Prognostic Value of the Degree of Tumor Tissue Infiltration by CD15-Positive Granulocytes in Nodular Sclerosis Classical Hodgkin’s Lymphoma

EA Perfilova, DA D’yakonov, MS Minaev

Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027

For correspondence: Elena Aleksandrovna Perfilova, PhD in Veterinary Medicine, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027; Tel.: +7(996)896-08-67; e-mail: lperf78@gmail.com

For citation: Perfilova EA, D’yakonov DA, Minaev MS. Prognostic Value of the Degree of Tumor Tissue Infiltration by CD15-Positive Granulocytes in Nodular Sclerosis Classical Hodgkin’s Lymphoma. Clinical oncohematology. 2022;15(3):253–8. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-253-258


ABSTRACT

Classical Hodgkin’s lymphoma (cHL) nodular sclerosis type is one of the most common malignant lymphoproliferative diseases among younger people. The tumor is considered to be potentially curable. However, despite successful application of standard treatment methods, primary resistance and relapses occur. At present, many researchers focus on studying the value of tumor microenvironment in the prognosis of the course and progression of cHL, aiming at identifying new therapeutic targets. The present paper shows that the relative count of CD15-positive granulocytes in patients with favorable course of the disease is significantly lower than in therapy-refractory patients. The cut-off of tumor microenvironment cells expressing CD15 was 8 %. The data obtained provide the basis for determining prognostic value of CD15-positive granulocytes in nodular sclerosis cHL and presenting this cell pool as a potential therapeutic target.

Keywords: classical Hodgkin’s lymphoma, nodular sclerosis, CD15 granulocytes, tumor microenvironment.

Received: April 8, 2022

Accepted: June 17, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Демина Е.А., Тумян Г.С., Моисеева Т.Н. Лимфома Ходжкина. Клинические рекомендации. Современная онкология. 2020;22(2):6–33.
    [Demina EA, Tumyan GS, Moiseeva TN. Hodgkin’s lymphoma. Clinical guidelines. Sovremennaya onkologiya. 2020;22(2):6–33. (In Russ)]
  2. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018. 356 с.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. 356 р. (In Russ)]
  3. Мочкин Н.Е., Н.Е., Саржевский В.О., Дубинина Ю.Н. и др. Результаты лечения классической лимфомы Ходжкина, включающего высокодозную химиотерапию с трансплантацией аутологичных гемопоэтических стволовых клеток, в НМХЦ им. Н.И. Пирогова. Клиническая онкогематология. 2018;11(3):234–40. doi: 10.21320/2500-2139-2018-11-3-234-240.
    [Mochkin NE, Sarzhevskii VO, Dubinina YuN, et. al. Outcome of Classical Hodgkin’s Lymphoma Treatment Based on High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantation: The Experience in the NI Pirogov Russian National Medical Center of Surgery. Clinical oncohematology. 2018;11(3):234–40. doi: 10.21320/2500-2139-2018-11-3-234-240. (In Russ)]
  4. Беляева Е.С., Сусулева Н.А., Валиев Т.Т. Значение интенсивной химиотерапии для лечения детей с распространенными стадиями лимфомы Ходжкина. РМЖ. Мать и дитя. 2020;3(2):149–54. doi: 10.32364/2618-8430-2020-3-2-149-154.
    [Belyaeva ES, Susuleva NA, Valiev TT. The importance of intensive chemotherapy for advanced Hodgkin lymphoma in children. Russian Journal of Woman and Child Health. 2020;3(2):149–54. doi: 10.32364/2618-8430-2020-3-2-149-154. (In Russ)]
  5. Олейник Е.К., Шибаев М.И., Игнатьев К.С. Микроокружение опухоли: формирование иммунного профиля. Медицинская иммунология. 2020;22(2):207–20.
    [Oleinik EK, Shibaev MI, Ignat’ev KS. Tumor microenvironment: the formation of the immune profile. Meditsinskaya immunologiya. 2020;22(2):207–20. (In Russ)]
  6. Sionov RV, Fridlender ZG, Granot Z. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenviron. 2015;8(3):125–58. doi: 10.1007/s12307-014-0147-5.
  7. Uribe-Querol E, Rosales C. Neutrophils in Cancer: Two Sides of the Same Coin. J Immunol Res. 2015;2015:983698. doi: 10.1155/2015/983698.
  8. Лисяный Н.И., Лисяный А.А. Нейтрофилы и онкогенез. Клиническая онкология. 2018;8(1):40–5.
    [Lisyanyi NI, Lisyanyi AA. Neutrophils and oncogenesis. Klinicheskaya onkologiya. 2018;8(1):40–5. (In Russ)]
  9. Потапнев М.П., Гущина Л.М., Мороз Л.А. Фенотипическая и функциональная гетерогенность субпопуляций нейтрофилов в норме и при патологии. Иммунология. 2019;5:84–96.
    [Potapnev MP, Gushchina LM, Moroz LA. Phenotypic and functional heterogeneity of neutrophil subpopulations in norm and pathology. Immunologiya. 2019;5:84–96. (In Russ)]
  10. Слуханчук Е.В. NETs и онкологический процесс. Акушерство, гинекология и репродукция. 2021;15(1):107–16. doi: 17749/2313-7347/ob.gyn.rep.2021.204.
    [Slukhanchuk EV. NETs and oncologic process. Akusherstvo, ginekologia i reprodukcia. 2021;15(1):107–16. doi: 10.17749/2313-7347/ob.gyn.rep.2021.204. (In Russ)]
  11. Fridlender ZG, Albelda SM. Tumor-associated neutrophils: Friend or foe? Carcinogenesis. 2012;33(5):949–55. doi: 10.1093/carcin/bgs123.
  12. Francischetti IMB, Alejo JC, Sivanandham R, et al. Neutrophil and Eosinophil Extracellular Traps in Hodgkin Lymphoma. HemaSphere. 2021;5(9):e633. doi: 10.1097/HS9.0000000000000633.
  13. Romano A, Pavoni C, Di Raimondo F, et al. The neutrophil to lymphocyte ratio (NLR) and the presence of large nodal mass are independent predictors of early response: A subanalysis of the prospective phase II PET-2-adapted HD0607 trial. Cancer Med. 2020;9(23):8735–46. doi: 10.1002/cam4.3396.
  14. Manfroi B, Moreaux J, Righini C, et al. Tumor-associated neutrophils correlate with poor prognosis in diffuse large B-cell lymphoma patients. Blood Cancer J. 2018;8(7):66. doi: 10.1038/s41408-018-0099-y.

The Efficacy of Brentuximab Vedotin in Relapsed/Refractory Classical Hodgkin’s Lymphoma and Quality of Life: Results of a Multi-Center Observational Prospective Study in the Context of Real Clinical Practice

TI Ionova1,2, AA Amdiev3, MI Andrievskikh4, EA Baryakh5, EV Vasilev6, MV Volkov7, EM Volodicheva8, VV Ivanov9, OV Kaverina10, KD Kaplanov11, TYu Klitochenko12, VI Kurakin13, DG Lazareva10, OG Larionova7, KV Lepik14, IB Lysenko15, VYa Melnichenko16, RI Minullina17, OV Mironov18, EN Misyurina5, NB Mikhailova14, NE Mochkin16, TP Nikitina1,2, TS Petrova17, NM Porfireva1, OA Rukavitsyn19, AA Samoilova16, RN Safin17, PI Simashova19, EG Smirnova16, NA Trenina13, NV Fadeeva4, GN Khusainova17, VL Chang18, TV Shelekhova20, DG Sherstnev20

1 Multinational Center for Quality of Life Research, 1 Artilleriiskaya str., Saint Petersburg, Russian Federation, 191014

2 NI Pirogov Clinic for High Medical Technology, Saint Petersburg State University, 154 Fontanki emb., Saint Petersburg, Russian Federation, 198103

3 VM Efetov Crimea Republican Clinical Oncology Dispensary, 49A Bespalova str., Simferopol, Russian Federation, 295007

4 Chelyabinsk Regional Clinical Center for Oncology and Nuclear Medicine, 42 Blyukhera str., Chelyabinsk, Russian Federation, 454087

5 Municipal Clinical Hospital No. 52, 5 Marshala Katukova str., Moscow, Russian Federation, 123181

6 Krasnoyarsk Krai Clinical Hospital, 3A Partizana Zheleznyaka str., Krasnoyarsk, Russian Federation, 660022

7 Primorsky Krai Oncology Dispensary, 59 Russkaya str., Vladivistok, Russian Federation, 690105

8 Tula Regional Clinical Hospital, 1A bld. 1 Yablochkova str., Tula, Russian Federation, 300053

9 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

10 Altai Krai Oncology Dispensary, 110 Zmeinogorskii passage, Barnaul, Russian Federation, 656045

11 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

12 Volgograd Regional Clinical Oncology Dispensary, 78 Zemlyachki str., Volgograd, Russian Federation, 400138

13 Clinical Oncology Dispensary, 9 bld. 1 Zavertyaeva str., Omsk, Russian Federation, 644013

14 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

15 National Medical Cancer Research Center, 63 bld. 8 14th line str., Rostov-on-Don, Russian Federation, 344037

16 NI Pirogov Russian National Medical Center of Surgery, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203

17 Tatarstan Republican Clinical Oncology Dispensary, 29 bld. A Sibirskii passage, Kazan, Russian Federation, 420029

18 Tambov Regional Clinical Oncology Dispensary, 29B Moskovskaya str., Tambov, Russian Federation, 392000

19 NN Burdenko Central Military Clinical Hospital, 3 Gospital’naya sq., Moscow, Russian Federation, 105229

20 VI Razumovskii Saratov State Medical University, 6/9 53rd Strelkovoi Divizii str., Saratov, Russian Federation, 410028

For correspondence: Tatyana Pavlovna Nikitina, MD, PhD, 1 Artilleriiskaya str., Saint Petersburg, Russian Federation, 191014; e-mail: qolife@mail.ru

For citation: Ionova TI, Amdiev AA, Andrievskikh MI, et al. The Efficacy of Brentuximab Vedotin in Relapsed/Refractory Classical Hodgkin’s Lymphoma and Quality of Life: Results of a Multi-Center Observational Prospective Study in the Context of Real Clinical Practice. Clinical oncohematology. 2022;15(1):42–53. (In Russ).

DOI: 10.21320/2500-2139-2022-15-1-42-53


ABSTRACT

Aim. To study the quality of life and symptoms, to assess the clinical effect and treatment safety in relapsed/refractory classical Hodgkin’s lymphoma (r/r cHL) patients treated with brentuximab vedotin (BV) as ≥ 3rd-line therapy in the context of real clinical practice.

Materials & Methods. The study enrolled 62 r/r cHL patients after the second- and subsequent-line chemotherapies, who are either ineligible for autologous hematopoietic stem cell transplantation (auto-HSCT) at the time of their enrollment into the study or after the failure of high-dose chemotherapy (HDCT) with auto-HSCT. The median age was 31 years; 46.8 % of patients were women. The patients received BV 1.8 mg/kg intravenously every 3 weeks. Clinical parameters, quality of life, and symptoms were assessed prior to BV therapy and in 3, 6, 9, 12, and 15 months after therapy onset. The RAND SF-36 form was used to assess the quality of life, and the ESAS-R tool was applied to report on symptoms.

Results. Objective response was observed in 68.3 % of patients, 40 % out of them showed complete response. The median progression-free survival was 10.6 months (95% confidence interval 7.4–12.9 months). Safety profile corresponded to the published data. Adverse events of grade 3/4 were identified in 1.6 % of patients. In the period of 15 months after therapy onset, quality of life improvement or stabilization was reported based on all the scales of RAND SF-36 (GEE, < 0.001), and symptom abatement was proved based on ESAS-R total score (GEE, < 0.001).

Conclusion. In the context of real clinical practice, BV appeared to be effective in r/r cHL patients either after the second- or subsequent-line chemotherapies or after the failure of HDCT with auto-HSCT. The study demonstrated that BV was well tolerated by the patients. BV therapy contributes to the improvement of r/r cHL patients’ quality of life. Positive changes in quality of life and symptoms on BV therapy testify to its patient-assessed efficacy.

Keywords: classical Hodgkin’s lymphoma, relapsed/refractory form, brentuximab vedotin, quality of life, real clinical practice.

Received: June 29, 2021

Accepted: November 19, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Демина Е.А. Руководство по лечению лимфомы Ходжкина. М.: Ремедиум, 2018. 72 с.
    [Demina EA. Rukovodstvo po lecheniyu limfomy Khodzhkina. (Guidelines for the treatment of Hodgkin’s lymphoma.) Moscow: Remedium Publ.; 2018. 72 p. (In Russ)]
  2. Engert A, Younes A. Hematologic malignancies: Hodgkin lymphoma (2nd ed.). A Comprehensive Update on Diagnostics and Clinics. Berlin Heidelberg: Springer; 2015. 437 p. doi: 10.1007/978-3-319-12505-3.
  3. Canellos G, Anderson J, Propert K, et al. Chemotherapy of Advanced Hodgkin’s Disease with MOPP, ABVD, or MOPP Alternating with ABVD. N Engl J Med. 1992;327(21):1478–84. doi: 10.1056/nejm199211193272102.
  4. Rancea M, Monsef I, von Tresckow B, et al. High-dose chemotherapy followed by autologous stem cell transplantation for patients with relapsed/refractory Hodgkin lymphoma. Cochrane Database Syst Rev. 2013;(6):CD009411. doi: 10.1002/14651858.CD009411.pub2.
  5. Демина Е.А. Брентуксимаб ведотин: новые возможности лечения рецидивов и рефрактерных форм лимфомы Ходжкина. Клиническая онкогематология. 2016;9(4):398–405. doi: 10.21320/2500-2139-2016-9-4-398-405.
    [Demina EA. Brentuximab Vedotin: New Possibilities for Treatment of Relapses and Refractory Hodgkin’s Lymphomas. Clinical oncohematology. 2016;9(4):398–405. doi: 10.21320/2500-2139-2016-9-4-398-405. (In Russ)]
  6. Yi J, Kim S, Kim W. Brentuximab vedotin: clinical updates and practical guidance. Blood Res. 2017;52(4):243–53. doi: 10.5045/br.2017.52.4.243.
  7. Gravanis I, Tzogani K, Hennik P, et al. The European Medicines Agency Review of Brentuximab Vedotin (Adcetris) for the Treatment of Adult Patients With Relapsed or Refractory CD30+ Hodgkin Lymphoma or Systemic Anaplastic Large Cell Lymphoma: Summary of the Scientific Assessment of the Committee for Medicinal Products for Human Use. 2015;21(1):102–9. doi: 10.1634/theoncologist.2015-0276.
  8. Younes A, Bartlett N, Leonard J, et al. Brentuximab Vedotin (SGN-35) for Relapsed CD30-Positive Lymphomas. N Engl J Med. 2010;363(19):1812–21. doi: 10.1056/nejmoa1002965.
  9. Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9. doi: 10.1200/JCO.2011.38.0410.
  10. Forero‐Torres A, Fanale M, Advani R, et al. Brentuximab Vedotin in Transplant‐Naive Patients with Relapsed or Refractory Hodgkin Lymphoma: Analysis of Two Phase I Studies. Oncologist. 2012;17(8):1073–80. doi: 10.1634/theoncologist.2012-0133.
  11. Chen R, Gopal A, Smith S, et al. Five-year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. 2016;128(12):1562–6. doi: 10.1182/blood-2016-02-699850.
  12. Zinzani P, Corradini P, Gianni A, et al. Brentuximab Vedotin in CD30-Positive Lymphomas: A SIE, SIES, and GITMO Position Paper. Clin Lymphoma Myeloma Leuk. 2015;15(9):507–13. doi: 10.1016/j.clml.2015.06.008.
  13. Rothe A, Sasse S, Goergen H, et al. Brentuximab vedotin for relapsed or refractory CD30+ hematologic malignancies: the German Hodgkin Study Group experience. 2012;120(7):1470–2. doi: 10.1182/blood-2012-05-430918.
  14. Gibb A, Jones C, Bloor A, et al. Brentuximab vedotin in refractory CD30+ lymphomas: a bridge to allogeneic transplantation in approximately one quarter of patients treated on a Named Patient Programme at a single UK center. 2012;98(4):611–4. doi: 10.3324/haematol.2012.069393.
  15. Perrot A, Monjanel H, Bouabdallah R, et al. Brentuximab vedotin as single agent in refractory or relapsed CD30-positive Hodgkin lymphoma: the French name patient program experience in 241 patients. 2014;99(1):498.
  16. Zinzani P, Viviani S, Anastasia A, et al. Brentuximab vedotin in relapsed/refractory Hodgkin’s lymphoma: the Italian experience and results of its use in daily clinical practice outside clinical trials. 2013;98(8):1232–6. doi: 10.3324/haematol.2012.083048.
  17. Linendoll N, Saunders T, Burns R, et al. Health-related quality of life in Hodgkin lymphoma: a systematic review. Health Qual Life Outcomes. 2016;14(1):114. doi: 10.1186/s12955-016-0515-6.
  18. Kreissl S, Muller H, Goergen H, et al. Health-Related Quality of Life in Patients With Hodgkin Lymphoma: A Longitudinal Analysis of the German Hodgkin Study Group. J Clin Oncol. 2020;38(25):2839–48. doi: 10.1200/jco.19.03160.
  19. Parsons S. Longitudinal Assessment of Health-Related Quality of Life Among Survivors of Hodgkin Lymphoma: It Is About Time! J Clin Oncol. 2020;38(25):2821–3. doi: 10.1200/jco.20.01585.
  20. Pophali P, Larson M, Rosenthal A, et al. The association of health behaviors with quality of life in lymphoma survivors. Leuk Lymphoma. 2020;62(2):271–80. doi: 10.1080/10428194.2020.1830389.
  21. Novik A, Salek S, Ionova T. Guidelines. Patient-reported outcomes in. Genoa: Forum service editore, 2012. Available from: https://ehaweb.org/assets/Uploads/EHA-Guideline-libro.pdf (accessed 24.06.2021).
  22. Chen R, Bartlett N, Brice P, et al. Patient-reported outcomes of brentuximab vedotin in Hodgkin lymphoma and anaplastic large-cell lymphoma. Onco Targets Ther. 2016;9:2027–34. doi: 10.2147/ott.s96175.
  23. Ramsey S, Nademanee A, Masszi T, et al. Quality of life results from a phase 3 study of brentuximab vedotin consolidation following autologous haematopoietic stem cell transplant for persons with Hodgkin lymphoma. Br J Haematol. 2016;175(5):860–7. doi: 10.1111/bjh.14316.
  24. Parker C, Woods B, Eaton J, et al. Brentuximab vedotin in relapsed/refractory Hodgkin lymphoma post-autologous stem cell transplant: a cost-effectiveness analysis in Scotland. J Med Econ. 2016;20(1):8–18. doi: 10.1080/13696998.2016.1219358.
  25. Eisenhauer E, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. doi: 10.1016/j.ejca.2008.10.026.
  26. Moghbel M, Kostakoglu L, Zukotynski K, et al. Response Assessment Criteria and Their Applications in Lymphoma: Part 1. J Nucl Med. 2016;57(6):928–35. doi: 10.2967/jnumed.115.166280.
  27. Common Terminology Criteria for Adverse Evens (CTCAE 4) Version 4.0. Available from: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/Archive/CTCAE_4.0_2009-05-29_QuickReference_8.5х11.pdf (accessed 24.06.2021).
  28. Charlson M, Pompei P, Ales K, MacKenzie C. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 10.1016/0021-9681(87)90171-8.
  29. Hays RD, Sherbourne CD, Mazel RM. User’s Manual for Medical Outcomes Study (MOS) Core measures of health-related quality of life. RAND Corporation, 1995. Available from: www.rand.org (accessed 24.06.2021).
  30. Mols F, Aaronson N, Vingerhoets A, et al. Quality of life among long-term non-Hodgkin lymphoma survivors. 2007;109(8):1659–67. doi: 10.1002/cncr.22581.
  31. Новик А.А., Ионова Т.И., Гандек Б. и др. Показатели качества жизни населения Санкт-Петербурга. Проблемы стандартизации в здравоохранении. 2003;8:14–26.
    [Novik AA, Ionova TI, Gandek B, et al. Quality of life indicators for Saint Petersburg citizens. Problemy standartizatsii v zdravookhranenii. 2003;8:14–26. (In Russ)]
  32. Bruera E, Kuehn N, Miller M, et al. The Edmonton Symptom Assessment System (ESAS): A Simple Method for the Assessment of Palliative Care Patients. J Palliat Care. 1991;7(2):6–9. doi: 10.1177/082585979100700202.
  33. Chen R, Gopal AK, Smith SE, et al. Five-Year Survival Data Demonstrating Durable Responses From a Pivotal Phase 2 Study of Brentuximab Vedotin in Patients With Relapsed or Refractory Hodgkin Lymphoma. Clin Adv Hematol Oncol. 2016;4(2 Suppl 1):6.
  34. Gopal A, Chen R, Smith S, et al. Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. 2015;125(8):1236–43. doi: 10.1182/blood-2014-08-595801.
  35. Kuruvilla J, Ramchandren R, Santoro A, et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): an interim analysis of a multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 2021;22(4):512–24. doi: 10.1016/s1470-2045(21)00005-x.
  36. Gandolfi L, Pellegrini C, Casadei B, et al. Long‐Term Responders After Brentuximab Vedotin: Single‐Center Experience on Relapsed and Refractory Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma Patients. 2016;21(12):1436–41. doi: 10.1634/theoncologist.2016-0112.
  37. Donato E, Fernandez-Zarzoso M, Hueso J, de la Rubia J. Brentuximab vedotin in Hodgkin lymphoma and anaplastic large-cell lymphoma: an evidence-based review. Onco Targets Ther. 2018;11:4583–90. doi: 10.2147/ott.s141053.

Results of the Russian Multi-Center Cooperative Prospective-Retrospective Observational Program for Hodgkin’s Lymphoma Treatment RNWOHG-HD1

IS Moiseev1, SM Alekseev2,24, NB Mikhailova1, KD Kaplanov3,21, MV Demchenkova4, LV Anchukova5, VV Baikov1, AM Belyaev2, YuA Vasil’eva6, NP Volkov1, YuN Vinogradova7, AYu Zaritskey8, AE Zdorov9, NV Il’in7, LO Kashintseva10, EV Kondakova1, PV Kotselyabina1, VA Lapin11, KV Lepik1, IV Lesechko12, VM Moiseenko13, GM Manikhas14, NV Medvedeva15, YuA Oleinik2, ES Pavlyuchenko16, KS Parfenova17, EV Patrakova18, AV Proidakov19, DV Saidullaeva20, EV Tarasova21, AL Shipaeva22, TV Shneider23, BV Afanasyev1

1 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

2 NN Petrov National Medical Cancer Research Center, 68 Leningradskaya str., Pesochnyi settlement, Saint Petersburg, Russian Federation, 197758

3 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

4 Regional Oncology Dispensary, 32 Frunze str., Irkutsk, Russian Federation, 664035

5 Vologda Regional Clinical Hospital, 17 Lechebnaya str., Vologda, Russian Federation, 160002

6 Pskov Oncology Dispensary, 15a Vokzalnaya str., Pskov, Russian Federation, 180004

7 AM Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya str., Pesochnyi settlement, Saint Petersburg, Russian Federation, 197758

8 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

9 VA Baranov Republican Hospital, 3 Pirogova str. (Perevalka district), Petrozavodsk, Republic of Karelia, Russian Federation, 185002

10 Tula Regional Clinical Hospital, 1a Yablochkova str., Tula, Russian Federation, 300053

11 Yaroslavl Regional Clinical Hospital, 7 Yakovlevskaya str., Yaroslavl, Russian Federation, 150062

12 Stavropol Krai Clinical Oncology Dispensary, 182a Oktyabrskaya str., Stavropol, Russian Federation, 355047

13 Saint Petersburg Clinical Applied Research Center for Specialized Types of Medical Care (Oncology), 68A Leningradskaya str., Pesochnyi settlement, Saint Petersburg, Russian Federation, 197758

14 Municipal Clinical Oncology Dispensary, 3/5 2-ya Berezovaya alley, Saint Petersburg, Russian Federation, 197022

15 Municipal Clinical Hospital No. 31, 3 Dinamo pr-t, Saint Petersburg, Russian Federation, 197110

16 EE Eikhvald Clinic, II Mechnikov North-Western State Medical University, 41 bld. 7 Kirochnaya str., Saint Petersburg, Russian Federation, 191123

17 Samara Regional Clinical Oncology Dispensary, 11 Solnechnaya str., Syzran, Russian Federation, 446020

18 Vologda Regional Clinical Hospital No. 2, 15 Danilova str., Cherepovets, Vologda Region, Russian Federation, 162602

19 Komi Republican Oncology Dispensary, 46 Nyuvchimskoe sh., Krasnozatonskii town settlement, Syktyvkar, Republic of Komi, Russian Federation, 167904

20 Tver Regional Oncology Dispensary, 57/37 15 let Oktyabrya str., Tver, Russian Federation, 170008

21 First Republican Clinical Hospital, 57 Votkinskoe sh., Izhevsk, Russian Federation, 426039

22 Volgograd Regional Clinical Oncology Dispensary, 78 Zemlyachki str., Volgograd, Russian Federation, 400138

23 Leningrad Regional Clinical Hospital, 45 bld. 2A Lunacharskogo pr-t, Saint Petersburg, Russian Federation, 194291

24 LD Roman Leningrad Regional Clinical Oncology Dispensary, 2 Zaozernaya str., Kuzmolovskii settlement, Vsevolozhskii district, Leningrad Region, Russian Federation, 188663

For correspondence: Ivan Sergeevich Moiseev, MD, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: 8(812)338-62-65; e-mail: moisiv@mail.ru

For citation: Moiseev IS, Alekseev SM, Mikhailova NB, et al. Results of the Russian Multi-Center Cooperative Prospective-Retrospective Observational Program for Hodgkin’s Lymphoma Treatment RNWOHG-HD1. Clinical oncohematology. 2021;14(4):455–65. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-455-465


ABSTRACT

Aim. The observational program was aimed at obtaining data on classical Hodgkin’s lymphoma (cHL) incidence in the Russian Federation, therapy options, and clinical outcomes of treatment. The aim of the prospective part of the program was to standardize the approaches to therapy and to compare its outcomes with off-protocol treatment.

Materials & Methods. The prospective-retrospective observational program for Hodgkin’s lymphoma treatment engaged 32 regional and federal centers. It included 218 patients, 21 out of them were included into the prospective part of the RNWOHG-HD1 (Russian North-West Oncology and Hematology Group — Hodgkin Disease Study 1) program. The median age was 36 years (range 22–87 years). cHL stages I/II were identified in 48 % of patients, III/IV stages were reported in 52 % of patients. The prospective part of the program used escalating protocol in patients with stages I/IIA and without risk factors and de-escalating protocol in patients with advanced stages. Overall (OS) and progression-free (PFS) survivals were analyzed in 160 and 152 patients, respectively. PET-CT was used to assess the response in 33 % of patients.

Results. The study used the following first-line chemotherapy regimens: ABVD in 42 %, BEACOPPst in 11 %, BEACOPP-14 in 17 %, BEACOPPesc in 25 %, and EACOPP in 1 % of cases. After the completion of first-line therapy objective response rate was 91 % including 61 % of complete responses. Response structure did not significantly differ in the groups of non-intensive therapy (ABVD and BEACOPPst), intensified regimens (BEACOPP-14, BEACOPPesc, and EACOPP), and treatment according to the RNWOHG-HD1 protocol (91 %, 92 %, and 96 %, respectively; = 0.7226). In the total cohort the 3-year OS was 97 % (95% confidence interval [95% CI] 94–99 %), PFS was 87 % (95% CI 80–92 %). The 3-year PFS did not differ in ABVD, BEACOPPst, BEACOPP-14, BEACOPPesc, and RNWOHG-HD1 recipients (= 0.37). International Prognostic Score (IPS) yielded significant results in PFS prediction for patients with IPS score of 5–6, but not for those with IPS score of 1–4 (= 0.0028).

Conclusion. The observational program showed that the majority of participating centers use the risk-adapted ABVD/BEACOPPesc approach which explains no difference in PFS being found with the use of these chemotherapy options. The study demonstrated the need for PET-CT to assess the response since the CT alone cannot distinguish between complete and partial responses in a considerable number of patients. The prospective unified program for cHL treatment may well be implemented in the Russian Federation.

Keywords: classical Hodgkin’s lymphoma, multi-center study, ABVD, BEACOPP, positron emission tomography, risk-adapted therapy.

Received: May 25, 2021

Accepted: August 30, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Савченко В.Г. Алгоритмы диагностики и протоколы лечения заболеваний системы крови. М.: Практика, 2018. Т. 2. С. 39–57.
    [Savchenko VG. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika Publ.; 2018. Vol. 2. pр. 39–57. (In Russ)]
  2. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. doi: 10.3322/caac.21387.
  3. Злокачественные новообразования в России в 2018 г. (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019. 250 с.
    [Kaprin AD, Starinskii VV, Petrova GV, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2018 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; 250 р. (In Russ)]
  4. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. (In Russ)]
  5. Roman E, Smith AG. Epidemiology of lymphomas. Histopathology. 2011;58(1):4–14. doi: 10.1111/j.1365-2559.2010.03696.x.
  6. Демина Е.А. Лимфома Ходжкина: от Томаса Ходжкина до наших дней. Клиническая онкогематология. 2008;1(2):114–8.
    [Demina EA. Hodgkin’s lymphoma: from Thomas Hodgkin till present days. Klinicheskaya onkogematologiya. 2008;1(2):114–8. (In Russ)]
  7. DeVita VT Jr, Carbone PP. Treatment of Hodgkin’s disease. Med Ann Dist Columbia. 1967;36(4):232–4.
  8. Bonadonna G, Viviani S, Bonfante V, et al. Survival in Hodgkin’s disease patients—report of 25 years of experience at the Milan Cancer Institute. Eur J Cancer. 2005;41(7):998–1006. doi: 10.1016/j.ejca.2005.01.006.
  9. Canellos GP, Anderson JR, Propert KJ, et al. Chemotherapy of advanced Hodgkin’s disease with MOPP, ABVD, or MOPP alternating with ABVD. N Engl J Med. 1992;327(21):1478–84. doi: 10.1056/NEJM199211193272102.
  10. Diehl V, Franklin J, Pfreundschuh M, et al.; German Hodgkin’s Lymphoma Study Group. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348(24):2386–95. doi: 10.1056/NEJMoa022473.
  11. Federico M, Luminari S, Iannitto E, et al. ABVD compared with BEACOPP compared with CEC for the initial treatment of patients with advanced Hodgkin’s lymphoma: results from the HD2000 Gruppo Italiano per lo Studio dei Linfomi Trial. J Clin Oncol. 2009;27(5):805–11. doi: 10.1200/JCO.2008.17.0910.
  12. Carde P, Karrasch M, Fortpied C, et al. Eight Cycles of ABVD Versus Four Cycles of BEACOPPescalated Plus Four Cycles of BEACOPPbaseline in Stage III to IV, International Prognostic Score ≥ 3, High-Risk Hodgkin Lymphoma: First Results of the Phase III EORTC 20012 Intergroup Trial. J Clin Oncol. 2016;34(17):2028–36. doi: 10.1200/JCO.2015.64.5648.
  13. Bauer K, Skoetz N, Monsef I, et al. Comparison of chemotherapy including escalated BEACOPP versus chemotherapy including ABVD for patients with early unfavourable or advanced stage Hodgkin lymphoma. Cochrane Database Syst Rev. 2011;8:CD007941. doi: 10.1002/14651858.CD007941.pub2.
  14. De Bruin ML, Huisbrink J, Hauptmann M, et al. Treatment-related risk factors for premature menopause following Hodgkin lymphoma. Blood. 2008;111(1):101–8. doi: 10.1182/blood-2007-05-090225.
  15. Hodgson DC, Gilbert ES, Dores GM, et al. Long-term solid cancer risk among 5-year survivors of Hodgkin’s lymphoma. J Clin Oncol. 2007;25(12):1489–97. doi: 10.1200/JCO.2006.09.0936.
  16. Borchmann P, Haverkamp H, Diehl V, et al. Eight cycles of escalated-dose BEACOPP compared with four cycles of escalated-dose BEACOPP followed by four cycles of baseline-dose BEACOPP with or without radiotherapy in patients with advanced-stage Hodgkin’s lymphoma: final analysis of the HD12 trial of the German Hodgkin Study Group. J Clin Oncol. 2011;29(32):4234–42. doi: 10.1200/JCO.2010.33.9549.
  17. Hutchings M, Loft A, Hansen M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107(1):52–9. doi: 10.1182/blood-2005-06-2252.
  18. Johnson P, Federico M, Kirkwood A, et al. Adapted Treatment Guided by Interim PET-CT Scan in Advanced Hodgkin’s Lymphoma. N Engl J Med. 2016;374(25):2419–29. doi: 10.1056/NEJMoa1510093.
  19. Casasnovas O, Brice P, Bouabdallah R, et al. Randomized Phase III Study Comparing an Early PET Driven Treatment De-Escalation to a Not PET-Monitored Strategy in Patients with Advanced Stages Hodgkin Lymphoma: Interim Analysis of the AHL2011 Lysa Study. Blood. 2015;126(23):577. doi: 10.1182/blood.V126.23.577.577.
  20. Шахтарина С.В., Павлов В.В., Даниленко А.А., Афанасова Н.В. Лечение больных лимфомой Ходжкина с локальными стадиями I, II, IE, IIE; опыт медицинского радиологического научного центра. Онкогематология. 2007;2(4):36–46.
    [Shakhtarina SV, Pavlov VV, Danilenko AA, Afanasova NV. Management of patients with Hodgkin’s lymphoma with local stages I, II, IE, IIE: experience of the Medical radiological scientific center. Onkogematologiya. 2007;2(4):36–46. (In Russ)]
  21. Филатова Л.В. Особенности клинического течения и эффективность различных программ комбинированной химиотерапии у больных лимфомой Ходжкина с экстранодальными поражениями: Дис.… д-ра мед. наук. СПб., 2015. 325 с.
    [Filatova LV. Osobennosti klinicheskogo techeniya i effektivnost’ razlichnykh programm kombinirovannoi khimioterapii u bol’nykh limfomoi Khodzhkina s ekstranodal’nymi porazheniyami. (Clinical features and efficacy of different combined chemotherapy programs in patients with Hodgkin’s lymphoma with extranodal lesions.) [dissertation] Saint-Petersburg; 325 p. (In Russ)]
  22. Демина Е.А., Леонтьева А.А., Тумян Г.С. и др. Оптимизация терапии первой линии у пациентов с распространенными стадиями лимфомы Ходжкина: эффективность и токсичность интенсивной схемы ЕАСОРР-14 (опыт ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России). Клиническая онкогематология. 2017;10(4):443–52.
    [Demina EA, Leont’eva AA, Tumyan GS, et al. First-Line Therapy for Patients with Advanced Hodgkin’s Lymphoma: Efficacy and Toxicity of Intensive ЕАСОРР-14 Program (NN Blokhin National Medical Cancer Research Center Data). Clinical oncohematology. 2017;10(4):443–52. (In Russ)]
  23. Ларина Ю.В., Миненко С.В., Биячуев Э.Р. и др. Лечение распространенных форм лимфомы Ходжкина у подростков и молодых взрослых. Проблема эффективности и токсичности. Онкогематология. 2014;9(1):11–8. doi: 10.17650/1818-8346-2014-9-1-11-18.
    [Larina YuV, Minenko SV, Biyachuev ER, et al. Treatment of advanced Hodgkin lymphomas in adolescents and young adults: efficacy and toxicity issues. Oncohematology. 2014;9(1):11–8. doi: 10.17650/1818-8346-2014-9-1-11-18. (In Russ)]
  24. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J Clin Oncol. 2014;32(27):3059–67. doi: 10.1200/JCO.2013.54.8800.
  25. Engert A, Haverkamp H, Kobe C, et al.; German Hodgkin Study Group; Swiss Group for Clinical Cancer Research; Arbeitsgemeinschaft Medikamentose Tumortherapie. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–9. doi: 10.1016/S0140-6736(11)61940-5.
  26. Engert A, Plutschow A, Eich HT, et al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363(7):640–52. doi: 10.1056/NEJMoa1000067.
  27. Connors JM, Jurczak W, Straus DJ, et al.; ECHELON-1 Study Group. Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma. N Engl J Med. 2018;378(4):331–44. doi: 10.1056/NEJMoa1708984.
  28. Brockelmann PJ, Goergen H, Keller U, et al. Efficacy of Nivolumab and AVD in Early-Stage Unfavorable Classic Hodgkin Lymphoma: The Randomized Phase 2 German Hodgkin Study Group NIVAHL Trial. JAMA Oncol. 2020;6(6):872–80. doi: 10.1001/jamaoncol.2020.0750.
  29. Allen PB, Savas H, Evens AM, et al. Pembrolizumab followed by AVD in untreated early unfavorable and advanced-stage classical Hodgkin lymphoma. Blood. 2021;137(10):1318–26. doi: 10.1182/blood.2020007400.
  30. Borchmann P, Plutschow A, Kobe C, et al. PET-guided omission of radiotherapy in early-stage unfavourable Hodgkin lymphoma (GHSG HD17): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(2):223–34. doi: 10.1016/S1470-2045(20)30601-X.
  31. Casasnovas RO, Bouabdallah R, Brice Р, et al. PET-adapted treatment for newly diagnosed advanced Hodgkin lymphoma (AHL2011): a randomised, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 2019;20(2):202–15. doi: 10.1016/S1470-2045(18)30784-8.
  32. Carras S, Dubois B, Senecal D, et al. Interim PET Response-adapted Strategy in Untreated Advanced Stage Hodgkin Lymphoma: Results of GOELAMS LH 2007 Phase 2 Multicentric Trial. Clin Lymphoma Myel Leuk. 2018;18(3):191–8. doi: 10.1016/j.clml.2018.01.003.
  33. World Health Organization International Agency for Research on Cancer (IARC). GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. Available from: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx (accessed 25.05.2021).
  34. ЕМИСС. Государственная статистика [электронный документ]. Доступно по: https://www.fedstat.ru/indicator/31293. Ссылка активна на 25.05.2021.
    [Unified Interdepartmental Statistical Information System. Governmental statistics. [Internet] Available from https://www.fedstat.ru/indicator/31293 (accessed 05.2021). (In Russ)]
  35. Guermazi A, Brice P, de Kerviler EE, et al. Extranodal Hodgkin disease: spectrum of disease. Radiographics. 2001;21(1):161–79. doi: 10.1148/radiographics.21.1.g01ja02161.
  36. Kim MS, Park HY, Kho BG, et al. Artificial intelligence and lung cancer treatment decision: agreement with recommendation of multidisciplinary tumor board. Transl Lung Cancer Res. 2020;9(3):507–14. doi: 10.21037/tlcr.2020.04.11.
  37. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Международный прогностический индекс при распространенных стадиях лимфомы Ходжкина в условиях современной терапии. Клиническая онкогематология. 2013;6(3):294–302.
    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. International prognostic score in advanced Hodgkin’s lymphoma. Klinicheskaya onkogematologiya. 2013;6(3):294–302. (In Russ)]
  38. Dann EJ, Bar-Shalom R, Tamir A, et al. Risk-adapted BEACOPP regimen can reduce the cumulative dose of chemotherapy for standard and high-risk Hodgkin lymphoma with no impairment of outcome. Blood. 2007;109(3):905–9. doi: 10.1182/blood-2006-04-019901.
  39. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Hodgkin Lymphoma. Version 4.2021. Available from: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1439 (accessed 25.05.2021).

Nivolumab in a Primary Refractory Hodgkin’s Lymphoma Patient with Absolute Lymphopenia Prior to Chemotherapy: Literature Review and a Case Report

TI Bogatyreva, AO Afanasov, NA Falaleeva, LYu Grivtsova, AYu Terekhova

AF Tsyb Medical Radiological Research Centre, branch of the NMRC of Radiology, 4 Koroleva str., Obninsk, Kaluga Region, Russian Federation, 249036

For correspondence: Tatyana Ivanovna Bogatyreva, MD, PhD, 4 Koroleva str., Obninsk, Kaluga Region, Russian Federation, 249036; e-mail: bogatyreva@mrrc.obninsk.ru

For citation: Bogatyreva TI, Afanasov AO, Falaleeva NA, et al. Nivolumab in a Primary Refractory Hodgkin’s Lymphoma Patient with Absolute Lymphopenia Prior to Chemotherapy: Literature Review and a Case Report. Clinical oncohematology. 2021;14(2):179–87. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-179-187


ABSTRACT

The paper presents a case report of PET-adapted therapy of primary refractory classical Hodgkin’s lymphoma, stage IIАХ, in a female patient with absolute lymphopenia prior to chemotherapy. It also provides literature review on the choice of clinical management for similar categories of patients. Nivolumab was prescribed to the patient in February 2019 due to Hodgkin’s lymphoma progression after the failure of 4 chemotherapy lines including brentuximab vedotin. A bulk of mediastinal lymph nodes was exposed to radiation. Complete metabolic response was retained 18 months after nivolumab therapy start and 6 months after its discontinuation. The initial lymphopenia in this patient with primary refractory Hodgkin’s lymphoma did not interfere with the realization of full clinical effect of nivolumab.

Keywords: classical Hodgkin’s lymphoma, absolute lymphopenia, chemotherapy-refractory disease, immunotherapy, salvage therapy.

Received: September 9, 2020

Accepted: February 18, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Brockelmann PJ, Sasse S, Engert A. Balancing risk and benefit in early-stage classical Hodgkin lymphoma. Blood. 2018;131(15):1666–78. doi: 10.1182/blood-2017-10-772665.
  2. Богатырева Т.И., Павлов В.В. Лечение лимфомы Ходжкина. В кн.: Терапевтическая радиология: национальное руководство. Под ред. А.Д. Каприна, Ю.С. Мардынского. М.: ГЭОТАР-Медиа, 2018. С. 525–46.
    [Bogatyreva TI, Pavlov VV. Treatment of Hodgkin’s lymphoma. In: Kaprin AD, Mardynskii YuS, eds. Terapevticheskaya radiologiya: natsional’noe rukovodstvo. (Therapeutic radiology: national guidelines.) Moscow: GEOTAR-Media Publ.; 2018. pp. 525–46. (In Russ)]
  3. Sieber M, Engert A, Diehl V. Treatment of Hodgkin’s disease: results and current concepts of the German Hodgkin’s Lymphoma Study Group. Ann Oncol. 2000;11(Suppl 1):81–5. doi: 10.1093/annonc/11.suppl_1.s81.
  4. Spinner MA, Advani RH, Connors JM, et al. New Treatment Algorithms in Hodgkin Lymphoma: Too Much or Too Little? Am Soc Clin Oncol Educ Book. 2018;38:626–36. doi: 10.1200/EDBK_200679.
  5. Eichenauer DA, Aleman BMP, Andre M, et al. on behalf of the ESMO Guidelines Committee. Hodgkin’s lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018;29(Suppl 4):iv18–iv29. doi: 10.1093/annonc/mdy080.
  6. von Tresckow B, Plutschow A, Fuchs M, et al. Dose-intensification in early unfavorable Hodgkin’s lymphoma: final analysis of the German Hodgkin Study Group HD14 trial. J Clin Oncol. 2012;30(9):907–13. doi: 10.1200/JCO.2011.38.5807.
  7. Демина Е.А. Лимфома Ходжкина. В кн.: Российские клинические рекомендации по диагностике и лечению злокачественных лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М., 2018. С. 28–43.
    [Demina EA. Hodgkin lymphoma. In: Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu zlokachestvennykh limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of malignant lymphoproliferative diseases.) Moscow; 2018. pp. 28–43. (In Russ)]
  8. Богатырева Т.И., Терехова А.Ю., Афанасов А.О. и др. Влияние исходного дефицита СD4+ Т-лимфоцитов периферической крови на результаты химиолучевого лечения больных лимфомой Ходжкина. Гематология и трансфузиология. 2019;64(3):317–30. doi: 10.35754/0234-5730-2019-64-3-317-330.
    [Bogatyreva TI, Terekhova AYu, Afanasov AO, et al. Impact of the pre-treatment CD4+ T-lymphocyte deficiency in the peripheral blood on the results of chemoradiotherapy in patients with Hodgkin’s lymphoma. Gematologiya i transfuziologiya. 2019;64(3):317–30. doi: 10.35754/0234-5730-2019-64-3-317-330. (In Russ)]
  9. Andre MPE, Girinsky T, Federico M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2017;35(16):1786–94. doi: 10.1200/JCO.2016.68.6394.
  10. Sureda A, Constans M, Iriondo A. Prognostic factors affecting long-term outcome after stem cell transplantation in Hodgkin’s lymphoma autografted after a first relapse. Ann Oncol. 2005;16(4):625–33. doi: 10.1093/annonc/mdi119.
  11. Chen R, Gopal AK, Smith SE, et al. Five-year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2016;128(12):1562–6. doi: 10.1182/blood-2016-02-699850.
  12. Шкляев С.С., Фалалеева Н.А., Богатырева Т.И. и др. Бендамустин в лечении пациентов с рецидивами и рефрактерным течением лимфомы Ходжкина (обзор литературы и собственные данные). Клиническая онкогематология. 2020;13(2):136–49. doi: 10.21320/2500-2139-2020-13-2-136-149.
    [Shklyaev SS, Falaleeva NA, Bogatyreva TI, et al. Bendamustine in the Treatment of Relapsed/Refractory Hodgkin’s Lymphoma: Literature Review and Clinical Experience. Clinical oncohematology. 2020;13(2):136–49. doi: 10.21320/2500-2139-2020-13-2-136-149. (In Russ)]
  13. Bogatyreva TI, Terekhova AY, Shklyaev SS, et al. Long-term treatment outcome of patients with refractory or relapsed Hodgkin’s lymphoma in the anthracycline era: a single-center intention-to-treat analysis. Ann Oncol. 2018;29(Suppl 8):viii364. doi: 10.1093/annonc/mdy286.016.
  14. Cheah CY, Chihara D, Horowitz S, et al. Patients with classical Hodgkin lymphoma experiencing disease progression after treatment with brentuximab vedotin have poor outcomes. Ann Oncol. 2016;27(7):1317–23. doi: 10.1093/annonc/mdw169.
  15. Лепик К.В., Михайлова Н.Б., Кондакова Е.В. и др. Эффективность и безопасность ниволумаба в лечении рецидивирующей и рефрактерной классической лимфомы Ходжкина: опыт ПСПбГМУ им. акад. И.П. Павлова. Онкогематология. 2018;13(4):17–26. doi: 10.17650/1818-8346-2019-13-4-17-26.
    [Lepik KV, Mikhailova NV, Kondakova EV, et al. Efficacy and safety of nivolumab in the treatment of relapsed/refractory classical Hodgkin’s lymphoma: Pavlov First Saint Petersburg State Medical University experience. Oncohematology. 2018;13(4):17–26. doi: 10.17650/1818-8346-2019-13-4-17-26. (In Russ)]
  16. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. doi: 10.1182/blood-2010-05-282780.
  17. Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J Clin Oncol. 2016;34(23):2690–7. doi: 10.1200/JCO.2016.66.4482.
  18. Yamamoto R, Nishikori M, Kitawaki T, et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111(6):3220–4. doi: 10.1182/blood-2007-05-085159.
  19. Опдиво® (инструкция по медицинскому применению). Принстон, США: Bristol-Myers Squibb Company. Доступно по: https://www.vidal.ru/drugs/opdivo. Ссылка активна на 18.02.2021.
    [Opdivo® (package insert). Princeton, USA: Bristol-Myers Squibb Company. Available from: https://www.vidal.ru/drugs/opdivo. Accessed 18.02.2021. (In Russ)]
  20. Armand P, Engert A, Younes A, et al. Nivolumab for relapsed/refractory classic Hodgkin’s lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 Trial. J Clin Oncol. 2018;36(14):1428–39. doi: 10.1200/JCO.2017.76.0793.
  21. Hude I, Sasse S, Brockelmann PJ. Leucocyte and eosinophil counts predict progression-free survival in relapsed or refractory classical Hodgkin Lymphoma patients treated with PD1 inhibition. Br J Haematol. 2018;181(6):837–40. doi: 10.1111/bjh.14705.
  22. Hasenclever D, Diehl V, Armitage JO, et al. A Prognostic Score for Advanced Hodgkin’s Disease. N Engl J Med. 1998;339(21):1506–14. doi: 10.1056/NEJM199811193392104.
  23. Демина Е.А., Леонтьева А.А., Тумян Г.С. и др. Оптимизация терапии первой линии у пациентов с распространенными стадиями лимфомы Ходжкина: эффективность и токсичность интенсивной схемы ЕАСОРР-14 (опыт ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России). Клиническая онкогематология. 2017;10(4):443–52. doi: 10.21320/2500-2139-2017-10-4-443-452.
    [Demina EA, Leont’eva AA, Tumyan GS, et al. First-Line Therapy for Patients with Advanced Hodgkin’s Lymphoma: Efficacy and Toxicity of Intensive ЕАСОРР-14 Program (NN Blokhin National Medical Cancer Research Center Data). Clinical oncohematology. 2017;10(4):443–52. doi: 10.21320/2500-2139-2017-10-4-443-452. (In Russ)]
  24. Gallamini A, Tarella C, Viviani S, et al. Early chemotherapy intensification with escalated BEACOPP in patients with advanced-stage Hodgkin lymphoma with a positive interim positron emission tomography/computed tomography scan after two ABVD cycles: long-term results of the GITIL/FIL HD 0607 trial. J Clin Oncol. 2018;36(5):454–622. doi: 10.1200/JCO.2017.75.2543.
  25. Bari A, Marcheselli R, Sacchi S, et al. The classic prognostic factors in advanced Hodgkin’s lymphoma patients are losing their meaning at the time of PET-guided treatments. Ann Hematol. 2020;99(2):277–82. doi: 10.1007/s00277-019-03893-7.
  26. Kumar A, Casulo C, Yahalom J. Brentuximab vedotin and AVD followed by involved-site radiotherapy in early stage, unfavorable risk Hodgkin lymphoma. Blood. 2016;128(11):1458–64. doi: 10.1182/blood-2016-03-703470.
  27. Brockelmann PJ, Goergen H, Keller U, et al. Efficacy of Nivolumab and AVD in Early-Stage Unfavorable Classic Hodgkin Lymphoma: The Randomized Phase 2 German Hodgkin Study Group NIVAHL Trial. JAMA Oncol. 2020;6(6):872. doi: 10.1001/jamaoncol.2020.0750.
  28. Богатырева Т.И., Терехова А.Ю., Шкляев С.С. и др. Исходы лечения больных лимфомой Ходжкина с рефрактерным и рецидивирующим течением: анализ 142 последовательных случаев. Евразийский онкологический журнал. 2020;8(приложение 2):229.
    [Bogatyreva TI, Terekhova AYu, Shklyaev SS, et al. Treatment outcomes in patients with relapsed/refractory Hodgkin’s lymphoma: analysis of 142 successive cases. Evraziiskii onkologicheskii zhurnal. 2020;8(Suppl 2):229. (In Russ)]

Checkpoint Inhibitors and Classical Hodgkin’s Lymphoma: Efficacy and Safety of Pembrolizumab in Relapsed/Refractory Tumor (Experience at the NI Pirogov Russian National Medical Center of Surgery)

VO Sarzhevskii, EA Demina, NE Mochkin, AA Spornik, AA Mamedova, EG Smirnova, AE Bannikova, AA Samoilova, VS Bogatyrev, VYa Melnichenko

NI Pirogov Russian National Medical Center of Surgery, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203

For correspondence: Prof. Vladislav Olegovich Sarzhevskii, MD, PhD, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203; Tel.: +7(495)603-72-17; e-mail: vladsar100@gmail.com

For citation: Sarzhevskii VO, Demina EA, Mochkin NE, et al. Checkpoint Inhibitors and Classical Hodgkin’s Lymphoma: Efficacy and Safety of Pembrolizumab in Relapsed/Refractory Tumor (Experience at the NI Pirogov Russian National Medical Center of Surgery). Clinical oncohematology. 2021;14(1):53–62. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-53-62


ABSTRACT

Background. Checkpoint inhibitors contribute to improving the treatment outcomes in patients with relapsed/refractory classical Hodgkin’s lymphoma (cHL). The paper describes the first generalized experience with pembrolizumab-inducing cHL immunotherapy in Russia. The hallmark of the study is a long follow-up period.

Aim. To retrospectively assess efficacy and safety of pembrolizumab-inducing immunotherapy of relapsed/refractory cHL.

Materials & Methods. The study enrolled 14 cHL patients: 3 men and 11 women aged 24–57 years (median 33 years). Pembrolizumab 200 mg or 2 mg/kg was intravenously administered every 3 weeks. Median pembrolizumab administration number was 27 (max. 52 administrations), median follow-up after immunotherapy onset was 31 months.

Results. Complete response (as best response) was achieved in 8 (57 %) patients, 3 (21 %) patients showed partial response (as best response). Overall objective response was 78 %. Median number of pembrolizumab administrations resulting in better responses to immunotherapy was 4, which corresponded to 3 months of treatment. Maximum number of pembrolizumab administrations before achieving best response was 32. Best response duration (the period from achieving it to disease progression/relapse or to the end-point of data collection in case of sustained response) varied from 3 to 56 months (median 15 months). Most common severe adverse events of grade 3–4 were pulmonary complications. Overall survival for 12, 24, and 36 months was 92.9 %, 85.7 %, and 85.7 %, respectively, and progression-free survival was 76.9 %, 59.3 %, and 37.1 %, respectively; median time before progression was 27.7 months.

Conclusion. The experience with pembrolizumab-inducing immunotherapy of relapsed/refractory cHL in Russia proves the efficacy and relative safety of this treatment approach. Due to long follow-up period a series of crucial practical immunotherapy-related issues were raised, which will need to be dealt with in future studies.

Keywords: сheckpoint inhibitors, immunotherapy, classical Hodgkin’s lymphoma, pembrolizumab.

Received: September 7, 2020

Accepted: December 2, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Ansell S, Lesokhin A, Borrello I, et al. PD-1 Blockade With Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. N Engl J Med. 2015;372(4):311–9. doi: 10.1056/NEJMoa1411087.
  2. Armand P, Engert A, Younes A, et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J Clin Oncol. 2018;36(14):1428–39. doi: 10.1200/JCO.2017.76.0793.
  3. Armand P, Shipp MA, Ribrag V, et al. Programmed Death-1 Blockade With Pembrolizumab in Patients With Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure. J Clin Oncol. 2016;34(31):3733–9. doi: 10.1200/JCO.2016.67.3467.
  4. Chen R, Zinzani P, Fanale M, et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J Clin Oncol. 2017;35(19):2125–32. doi: 10.1200/JCO.2016.72.1316.
  5. Zinzani P, Lee H, Armand P, et al. Three-Year Follow-up of Keynote-087: Pembrolizumab Monotherapy in Relapsed/Refractory Classic Hodgkin Lymphoma. 2019;134(Suppl_1):240. doi: 10.1182/blood-2019-127280.
  6. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68. doi: 10.1200/JCO.2013.54.8800.
  7. Cheson BD, Ansell S, Schwartz L, et al. Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128(21):2489–96. doi: 10.1182/blood-2016-05-718528.
  8. Younes A, Hilden P, Coiffier B, et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann 2017;28(7):1436–47. doi: 10.1093/annonc/mdx097.
  9. Лепик К.В. Эффективность и безопасность PD-1 ингибитора (ниволумаба) в лечении резистентной и рецидивирующей лимфомы Ходжкина: Автореф. дис. … канд. мед. наук. СПб., 2019.
    [Lepik KV. Effektivnost i bezopasnost PD-1 ingibitora (nivolumaba) v lechenii rezistentnoi i retsidiviruyushchei limfomy Khodzhkina. (Efficacy and safety of PD-1 inhibitor (nivolumab) in the treatment of relapsed/refractory Hodgkin’s lymphoma.) [dissertation] Saint Petersburg; 2019. (In Russ)]
  10. Mokrane F-Z, Chen A, Schwartz LH, et al. Performance of CT Compared with 18F-FDG PET in Predicting the Efficacy of Nivolumab in Relapsed or Refractory Hodgkin Lymphoma. Radiology. 2020;295(3):651–61. doi: 10.1148/radiol.2020192056.
  11. Ansell S, Armand Р, Timmerman J, et al. Nivolumab re-treatment in patients with relapsed/refractory Hodgkin lymphoma: safety and efficacy outcomes from a phase 1 clinical trial. Poster presentation at the 10th International Symposium on Hodgkin Lymphoma (ISHL); October 22–25, 2016; Cologne, Germany. Abstract 583/P090.
  12. Chen R, Zinzani PL, Lee HJ, et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: Two-year follow-up of KEYNOTE-087. Blood. 2019;134(14):114–53. doi: 10.1182/blood.2019000324.
  13. Manson G, Brice P, Herbaux C, et al. Efficacy of anti-PD1 Re-Treatment in Patients With Hodgkin Lymphoma Who Relapsed After anti-PD1 Discontinuation. Haematologica. 2020;105. [Epub ahead of print] doi: 10.3324/haematol.2019.242529.
  14. Armand P, Kuruvilla J, Michot J-M, et al. KEYNOTE-013 4-year follow-up of pembrolizumab in classical Hodgkin lymphoma after brentuximab vedotin failure. Blood Adv. 2020;4(12):2617–22. doi: 10.1182/bloodadvances.2019001367.
  15. Domingo-Domenech E, Sureda А. Treatment of Hodgkin Lymphoma Relapsed after Autologous Stem Cell Transplantation. J Clin Med. 2020;9(5):1384. doi: 10.3390/jcm9051384.

The Use of Checkpoint Inhibitors in Classical Hodgkin’s Lymphoma during the COVID-19 Pandemic (Pirogov Medical Center’s Experience)

VO Sarzhevskii, EA Demina, NE Mochkin, AA Spornik, AA Mamedova, EG Smirnova, AE Bannikova, AA Samoilova, VS Bogatyrev, OYu Bronov, YuA Abovich, VYa Melnichenko

NI Pirogov Russian National Medical Center of Surgery, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203

For correspondence: Vladislav Olegovich Sarzhevskii, MD, PhD, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203; Tel.: +7(495)603-72-17; e-mail: vladsar100@gmail.com

For citation: Sarzhevskii VO, Demina EA, Mochkin NE, et al. The Use of Checkpoint Inhibitors in Classical Hodgkin’s Lymphoma during the COVID-19 Pandemic (Pirogov Medical Center’s Experience). Clinical oncohematology. 2020;13(3):307–15 (In Russ).

DOI: 10.21320/2500-2139-2020-13-3-307-315


ABSTRACT

Background. Currently, there are neither systematic data nor clinical guidelines for checkpoint inhibitor immunotherapy in cancer patients in the context of the COVID-19 pandemic. In this respect classical Hodgkin’s lymphoma (cHL) is no exception. The article deals with the experience of Pirogov Medical Center (NI Pirogov Russian National Medical Center of Surgery) in PD-1-inhibitor immunotherapy in relapsed/refractory cHL in the context of the COVID-19 pandemic. The authors endeavour to cover matters of current interest concerning immunotherapy and differential diagnosis of pulmonary adverse events emerging in the context of new realities in providing medical care to cancer patients.

Aim. To assess feasibility and safety of checkpoint inhibitor immunotherapy in relapsed/refractory cHL in the context of the COVID-19 pandemic.

Materials & Methods. This is a retrospective analysis of adverse events of therapy and COVID-19 mortality, and incidence in 50 cHL patients who received immunotherapy at the Pirogov Medical Center in the period of spring COVID-19 pandemic in 2020.

Results. During the reported period (from March 11, 2020, when the COVID-19 pandemic was declared, to May 25, 2020) the group of 50 cHL patients showed relatively low overall incidence rate of newly diagnosed immune-mediated adverse events (14 %; n = 7). Severe adverse events were identified in 2 (4 %) patients. Bacterial infection incidence was 6 % (n = 3). Clinical signs of corona virus confirmed by subsequent laboratory COVID-19 tests were observed in 2 (4 %) patients. One patient died due to the non-COVID-19-associated reason. The main issue the center’s staff was faced with was the need for differential diagnosis between drug-induced (as well as immune-mediated) pulmonitis and COVID-19-associated pneumonia.

Conclusion. The retrospective analysis reveals that PD-1-inhibitor immunotherapy in cHL patients during the COVID-19 pandemic is a feasible method of therapy, but it requires high awareness. Special focus should be given to clinical and radiological similarities of COVID-19-associated pneumonia and pulmonitis as a complication of immunotherapy.

Keywords: classical Hodgkin’s lymphoma, immunotherapy, PD-1-inhibitors, COVID-19 pandemic.

Received: May 29, 2020

Accepted: June 28, 2020

Read in PDF


REFERENCES

  1. Coronavirus W.H.O. WHO; 2020. COVID-19. [Internet] Available from: https://who.sprinklr.com. (accessed 28.05.2020).

  2. Стопкороновирус.рф. [электронный документ] Доступно по: https://стопкоронавирус.рф. Ссылка активна на 28.05.2020.[Stopcoronavirus.rf. [Internet] Available from: https://стопкоронавирус.рф (accessed 28.05.2020) (In Russ)]

  3. Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335–7. doi: 10.1016/S1470-2045(20)30096-6.

  4. Zhang L, Zhu F, Xie L, et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol. 2000 (in press). doi: 10.1016/j.annonc.2020.03.296.

  5. Petrelli F, Ardito R, Borgonovo K, et al. Haematological toxicities with immunotherapy in patients with cancer: a systematic review and meta-analysis. Eur J Cancer. 2018;103:7–16. doi: 10.1016/j.ejca.2018.07.129.

  6. Finkel I, Sternschuss M, Wollner M, et al. Immune-related neutropenia following treatment with immune checkpoint inhibitors. J Immunother. 2020;43(2):67–74. doi: 10.1097/CJI.0000000000000293.

  7. Choi J, Lee SY. Clinical characteristics and treatment of immune-related adverse events of immune checkpoint inhibitors. Immune Netw. 2020;20(1):e9. doi: 10.4110/in.2020.20.e9.

  8. Stroud CR, Hegde A, Cherry C, et al. Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. J Oncol Pharm Pract. 2019;25(3):551–7. doi: 10.1177/1078155217745144.

  9. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Nat Acad Sci. 2020;117(20):10970–5. doi: 10.1073/pnas.2005615117.

  10. Ansell S, Lesokhin A, Borrello I, et al. PD-1 Blockade With Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. N Engl J Med. 2015;372(4):311–9. doi: 10.1056/NEJMoa1411087.

  11. Armand P, Engert A, Younes A, et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J Clin Oncol. 2018;36(14):1428–39. doi: 10.1200/JCO.2017.76.0793.

  12. Chen R, Zinzani P, Fanale M, et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J Clin Oncol. 2017;35(19):2125–32. doi: 10.1200/JCO.2016.72.1316.

  13. D’Souza A, Jaiyesimi I, Trainor L, et al. Granulocyte Colony-Stimulating Factor Administration: Adverse Events. Transfus Med Rev. 2008;22(4):280–90. doi: 10.1016/j.tmrv.2008.05.005.

  14. Rochefoucauld J, Noel N, Lambotte O. Management of Immune-Related Adverse Events Associated With Immune Checkpoint Inhibitors in Cancer Patients: A Patient-Centred Approach. Intern Emerg Med. 2020. doi: 10.1007/s11739-020-02295-2.

  15. Diamantopoulos P, Gaggadi M, Kassi E, et al. Late-onset Nivolumab-Mediated Pneumonitis in a Patient With Melanoma and Multiple Immune-Related Adverse Events. Melanoma Res. 2017;27(4):391–5. doi: 10.1097/CMR.0000000000000355.

Immune Checkpoint Inhibitors in the Treatment of Lymphomas

KV Lepik

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Kirill Viktorovich Lepik, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; e-mail: lepikkv@gmail.com

For citation: Lepik KV. Immune Checkpoint Inhibitors in the Treatment of Lymphomas. Clinical oncohematology. 2018;11(4):303–12.

DOI: 10.21320/2500-2139-2018-11-4-303-312


ABSTRACT

Programmed death receptors and ligands (PD-1 and PD-L1) are the best studied immune checkpoints (ICP) and are considered to be key factors of immune response control. The ability of tumor cells to affect the ICP receptors is one of the principal mechanisms of suppressing antitumor immunity. The development of ICP inhibitors creates an opportunity to control and activate immune response and opens new perspectives for immunotherapy of cancers, including lymphomas. The paper reviews the biological background for the use of ICP inhibitors in the treatment of classical Hodgkin’s and non-Hodgkin’s lymphomas and summarizes the clinical experience of their use. The new approaches for the creation of combination regimens with ICP are also highlighted.

Keywords: immune checkpoints (ICP), PD-1, PD-L1, classical Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, ICP inhibitors.

Received: March 25, 2018

Accepted: July 23, 2018

Read in PDF 


REFERENCES

  1. Walunas TL, Bakker CY, Bluestone JA. CTLA 4 ligation blocks CD28 dependent T cell activation. J Exp Med. 1996;183(6):2541–50.

  2. Freeman GJ, Long AJ, Iwai Y. Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34. doi: 1084/jem.192.7.1027.

  3. Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013;121(5):734–44. doi: 1182/blood-2012-10-385591.

  4. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9. doi: 1056/NEJMoa1411087.

  5. Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26(1):677–704. doi: 1146/annurev.immunol.26.021607.090331.

  6. Lee SJ, Jang BC, Lee SW, et al. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett. 2006;580(3):755–62. doi: 1016/j.febslet.2005.12.093.

  7. Liu J, Hamrouni A, Wolowiec D, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-gamma and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 2007;110(1):296–304. doi: 1182/blood-2006-10-051482.

  8. Fife BT, Pauken KE, Eagar TN, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol. 2009;10(11):1185–92. doi: 1038/ni.1790.

  9. Yokosuka T, Takamatsu M, Kobayashi-Imanishiet W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17. doi: 1084/jem.20112741.

  10. Chemnitz JM, Parry RV, Nicholset KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173(2):945–54. doi: 4049/jimmunol.173.2.945.

  11. Nurieva R, Thomas S, Nguyen T, et al. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J. 2006;25(11):2623–33. doi: 1038/sj.emboj.7601146.

  12. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7 H1 promotes T cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. doi: 1038/nm730.

  13. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi: 1056/NEJMoa1003466.

  14. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. doi: 10.1056/NEJMoa1412082.

  15. Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA 4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84. doi: 1016/S1470-2045(15)70076-8.

  16. Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30. doi: 1200/JCO.2013.53.0105.

  17. Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–7. doi: 10.1200/jco.2016.66.4482.

  18. Carey CD, Gusenleitner D, Lipschitz M, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood. 2017;130(22):2420–30. doi: 10.1182/blood-2017-03-770719.

  19. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27. doi: 10.1038/nrc2542.

  20. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. doi: 10.1182/blood-2010-05-282780.

  21. Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19(13):3462–73. doi: 10.1158/1078-0432.CCR-13-0855.

  22. Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85. doi: 10.1056/NEJMoa0905680.

  23. Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9. doi: 10.1038/nature22396.

  24. Paydas S, Bagir E, Seydaoglu G, et al. Programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and EBV-encoded RNA (EBER) expression in Hodgkin lymphoma. Ann Hematol. 2015;94(9):1545–52. doi: 10.1007/s00277-015-2403-2.

  25. Hollander P, Kamper P, Smedby KE, et al. High proportions of PD-1+ and PD-L1+ leukocytes in classical Hodgkin lymphoma microenvironment are associated with inferior outcome. Blood Adv. 2017;1(18):1427–39. doi: 10.1182/bloodadvances.2017006346.

  26. Younes A, Santoro A, Shipp M, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94. doi: 10.1016/S1470-2045(16)30167-X.

  27. Armand P, Shipp MA, Ribrag V, et al. Pembrolizumab in Patients with Classical Hodgkin Lymphoma after Brentuximab Vedotin Failure: Long-Term Efficacy from the Phase 1b Keynote-013 Study. Blood. 2016;128:1108, abstract.

  28. Armand P, Engert A, Younes A, et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J Clin Oncol. 2018;36(14):1428–39. doi: 10.1200/JCO.2017.76.0793.

  29. Engert A, Fanale M, Santoro A, et al. Nivolumab for relapsed/refractory classical Hodgkin lymphoma after autologous transplant: full results after extended follow-up of the multicohort multicenter phase 2 CheckMate 205 trial. EHA conference 2017. Abstract S412.

  30. Armand P, Shipp MA, Ribrag V, et al. Programmed Death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016; 34(31):3733–9. doi: 10.1200/JCO.2016.67.3467.

  31. Chen R, Zinzani PL, Fanale MA, et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J Clin Oncol. 2017;35(19):2125–32. doi: 10.1200/JCO.2016.72.1316.

  32. Tsimberidou AM, Braiteh F, Stewart DJ, Kurzrock R. Ultimate fate of oncology drugs approved by the US Food and Drug Administration without a randomized trial. J Clin Oncol. 2009;27(36):6243–50. doi: 10.1200/JCO.2009.23.6018.

  33. Nishijima TF, Shachar SS, Nyrop KA, Muss HB. Safety and tolerability of PD-1/PD-L1 inhibitors compared with chemotherapy in patients with advanced cancer: a meta-analysis. Oncologist. 2017;22(4):470–9. doi: 10.1634/theoncologist.2016-0419.

  34. Shi M, Roemer MGM, Chapuy B, et al. Expression of programmed cell death 1 ligand 2 (PD-L2) is a distinguishing feature of primary mediastinal (thymic) large B-cell lymphoma and associated with PDCD1LG2 copy gain. Am J Surg Pathol. 2014;38(12):1715–23. doi: 10.1097/PAS.0000000000000297.

  35. Twa DDW, Chan FC, Ben-Neriah S, et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood. 2014;123(13):2062–5. doi: 10.1182/blood-2013-10-535443.

  36. Van Roosbroeck K, Ferreiro JF, Tousseyn T, et al. Genomic alterations of the JAK2 and PDL loci occur in a broad spectrum of lymphoid malignancies. Genes Chromos Cancer. 2016;55(5):428–41. doi: 10.1002/gcc.22345.

  37. Zinzani PL, Ribrag V, Moskowitz CH, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood. 2017;130(3):267–70. doi: 10.1182/blood-2016-12-758383.

  38. Zinzani PL, Thieblemont C, Melnichenko V, et al. Efficacy and Safety of Pembrolizumab in Relapsed/Refractory Primary Mediastinal Large B-Cell Lymphoma (rrPMBCL): Updated Analysis of the Keynote-170 Phase 2 Trial. ASH conference 2017. Abstract 2833B.

  39. Chapuy B, Roemer MGM, Stewart C, et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood. 2016;127(7):869–81. doi: 10.1182/blood-2015-10-673236.

  40. Nayak L, Iwamoto FM, LaCasce A, et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood. 2017;129(23):3071–3. doi: 10.1182/blood-2017-01-764209.

  41. Eberle FC, Salaverria I, Steidl C, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97. doi: 10.1038/modpathol.2011.116.

  42. Melani C, Major A, Schowinsky J, et al. PD-1 blockade in mediastinal gray-zone lymphoma. N Engl J Med. 2017;377(1):89–91. doi: 10.1056/NEJMc1704767.

  43. Georgiou K, Chen L, Berglund M, et al. Genetic basis of PD-L1 overexpression in diffuse large B-cell lymphomas. Blood. 2016;127(24):3026–34. doi: 10.1182/blood-2015-12-686550.

  44. Kiyasu J, Miyoshi H, Hirata A, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. 2015;126(19):2193–201. doi: 10.1182/blood-2015-02-629600.

  45. Chen M, Andreozzi M, Pockaj B, et al. Development and validation of a novel clinical fluorescence in situ hybridization assay to detect JAK2 and PD-L1 amplification. Mod Pathol. 2017;30(11):1516–26. doi: 10.1038/modpathol.2017.86.

  46. Gupta M, Han JJ, Stenson M, et al. Elevated serum IL-10 levels in diffuse large B-cell lymphoma: a mechanism of aberrant JAK2 activation. Blood. 2012;119(12):2844–53. doi: 10.1182/blood-2011-10-388538.

  47. Choi JW, Kim Y, Lee JH, et al. MYD88 expression and L265P mutation in diffuse large B-cell lymphoma. Hum Pathol. 2013;44(7):1375–81. doi: 10.1016/j.humpath.2012.10.026.

  48. Bellucci R, Martin A, Bommarito D, et al. Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. OncoImmunology. 2015;4(6):e1008824. doi: 10.1080/2162402X.2015.1008824.

  49. Laurent C, Charmpi K, Gravelle P, et al. Several immune escape patterns in non-Hodgkin’s lymphomas. OncoImmunology. 2015;4(8):e1026530. doi: 10.1080/2162402X.2015.1026530.

  50. Andorsky DJ, Yamada RE, Said J, et al. Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17(13):4232–44. doi: 10.1158/1078-0432.CCR-10-2660.

  51. Jo JC, Kim M, Choi Y, et al. Expression of programmed cell death 1 and programmed cell death ligand 1 in extranodal NK/T-cell lymphoma, nasal type. Ann Hematol. 2017;96(1):25–31. doi: 10.1007/s00277-016-2818-4.

  52. Muenst S, Hoeller S, Willi N, et al. Diagnostic and prognostic utility of PD-1 in B cell lymphomas. Dis Markers. 2010;29(1):47–53. doi: 10.1155/2010/404069.

  53. Hu L-Y, Xu X-L, Rao H-L, et al. Expression and clinical value of programmed cell death-ligand 1 (PD-L1) in diffuse large B cell lymphoma: a retrospective study. Chin J Cancer. 2017;36(1):94. doi: 10.1186/s40880-017-0262-z.

  54. Ansell SM, Hurvitz SA, Koenig PA, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15(20):6446–53. doi: 10.1158/1078-0432.CCR-09-1339.

  55. Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698–704. doi: 10.1200/JCO.2015.65.9789.

  56. Armand P, Nagler A, Weller EA, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol. 2013;31(33):4199–206. doi: 10.1200/JCO.2012.48.3685.

  57. Palomba ML, Till BG, Park SI, et al. A phase IB study evaluating the safety and clinical activity of atezolizumab combined with obinutuzumab in patients with relapsed or refractory non-Hodgkin lymphoma (NHL). Hematol Oncol. 2017;35(Suppl 2):137–8. doi: 10.1002/hon.2437_126.

  58. Ansell S, Gutierrez ME, Shipp MA, et al. A phase 1 study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood. 2016;128;22, abstract 183.

  59. Brusa D, Serra S, Coscia M, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953–63. doi: 10.3324/haematol.2012.077537.

  60. Soma LA, Craig FE, Swerdlow SH. The proliferation center microenvironment and prognostic markers in chronic lymphocytic leukemia/small lymphocytic lymphoma. Hum Pathol. 2006;37(2):152–9. doi: 10.1016/j.humpath.2005.09.029.

  61. Nunes C, Wong R, Mason M, et al. Expansion of a CD8(+)PD-1(+) replicative senescence phenotype in early stage CLL patients is associated with inverted CD4:CD8 ratios and disease progression. Clin Cancer Res. 2012;18(3):678–87. doi: 10.1158/1078-0432.CCR-11-2630.

  62. Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118(7):2427–37. doi: 10.1172/JCI35017.

  63. Berger R, Rotem-Yehudar R, Slama G, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51. doi: 10.1158/1078-0432.ccr-07-4079.

  64. Ding W, LaPlant BR, Call TG, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419–27. doi: 10.1182/blood-2017-02-765685.

  65. Panjwani P, Charu V, DeLisser M, et al. Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes. Hum Pathol. 2018;71:91–9. doi: 10.1016/j.humpath.2017.10.029.

  66. Menter T, Bodmer-Haecki A, Dirnhoferet S, et al. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas. Hum Pathol. 2016;54:17–24. doi: 10.1016/j.humpath.2016.03.005.

  67. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;131(6):492–9. doi: 10.1038/ni.2035.

  68. Wahlin BE, Aggarwal M, Montes-Moreno S, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1—positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010;16(2):637–50. doi: 10.1158/1078-0432.CCR-09-2487.

  69. Myklebust JH, Irish JM, Brody J, et al. High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood. 2013;121(8):1367–76. doi: 10.1182/blood-2012-04-421826.

  70. Smeltzer JP, Jones JM, Ziesmer SC, et al. Pattern of CD14+ follicular dendritic cells and PD1+ T cells independently predicts time to transformation in follicular lymphoma. Clin Cancer Res. 2014;20(11):2862–72. doi: 10.1158/1078-0432.CCR-13-2367.

  71. Carreras J, Lopez-Guillermo A, Roncador G, et al. High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol. 2009;27(9):1470–6. doi: 10.1200/JCO.2008.18.0513.

  72. Richendollar BG, Pohlman B, Elson P, et al. Follicular programmed death 1-positive lymphocytes in the tumor microenvironment are an independent prognostic factor in follicular lymphoma. Hum Pathol. 2011;42(4):552–7. doi: 10.1016/j.humpath.2010.08.015.

  73. Yang ZZ, Grote DM, Ziesmer SC, et al. PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J. 2015;5:e281. doi: 10.1038/bcj.2015.1.

  74. Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin’s lymphomas. N Engl J Med. 1984;311(23):1471–5. doi: 10.1056/NEJM198412063112303.

  75. Berger R, Rotem-Yehudar R, Slama G, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51. doi: 10.1158/1078-0432.CCR-07-4079.

  76. Westin JR, Chu F, Zhang M, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15(1):69–77. doi: 10.1016/S1470-2045(13)70551-5.

  77. Cheson BD, Leonard JP. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med. 2008;359(6):613–26. doi: 10.1056/NEJMra0708875.

  78. Nastoupil LJ, Westin J, Fowler N, et al. High response rates with pembrolizumab in combination with rituximab in patients with relapsed follicular lymphoma: interim results of an on open-label, phase II study. Hematol Oncol. 2017;35(Suppl 2):120–1. doi: 10.1002/hon.2437_108.

  79. Zaja F, Tabanelli V, Agostinelli C. CD38, BCL-2, PD-1, and PD-1L expression in nodal peripheral T-cell lymphoma: Possible biomarkers for novel targeted therapies? Am J Hematol. 2017;92(1):E1–E2. doi: 10.1002/ajh.24571.

  80. Xerri L, Chetaille B, Serriari N. Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol. 2008;39(7):1050–8. doi: 10.1016/j.humpath.2007.11.012.

  81. Wilcox RA, Feldman AL, Wada DA, et al. B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood. 2009;114(10):2149–58. doi: 10.1182/blood-2009-04-216671.

  82. Vranic S, Ghosh N, Kimbrough J. PD-L1 Status in Refractory Lymphomas. PLoS One. 2016;11(11):e0166266. doi: 10.1371/journal.pone.0166266.

  83. Merryman RW, Armand P, Wright KT, Rodig SJ. Checkpoint blockade in Hodgkin and non-Hodgkin lymphoma. Blood Adv. 2017;1(26):2643–54. doi: 10.1182/bloodadvances.2017012534.

  84. Marzec M, Zhang Q, Goradia A, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA. 2008;105(52):20852–7. doi: 10.1073/pnas.0810958105.

  85. Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170(3):1257–66. doi: 10.4049/jimmunol.170.3.1257.

  86. Hebart H, Lang P, Woessmann W. Nivolumab for Refractory Anaplastic Large Cell Lymphoma: A Case Report. Ann Intern Med. 2016;165(8):607–8. doi: 10.7326/116-0037.

  87. Cetinozman F, Jansen PM, Willemze R. Expression of programmed death-1 in primary cutaneous CD4-positive small/medium-sized pleomorphic T-cell lymphoma, cutaneous pseudo-T-cell lymphoma, and other types of cutaneous T-cell lymphoma. Am J Surg Pathol. 2012;36(1):109–16. doi: 10.1097/PAS.0b013e318230df87.

  88. Xia Y, Medeiros JL, Young KH. Signaling pathway and dysregulation of PD1 and its ligands in lymphoid malignancies. Biochim Biophys Acta. 2016;1865(1):58–71. doi: 10.1016/j.bbcan.2015.09.002.

  89. Cetinozman F, Jansen PM, Vermeer MH, et al. Differential expression of programmed death-1 (PD-1) in Sezary syndrome and mycosis fungoides. Arch Dermatol. 2012;148(12):1379. doi: 10.1001/archdermatol.2012.2089.

  90. Khodadoust M, Rook AH, Porcu P, et al. Pembrolizumab for treatment of relapsed/refractory mycosis fungoides and Sezary syndrome: clinical efficacy in a Citn multicenter phase 2 study. Blood. 2016;128:22, abstract 181.

  91. Kwong YL, Chan TSY, Tan D, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129(17):2437–42. doi: 10.1182/blood-2016-12-756841.

  92. Chan TSY, Li J, Loong F, et al. PD1 blockade with low-dose nivolumab in NK/T cell lymphoma failing L-asparaginase: efficacy and safety. Ann Hematol. 2018;97(1):193–6. doi: 10.1007/s00277-017-3127-2.

  93. Four M, Cacheux V, Tempier A, et al. PD1 and PDL1 expression in primary central nervous system diffuse large B-cell lymphoma are frequent and expression of PD1 predicts poor survival. Hematol Oncol. 2017;35(4):487–96. doi: 10.1002/hon.2375.

  94. Pelland K, Mathews S, Kamath A, et al. Dendritic Cell Markers and PD-L1 are Expressed in Mediastinal Gray Zone Lymphoma. Appl Immunohistochem Mol Morphol. 2017. doi: 10.1097/PAI.0000000000000615. [Epub ahead of print]

  95. Park JH, Han JH, Kanget HY, et al. Expression of follicular helper T-cell markers in primary cutaneous T-cell lymphoma. Am J Dermatopathol. 201;36(6):465–70. doi: 10.1097/DAD.0b013e3182a72f8c.

Outcome of Classical Hodgkin’s Lymphoma Treatment Based on High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantation: The Experience in the NI Pirogov Russian National Medical Center of Surgery

NE Mochkin, VO Sarzhevskii, YuN Dubinina, EG Smirnova, DA Fedorenko, AE Bannikova, DS Kolesnikova, VS Bogatyrev, NM Faddeev, VYa Mel’nichenko

NI Pirogov Russian National Medical Center of Surgery, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203

For correspondence: Nikita Evgen’evich Mochkin, MD, PhD, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203; Tel.: 8(495)603-72-17; e-mail: nickmed@yandex.ru

For citation: Mochkin NE, Sarzhevskii VO, Dubinina YuN, et. al. Outcome of Classical Hodgkin’s Lymphoma Treatment Based on High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantation: The Experience in the NI Pirogov Russian National Medical Center of Surgery. Clinical oncohematology. 2018;11(3):234–40.

DOI: 10.21320/2500-2139-2018-11-3-234-240


ABSTRACT

Aim. To estimate the long-term outcome of the programmed treatment of classical Hodgkin’s lymphoma (cHL) including high-dose chemotherapy (HDCT) and autologous hematopoietic stem cell transplantation (auto-HSCT) as well as the effect of various factors on the achieved results in a single-center study.

Materials & Methods. In the A.A. Maksimov Clinical Center of Hematology and Cellular Therapy of the NI Pirogov Russian National Medical Center of Surgery 260 cHL patients received HDCT combined with auto-HSCT within the period from December 2006 to March 2017. The median age was 29 years (range 17–62). The study included 40 % men (n = 104), and 60 % women (n = 156). The median pretransplantation chemotherapy line was 3 (range 2–9). At this stage, prior to auto-HSCT, complete remission (CR) rate was 26.5 %, partial remission (PR) rate was 52.3 %, disease stabilisation rate was 13.5 %. HDCT with auto-HSCT was applied beyond progression as a salvage therapy in 7.7 % of patients. In 79.6 % of patients the standard BEAM and CBV conditioning regimens were used.

Results. After HDCT combined with auto-HSCT overall 5-year survival (OS) of 260 cHL patients was 74 %, and 5-year progression-free survival (PFS) was 48 %, which corresponds to the results of some international studies. 5-year OS rates were significantly higher after HDCT and auto-HSCT performed during the first CR or PR (85 %) vs the second and subsequent CR and PR (71 %). Neither gender (= 0.4) nor ECOG status (= 0.2) effects on OS and PFS were revealed. 5-year OS rates were significantly higher after HDCT and auto-HSCT performed during CR or PR (82 %) vs disease stabilisation and progression (54 %) as well as upon achieving CR (93 %) vs PR (77 %).

Conclusion. In cHL tumor sensitivity to chemotherapy is the essential indication for HDCT combined with auto-HSCT. The optimal time for HDCT and auto-HSCT in cHL is the first CR/PR, and the best treatment outcome is achieved in patients with complete response prior to HDCT and auto-HSCT.

Keywords: classical Hodgkin’s lymphoma, high-dose chemotherapy, autologous hematopoietic stem cell transplantation.

Received: February 9, 2018

Accepted: May 3, 2018

Read in PDF 


REFERENCES

  1. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2016.[Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines in diagnosis and treatment of lymphoproliferative disorders). Moscow: Buki Vedi Publ.; 2016. (In Russ)]
  2. Skoetz N, Trelle S, Rancea M, et al. Effect of initial treatment strategy on survival of patients with advanced-stage Hodgkin’s lymphoma: a systematic review and network meta-analysis. Lancet Oncol. 2013;14(10):943–52. doi: 10.1016/S1470-2045(13)70341-3.
  3. Kuruvilla J, Keating A, Crump M. How I treat relapsed and refractory Hodgkin lymphoma. Blood. 2011;117(16):4208–17. doi: 10.1182/blood-2010-09-288373.
  4. Thomas RK, Re D, Zander T, et al. Epidemiology and etiology of Hodgkin’s lymphoma. Ann Oncol. 2002;13(Suppl. 4):147–52. doi: 10.1093/annonc/mdf652.
  5. Linch D, Winfield D, Goldstone A, et al. Dose intensification with autologous bone marrow transplantation in relapsed and resistant Hodgkin disease: results of a BNLI randomized trial. Lancet. 1993;341(8852):1051–4. doi: 10.1016/0140-6736(93)92411-L.
  6. Schmitz N, Pfistner B, Sextro M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin disease: a randomized trial. Lancet. 2002;359(9323):2065–71. doi: 10.1016/S0140-6736(02)08938-9.
  7. Josting A, Franklin J, May M, et al. New prognostic score based on treatment outcome of patients with relapsed Hodgkin’s lymphoma registered in the database of the German Hodgkin’s lymphoma study group. J Clin Oncol. 2002;20(1):221–30. doi: 10.1200/JCO.2002.20.1.221
  8. Ljungman P, Bregni M, Brune M, et al. Allogenic and autologous transplantation for haematological disease, solid tumors and immune disorders: current practice in Europe 2009. Bone Marrow Transplant. 2010;45(2):219–34. doi: 10.1038/bmt.2009.141.
  9. Perales M-A, Ceberio I, Armand Ph, et al. Role of cytotoxic therapy with hematopoietic cell transplantation in the treatment of Hodgkin lymphoma: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2015;21(6):971–983. doi: 10.1016/j.bbmt.2015.02.022.
  10. Hoppe RT, Advani RH, Ai WZ, et al. NCCN Clinical Practice Guidelines in Oncology. Hodgkin Lymphoma. Version 1.2018. Available from: https://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf (accessed 05.03.2018).
  11. Moscowitz CH, Kewalramani T, Nimer SD, et al. Effectiveness of high-dose chemoradiotherapy and autologous stem cell transplantation for patients with biopsy-proven primary refractory Hodgkin’s disease. Br J Haematol. 2004;124(5):645–52. doi: 1111/j.1365-2141.2003.04828.x.
  12. Sirohi B, Cunningham D, Powles R, et al. Long-term outcome of autologous stem-cell transplantation in relapsed or refractory Hodgkin’s lymphoma. Ann Oncol. 2008;19(7):1312–9. doi: 10.1093/annonc/mdn052.
  13. Moskowitz CH, Nimer SD, Zelenets AD, et al. A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: analysis by intent to treat and development of a prognostic model. Blood. 2001;97(3):616–23. doi: 10.1182/blood.V97.3.616.
  14. Phillips JK, Spearing RL, Davies JM, et al. VIM-D salvage chemotherapy in Hodgkin’s disease. Cancer Chemother Pharmacol. 1990;27(2):161–3. doi: 10.1007/bf00689103.
  15. The International ChlVPP Treatment Group. ChlVPP therapy for Hodgkin’s disease: experience of 960 patients. Ann Oncol 1995;6(2):167–72.
  16. Colwill R, Crump M, Couture F, et al. Mini-BEAM as salvage therapy for relapsed or refractory Hodgkin’s disease before intensive therapy and autologous bone marrow transplantation. J Clin Oncol. 1995;13(2):396–402. doi: 10.1200/JCO.1995.13.2.396.
  17. Rodriguez MA, Cabanillas FC, Hagemeister FB, et al. A phase II trial of mesna/ifosfamide, mitoxantrone and etoposide for refractory lymphomas. Ann Oncol. 1995;6(6):609–12. doi: 10.1093/oxfordjournals.annonc.a059252.
  18. Aparicio J, Segura A, Garcera S, et al. ESHAP is an active regimen for relapsing Hodgkin’s disease. Ann Oncol. 1999;10(5):593–5. doi: 10.1023/a:1026454831340.
  19. Martin A, Femandez-Jimenez MC, Caballero MD, et al. Long-term follow-up in patients treated with Mini-BEAM as salvage therapy for relapsed or refractory Hodgkin’s disease. Br J Haematol. 2001;113(1):161–71. doi:1046/j.1365-2141.2001.02714.x.
  20. Josting A, Rudolph C, Reiser M, et al. Time-intensified dexamethasone/cisplatin/cytarabine: an effective salvage therapy with low toxicity in patients with relapsed and refractory Hodgkin’s disease. Ann Oncol. 2002;13(10):1628–35. doi: 10.1093/annonc/mdf221.
  21. Abali H, Urun Y, Oksuzoglu B, et al. Comparison of ICE (ifosfamide-carboplatin-etoposide) versus DHAP (cytosine arabinoside-cisplatin-dexamethasone) as salvage chemotherapy in patients with relapsed or refractory lymphoma. Cancer Invest. 2008;26(4):401–6. doi: 10.1080/07357900701788098.
  22. European Society for Blood and Marrow Transplantation Annual Report 2016. Available from: http://www.ebmt.org/sites/default/files/migration_legacy_files/document/Annual%20Report%202016_EBMT.pdf. (accessed 28.03.2018).
  23. Passweg JR, Baldomero H, Bregni M, et al. Hematopoietic SCT in Europe: data and trends in 2011. Bone Marrow Transplant. 2013;48(9):1161–7. doi: 10.1038/bmt.2013.51.
  24. Жуков Н.В., Усс А.Л., Миланович Н.Ф. и др. Оптимальные сроки проведения аутологичной трансплантации клеток предшественников гемопоэза при неблагоприятном течении лимфомы Ходжкина. Зарубежные рекомендации и отечественная практика. Онкогематология. 2014;2:37–44.[Zhukov NV, Uss AL, Milanovich NF, et al. The optimal time for autologous hematopoietic progenitor cell transplantation during treatment of Hodgkin’s lymphoma. Foreign recommendations and Russian experience. Onkogematologiya. 2014;2:37–44. (In Russ)]
  25. Мочкин Н.Е., Саржевский В.О., Дубинина Ю.Н. и др. Высокодозная химиотерапия с трансплантацией аутологичных кроветворных стволовых клеток при лимфоме Ходжкина. Десятилетний опыт ФГБУ «НМХЦ им. Н.И. Пирогова» Минздрава России. Российский журнал детской гематологии и онкологии. 2017;4(2):85–90. doi: 10.17650/2311-1267-2017-4-2-85-90.[Mochkin NE, Sarzhevskii VO, Dubinina YuN, et al. High-dose chemotherapy with autologous hematopoietic stem cell transplantation in patients with Hodgkin’s lymphoma. 10-year experience of the NI Pirogov Russian National Medical Center of Surgery. Rossiiskii zhurnal detskoi gematologii i onkologii. 2017;4(2):85–90. doi: 17650/2311-1267-2017-4-2-85-90. (In Russ)]
  26. Sasse S, Alram M, Muller H, et al. Prognostic relevance of DHAP dose-density in relapsed Hodgkin lymphoma: an analysis of the German Hodgkin-Study Group.Leuk Lymphoma.2016;57(5):1067–73. doi: 10.3109/10428194.2015.1083561.
  27. Moskowitz AJ, Hamlin PA, Perales M-A, et al. Phase II study of bendamustine in relapsed and refractory Hodgkin lymphoma. J Clin Oncol. 2013;31(4):456–60. doi: 10.1200/JCO.2012.45.3308.
  28. Visani G, Malerba L, Stefani PM, et al. BeEAM (bendamustine, etoposide, cytarabine, melphalan) before autologous stem cell transplantation is safe and effective for resistant/relapsed lymphoma patients. Blood. 2011;118(12):3419–25. doi: 10.1182/blood-2011-04-351924.
  29. Caballero MD, Rubio V, Rifon J, et al. BEAM chemotherapy followed by autologous stem cell support in lymphoma patient: analysis of efficacy, toxicity and prognostic factors. Bone Marrow Transplant. 1997;20(6):451–8. doi: 10.1038/sj.bmt.1700913.
  30. Jagannath S, Armitage JO, Dicke KA, et al. Prognostic factors for response and survival after high-dose cyclophosphamide, carmustine, and etoposide with autologous bone marrow transplantation for relapsed Hodgkin’s disease. J Clin Oncol. 1989;7(2):179–85. doi: 10.1200/jco.1989.7.2.179.
  31. Provencio M, Sanchez A, Sanchez-Beato M. New drugs and targeted treatments in Hodgkin’s lymphoma. Cancer Treat Rev. 2014;40(3):457–64. doi. 10.1016/j.ctrv.2013.09.005.

Epstein-Barr Virus in Patients with Classical Hodgkin’s Lymphoma

VE Gurtsevitch, EA Demina, NB Senyuta, IV Botezatu, KV Smirnova, TE Dushen’kina, DM Maksimovich, UV Paramonova, IS Monin, AV Lichtenshtein

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Prof. Vladimir Eduardovich Gurtsevitch, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: 8(499)324-25-64; e-mail: gurtsevitch-vlad-88@yandex.ru

For citation: Gurtsevitch VE, Demina EA, Senyuta NB, et al. Epstein-Barr Virus in Patients with Classical Hodgkin’s Lymphoma. Clinical oncohematology. 2018;11(2):160–6.

DOI: 10.21320/2500-2139-2018-11-2-160-166


ABSTRACT

Background. A close relationship between Epstein-Barr virus (EBV) and classical Hodgkin’s lymphoma (cHL) has been established in approximately 1/3 patients. EBV-positive lymphomas are characterized by increased level of EBV specific antibodies emerging long before tumor symptoms, аs well as a high plasma EBV DNA concentration. These viral markers normally correlate with clinical manifestations and the outcome of treatment performed. In patients with EBV-negative lymphomas, however, there has been no attempt to assess the clinical significance of either humoral response to EBV or EBV DNA concentration in plasma.

Aim. To evaluate diagnostic and prognostic significance of EBV markers in patients with EBV-negative lymphomas.

Methods. The clinical trial included 13 cHL-patients admitted at the Department of chemotherapy of hemoblastoses of NN Blokhin National Medical Cancer Research Center. The male to female ratio was 1:1.3, the median age was 26.4 years. Leukocyte and lymphocyte counts were evaluated in all the patients before, during, and after treatment as well as throughout the follow-up period. The same indicators were analysed in the control group which contained 40 healthy persons (with the median age of 41.1 years, male to female ratio 1.5:1). The study was based on serologic test for EBV antibodies and quantitative analysis of the viral DNA copy number in plasma.

Results. The obtained data show a low immunie response to EBV and its diminishment after several polychemotherapy treatment cycles, correlating with decreased leukocyte and lymphocyte levels. As opposed to levels of virus-specific antibodies which do not reflect the efficacy of anticancer therapy, plasma EBV DNA concentration in 2 patients decreased to 0 after remission had been achieved.

Conclusion. Although the number of observations is limited, one could suggest that viral load values in plasma of patients with EBV-negative lymphomas can prove to be a useful marker of anticancer therapeutic effect. Additional studies of these markers are required.

Keywords: Epstein-Barr virus (EBV), classical Hodgkin’s lymphoma, EBV DNA, EBV-negative classical Hodgkin’s lymphoma, level of virus-specific antibodies.

Received: November 13, 2017

Accepted: February 8, 2018

Read in PDF 


REFERENCES

  1. Alexander FE, Jarrett RF, Lawrence D, et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer. 2000;82(5):1117–21.
  2. Mueller N, Evans A, Harris NL, et al. Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med. 1989;320(11):689–95. doi: 10.1056/nejm198903163201103.
  3. Anagnostopoulos I, Herbst H, Niedobitek G, et al. Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood. 1989;74(2):810–6.
  4. Tanyildiz HG, Yildiz I, Bassullu N, et al. The Role of Epstein-Barr Virus LMP-1 Immunohistochemical Staining in Childhood Hodgkin Lymphoma. Iran J Pediatr. 2015;25(6):e2359. doi: 10.5812/ijp.2359.
  5. Iwakiri D, Takada K. Role of EBERs in the pathogenesis of EBV infection. Adv Cancer Res. 2010;107:119–36. doi: 10.1016/s0065-230x(10)07004-1.
  6. Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70(4):375–82. doi: 10.1002/(sici)1097-0215(19970207)70:4<375::aid-ijc1>3.3.co;2-l.
  7. Jarrett AF, Armstrong AA, Alexander E. Epidemiology of EBV and Hodgkin’s lymphoma. Ann Oncol. 1996;7(Suppl 4):s5–s10. doi: 10.1093/annonc/7.suppl_4.s5.
  8. Ambinder RF. Gammaherpesviruses and “Hit-and-Run” oncogenesis. Am J Pathol. 2000;156(1):1–3. doi: 10.1016/s0002-9440(10)64697-4.
  9. Meij P, Vervoort MB, Bloemena E, et al. Antibody responses to Epstein-Barr virus-encoded latent membrane protein-1 (LMP1) and expression of LMP1 in juvenile Hodgkin’s disease. J Med Virol. 2002;68(3):370–7. doi: 10.1002/jmv.10213.
  10. Chang ET, Zheng T, Lennette ET, et al. Heterogeneity of risk factors and antibody profiles in Epstein-Barr virus genome-positive and -negative Hodgkin lymphoma. J Infect Dis. 2004;189(12):2271–81. doi: 10.1086/420886.
  11. Gallagher A, Perry J, Freeland J, et al. Hodgkin lymphoma and Epstein-Barr virus (EBV): no evidence to support hit-and-run mechanism in cases classified as non-EBV-associated. Int J Cancer. 2003;104(5):624–30. doi: 10.1002/ijc.10979.
  12. Staratschek-Jox A, Kotkowski S, Belge G, et al. Detection of Epstein-Barr virus in Hodgkin-Reed-Sternberg cells: no evidence for the persistence of integrated viral fragments in Latent membrane protein-1 (LMP-1)-negative classical Hodgkin’s disease. Am J Pathol. 2000;156(1):209–16. doi: 10.1016/s0002-9440(10)64721-9.
  13. zur Hausen H, de Villiers EM. Virus target cell conditioning model to explain some epidemiologic characteristics of childhood leukemias and lymphomas. Int J Cancer. 2005;115(1):1–5. doi: 10.1002/ijc.20905.
  14. Jelcic I, Hotz-Wagenblatt A, Hunziker A, et al. Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin’s disease patient: genome reorganization and diversity in the hypervariable region. J Virol. 2004;78(14):7498–507. doi: 10.1128/jvi.78.14.7498-7507.2004.
  15. Feng H, Shuda M, Chang Y, et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100. doi: 10.1126/science.1152586.
  16. Volter C, Hausen H, Alber D, et al. Screening human tumor samples with a broad-spectrum polymerase chain reaction method for the detection of polyomaviruses. Virology. 1997;237(2):389–96. doi: 10.1006/viro.1997.8772.
  17. Lo YM, Leung SF, Chan LY, et al. Kinetics of plasma Epstein-Barr virus DNA during radiation therapy for nasopharyngeal carcinoma. Cancer Res. 2000;60(9):2351–5.
  18. Wang WY, Twu CW, Chen HH, et al. Plasma EBV DNA clearance rate as a novel prognostic marker for metastatic/recurrent nasopharyngeal carcinoma. Clin Cancer Res. 2010;16(3):1016–24. doi: 10.1158/1078-0432.ccr-09-2796.
  19. Au WY. Quantification of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients. Blood. 2004;104(1):243–9. doi: 10.1182/blood-2003-12-4197.
  20. Hohaus S, Santangelo R, Giachelia M, et al. The viral load of Epstein-Barr virus (EBV) DNA in peripheral blood predicts for biological and clinical characteristics in Hodgkin lymphoma. Clin Cancer Res. 2011;17(9):2885–92. doi: 10.1158/1078-0432.ccr-10-3327.
  21. Kasamon YL, Jacene HA, Gocke CD, et al. Phase 2 study of rituximab-ABVD in classical Hodgkin lymphoma. Blood. 2012;119(18):4129–32. doi: 10.1182/blood-2012-01-402792.
  22. Kanakry JA, Li H, Gellert LL, et al. Plasma Epstein-Barr virus DNA predicts outcome in advanced Hodgkin lymphoma: correlative analysis from a large North American cooperative group trial. Blood. 2013;121(18):3547–53. doi: 10.1182/blood-2012-09-454694.
  23. Dinand V, Sachdeva A, Datta S, et al. Plasma Epstein Barr Virus (EBV) DNA as a Biomarker for EBV associated Hodgkin lymphoma. Indian Pediatr. 2015;52(8):681–5. doi: 10.1007/s13312-015-0696-9.
  24. Stein H, Delsol G, Pileri SA, et al. Classical Hodgkin lymphoma, introduction. In: Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  25. Lo YM, Chan LY, Chan AT, et al. Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res. 1999;59(21):5452–5.
  26. Botezatu IV, Kondratova VN, Shelepov VP, et al. DNA melting analysis: application of the “open tube” format for detection of mutant KRAS. Anal Biochem. 2011;419(2):302–8. doi: 10.1016/j.ab.2011.08.015.
  27. Srinivas SK, Sample JT, Sixbey JW. Spontaneous loss of viral episomes accompanying Epstein-Barr virus reactivation in a Burkitt’s lymphoma cell line. J Infect Dis. 1998;177(6):1705–9. doi: 10.1086/517427.
  28. Razzouk BI, Srinivas S, Sample CE, et al. Epstein-Barr Virus DNA recombination and loss in sporadic Burkitt’s lymphoma. J Infect Dis. 1996;173(3):529–35. doi: 10.1093/infdis/173.3.529.