivors of Hodgkin’s lymphoma. J Clin Oncol. 2007;25(12):1489–97. doi: 10.1200/JCO.2006.09.0936.
  16. Borchmann P, Haverkamp H, Diehl V, et al. Eight cycles of escalated-dose BEACOPP compared with four cycles of escalated-dose BEACOPP followed by four cycles of baseline-dose BEACOPP with or without radiotherapy in patients with advanced-stage Hodgkin’s lymphoma: final analysis of the HD12 trial of the German Hodgkin Study Group. J Clin Oncol. 2011;29(32):4234–42. doi: 10.1200/JCO.2010.33.9549.
  17. Hutchings M, Loft A, Hansen M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107(1):52–9. doi: 10.1182/blood-2005-06-2252.
  18. Johnson P, Federico M, Kirkwood A, et al. Adapted Treatment Guided by Interim PET-CT Scan in Advanced Hodgkin’s Lymphoma. N Engl J Med. 2016;374(25):2419–29. doi: 10.1056/NEJMoa1510093.
  19. Casasnovas O, Brice P, Bouabdallah R, et al. Randomized Phase III Study Comparing an Early PET Driven Treatment De-Escalation to a Not PET-Monitored Strategy in Patients with Advanced Stages Hodgkin Lymphoma: Interim Analysis of the AHL2011 Lysa Study. Blood. 2015;126(23):577. doi: 10.1182/blood.V126.23.577.577.
  20. Шахтарина С.В., Павлов В.В., Даниленко А.А., Афанасова Н.В. Лечение больных лимфомой Ходжкина с локальными стадиями I, II, IE, IIE; опыт медицинского радиологического научного центра. Онкогематология. 2007;2(4):36–46.
    [Shakhtarina SV, Pavlov VV, Danilenko AA, Afanasova NV. Management of patients with Hodgkin’s lymphoma with local stages I, II, IE, IIE: experience of the Medical radiological scientific center. Onkogematologiya. 2007;2(4):36–46. (In Russ)]
  21. Филатова Л.В. Особенности клинического течения и эффективность различных программ комбинированной химиотерапии у больных лимфомой Ходжкина с экстранодальными поражениями: Дис.… д-ра мед. наук. СПб., 2015. 325 с.
    [Filatova LV. Osobennosti klinicheskogo techeniya i effektivnost’ razlichnykh programm kombinirovannoi khimioterapii u bol’nykh limfomoi Khodzhkina s ekstranodal’nymi porazheniyami. (Clinical features and efficacy of different combined chemotherapy programs in patients with Hodgkin’s lymphoma with extranodal lesions.) [dissertation] Saint-Petersburg; 325 p. (In Russ)]
  22. Демина Е.А., Леонтьева А.А., Тумян Г.С. и др. Оптимизация терапии первой линии у пациентов с распространенными стадиями лимфомы Ходжкина: эффективность и токсичность интенсивной схемы ЕАСОРР-14 (опыт ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России). Клиническая онкогематология. 2017;10(4):443–52.
    [Demina EA, Leont’eva AA, Tumyan GS, et al. First-Line Therapy for Patients with Advanced Hodgkin’s Lymphoma: Efficacy and Toxicity of Intensive ЕАСОРР-14 Program (NN Blokhin National Medical Cancer Research Center Data). Clinical oncohematology. 2017;10(4):443–52. (In Russ)]
  23. Ларина Ю.В., Миненко С.В., Биячуев Э.Р. и др. Лечение распространенных форм лимфомы Ходжкина у подростков и молодых взрослых. Проблема эффективности и токсичности. Онкогематология. 2014;9(1):11–8. doi: 10.17650/1818-8346-2014-9-1-11-18.
    [Larina YuV, Minenko SV, Biyachuev ER, et al. Treatment of advanced Hodgkin lymphomas in adolescents and young adults: efficacy and toxicity issues. Oncohematology. 2014;9(1):11–8. doi: 10.17650/1818-8346-2014-9-1-11-18. (In Russ)]
  24. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J Clin Oncol. 2014;32(27):3059–67. doi: 10.1200/JCO.2013.54.8800.
  25. Engert A, Haverkamp H, Kobe C, et al.; German Hodgkin Study Group; Swiss Group for Clinical Cancer Research; Arbeitsgemeinschaft Medikamentose Tumortherapie. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–9. doi: 10.1016/S0140-6736(11)61940-5.
  26. Engert A, Plutschow A, Eich HT, et al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363(7):640–52. doi: 10.1056/NEJMoa1000067.
  27. Connors JM, Jurczak W, Straus DJ, et al.; ECHELON-1 Study Group. Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma. N Engl J Med. 2018;378(4):331–44. doi: 10.1056/NEJMoa1708984.
  28. Brockelmann PJ, Goergen H, Keller U, et al. Efficacy of Nivolumab and AVD in Early-Stage Unfavorable Classic Hodgkin Lymphoma: The Randomized Phase 2 German Hodgkin Study Group NIVAHL Trial. JAMA Oncol. 2020;6(6):872–80. doi: 10.1001/jamaoncol.2020.0750.
  29. Allen PB, Savas H, Evens AM, et al. Pembrolizumab followed by AVD in untreated early unfavorable and advanced-stage classical Hodgkin lymphoma. Blood. 2021;137(10):1318–26. doi: 10.1182/blood.2020007400.
  30. Borchmann P, Plutschow A, Kobe C, et al. PET-guided omission of radiotherapy in early-stage unfavourable Hodgkin lymphoma (GHSG HD17): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(2):223–34. doi: 10.1016/S1470-2045(20)30601-X.
  31. Casasnovas RO, Bouabdallah R, Brice Р, et al. PET-adapted treatment for newly diagnosed advanced Hodgkin lymphoma (AHL2011): a randomised, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 2019;20(2):202–15. doi: 10.1016/S1470-2045(18)30784-8.
  32. Carras S, Dubois B, Senecal D, et al. Interim PET Response-adapted Strategy in Untreated Advanced Stage Hodgkin Lymphoma: Results of GOELAMS LH 2007 Phase 2 Multicentric Trial. Clin Lymphoma Myel Leuk. 2018;18(3):191–8. doi: 10.1016/j.clml.2018.01.003.
  33. World Health Organization International Agency for Research on Cancer (IARC). GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. Available from: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx (accessed 25.05.2021).
  34. ЕМИСС. Государственная статистика [электронный документ]. Доступно по: https://www.fedstat.ru/indicator/31293. Ссылка активна на 25.05.2021.
    [Unified Interdepartmental Statistical Information System. Governmental statistics. [Internet] Available from https://www.fedstat.ru/indicator/31293 (accessed 05.2021). (In Russ)]
  35. Guermazi A, Brice P, de Kerviler EE, et al. Extranodal Hodgkin disease: spectrum of disease. Radiographics. 2001;21(1):161–79. doi: 10.1148/radiographics.21.1.g01ja02161.
  36. Kim MS, Park HY, Kho BG, et al. Artificial intelligence and lung cancer treatment decision: agreement with recommendation of multidisciplinary tumor board. Transl Lung Cancer Res. 2020;9(3):507–14. doi: 10.21037/tlcr.2020.04.11.
  37. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Международный прогностический индекс при распространенных стадиях лимфомы Ходжкина в условиях современной терапии. Клиническая онкогематология. 2013;6(3):294–302.
    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. International prognostic score in advanced Hodgkin’s lymphoma. Klinicheskaya onkogematologiya. 2013;6(3):294–302. (In Russ)]
  38. Dann EJ, Bar-Shalom R, Tamir A, et al. Risk-adapted BEACOPP regimen can reduce the cumulative dose of chemotherapy for standard and high-risk Hodgkin lymphoma with no impairment of outcome. Blood. 2007;109(3):905–9. doi: 10.1182/blood-2006-04-019901.
  39. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Hodgkin Lymphoma. Version 4.2021. Available from: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1439 (accessed 25.05.2021).

Langerhans Cell Histiocytosis in Adults: Treatment Opportunities of Today

VD Latyshev, EA Lukina

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Vitalii Dmitrievich Latyshev, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: LatyshevVD@gmail.com

For citation: Latyshev VD, Lukina EA. Langerhans Cell Histiocytosis in Adults: Treatment Opportunities of Today. Clinical oncohematology. 2021;14(4):444–54. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-444-454


ABSTRACT

Langerhans cell histiocytosis (LCH) is an extremely rare disease associated with tissue infiltration by pathological cells which are phenotypically similar to normal Langerhans cells. Standard therapy of LCH in adults has not been developed so far, due to the lack of sufficient evidence base for different treatment methods. In clinical practice, cytostatic treatment is applied along with new approaches using signaling pathway inhibitors involved in LCH pathogenesis. This literature review covers currently existing methods of LCH therapy in adults and their feasibility in clinical practice.

Keywords: Langerhans cell histiocytosis, treatment of histiocytosis, BRAFV600E mutation, MAPK.

Received: July 20, 2021

Accepted: September 23, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Лукина Е.А., Козловская А.С., Капланская И.Б., Мокеева Р.А. Гистиоцитоз X — Гистиоцитоз из клеток Лангерганса. Гематология и трансфузиология. 1990;35(9):10–5.
    [Lukina EA, Kozlovskaya AS, Kaplanskaya IB, Mokeeva RA. Histiocytosis X — Langerhans cell histiocytosis. Gematologiya i transfuziologiya. 1990;35(9):10–5. (In Russ)]
  2. Yu RC, Chu AC, Chu C, et al. Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet. 1994;343(8900):767–8. doi: 10.1016/S0140-6736(94)91842-2.
  3. Willman CL, Busque L, Griffith BB, et al. Langerhans’-Cell Histiocytosis (Histiocytosis X) — A Clonal Proliferative Disease. N Engl J Med. 1994;331(3):154–60. doi: 10.1056/NEJM199407213310303.
  4. Badalian-Very G, Vergilio J-A, Degar BA, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23. doi: 10.1182/blood-2010-04-279083.
  5. Braier J. Is Langerhans cell histiocytosis a neoplasia? Pediatr Blood Cancer. 2017;64(3):e26267. doi: 10.1002/pbc.26267.
  6. Egeler RM, Katewa S, Leenen PJM, et al. Langerhans cell histiocytosis is a neoplasm and consequently its recurrence is a relapse: In memory of Bob Arceci. Pediatr Blood Cancer. 2016;63(10):1704–12. doi: 10.1002/pbc.26104.
  7. Collin M, Bigley V, McClain KL, et al. Cell(s) of Origin of Langerhans Cell Histiocytosis. Hematol Oncol Clin North Am. 2015;29(5):825–38. doi: 10.1016/j.hoc.2015.06.003.
  8. Allen CE, Beverley PCL, Collin M, et al. The coming of age of Langerhans cell histiocytosis. Nat Immunol. 2020;21(1):1–7. doi: 10.1038/s41590-019-0558-z.
  9. Allen CE, Merad M, McClain KL. Langerhans-Cell Histiocytosis. N Engl J Med. 2018;379(9):856–68. doi: 10.1056/NEJMra1607548.
  10. Girschikofsky M, Arico M, Castillo D, et al. Management of adult patients with Langerhans cell histiocytosis: recommendations from an expert panel on behalf of Euro-Histio-Net. Orphanet J Rare Dis. 2013;8(1):72. doi: 10.1186/1750-1172-8-72.
  11. Key SJ, O’Brien CJ, Silvester KC, et al. Eosinophilic granuloma: resolution of maxillofacial bony lesions following minimal intervention. Report of three cases and a review of the literature. J Cranio-Maxillofac Surg. 2004;32(3):170–5. doi: 10.1016/j.jcms.2004.01.004.
  12. Namai T, Yusa H, Yoshida H. Spontaneous remission of a solitary eosinophilic granuloma of the mandible after biopsy: A case report. J Oral Maxillofac Surg. 2001;59(12):1485–7. doi: 10.1053/joms.2001.28290.
  13. Esen A, Dolanmaz D, Kalayci A, et al. Treatment of localized Langerhans’ cell histiocytosis of the mandible with intralesional steroid injection: report of a case. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2010;109(2):e53–8. doi: 10.1016/j.tripleo.2009.10.015.
  14. Watzke IM, Millesi W, Kermer C, et al. Multifocal eosinophilic granuloma of the jaw: Long-term follow-up of a novel intraosseous corticoid treatment for recalcitrant lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2000;90(3):317–22. doi: 10.1067/moe.2000.107535.
  15. Almuzayyen A, Elhassan W, Alabbadi M. Intralesional triamcinolone for treating mandibular Langerhans cell histiocytosis: A case report and literature review. Saudi J Med Med Sci. 2019;7(1):47. doi: 10.4103/sjmms.sjmms_84_17.
  16. Gadner H, Minkov M, Grois N, et al. Therapy prolongation improves outcome in multisystem Langerhans cell histiocytosis. Blood. 2013;121(25):5006–14. doi: 10.1182/blood-2012-09-455774.
  17. Minkov M. Multisystem Langerhans Cell Histiocytosis in Children. Pediatr Drugs. 2011;13(2):75–86. doi: 10.2165/11538540-000000000-00000.
  18. Cantu MA, Lupo PJ, Bilgi M, et al. Optimal Therapy for Adults with Langerhans Cell Histiocytosis Bone Lesions. PLoS One. 2012;7(8):e43257. doi: 10.1371/journal.pone.0043257.
  19. Tazi A, Lorillon G, Haroche J, et al. Vinblastine chemotherapy in adult patients with langerhans cell histiocytosis: a multicenter retrospective study. Orphanet J Rare Dis. 2017;12(1):95. doi: 10.1186/s13023-017-0651-z.
  20. Donadieu J, Bernard F, van Noesel M, et al. Cladribine and cytarabine in refractory multisystem Langerhans cell histiocytosis: results of an international phase 2 study. Blood. 2015;126(12):1415–23. doi: 10.1182/blood-2015-03-635151.
  21. Saven A, Figueroa ML, Piro LD, et al. 2-Chlorodeoxyadenosine to Treat Refractory Histiocytosis X. N Engl J Med. 1993;329(10):734–5. doi: 10.1056/NEJM199309023291013.
  22. Saven A, Burian C. Cladribine Activity in Adult Langerhans-Cell Histiocytosis. Blood. 1999;93(12):4125–30. doi: 10.1182/blood.V93.12.4125.
  23. Adam Z, Szturz P, Vanicek J, et al. Cladribine (2-chlorodeoxyadenosine) in frontline chemotherapy for adult Langerhans cell histiocytosis: A single-center study of seven cases. Acta Oncol (Madr). 2013;52(5):994–1001. doi: 10.3109/0284186X.2012.716164.
  24. Allen CE, Ladisch S, McClain KL. How I treat Langerhans cell histiocytosis. Blood. 2015;126(1):26–35. doi: 10.1182/blood-2014-12-569301.
  25. Friedman B, Cronstein B. Methotrexate mechanism in treatment of rheumatoid arthritis. Jt Bone Spine. 2019;86(3):301–7. doi: 10.1016/j.jbspin.2018.07.004.
  26. Steen AE, Steen KH, Bauer R, et al. Successful treatment of cutaneous Langerhans cell histiocytosis with low-dose methotrexate. Br J Dermatol. 2001;145(1):137–40. doi: 10.1046/j.1365-2133.2001.04298.x.
  27. Cao X, Li J, Zhao A, et al. Methotrexate and Cytarabine for Adult Patients with Newly Diagnosed Langerhans Cell Histiocytosis: A Single Arm, Single Center, Prospective Phase 2 Study. Blood. 2019;134(Suppl_1):294. doi: 10.1182/blood-2019-122220.
  28. Derenzini E, Stefoni V, Pellegrini C, et al. High efficacy of the MACOP-B regimen in the treatment of adult Langerhans cell histiocytosis, a 20 year experience. BMC Cancer. 2015;15(1):879. doi: 10.1186/s12885-015-1903-8.
  29. Tanimura S, Takeda K. ERK signalling as a regulator of cell motility. J Biochem. 2017;162(3):145–54. doi: 10.1093/jb/mvx048.
  30. Ducreux M, Chamseddine A, Laurent-Puig P, et al. Molecular targeted therapy of BRAF-mutant colorectal cancer. Ther Adv Med Oncol. 2019;11:175883591985649. doi: 10.1177/1758835919856494.
  31. Falini B, Martelli MP, Tiacci E. BRAF V600E mutation in hairy cell leukemia: from bench to bedside. Blood. 2016;128(15):1918–27. doi: 10.1182/blood-2016-07-418434.
  32. Emile J-F, Abla O, Fraitag S, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127(22):2672–81. doi: 10.1182/blood-2016-01-690636.
  33. Крылов А.С., Долгушин М.Б., Рыжков А.Д. и др. Болезнь Эрдгейма–Честера. Обзор литературы и клинический случай. Онкогематология. 2020;15(2):61–75. doi: 10.17650/1818-8346-2020-15-2-61-75.
    [Krylov AS, Dolgushin MB, Ryzhkov AD, et al. Erdheim-Chester disease. Literature review and clinical case. Oncohematology. 2020;15(2):61–75. doi: 10.17650/1818-8346-2020-15-2-61-75. (In Russ)]
  34. Chakraborty R, Burke TM, Hampton OA, et al. Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. Blood. 2016;128(21):2533–7. doi: 10.1182/blood-2016-08-733790.
  35. Diamond EL, Subbiah V, Lockhart AC, et al. Vemurafenib for BRAF V600–Mutant Erdheim-Chester Disease and Langerhans Cell Histiocytosis. JAMA Oncol. 2018;4(3):384. doi: 10.1001/jamaoncol.2017.5029.
  36. Haroche J, Cohen-Aubart F, Emile J-F, et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood. 2013;121(9):1495–500. doi: 10.1182/blood-2012-07-446286.
  37. Ruan G, Goyal G, Abeykoon JP, et al. Low-Dose BRAF-Inhibitors in the Treatment of Histiocytic Disorders with the BRAF-V600E Mutation. Blood. 2019;134(Suppl_1):5895. doi: 10.1182/blood-2019-124891.
  38. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N Engl J Med. 2012;367(18):1694–703. doi: 10.1056/NEJMoa1210093.
  39. Papapanagiotou M, Griewank KG, Hillen U, et al. Trametinib-Induced Remission of an MEK1-Mutated Langerhans Cell Histiocytosis. JCO Precis Oncol. 2017;1:1–5. doi: 10.1200/PO.16.00070.
  40. Lorillon G, Jouenne F, Baroudjian B, et al. Response to Trametinib of a Pulmonary Langerhans Cell Histiocytosis Harboring a MAP2K1 Deletion. Am J Respir Crit Care Med. 2018;198(5):675–8. doi: 10.1164/rccm.201802-0275LE.
  41. Sullivan RJ, Infante JR, Janku F, et al. First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study. Cancer Discov. 2018;8(2):184–95. doi: 10.1158/2159-8290.CD-17-1119.
  42. Smalley I, Smalley KSM. ERK Inhibition: A New Front in the War against MAPK Pathway–Driven Cancers? Cancer Discov. 2018;8(2):140–2. doi: 10.1158/2159-8290.CD-17-1355.
  43. Sosman MC. Xanthomatosis. J Am Med Assoc. 1932;98(2):110. doi: 10.1001/jama.1932.02730280018005.
  44. Kriz J, Eich H, Bruns F, et al. Radiotherapy in Langerhans cell histiocytosis – a rare indication in a rare disease. Radiat Oncol. 2013;8(1):233. doi: 10.1186/1748-717X-8-233.
  45. Olschewski T, Seegenschmiedt MH. Radiotherapy of Langerhans’ Cell Histiocytosis. Strahlenther Onkol. 2006;182(11):629–34. doi: 10.1007/s00066-006-1630-9.
  46. Greenberger JS, Crocker AC, Vawter G, et al. Results of Treatment of 127 Patients with Systemic Histiocytosis (Letterer-Siwe Syndrome, Schuller-Christian Syndrome and Multifocal Eosinophilic Granuloma). Medicine (Baltimore). 1981;60(5):311–38. doi: 10.1097/00005792-198109000-00001.
  47. Furudate S, Fujimura T, Kambayashi Y, et al. Successful Treatment of Adult Onset Langerhans Cell Histiocytosis with Bi-weekly Administration of Pegylated Interferon-α. Acta Derm Venereol. 2014;94(5):611–2. doi: 10.2340/00015555-1807.
  48. El-Safadi S, Dreyer T, Oehmke F, et al. Management of adult primary vulvar Langerhans cell histiocytosis: review of the literature and a case history. Eur J Obstet Gynecol Reprod Biol. 2012;163(2):123–8. doi: 10.1016/j.ejogrb.2012.03.010.
  49. Ibrahim IF, Naina HVK. Treatment of recurrent Langerhans cell histiocytosis of the vulva with lenalidomide. J Clin Oncol. 2013;31(15_suppl):e16555. doi: 10.1200/jco.2013.31.15_suppl.e16555.
  50. Лукина Е.А., Кузнецов В.П., Беляев Д.Л. и др. Лечение гистиоцитоза Х (гистиоцитоз из клеток Лангерганса) препаратами α-интерферона. Терапевтический архив. 1993;11(65):67–70.
    [Lukina EA, Kuznetsov VP, Belyaev DL, et al. The treatment of histiocytosis X (Langerhans-cell histiocytosis) with alpha-interferon preparations. Terapevticheskii arkhiv. 1993;11(65):67–70. (In Russ)]
  51. Szturz P, Adam Z, Rehak Z, et al. Lenalidomide proved effective in multisystem Langerhans cell histiocytosis. Acta Oncol (Madr). 2012;51(3):412–5. doi: 10.3109/0284186X.2011.631581.
  52. Zinn DJ, Grimes AB, Lin H, et al. Hydroxyurea: a new old therapy for Langerhans cell histiocytosis. Blood. 2016;128(20):2462–5. doi: 10.1182/blood-2016-06-721993.
  53. Fleisch H. Bisphosphonates: Mechanisms of Action. Endocr Rev. 1998;19(1):80–100. doi: 10.1210/edrv.19.1.0325.
  54. Sivendran S, Harvey H, Lipton A, et al. Treatment of Langerhans cell histiocytosis bone lesions with zoledronic acid: a case series. Int J Hematol. 2011;93(6):782–6. doi: 10.1007/s12185-011-0839-2.
  55. Lebret T, Casas A, Cavo M, et al. The use of bisphosphonates in the management of bone involvement from solid tumours and haematological malignancies – a European survey. Eur J Cancer Care (Engl). 2017;26(4):e12490. doi: 10.1111/ecc.12490.
  56. Montella L, Merola C, Merola G, et al. Zoledronic acid in treatment of bone lesions by Langerhans cell histiocytosis. J Bone Miner Metab. 2009;27(1):110–3. doi: 10.1007/s00774-008-0001-2.
  57. Elomaa I, Blomqvist C, Porkka L, et al. Experiences of clodronate treatment of multifocal eosinophilic granuloma of bone. J Intern Med. 1989;225(1):59–61. doi: 10.1111/j.1365-2796.1989.tb00038.x.
  58. Arzoo K, Sadeghi S, Pullarkat V. Pamidronate for Bone Pain from Osteolytic Lesions in Langerhans’-Cell Histiocytosis. N Engl J Med. 2001;345(3):225. doi: 10.1056/NEJM200107193450318.
  59. Weitzman R, Sauter N, Eriksen EF, et al. Critical review: Updated recommendations for the prevention, diagnosis, and treatment of osteonecrosis of the jaw in cancer patients—May 2006. Crit Rev Oncol Hematol. 2007;62(2):148–52. doi: 10.1016/j.critrevonc.2006.12.005.
  60. Makras P, Tsoli M, Anastasilakis AD, et al. Denosumab for the treatment of adult multisystem Langerhans cell histiocytosis. Metabolism. 2017;69:107–11. doi: 10.1016/j.metabol.2017.01.004.
  61. Pan Y, Xi R, Wang C, et al. Autologous hematopoietic stem cell transplantation for efficient treatment of multisystem, high-risk, BRAF V600E-negative Langerhans cell histiocytosis. J Int Med Res. 2019;47(9):4522–9. doi: 10.1177/0300060519864807.
  62. Braier J, Rosso D, Pollono D, et al. Symptomatic Bone Langerhans Cell Histiocytosis Treated at Diagnosis or After Reactivation With Indomethacin Alone. J Pediatr Hematol Oncol. 2014;36(5):e280–е284. doi: 10.1097/MPH.0000000000000165001.
  63. gov [Internet]. LCH-IV, International Collaborative Treatment Protocol for Children and Adolescents With Langerhans Cell Histiocytosis. Identifier NCT02205762. Available from: https://clinicaltrials.gov/ct2/show/NCT02205762 (accessed 21.07.2021).
  64. Kurtulmus N, Mert M, Tanakol R, et al. The pituitary gland in patients with Langerhans cell histiocytosis: a clinical and radiological evaluation. Endocrine. 2015;48(3):949–56. doi: 10.1007/s12020-014-0408-6.
  65. Kaltsas GA, Powles TB, Evanson J, et al. Hypothalamo-Pituitary Abnormalities in Adult Patients with Langerhans Cell Histiocytosis: Clinical, Endocrinological, and Radiological Features and Response to Treatment. J Clin Endocrinol Metab. 2000;85(4):1370–6. doi: 10.1210/jcem.85.4.6501.
  66. Abla O, Janka G, eds. Histiocytic Disorders. Cham: Springer International Publishing; 2018. doi: 10.1007/978-3-319-59632-7.
  67. Hutter C, Minkov M. Insights into the pathogenesis of Langerhans cell histiocytosis: the development of targeted therapies. ImmunoTarg Ther. 2016;5:81–91. doi: 10.2147/itt.s91058.

 

 

Molecular Profiling and Minimal Residual Disease Monitoring in Multiple Myeloma Patients: A Literature Review

AV Semyanikhina1,2, EE Tolstykh1

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 NP Bochkov Research Centre for Medical Genetics, 1 Moskvorech’e str., Moscow, Russian Federation, 115522

For correspondence: Aleksandra Vladimirovna Semyanikhina, MD, PhD, 23 Kashirskoye sh., Moscow, Russian Federation, Российская Федерация, 115478; Tel.: +7(926)371-21-56; e-mail: alexandra_silina@mail.ru

For citation: Semyanikhina AV, Tolstykh EE. Molecular Profiling and Minimal Residual Disease Monitoring in Multiple Myeloma Patients: A Literature Review. Clinical oncohematology. 2021;14(4):436–43. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-436-443


ABSTRACT

A personalized approach is a promising tool for malignant neoplasm (MN) treatment. Gaining success and benefit assessment of this approach were considerably facilitated by the implementation of the new generation sequencing techniques which allow to obtain comprehensive information on the tumor genome and transcriptome state with identifying potential biomarkers and targets for directed drug action. Despite the exponential growth in the number of sequenced tumor genomes, some of them are not subject of active clinical studies, although obviously and increasingly require optimization of current treatment regimens. One of these pathologies is multiple myeloma (MM). Considerable advances in its diagnosis and treatment have substantially increased survival rates. However, MM cannot be removed from the list of fatal diseases, yet. It is a neoplasm which needs to be further studied and explored for implementation of new treatment strategies, most of which would be based on pheno- and genotypic characteristics of tumor cells. The present review deals with the state of the art in the study of the MM molecular genetic profile, minimal residual disease (MRD) monitoring as well as potentials of the new generation sequencing for MRD diagnosis, prognosis, estimation, and search for predictors aimed at chemotherapy optimization.

Keywords: multiple myeloma, new generation sequencing, minimal residual disease.

Received: May 21, 2021

Accepted: August 29, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edition. Lyon: IARC Press; 2017. 592 p.
  2. Brigle K, Rogers B. Pathobiology and Diagnosis of Multiple Myeloma. Semin Oncol Nurs. 2017;33(3):225–36. doi: 10.1016/j.soncn.2017.05.012.
  3. Naymagon L, Abdul-Hay M. Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol Oncol. 2016;9(1):52. doi: 10.1186/s13045-016-0282-1.
  4. Castaneda O, Baz R. Multiple Myeloma Genomics – A Concise Review. Acta Med Acad. 2019;48(1):57–67. doi: 10.5644/ama2006-124.242.
  5. Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma. Nat Rev Dis Primers. 2017;3(1):17046. doi: 10.1038/nrdp.2017.46.
  6. Поддубная И.В., Савченко В.Г., Каприн А.Д. Клинические рекомендации. Множественная миелома. М., 2020. 222 с.
    [Poddubnaya IV, Savchenko VG, Kaprin AD. Klinicheskie rekomendatsii. Mnozhestvennaya mieloma. (Clinical guidelines. Multiple myeloma.) Moscow; 2020. 222 p. (In Russ)]
  7. Bolli N, Genuardi E, Ziccheddu B, et al. Next-Generation Sequencing for Clinical Management of Multiple Myeloma: Ready for Prime Time? Front Oncol. 2020;25(10):a189. doi: 10.3389/fonc.2020.00189.
  8. Chng WJ, Van Wier SA, Ahmann GJ, et al. A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood. 2005;106(6):2156–61. doi: 10.1182/blood-2005-02-0761.
  9. Lai JL, Zandecki M, Mary JY, et al. Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood. 1995;85(9):2490–7. doi: 10.1182/blood.v85.9.2490.bloodjournal8592490.
  10. Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12(5):335–48. doi: 10.1038/nrc3257.
  11. Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–5. doi: 10.1182/blood-2011-11-390658.
  12. Kumar SK, Rajkumar SV. The multiple myelomas – current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 2018;15(7):409–21. doi: 10.1038/s41571-018-0018-y.
  13. Binder M, Rajkumar SV, Ketterling RP, et al. Prognostic implications of abnormalities of chromosome 13 and the presence of multiple cytogenetic high-risk abnormalities in newly diagnosed multiple myeloma. Blood Cancer J. 2017;7(9):e600. doi: 10.1038/bcj.2017.83.
  14. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–21. doi: 10.1038/leu.2009.174.
  15. Bergsagel PL, Kuehl WM, Zhan F, et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106(1):296–303. doi: 10.1182/blood-2005-01-0034.
  16. Kuiper R, van Duin M, van Vliet MH, et al. Prediction of high- and low-risk multiple myeloma based on gene expression and the International Staging System. Blood. 2015;126(17):1996–2004. doi: 10.1182/blood-2015-05-644039.
  17. Shaughnessy JD Jr, Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109(6):2276–84. doi: 10.1182/blood-2006-07-038430.
  18. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467–72. doi: 10.1038/nature09837.
  19. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33. doi: 10.1056/NEJMoa1200710.
  20. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  21. Raab MS, Lehners N, Xu J, et al. Spatially divergent clonal evolution in multiple myeloma: overcoming resistance to BRAF inhibition. Blood. 2016;127(17):2155–7. doi: 10.1182/blood-2015-12-686782.
  22. Keats JJ, Chesi M, Egan JB, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120(5):1067–76. doi: 10.1182/blood-2012-01-405985.
  23. Zhao S, Choi M, Heuck C, et al. Serial exome analysis of disease progression in premalignant gammopathies. Leukemia. 2014;28(7):1548–52. doi: 10.1038/leu.2014.59.
  24. Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014;28(2):384–90. doi: 10.1038/leu.2013.199.
  25. Miller A, Asmann Y, Cattaneo L, et al. High somatic mutation and neoantigen burden are correlated with decreased progression-free survival in multiple myeloma. Blood Cancer J. 2017;7(9):e612. doi: 10.1038/bcj.2017.94.
  26. Benson DM Jr. Checkpoint inhibition in myeloma. Hematology Am Soc Hematol Educ Program. 2016;2016(1):528–33. doi: 10.1182/asheducation-2016.1.528.
  27. Walker BA, Boyle EM, Wardell CP, et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol. 2015;33(33):3911–20. doi: 10.1200/JCO.2014.59.1503.
  28. Mailankody S, Kazandjian D, Korde N, et al. Baseline mutational patterns and sustained MRD negativity in patients with high-risk smoldering myeloma. Blood Adv. 2017;1(22):1911–8. doi: 10.1182/bloodadvances.2017005934.
  29. Manier S, Sacco A, Leleu X, et al. Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012;2012:1–5. doi: 10.1155/2012/157496.
  30. Misund K, Keane N, Stein CK, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia. 2020;34(1):322–6. doi: 10.1038/s41375-019-0543-4.
  31. Sive JI, Feber A, Smith D, et al. Global hypomethylation in myeloma is associated with poor prognosis. Br J Haematol. 2016;172(3):473–5. doi: 10.1111/bjh.13506.
  32. Bollati V, Fabris S, Pegoraro V, et al. Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis. 2009;30(8):1330–5. doi: 10.1093/carcin/bgp149.
  33. Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69. doi: 10.1038/nrc1840.
  34. Van Beers EH, van Vliet MH, Kuiper R, et al. Prognostic Validation of SKY92 and Its Combination With ISS in an Independent Cohort of Patients With Multiple Myeloma. Clin Lymphoma Myel Leuk. 2017;17(9):555–62. doi: 10.1016/j.clml.2017.06.020.
  35. Paiva B, Vidriales MB, Cervero J, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. 2008;112(10):4017–23. doi: 10.1182/blood-2008-05-159624.
  36. Paiva B, Martinez-Lopez J, Vidriales MB, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol. 2011;29(12):1627–33. doi: 10.1200/JCO.2010.33.1967.
  37. Paiva B, Gutierrez NC, Rosinol L, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. 2012;119(3):687–91. doi: 10.1182/blood-2011-07-370460.
  38. Munshi NC, Avet-Loiseau H, Rawstron AC, et al. Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma: A Meta-analysis. JAMA Oncol. 2017;3(1):28–35. doi: 10.1001/jamaoncol.2016.3160.
  39. Gambella M, Omede P, Spada S, et al. Minimal residual disease by flow cytometry and allelic-specific oligonucleotide real-time quantitative polymerase chain reaction in patients with myeloma receiving lenalidomide maintenance: A pooled analysis. Cancer. 2019;125(5):750–60. doi: 10.1002/cncr.31854.
  40. Perrot A, Lauwers-Cances V, Corre J, et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood. 2018;132(23):2456–64. doi: 10.1182/blood-2018-06-858613.
  41. Mateos MV, Dimopoulos MA, Cavo M, et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N Engl J Med. 2018;378(6):518–28. doi: 10.1056/NEJMoa1714678.
  42. Langerak AW, Groenen PJ, Bruggemann M, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26(10):2159–71. doi: 10.1038/leu.2012.246.
  43. Van der Velden VH, Cazzaniga G, Schrauder A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21(4):604–11. doi: 10.1038/sj.leu.2404586.
  44. Corradini P, Voena C, Tarella C, et al. Molecular and clinical remissions in multiple myeloma: role of autologous and allogeneic transplantation of hematopoietic cells. J Clin Oncol. 1999;17(1):208–15. doi: 10.1200/JCO.1999.17.1.208.
  45. Sarasquete ME, Garcia-Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90(10):1365–72.
  46. Martinez-Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9. doi: 10.1182/blood-2014-01-550020.
  47. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e346. doi: 10.1016/S1470-2045(16)30206-6.
  48. Lohr JG, Kim S, Gould J, et al. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med. 2016;8(363):363ra147. doi: 10.1126/scitranslmed.aac7037.
  49. Mishima Y, Paiva B, Shi J, et al. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Rep. 2017;19(1):218–24. doi: 10.1016/j.celrep.2017.03.025.
  50. Manier S, Park J, Capelletti M, et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9(1):1691. doi: 10.1038/s41467-018-04001-5.
  51. Zamagni E, Nanni C, Mancuso K, et al. PET/CT Improves the Definition of Complete Response and Allows to Detect Otherwise Unidentifiable Skeletal Progression in Multiple Myeloma. Clin Cancer Res. 2015;21(19):4384–90. doi: 10.1158/1078-0432.CCR-15-0396.
  52. Паива Б., Видриалес М.Б., Алмейда Х. и др. Оценка эффекта лечения при множественной миеломе: клиническое значение мониторинга МОЗ. Иммунология гемопоэза. 2012;10(1):34–77.
    [Paiva B, Vidriales MB, Almeida J, et al. Treatment response assessment in multiple myeloma: clinical significance of MRD monitoring. Immunologiya gemopoeza. 2012;10(1):34–77. (In Russ)]
  53. Kumar SK. Targeted Management Strategies in Multiple Myeloma. Cancer J. 2019;25(1):59–64. doi: 10.1097/PPO.0000000000000353.
  54. Multiple Myeloma Research Consortium. Myeloma-Developing Regimens Using Genomics (MyDRUG). Available from: https://clinicaltrials.gov/ct2/show/NCT03732703 (accessed 2.06.2021).

Biological Mechanisms of Sustaining Deep Molecular Response in Chronic Myeloid Leukemia Upon Withdrawal of Tyrosine Kinase Inhibitors

EYu Chelysheva, MA Guryanova, AG Turkina

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Ekaterina Yurevna Chelysheva, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: denve@bk.ru

For citation: Chelysheva EYu, Guryanova MA, Turkina AG. Biological Mechanisms of Sustaining Deep Molecular Response in Chronic Myeloid Leukemia Upon Withdrawal of Tyrosine Kinase Inhibitors. Clinical oncohematology. 2021;14(4):427–35. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-427-435


ABSTRACT

The feasibility of treatment-free follow-up in chronic myeloid leukemia (CML) patients is an important issue in the era of tyrosine kinase inhibitors (TKI). The clinical trials of TKI withdrawal in case of a stable deep molecular response prove the probability of sustaining molecular remission in 40–60 % of patients. Treatment-free remission (TFR), even under persistence of residual leukemia cells, suggests that there are special biologically determined mechanisms of tumor cell proliferation control, which are independent of BCR-ABL kinase activity. The search for factors determining differences in residual leukemia clone kinetics upon TKI withdrawal is an objective which is crucial for understanding TFR as a new biological phenomenon. The review provides worldwide evidence dealing with the study of immunological, genetic, and other biological mechanisms underlying the control of minimal residual disease upon TKI discontinuation in CML patients.

Keywords: chronic myeloid leukemia, tyrosine kinase inhibitors, treatment-free remission, deep molecular response, minimal residual disease.

Received: May 10, 2021

Accepted: August 23, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Bower H, Bjorkholm M, Dickman PW, et al. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol. 2016;34(24):2851–7. doi: 10.1200/JCO.2015.66.2866.
  2. Cross NCP, White HE, Colomer D, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29(5):999–1003. doi: 10.1038/leu.2015.29.
  3. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. doi: 10.1038/s41375-020-0776-2.
  4. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. doi: 10.1182/blood-2013-05-501569.
  5. Castagnetti F, Gugliotta G, Breccia M, et al. Long-term outcome of chronic myeloid leukemia patients treated frontline with imatinib. Leukemia. 2015;29(9):1823–31. doi: 10.1038/leu.2015.152.
  6. Claudiani S, Gatenby A, Szydlo R, et al. MR4 sustained for 12 months is associated with stable deep molecular responses in chronic myeloid leukemia. Haematologica. 2019;104(11):2206–14. doi: 10.3324/haematol.2018.214809.
  7. Hehlmann R, Muller MC, Lauseker M, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014;32(5):415–23. doi: 10.1200/JCO.2013.49.9020.
  8. Туркина А.Г., Новицкая Н.В., Голенков А.К. и др. Регистр больных хроническим миелолейкозом в Российской Федерации: от наблюдательного исследования к оценке эффективности терапии в клинической практике. Клиническая онкогематология. 2017;10(3):390–401. doi: 10.21320/2500-2139-2017-10-3-390-401.
    [Turkina AG, Novitskaya NV, Golenkov AK, et al. Chronic Myeloid Leukemia Patient Registry in the Russian Federation: From Observational Studies to the Efficacy Evaluation in Clinical Practice. Clinical oncohematology. 2017;10(3):390–401. doi: 10.21320/2500-2139-2017-10-3-390-401. (In Russ)]
  9. Graham SM, Jorgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99(1):319–25. doi: 10.1182/blood.v99.1.319.
  10. Copland M, Hamilton A, Elrick LJ, et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood. 2006;107(11):4532–9. doi: 10.1182/blood-2005-07-2947.
  11. Goldman J, Gordon M. Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk Lymphoma. 2006;47(1):1–7. doi: 10.1080/10428190500407996.
  12. Goldman JM. Chronic myeloid leukemia: molecular targeting as a basis for therapy. Rev Clin Exp Hematol. 2004;7(1):64–72.
  13. Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood. 2017;129(12):1595–606. doi: 10.1182/blood-2016-09-696013.
  14. Zhou H, Xu R. Leukemia stem cells: the root of chronic myeloid leukemia. Protein Cell. 2015;6(6):403–12. doi: 10.1007/s13238-015-0143-7.
  15. Melo JV, Ross DM. Minimal residual disease and discontinuation of therapy in chronic myeloid leukemia: can we aim at a cure? Hematology Am Soc Hematol Educ Program. 2011;2011(1):136–42. doi: 10.1182/asheducation-2011.1.136.
  16. Tang M, Gonen M, Quintas-Cardama A, et al. Dynamics of chronic myeloid leukemia response to long-term targeted therapy reveal treatment effects on leukemic stem cells. Blood. 2011;118(6):1622–31. doi: 10.1182/blood-2011-02-339267.
  17. Roeder I, Horn M, Glauche I, et al. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat Med. 2006;12(10):1181–4. doi: 10.1038/nm1487.
  18. Branford S, Seymour JF, Grigg A, et al. BCR-ABL messenger RNA levels continue to decline in patients with chronic phase chronic myeloid leukemia treated with imatinib for more than 5 years and approximately half of all first-line treated patients have stable undetectable BCR-ABL using strict sensitivity criteria. Clin Cancer Res. 2007;13(23):7080–5. doi: 10.1158/1078-0432.CCR-07-0844.
  19. Mughal T, Goldman J. Chronic myeloid leukemia: current status and controversies. Oncology. 2004;18(7):837–44.
  20. Etienne G, Guilhot J, Rea D, et al. Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J Clin Oncol. 2017;35(3):298–305. doi: 10.1200/JCO.2016.68.2914.
  21. Pagani IS, Shanmuganathan N, Kok CH, et al. Long-term treatment-free remission of chronic myeloid leukemia with falling levels of residual leukemic cells. Leukemia. 2018;32(12):2572–9. doi: 10.1038/s41375-018-0264-0.
  22. Петрова А.Н., Челышева Е.Ю., Туркина А.Г. Ремиссия без лечения у больных хроническим миелолейкозом: обзор литературы. Онкогематология. 2019;14(3):12–22. doi: 10.17650/1818-8346-2019-14-3-12-22.
    [Petrova AN, Chelysheva EYu, Turkina AG. Treatment-free remission in patients with chronic myeloid leukemia: literature review. Onkogematologiya. 2019;14(3):12–22. doi: 10.17650/1818-8346-2019-14-3-12-22. (In Russ)]
  23. Туркина А.Г., Петрова А.Н., Челышева Е.Ю. и др. Результаты проспективного исследования по наблюдению больных хроническим миелолейкозом после прекращения терапии ингибиторами тирозинкиназ. Гематология и трансфузиология. 2020;65(4):370–85. doi: 10.35754/0234-5730-2020-65-4-370-385.
    [Turkina AG, Petrova AN, Chelysheva EYu, et al. A prospective study of the monitoring of patients with chronic myeloid leukemia upon withdrawal of tyrosine kinase inhibitor therapy. Gematologiya i transfuziologiya. 2020;65(4):370–85. doi: 10.35754/0234-5730-2020-65-4-370-385. (In Russ)]
  24. Шухов О.А., Петрова А.Н., Челышева Е.Ю. и др. Факторы сохранения молекулярной ремиссии после прекращения терапии ингибиторами тирозинкиназ у пациентов с хроническим миелолейкозом: результаты нерандомизированного проспективного клинического исследования. Клиническая онкогематология. 2021;14(1):1–12. doi: 10.21320/2500-2139-2021-14-1-1-12.
    [Shukhov OA, Petrova AN, Chelysheva EYu, et al. Factors for Sustaining Molecular Remission after Discontinuation of Tyrosine Kinase Inhibitors Therapy in Chronic Myeloid Leukemia: Results of Non-Randomized Prospective Clinical Trial. Clinical oncohematology. 2021;14(1):1–12. doi: 10.21320/2500-2139-2021-14-1-1-12. (In Russ)]
  25. Rousselot P, Charbonnier A, Cony-Makhoul P, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol. 2014;32(5):424–30. doi: 10.1200/JCO.2012.48.5797.
  26. Ross DM, Branford S, Seymour JF, et al. Patients with chronic myeloid leukaemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukaemia by DNA PCR. Leukemia. 2010;24(10):1719–24. doi: 10.1038/leu.2010.185.
  27. Rousselot P, Loiseau C, Delord M, et al. A report on 114 patients who experienced treatment free remission in a single institution during a 15 years period: long term follow-up, late molecular relapses and second attempts. Blood. 2019;134(1):27. doi: 10.1182/blood-2019-129919.
  28. Imagawa J, Tanaka H, Okada M, et al. DADI Trial Group. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): a multicentre phase 2 trial. Lancet Haematol. 2015;2(12):528–35. doi: 10.1016/S2352-3026(15)00196-9.
  29. Takahashi N, Nishiwaki K, Nakaseko Ch, et al. Treatment-free remission after two-year consolidation therapy with nilotinib in patients with chronic myeloid leukemia: STAT2 trial in Japan. 2018;103(11):1835–42. doi: 10.3324/haematol.2018.194894.
  30. Ilander M, Olsson-Stromberg U, Schlums H, et al. Increased proportion of mature NK cells is associated with successful imatinib discontinuation in chronic myeloid leukemia. Leukemia. 2017;31(5):1108–16. doi: 10.1038/leu.2016.360.
  31. Rea D, Henry G, Khaznadar Z, et al. Natural killer-cell counts are associated with molecular relapse-free survival after imatinib discontinuation in chronic myeloid leukemia: the IMMUNOSTIM study. Haematologica. 2017;102(8):1368–77. doi: 10.3324/haematol.2017.165001.
  32. Borg C, Terme M, Taieb J, et al. Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest. 2004;114(4):379–88. doi: 10.1172/JCI21102.
  33. Yoshimoto T, Mizoguchi I, Katagiri S, et al. Immunosurveillance markers may predict patients who can discontinue imatinib therapy without relapse. OncoImmunology. 2014;3(5):28861. doi: 10.4161/onci.28861.
  34. Mizoguchi I, Yoshimoto T, Katagiri S, et al. Sustained upregulation of effector natural killer cells in chronic myeloid leukemia after discontinuation of imatinib. Cancer Sci. 2013;201(104):1146–53. doi: 10.1111/cas.12216.
  35. Ohyashiki K, Katagiri S, Tauchi T, et al. Increased natural killer cells and decreased CD3+CD8 +CD62L+ T cells in CML patients who sustained complete molecular remission after discontinuation of imatinib. Br J Haematol. 2012;157(2):254–6. doi: 10.1111/j.1365-2141.2011.08939.x.
  36. Blake SJ, Lyons AB, Hughes TP. Nilotinib inhibits the Src-family kinase LCK and T-cell function in vitro. J Cell Mol Med. 2009;13(3):599–601. doi: 10.1111/j.1582-4934.2009.00500_1.x.
  37. Schade AE, Schieven GL, Townsend R, et al. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood. 2008;111(3):1366–77. doi: 10.1182/blood-2007-04-084814.
  38. Mustjoki S, Ekblom M, Arstila TP, et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia. 2009;23(8):1398–405. doi: 10.1038/leu.2009.46.
  39. Molldrem JJ, Lee PP, Wang C, et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med. 2000;6(9):1018–23. doi: 10.1038/79526.
  40. Ross DM, Branford S, Seymour JF, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515–22. doi: 10.1182/blood-2013-02-483750.
  41. Saussele S, Richter J, Guilhot J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018;19(6):747–57. doi: 10.1016/S1470-2045(18)30192-X.
  42. Burchert A, Wolfl S, Schmidt M, et al. Interferon-alpha, but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and a specific T-cell response in chronic myeloid leukemia. Blood. 2003;101(1):259–64. PMID: 12393722.
  43. Essers MA, Offner S, Blanco-Bose WE, et al. IFN alpha activates dormant haematopoietic stem cells in vivo. Nature. 2009;458(7240):904–8. doi: 10.1038/nature07815.
  44. Burchert A, Muller MC, Kostrewa P, et al. Sustained molecular response with interferon alfa maintenance after induction therapy with imatinib plus interferon alfa in patients with chronic myeloid leukemia. J Clin Oncol. 2010;28(8):1429–35. doi: 10.1200/JCO.2009.25.5075.
  45. Hochhaus A, Burchert A, Saussele S, et al. Nilotinib vs nilotinib plus pegylated interferon α (Peg-IFN) induction and nilotinib or Peg-IFN maintenance therapy for newly diagnosed BCR-ABL1 positive chronic myeloid leukemia patients in chronic phase (TIGER study): the addition of Peg-IFN is associated with higher rates of deep molecular response. Blood. 2019;134(1):495. doi: 10.1182/blood-2019-130043.
  46. Nicolini FE, Etienne G, Huguet F, et al. The combination of nilotinib + pegylated IFN alpha 2a provides somewhat higher cumulative incidence rates of MR4.5 at M36 versus nilotinib alone in newly diagnosed CP CML patients. Updated results of the Petals phase III national study. Blood. 2019;134(1):494. doi: 10.1182/blood-2019-123674.
  47. Schutz C, Inselmann S, Sausslele S, et al. Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML. Leukemia. 2017;31(4):829–36. doi: 10.1038/leu.2017.9.
  48. Ross DM, Hughes TP, Melo JV. Do we have to kill the last CML cell? Leukemia. 2011;25(2):193–200. doi: 10.1038/leu.2010.197.
  49. Ilaria S, Pagani IS, Dang P, et al. Lineage of measurable residual disease in patients with chronic myeloid leukemia in treatment-free remission. Leukemia. 2020;34(4):1052–61. doi: 10.1038/s41375-019-0647-x.
  50. Herrmann H, Sadovnik I, Cerny-Reiterer S, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014;123(25):3951–62. doi: 10.1182/blood-2013-10-536078.
  51. Raspadori D, Pacelli P, Sicuranza A, et al. Flow cytometry assessment of CD26+ leukemic stem cells in peripheral blood: a simple and rapid new diagnostic tool for chronic myeloid leukemia. Cytometry B Clin Cytom. 2019;96(4):294–9. doi: 10.1002/cyto.b.21764.
  52. Valent P, Sadovnik I, Racil Z, et al. DPPIV (CD26) as a novel stem cell marker in Ph+ chronic myeloid leukaemia. Eur J Clin Invest. 2014;44(12):1239–45. doi: 10.1111/eci.12368.
  53. Blatt K, Menzl I, Eisenwort G, et al. Phenotyping and target expression profiling of CD34+/CD38– and CD34+/CD38+ stem- and progenitor cells in acute lymphoblastic leukemia. Neoplazia. 2018;20(6):632–42. doi: 10.1016/j.neo.2018.04.004.
  54. Cui J, Zhu Z, Liu S, et al. Monitoring of leukemia stem cells in chronic myeloid leukemia patients. Leuk Lymphoma. 2018;59(9):2264–6. doi: 10.1080/10428194.2017.1421755.
  55. Bocchia M, Sicuranza A, Abruzzese E, et al. Residual peripheral blood CD26+ leukemic stem cells in chronic myeloid leukemia patients during TKI therapy and during treatment-free remission. Front Oncol. 2018;8:194. doi: 10.3389/fonc.2018.00194.
  56. Iwasaki M, Liedtke M, Gentles A, et al. Cleary. CD93 marks a non-quiescent human Leukemia Stem Cell population and is required for development of MLL-rearranged acute myeloid leukemia. Cell Stem Cell. 2015;17(4):412–21. doi: 10.1016/j.stem.2015.08.008.
  57. Kinstrie R, Horne GA, Morrison H, et al. CD93 is expressed on chronic myeloid leukemia stem cells and identifies a quiescent population, which persists after tyrosine kinase inhibitor therapy. Leukemia. 2020;34(6):1613–25. doi: 10.1038/s41375-019-0684-5.
  58. Agarwal P, Bhatia R. Influence of bone marrow microenvironment on leukemic stem cells: breaking up an intimate relationship. Adv Cancer Res. 2015;127:227–52. doi: 10.1016/bs.acr.2015.04.007.
  59. Park M, Park C.J, Cho YW, et al. Alterations in the bone marrow microenvironment may elicit defective hematopoiesis: a comparison of aplastic anemia, chronic myeloid leukemia, and normal bone marrow. Exp Hematol. 2017;45:56–63. doi: 10.1016/j.exphem.2016.09.009.
  60. Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self reinforcing leukemic niche. Cell Stem Cell. 2013;13(3):285–99. doi: 10.1016/j.stem.2013.06.009.
  61. Schepers K, Campbell TB, Passegue E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell. 2015;16(3):254–67. doi: 10.1016/j.stem.2015.02.014.
  62. Петинати Н.А., Шипунова И.Н., Бигильдеев А.Е. и др. Изменения в клетках-предшественницах стромального микроокружения костного мозга больных хроническим миелолейкозом в дебюте заболевания и в ходе лечения. Гематология и трансфузиология. 2019;64(4):424–35. doi: 10.35754/0234-5730-2019-64-4-424-435.
    [Petinati NA, Shipunova IN, Bigildeev AE, et al. Changes in stromal progenitor cells derived from bone marrow in patients with chronic myelogenous leukaemia at the onset of the disease and during treatment. Gematologiya i transfuziologiya. 2019;64(4):424–35. doi: 10.35754/0234-5730-2019-64-4-424-435. (In Russ)]
  63. Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematol. 2019;6(7):e375–e383. doi: 10.1016/S2352-3026(19)30094-8.
  64. Claudiani S, Apperley JF, Gale RP, et al. E14a2 BCR-ABL1 transcript is associated with a higher rate of treatment-free remission in individuals with chronic myeloid leukemia after stopping tyrosine kinase inhibitor therapy. Haematologica. 2017;102(8):e297–e299. doi: 10.3324/haematol.2017.168740.
  65. D’Adda M, Farina M, Schieppati F, et al. The e13a2 BCR-ABL transcript negatively affects sustained deep molecular response and the achievement of treatment-free remission in patients with chronic myeloid leukemia who receive tyrosine kinase inhibitors. Cancer. 2019;125(10):1674–82. doi: 10.1002/cncr.31977.
  66. Lucas CM, Harris RJ, Giannoudis A, et al. Chronic myeloid leukemia patients with the e13a2 BCR-ABL fusion transcript have inferior responses to imatinib compared to patients with the e14a2 transcript. Haematologica. 2009;94(10):1362–7. doi: 10.3324/haematol.2009.009134.
  67. Lee SE, Choi SY, Song HY, et al. Imatinib withdrawal syndrome and longer duration of imatinib have a close association with a lower molecular relapse after treatment discontinuation: the KID study. Haematologica. 2016;101(6):717–23. doi: 10.3324/haematol.2015.139899.
  68. Schmidt M, Hochhaus A, Konig-Merediz SA, et al. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy. J Clin Oncol. 2000;18(19):3331–8. doi: 10.1200/JCO.2000.18.19.3331.
  69. Schmidt M, Hochhaus A, Nitsche A, et al. Expression of nuclear transcription factor interferon consensus sequence binding protein in chronic myeloid leukemia correlates with pretreatment risk features and cytogenetic response to interferon-alpha. Blood. 2001;97(11):3648–50. doi: 10.1182/blood.v97.11.3648.
  70. La Nasa G, Caocci G, Littera R, et al. Homozygosity for killer immunoglobin-like receptor haplotype A predicts complete molecular response to treatment with tyrosine kinase inhibitors in chronic myeloid leukemia patients. Exp Hematol. 2013;41(5):424–31. doi: 10.1016/j.exphem.2013.01.008.
  71. Caocci G, Martino B, Greco M, et al. Killer immunoglobulin-like receptors can predict TKI treatment-free remission in chronic myeloid leukemia patients. Exp Hematol. 2015;43(12):1015–8. doi: 10.1016/j.exphem.2015.08.004.
  72. Caocci G, Greco M, Delogu G, et al. Telomere length shortening is associated with treatment-free remission in chronic myeloid leukemia patients. J Hematol Oncol. 2016;9(1):63. doi: 10.1186/s13045-016-0293-y.
  73. Смирнихина С.А., Лавров А.В., Адильгереева Э.П. и др. Клиническое значение полноэкзомных исследований миелоидных опухолей методом секвенирования следующего поколения. Клиническая онкогематология. 2013;6(1):11–9.
    [Smirnikhina SA, Lavrov AV, Adilgereeva EP, et al. Clinical significance of the whole-exome studies in myeloid neoplasms using next­generation sequencing. Klinicheskaya onkogematologiya. 2013;6(1):11–9. (In Russ)]
  74. Smirnikhina S, Chelysheva E, Lavrov A, et al. Genetic markers of stable molecular remission in chronic myeloid leukemia after targeted therapy discontinuation. Leuk Lymphoma. 2018;59(10):2512–5. doi: 10.1080/10428194.2018.1434880.
  75. Mori S, Vagge E, le Coutre P, et al. Age and dPCR can predict relapse in CML patients who discontinued imatinib: the ISAV study. Am J Hematol. 2015;90(10):910–4. doi: 10.1002/ajh.24120.
  76. Nicolini FE, Dulucq S, Boureau P, et al. Evaluation of residual disease and TKI duration are critical predictive factors for molecular recurrence after stopping imatinib first-line in chronic phase CML patients. Clin Cancer Res. 2019;25(22):6606–13. doi: 10.1158/1078-0432.CCR-18-3373.
  77. Mahon FX, Boquimpani C, Kim DW, et al. Treatment-free remission after second-line nilotinib treatment in patients with chronic myeloid leukemia in chronic phase: results from a single-group, phase 2, open-label study. Ann Intern Med. 2018;168(7):461–70. doi: 10.7326/M17-1094.
  78. Ross DM, Masszi T, Gomez Casares TM, et al. Durable treatment-free remission in patients with chronic myeloid leukemia in chronic phase following frontline nilotinib: 96-week update of the ENESTfreedom study. J Cancer Res Clin Oncol. 2018;144(5):945–54. doi: 10.1007/s00432-018-2604-x.
  79. Kimura S, Imagawa J, Kazunori M, et al. Treatment-free remission after first-line dasatinib discontinuation in patients with chronic myeloid leukaemia (first-line DADI trial): a single-arm, multicentre, phase 2 trial. Lancet Haematol. 2020;7(3):e218–e225. doi: 10.1016/S2352-3026(19)30235-2.
  80. Kumagai T, Nakaseko C, Nishiwaki K, et al. Dasatinib cessation after deep molecular response exceeding 2 years and natural killer cell transition during dasatinib consolidation. Cancer Sci. 2018;109(1):182–92. doi: 10.1111/cas.13430.
  81. Shah NP, Garcia-Gutierrez V, Jimenez-Velasco A, et al. Dasatinib discontinuation in patients with chronic-phase chronic myeloid leukemia and stable deep molecular response: the DASFREE study. Leuk Lymphoma. 2020;61(3):650–9. doi: 10.1080/10428194.2019.1675879.
  82. Rea D, Nicolini FE, Tulliez M, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood. 2017;129(7):846–54. doi: 10.1182/blood-2016-09-742205.
  83. Nagafuji K, Matsumura I, Shimose T, et al. Cessation of nilotinib in patients with chronic myelogenous leukemia who have maintained deep molecular responses for 2 years: a multicenter phase 2 trial, stop nilotinib (NILSt). Int J Hematol. 2019;110(6):675–82. doi: 10.1007/s12185-019-02736-5.