Comparative Analysis of Myelofibrosis Treatment Outcomes with the Use of Ruxolitinib Versus Ruxolitinib with Subsequent Allogeneic Hematopoietic Stem Cell Transplantation

MV Barabanshchikova, EV Morozova, YuYu Vlasova, TL Gindina, AV Evdokimov, IM Barkhatov, VV Baikov, IO Ivanova, TA Rudakova, EA Bakin, IS Moiseev, AD Kulagin

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Mariya Vladimirovna Barabanshchikova, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(911)164-01-57; e-mail: maria.barabanshikova.spb@gmail.com

For citation: Barabanshchikova MV, Morozova EV, Vlasova YuYu, et al. Comparative Analysis of Myelofibrosis Treatment Outcomes with the Use of Ruxolitinib Versus Ruxolitinib with Subsequent Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2021;14(1):22–30. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-22-30


ABSTRACT

Aim. To comparatively analyze myelofibrosis treatment outcomes with the use of ruxolitinib versus ruxolitinib with subsequent allogeneic hematopoietic stem cell transplantation (allo-HSCT) as well as to assess the efficacy of ruxolitinib in pre- and post-transplantation periods.

Materials & Methods. The study enrolled 78 myelofibrosis patients who were referred to the RM Gorbacheva Scientific Research Institute to determine the indications for allo-HSCT. Allo-HSCT was performed in 33 patients, among them 32 patients with ruxolitinib pre-conditioning (ruxolitinib + allo-HSCT group). They received reduced intensity conditioning (fludarabine 180 mg/m2 and busulfan 10 mg/kg). Graft-versus-host disease (GVHD) prophylaxis included cyclophosphamide 50 mg/kg on Day +3 and Day +4, ruxolitinib 10 mg per day from Day +5 to Day +100 (n = 31), rabbit antithymocyte globulin, tacrolimus, and mycophenolate mofetil (n = 2). Ruxolitinib without allo-HSCT was administered to 45 patients (ruxolitinib group). Between the groups there were no significant differences with respect to gender, age, diagnosis, and molecular genetic variant.

Results. Median therapy duration in ruxolitinib group was 16 months (range 2–78 months). In 2 (4 %) patients partial response was achieved, 8 (20 %) patients showed clinical improvement, in 16 (39 %) patients stable disease (SD) was reported, in 15 (37 %) patients disease progression (DP) was detected. The treatment succeeded in reducing the spleen size in 8 (20 %) patients and in relieving disease symptoms in 16 (39 %) patients. Cumulative incidence of progression within 3 years was 44 % (95% confidence interval [95% CI] 27–60 %). In ruxolitinib + allo-HSCT group median ruxolitinib therapy duration was 7 months (range 3–22 months.). As a result, clinical improvement in 9 (28 %) cases, SD in 17 cases (53 %), and DP in 6 (19 %) cases were observed. In 5 (20 %) patients acute GVHD of grade 2–4, in 3 (12 %) patients acute GVHD of grade 3–4, and in 6 (24 %) patients chronic medium severity GVHD were identified. Within 1 year non-relapse mortality was 28 % (95% CI 14–44 %). The 3-year cumulative incidence of relapse was 12 % (95% CI 3–28 %) in ruxolitinib + allo-HSCT group. According to the landmark analysis performed throughout 6 months from the first visit to the center, the 3-year overall survival in the group with allo-HSCT was 80 %, whereas in ruxolitinib group it was 41 % (= 0.022), 12-month landmark analysis resulted in 77 % and 43 % (= 0.028), and 18-month landmark analysis showed 86 % and 46 % (= 0.015) in two groups, respectively.

Conclusion. Despite the efficacy of JAK1/2 inhibitor ruxolitinib, the risk of myelofibrosis progression is not to be underestimated. Therefore, in DIPSS intermediate-2 and high-risk patients the issue about performing allo-HSCT should be promptly clarified.

Keywords: myelofibrosis, ruxolitinib, allogeneic hematopoietic stem cell transplantation.

Received: September 28, 2020

Accepted: December 15, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Arber D, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  2. Cervantes F. How I treat myelofibrosis. Blood. 2014;124(17):2635–42. doi: 10.1182/blood-2014-07-575373.
  3. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.). Гематология и трансфузиология. 2018;63(3):275–315.
    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition of 2018). Gematologiya i transfuziologiya. 2018;63(3):275–315. (In Russ)]
  4. Verstovsek S, Mesa R, Gotlib J, et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N Engl J Med. 2012;366(9):799–807. doi: 10.1056/nejmoa1110557.
  5. Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10(1):156. doi: 10.1186/s13045-017-0527-7.
  6. Morozova E, Barabanshikova M, Gindina T, et al. Hematopoietic stem cell transplantation and other therapeutic options in primary myelofibrosis: a review and two case reports. Cell Ther Transplant. 2016;5(2):21–32. doi: 10.18620/1866-8836-2016-5-2-21-32.
  7. Kroger N, Giorgino T, Scott B, et al. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015;125(21):3347–50. doi: 10.1182/blood-2014-10-608315.
  8. Passamonti F, Cervantes F, Vannucchi A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  9. Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(26):5264–70. doi: 10.1182/blood-2009-07-234880.
  10. Morozova E, Barabanshikova M, Moiseev I, et al. A Prospective Pilot Study of Graft-versus-Host Disease Prophylaxis with Post-Transplantation Cyclophosphamide and Ruxolitinib in Patients with Myelofibrosis. Acta Haematologica. 2020:1–8. doi: 10.1159/000506758.
  11. Thiele J, Kvasnicka HM, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  12. Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013;122(8):1395–8. doi: 10.1182/blood-2013-03-488098.
  13. Singer M, Deutschman C, Seymour C, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801. doi: 10.1001/jama.2016.0287.
  14. De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21. doi: 10.1086/588660.
  15. McDonald GB, Hinds MS, Fisher LD, et al. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Intern Med. 1993;118(4):255–67. doi: 10.7326/0003-4819-118-4-199302150-00003.
  16. Gowin K, Ballen K, Ahn K, et al. Survival following allogeneic transplant in patients with myelofibrosis. Blood Adv. 2020;4(9):1965–73. doi: 10.1182/bloodadvances.2019001084.
  17. Dafni U. Landmark Analysis at the 25-Year Landmark Point. Circ Cardiovasc Qual Outcomes. 2011;4(3):363–71. doi: 10.1161/circoutcomes.110.957951.
  18. Барабанщикова М.В. Клинико-морфологические особенности и факторы прогноза при Ph-негативных хронических миелопролиферативных заболеваниях: Автореф. дис. … мед. наук. СПб., 2016.
    [Barabanshchikova MV. Kliniko-morfologicheskie osobennosti i faktory prognoza pri Ph-negativnykh khronicheskikh mieloproliferativnykh zabolevaniyakh. (Clinical morphological characteristics and prognostic factors in Ph-negative chronic myeloproliferative diseases.) [dissertation] Saint Petersburg; (In Russ)]
  19. Gowin K, Ballen K, Ahn K, et al. Survival following allogeneic transplant in patients with myelofibrosis. Blood Adv. 2020;4(9):1965–73. doi: 10.1182/bloodadvances.2019001084.
  20. Ruggiu M, Cassinat B, Kiladjian J, et al. Should Transplantation Still Be Considered for Ph1-Negative Myeloproliferative Neoplasms in Transformation? Biol Blood Marrow Transplant. 2020;26(6):1160–70. doi: 10.1016/j.bbmt.2020.02.019.
  21. Shanavas M, Popat U, Michaelis L, et al. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients with Myelofibrosis with Prior Exposure to Janus Kinase 1/2 Inhibitors. Biol Blood Marrow Transplant. 2016;22(3):432–40. doi: 10.1016/j.bbmt.2015.10.005.
  22. Alchalby H, Yunus D, Zabelina T, et al. Incidence and risk factors of poor graft function after allogeneic stem cell transplantation for myelofibrosis. Bone Marrow Transplant. 2016;51(9):1223–7. doi: 10.1038/bmt.2016.98.
  23. Рудакова Т.А., Кулагин А.Д., Климова О.У. и др. Тяжелая гипофункция трансплантата после аллогенной трансплантации гемопоэтических стволовых клеток у взрослых пациентов: частота, факторы риска, исходы. Клиническая онкогематология. 2019;12(3):309–18. doi: 10.21320/2500-2139-2019-12-3-309-318.
    [Rudakova TA, Kulagin AD, Klimova OU, et al. Severe “Poor Graft Function” after Allogeneic Hematopoietic Stem Cell Transplantation in Adult Patients: Incidence, Risk Factors, and Outcomes. Clinical oncohematology. 2019;12(3):309–18. doi: 10.21320/2500-2139-2019-12-3-309-318. (In Russ)]
  24. Rashidi A, Hamadani M, Zhang M, et al. Outcomes of haploidentical vs matched sibling transplantation for acute myeloid leukemia in first complete remission. Blood Adv. 2019;3(12):1826–36. doi: 10.1182/bloodadvances.2019000050.
  25. Gupta V, Kosiorek HE, Mead A, et al. Ruxolitinib Therapy Followed by Reduced-Intensity Conditioning for Hematopoietic Cell Transplantation for Myelofibrosis: Myeloproliferative Disorders Research Consortium 114 Study. Biol Blood Marrow Transplant. 2019;25(2):256–64. doi: 10.1016/j.bbmt.2018.09.001.
  26. Zeiser R, von Bubnoff N, Butler J, et al. Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease. N Engl J Med. 2020;382(19):1800–10. doi: 10.1056/nejmoa1917635.
  27. Pu JJ, Poulose J, Malysz J, et al. Impact of ruxolitinib on myelofibrosis patients post allogeneic stem cell transplant—a pilot study. Br J Haematol. 2019;186(5):е130–е133. doi: 10.1111/bjh.15967.
  28. Kroger N, Shahnaz Syed Abd Kadir S, Zabelina T, et al. Peritransplantation Ruxolitinib Prevents Acute Graft-versus-Host Disease in Patients with Myelofibrosis Undergoing Allogenic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018;24(10):2152–6. doi: 10.1016/j.bbmt.2018.05.023.
  29. Choi J, Cooper ML, Alahmari B, et al. Pharmacologic blockade of JAK1/JAK2 reduces GvHD and preserves the graft-versus-leukemia effect. PLoS ONE. 2014;9(10):e109799. doi: 10.1371/journal.pone.0109799.

Identification of Mutations in IDH1/2, DNMT3A, ASXL1 Genes of Genome Epigenetic Regulation and Their Co-Occurrence with FLT3, NPM1, RUNX1 Mutations in Acute Myeloid Leukemia

EV Belotserkovskaya1,2, EK Zaikova1,2, AV Petukhov1,2,3, ON Demidov2, KA Levchuk1, IG Budaeva1, DV Zaitsev1, YuD Rogovaya1, AA Shatilova1, KV Bogdanov1, YuV Mirolyubova1, TS Nikulina1, AYu Zaritskey1, LL Girshova1

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Institute of Cytology, 4 Tikhoretskii pr-t, Saint Petersburg, Russian Federation, 194064

3 Sirius University of Science and Technology, 1 Olimpiiskii pr-t, Sochi, Russian Federation, 354340

For correspondence: Ekaterina Vasilevna Belotserkovskaya, PhD in Biology, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; e-mail: belotserkovskaya.ev@gmail.com

For citation: Belotserkovskaya EV, Zaikova EK, Petukhov AV, et al. Identification of Mutations in IDH1/2, DNMT3A, ASXL1 Genes of Genome Epigenetic Regulation and Their Co-Occurrence with FLT3, NPM1, RUNX1 Mutations in Acute Myeloid Leukemia. Clinical oncohematology. 2021;14(1):13–21. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-13-21


ABSTRACT

Aim. To identify mutations in IDH1/IDH2, DNMT3A, and ASXL1 genes responsible for genome epigenetic regulation and their co-occurrence with FLT3, NPM1, and RUNX1 mutations in newly diagnosed adult acute myeloid leukemias (AML).

Materials & Methods. The study included 56 patients with newly diagnosed AML treated at the VA Almazov National Medical Research Center. Among them there were 34 men and и 22 women aged 18–76 years (median 46 years). Mutation status of IDH1, IDH2, DNMT3A, and ASXL1 genes of epigenetic regulation was assessed by Sanger sequencing method. Molecular genetic analysis of FLT3, NPM1, and RUNX1-RUNX1T1 genes was performed using commercial kits.

Results. Mutations in epigenetic regulation genes were detected in 14 (25 %) out of 56 patients. Mutation prevalence was not associated with risk groups (= 0.072). IDH1/2 mutations were identified in 15.6 % of patients and were significantly oftener observed concurrent with NPM1 mutations (62.5 %; = 0.01) compared to patients with wild-type IDH1/2. In most patients IDH1/2 mutations were associated with normal karyotype (= 0.002). DNMT3A (R882) mutation was identified in 4 (7.1 %) out of 56 patients within the analyzed group. In 6 patients (11.1 %) ASXL1 mutations were detected co-occurring with RUNX1-RUNX1T1 and FLT3-ITD mutations.

Conclusion. Mutations in epigenetic regulation genes are often identified in AML patients and can be concurrent with abnormalities in NPM1, FLT3 и RUNX1 genes.

Keywords: acute myeloid leukemias, IDH1, IDH2, DNMT3A, and ASXL1 genes of epigenetic regulation, epigenetic factors.

Received: August 20, 2020

Accepted: December 2, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Wang M, Yang C, Zang L, et al. Molecular mutations and their cooccurrences in cytogenetically normal Acute Myeloid Leukemia. Stem Cells Int. 2017;2017:1–11. doi: 10.1155/2017/6962379.
  2. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 1182/blood-2016-08-733196.
  3. Gambacorta V, Gnani D, Vago L, et al. Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Front Cell Dev Biol. 2019;7:207. doi: 10.3389/fcell.2019.00207.
  4. Santini Hypomethylating agents in the treatment of acute myeloid leukemia: A guide to optimal use. Crit Rev Oncol Hemat. 2009;140:1–7. doi: 10.1016/j.critrevonc.2019.05.013.
  5. Kim Enasidenib: First Global Approval. Drugs. 2017;77(15):1705–11. doi: 10.1007/s40265-017-0813-2.
  6. Liu X, Gong Y. Isocitrate dehydrogenase inhibitors in acute myeloid leukemia. Biomark Res. 2019;7(1):22. doi: 10.1186/s40364-019-0173-z.
  7. Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol. 2018;56(2):84–9. doi: 10.1053/j.seminhematol.2018.08.001.
  8. Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16. doi: 10.1182/blood-2015-03-631747.
  9. Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477. doi: 10.1056/nejmoa1409405.
  10. Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22(2):157–70. doi: 10.1016/j.stem.2018.01.011.
  11. Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111–21. doi: 10.1056/nejmoa1701719.
  12. Buscarlet M, Provost S, Zada YF, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood. 2017;130(6):753–62. doi: 10.1182/blood-2017-04-777029.
  13. Yuan X, Peng L, Zeng W, et al. DNMT3A R882 Mutations Predict a Poor Prognosis in AML. Medicine. 2016;95(18):e3519. doi: 10.1097/md.0000000000003519.
  14. Marcucci G, Maharry K, Wu Y, et al. IDH1 and IDH2 Gene Mutations Identify Novel Molecular Subsets Within De Novo Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. J Clin Oncol. 2010;28(14):2348–55. doi: 10.1200/JCO.2009.27.3730.
  15. Schnittger S, Eder C, Jeromin S, et al. ASXL1 exon 12 mutations frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013;27(1):82–91. doi: 1038/leu.2012.262.
  16. Pratcorona M, Abbas S, Sanders MA, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica. 2012;97(3):388. doi: 10.3324/haematol.2011.051532.
  17. Wagner K, Damm F, Gohring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol. 2010;28(14):2356–64. doi: 10.1200/jco.2009.27.6899.
  18. Dinardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015;90(8):732–6. doi: 10.1002/ajh.24072.
  19. Brunetti L, Gundry MC, Goodell MA. DNMT3A in Leukemia. Cold Spring Harb Perspect Med. 2017;7(2):a030320. doi: 10.1101/cshperspect.a030320.
  20. Park SH, Choi JC, Kim SY, et al. Incidence and Prognostic Impact of DNMT3A Mutations in Korean Normal Karyotype Acute Myeloid Leukemia Patients. BioMed Res Int. 2015;2015:1–11. doi: 10.1155/2015/723682.
  21. Chotirat S, Thongnoppakhun W, Promsuwicha O, et al. Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. J Hematol Oncol. 2012;5(1):5. doi: 10.1186/1756-8722-5-5.
  22. Petrova L, Vrbacky F, Lanska M, et al. IDH1 and IDH2 mutations in patients with acute myeloid leukemia: Suitable targets for minimal residual disease monitoring? Clin Biochem. 2018;61:34–9. doi: 10.1016/j.clinbiochem.2018.08.012.
  23. Waitkus MS, Diplas BH, Yan H. Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell. 2018;34(2):186–95. doi: 10.1016/j.ccell.2018.04.011.
  24. Clark O, Yen K, Mellinghoff IK. Molecular Pathways: Isocitrate Dehydrogenase Mutations in Cancer. Clin Cancer Res. 2016;22(8):1837–42. doi: 1158/1078-0432.CCR-13-1333.
  25. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 Mutations in Gliomas. N Engl J Med 2009;360(8):765–73. doi: 10.1056/NEJMoa0808710.
  26. Parsons DW, Jones S, Zhang X, et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. 2008;321(5897):1807–12. doi: 10.1126/science.1164382.
  27. Whitehall VLJ, Dumenil TD, McKeone DM, et al. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype. Epigenetics. 2014;9(11):1454–60. doi: 10.4161/15592294.2014.971624.
  28. Mardis ER, Ding L, Dooling DJ, et al. Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome. N Engl J Med. 2009;361(11):1058–66. doi: 10.1056/NEJMoa0903840.
  29. Green CL, Evans CM, Zhao L, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood. 2011;118(2):409–12. doi: 10.1182/blood-2010-12-322479.
  30. Berenstein R, Blau IW, Kar A, et al. Comparative examination of various PCR-based methods for DNMT3A and IDH1/2 mutations identification in acute myeloid leukemia. J Exp Clin Cancer Res. 2014;33(1):44. doi: 10.1186/1756-9966-33-44.
  31. Mizuta S, Yamane N, Komai T, et al. Investigation of screening method for DNMT3A mutations by high‐resolution melting analysis in acute myeloid leukemia. Int J Lab Hematol. 2019;41(5):593–600. doi: 10.1111/ijlh.13056.
  32. МотыкоЕ.В., Блау О.В., Полушкина Л.Б. и др. Прогностическое значение генетических мутаций у больных острыми миелоидными лейкозами: результаты совместного исследования гематологических клиник Санкт-Петербурга (Россия) и клиники Шарите (Германия). Клиническая онкогематология. 2019;12(2):211–9. doi: 10.21320/2500-2139-2019-12-2-211-219.
    [Motyko EV, Blau OV, Polushkina LB, et al. Prognostic Value of Genetic Mutations in Patients with Acute Myeloid Leukemias: Results of a Cooperative Study of Hematology Clinics of Saint Petersburg (Russia) and Charite Clinic (Germany). Clinical oncohematology. 2019;12(2):211–9. doi: 10.21320/2500-2139-2019-12-2-211-219. (In Russ)]
  33. ElNahass YH, Badawy RH, ElRefaey FA, et al. IDH Mutations in AML Patients; A higher Association with Intermediate Risk Cytogenetics. Asian Pacif J Cancer Prev. 2020;21(3):721–5. doi: 10.31557/APJCP.2020.21.3.721.
  34. Ferret Y, Boissel N, Helevaut N, et al. Clinical Relevance Of IDH1/2 Mutant Allele Burden During Follow-Up In Acute Myeloid Leukemia. A Study By The French ALFA Group. Haematologica. 2018;103(5):822–9. doi: 10.3324/haematol.2017.183525.
  35. Brambati C, Galbiati S, Xue E, et al. Droplet digital polymerase chain reaction for DNMT3A and IDH1/2 mutations to improve early detection of acute myeloid leukemia relapse after allogeneic hematopoietic stem cell transplantation. Haematologica. 2016;101(4):e157–e161. doi: 10.3324/haematol.2015.135467.
  36. Patel KP, Ravandi F, Ma D, et al. Acute myeloid leukemia with IDH1 or IDH2 mutation: frequency and clinicopathologic features. Am J Clin Pathol. 2011;135(1):35–45. doi: 10.1309/AJCPD7NR2RMNQDVF.
  37. Zou Y, Bai HX, Wang Z, Yang L. Comparison of immunohistochemistry and DNA sequencing for the detection of IDH1 mutations in gliomas. Neuro Oncol. 2015;17(3):477–8. doi: 10.1093/neuonc/nou351.
  38. Petiti J, Rosso V, Croce E, et al. Highly Sensitive Detection of IDH2 Mutations in Acute Myeloid Leukemia. J Clin Med. 2020;9(1):271. doi: 10.3390/jcm9010271.
  39. Aref S, Kamel AS, Abdel AMF, et al. Prevalence and clinical effect of IDH1 and IDH2 mutations among cytogenetically normal acute myeloid leukemia patients. Clin Lymphoma Myel Leuk. 2015;15(9):550–5. doi: 10.1016/j.clml.2015.05.009.
  40. Boissel N, Nibourel O, Renneville A, et al. Prognostic Impact of Isocitrate Dehydrogenase Enzyme Isoforms 1 and 2 Mutations in Acute Myeloid Leukemia: A Study by the Acute Leukemia French Association Group. J Clin Oncol. 2010;28(23):3717–23. doi: 10.1200/jco.2010.28.2285.
  41. Xu Q, Li Y, Lv N, et al. Correlation between isocitrate dehydrogenase gene aberrations and prognosis of patients with acute myeloid leukemia: A systematic review and meta-analysis. Clin Cancer Res. 2017;23(15):4511–22. doi: 10.1158/1078-0432.ccr-16-2628.
  42. Montalban-Bravo G, DiNardo CD. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018;10(14):979–93. doi: 10.2217/fon-2017-0523.
  43. Amatangelo MD, Quek L, Shih A, et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood. 2017;130(6):732–42. doi: 10.1182/blood-2017-04-779447.
  44. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19(3):219–20. doi: 10.1038/890.
  45. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi: 10.1056/NEJMoa1005143.
  46. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. doi: 1056/NEJMoa1301689.
  47. Блау О.В. Мутации генов при острых миелоидных лейкозах. Клиническая онкогематология. 2016;9(3):245–56. doi: 10.21320/2500-2139-2016-9-3-245-256.
    [Blau OV. Genetic Mutations in Acute Myeloid Leukemia. Clinical oncohematology. 2016;9(3):245–56. doi: 10.21320/2500-2139-2016-9-3-245-256. (In Russ)]
  48. Guryanova OA, Shank K, Spitzer B, et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med. 2016;22(12):1488–95. doi: 10.1038/nm.4210.
  49. Hou HA, Kuo YY, Liu CY, et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012;119(2):559–68. doi: 10.1182/blood-2011-07-369934.
  50. Ploen GG, Nederby L, Guldberg P, et al. Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol. 2014;167(4):478–86. doi: 10.1111/bjh.13062.
  51. Rothenberg-Thurley M, Amler S, Goerlich D, et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia. 2018;32(7):1598–608. doi: 10.1038/s41375-018-0034-z.
  52. Gale RE, Lamb K, Allen C, et al. Simpson’s Paradox and the Impact of Different DNMT3A Mutations on Outcome in Younger Adults With Acute Myeloid Leukemia. J Clin Oncol. 2015;33(18):2072–83. doi: 10.1200/jco.2014.59.2022.
  53. Gaidzik VI, Schlenk RF, Paschka P, et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: Results of the AML Study Group (AMLSG). Blood. 2013;121(23):4769–77. doi: 10.1182/blood-2012-10-461624.
  54. Elsayed GM, Fahmi AEA, Shafiket NF, et al. Study of DNA methyl transferase 3A mutation in acute myeloid leukemic patients. Egypt J Med Hum Genet. 2018;19(4):315–9. doi: 10.1016/j.ejmhg.2018.05.005.
  55. Berenstein R, Blau IW, Suckert N, et al. Quantitative detection of DNMT3A R882H mutation in acute myeloid leukemia. J Exp Clin Cancer Res. 2015;34(1):55. doi: 10.1186/s13046-015-0173-2.
  56. Young AL, Challen GA, Birmann BM, et al. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7(1):12484. doi: 10.1038/ncomms12484.
  57. Asada S, Fujino T, Goyama S, et al. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci. 2019;76(13):2511–23 doi: 10.1007/s00018-019-03084-7.
  58. Chou WC, Huang HH, Hou HA, et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood. 2010;116(20):4086–94. doi: 10.1182/blood-2010-05-283291.
  59. Molenaar RJ, Thota S, Nagata Y, et al. Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia. 2015;29(11):2134–42. doi: 10.1038/leu.2015.91.
  60. Asada S, Kitamura T. Aberrant histone modifications induced by mutant ASXL1 in myeloid neoplasms. Int J Hematol. 2019;110(2):179–86. doi: 10.1007/s12185-018-2563-7.
  61. Shivarov V, Ivanova M, Naumova E. Rapid Detection of DNMT3A R882 Mutations in Hematologic Malignancies Using a Novel Bead-Based Suspension Assay with BNA(NC) Probes. PLoS ONE. 2014;9(6):e99769. doi: 10.1371/journal.pone.0099769.
  62. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
  63. Abbas S, Lugthart S, Kavelaars F, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116(12):2122–6. doi: 10.1182/blood-2009-11-250878.
  64. Dunlap JB, Leonard J, Rosenberg M, et al. The combination of NPM1, DNMT3A, and IDH1/2 mutations leads to inferior overall survival in AML. Am J Hematol. 2019;94(8):913–20. doi: 10.1002/ajh.25517.
  65. Virijevic M, Karan-Djurasevic T, Marjanovic I, et al. Somatic mutations of isocitrate dehydrogenases 1 and 2 are prognostic and follow-up markers in patients with acute myeloid leukaemia with normal karyotype. Radiol Oncol. 2016;50(4):385–93. doi: 10.1515/raon-2016-0044.
  66. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. doi: 10.1056/NEJMoa1516192.
  67. Boddu P, Takahashi K, Pemmaraju N, et al. Influence of IDH on FLT3ITD status in newly diagnosed AML. Leukemia. 2017;31(11):2526– doi: 10.1038/leu.2017.244.
  68. Yan X-J, Xu J, Gu Z-H, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43(4):309–15. doi: 10.1038/ng.788.
  69. Abdel-Wahab O, Adli M, Saunders L, et al. ASXL1 Mutations Promote Myeloid Transformation Through Inhibition of PRC2-Mediated Gene Repression. Blood. 2011;118(21):405. doi: 10.1182/blood.v118.21.405.405.
  70. Inoue D, Matsumoto M, Nagase R. Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp Hematol. 2016;44(3):172–6.e1. doi: 10.1016/j.exphem.2015.11.011.
  71. Gelsi-Boyer V, Brecqueville M, Devillier R, et al. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 2012;5(1):12. doi: 10.1186/1756-8722-5-12.
  72. Paschka P, Schlenk RF, Gaidzik VI. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German Austrian Acute Myeloid Leukemia Study Group. Haematologica. 2015;100(3):324–30. doi: 10.3324/haematol.2014.114157.

Factors for Sustaining Molecular Remission after Discontinuation of Tyrosine Kinase Inhibitors Therapy in Chronic Myeloid Leukemia: Results of Non-Randomized Prospective Clinical Trial

OA Shukhov, AN Petrova, EYu Chelysheva, AV Bykova, IS Nemchenko, AG Turkina

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Oleg Aleksandrovich Shukhov, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-16-36, +7(985)287-12-69; e-mail: shuhov@list.ru

For citation: Shukhov OA, Petrova AN, Chelysheva EYu, et al. Factors for Sustaining Molecular Remission after Discontinuation of Tyrosine Kinase Inhibitors Therapy in Chronic Myeloid Leukemia: Results of Non-Randomized Prospective Clinical Trial. Clinical oncohematology. 2021;14(1):1–12. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-1-12


ABSTRACT

Aim. To study the impact of different clinical and biological factors on sustaining molecular remission after discontinuation of tyrosine kinase inhibitors (TKI) therapy in chronic myeloid leukemia (CML) patients with a stable deep molecular response (MR).

Materials & Methods. The prospective multi-center trial on molecular remission sustainability after TKIs withdrawal, held from 2015 to 2019, enrolled 98 CML patients. The trial included patients with chronic phase CML treated with TKIs at least during 3 years and having a stable deep MR (≤ МО4; BCR-ABL < 0.01 %) during at least 2 years. Molecular monitoring was carried out every month during first 6 months after TKIs withdrawal, every 2 months during 0.5–1 year, and every 3 months after 1-year follow-up. In case of the loss of major MR (BCR-ABL > 0.1 %) therapy was reinitiated.

Results. Three-year molecular relapse-free survival was 51 % (95% confidence interval 41–61 %) in all patients, 25 % in patients with the failure of prior treatment discontinuation, and 53 % in patients who discontinued TKI therapy for the first time. According to univariate analysis, the following factors proved to be significant: persistance of deep MR, duration of therapy, and depth of MR. It was shown that TKI therapy duration, but not deep MR persistance, has independent prognostic value for the Russian population of CML patients. No significant differences were identified in 3-year molecular relapse-free survival in the groups of patients treated only with imatinib (55 %) compared with patients who received 2nd generation TKI (TKI2) as first-line (70 %; = 0.26) and second-line (39 %; = 0.09) therapy. However, duration of therapy in patients treated with TKI2 as first-line therapy was more than twice as short as in patients treated with imatinib as first-line therapy (median 41.5 vs. 96.4 months, respectively; < 0.0001).

Conclusion. Longer therapy duration and MR depth (≤ MО4.5) before TKI withdrawal raise the probability of sustaining off-treatment remission. The study showed that molecular relapse-free survival does not significantly increase with the use of TKI2 as first-line treatment compared to imatinib. Nevertheless, TKI2 as first-line treatment enables to halve the duration of therapy needed to achieve comparable molecular relapse-free survival, as compared with imatinib.

Keywords: chronic myeloid leukemia, tyrosine kinase inhibitors, deep molecular response, off-treatment remission.

Received: July 30, 2020

Accepted: December 1, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3343–56.
  2. Branford S, Kim DDH, Apperley JF, et al. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia. 2019;33(8):1835–50. doi: 10.1038/s41375-019-0512-y.
  3. Swerdlow SH. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2017.
  4. Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17. doi: 10.1056/NEJMoa062867.
  5. Saussele S, Krauss MP, Hehlmann R, et al. Impact of comorbidities on overall survival in patients with chronic myeloid leukemia: results of the randomized CML study IV. Blood. 2015;126(1):42–9. doi: 10.1182/blood-2015-01-617993.
  6. Hochhaus A, Saglio G, Hughes TP, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30(5):1044–54. doi: 10.1038/leu.2016.5.
  7. Cortes JE, Saglio G, Kantarjian HM, et al. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients Trial. J Clin Oncol. 2016;34(20):2333–40. doi: 10.1200/JCO.2015.64.8899.
  8. Lipton JH, Chuah C, Guerci-Bresler A, et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(5):612–21. doi: 10.1016/S1470-2045(16)00080-2.
  9. Hochhaus A, Larson RA, Guilhot F, et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N Engl J Med. 2017;376(10):917–27. doi: 10.1056/NEJMoa1609324.
  10. Goldman J, Gordon M. Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter?. Leuk Lymphoma. 2006;47(1):1–7. doi: 10.1080/10428190500407996.
  11. Baccarani M, Castagnetti F, Gugliotta G, et al. The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview. Leukemia. 2019;33(5):1173–83. doi: 10.1038/s41375-018-0341-4.
  12. Hughes T, Deininger M, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37. doi: 10.1182/blood-2006-01-0092.
  13. Branford S, Seymour JF, Grigg A, et al. BCR-ABL messenger RNA levels continue to decline in patients with chronic phase chronic myeloid leukemia treated with imatinib for more than 5 years and approximately half of all first-line treated patients have stable undetectable BCR-ABL using strict sensitivity criteria. Clin Cancer Res. 2007;13(23):7080–5. doi: 10.1158/1078-0432.CCR-07-0844.
  14. Branford S, Cross NC, Hochhaus A, et al. Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia. 2006;20(11):1925–30. doi: 10.1038/sj.leu.2404388.
  15. Cross NC, White HE, Colomer D, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29(5):999–1003. doi: 10.1038/leu.2015.29.
  16. Hehlmann R, Muller MC, Lauseker M, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014;32(5):415–23. doi: 10.1200/JCO.2013.49.9020.
  17. Rousselot P, Huguet F, Rea D, et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood. 2007;109(1):58–60. doi: 10.1182/blood-2006-03-011239.
  18. NCCN Clinical Practice Guidelines in Oncology. Chronic Myeloid Leukemia. Version 3.2020. Available from: https://www.nccn.org/professionals/physician_gls/pdf/aml_blocks.pdf. (accessed 23.10.2020).
  19. Hochhaus A, Saussele S, Rosti G, et al. Chronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(Suppl 4):iv41–iv51. doi: 10.1093/annonc/mdx219.
  20. Hughes TP, Ross DM. Moving treatment-free remission into mainstream clinical practice in CML. Blood. 2016;128(1):17–23. doi: 10.1182/blood-2016-01-694265.
  21. Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35. doi: 10.1016/S1470-2045(10)70233-3.
  22. Etienne G, Guilhot J, Rea D, et al. Long-Term Follow-Up of the French Stop Imatinib (STIM1) Study in Patients With Chronic Myeloid Leukemia. J Clin Oncol. 2017;35(3):298–305. doi: 10.1200/JCO.2016.68.2914.
  23. Ross DM, Branford S, Seymour JF, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515–22. doi: 10.1182/blood-2013-02-483750.
  24. Ross DM, Pagani IS, Shanmuganathan N, et al. Long-term treatment-free remission of chronic myeloid leukemia with falling levels of residual leukemic cells. Leukemia. 2018;32(12):2572–9. doi: 10.1038/s41375-018-0264-0.
  25. Rousselot P, Charbonnier A, Cony-Makhoul P, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol. 2014;32(5):424–30. doi: 10.1200/JCO.2012.48.5797.
  26. Mori S, Vagge E, le Coutre P, et al. Age and dPCR can predict relapse in CML patients who discontinued imatinib: the ISAV study. Am J Hematol. 2015;90(10):910–4. doi: 10.1002/ajh.24120.
  27. Takahashi N, Tauchi T, Kitamura K, et al. Deeper molecular response is a predictive factor for treatment-free remission after imatinib discontinuation in patients with chronic phase chronic myeloid leukemia: the JALSG-STIM213 study. Int J Hematol. 2018;107(2):185–93. doi: 10.1007/s12185-017-2334-x.
  28. Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor dose in patients with chronic myeloid leukaemia with stable major molecular response (DESTINY): an interim analysis of a non-randomised, phase 2 trial. Lancet Haematol. 2017;4(7):e310–e316. doi: 10.1016/S2352-3026(17)30066-
  29. Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematol. 2019;6(7):e375–e383. doi: 10.1016/S2352-3026(19)30094-8.
  30. Lee SE, Choi SY, Song HY, et al. Imatinib withdrawal syndrome and longer duration of imatinib have a close association with a lower molecular relapse after treatment discontinuation: the KID study. Haematologica. 2016;101(6):717–23. doi: 10.3324/haematol.2015.139899.
  31. Saussele S, Richter J, Guilhot J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018;19(6):747–57. doi: 10.1016/S1470-2045(18)30192-X.
  32. Claudiani S, Apperley JF, Gale RP, et al. E14a2 BCR-ABL1 transcript is associated with a higher rate of treatment-free remission in individuals with chronic myeloid leukemia after stopping tyrosine kinase inhibitor therapy. Haematologica. 2017;102(8):e297–e299. doi: 10.3324/haematol.2017.168740.
  33. Sokal JE, Cox EB, Baccarani M, et al. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood. 1984;63(4):789–99. doi: 10.1182/blood.V63.4.789.789.
  34. Nicolini FE, Dulucq S, Boureau L, et al. Evaluation of Residual Disease and TKI Duration Are Critical Predictive Factors for Molecular Recurrence after Stopping Imatinib First-line in Chronic Phase CML Patients. Clin Cancer Res. 2019;25(22):6606–13. doi: 10.1158/1078-0432.CCR-18-3373.
  35. Kumagai T, Nakaseko C, Nishiwaki K, et al. Dasatinib cessation after deep molecular response exceeding 2 years and natural killer cell transition during dasatinib consolidation. Cancer Sci. 2018;109(1):182–92. doi: 10.1111/cas.13430.
  36. Takahashi N, Nishiwaki K, Nakaseko C, et al. Treatment-free remission after two-year consolidation therapy with nilotinib in patients with chronic myeloid leukemia: STAT2 trial in Japan. Haematologica. 2018;103(11):1835–42. doi: 10.3324/haematol.2018.194894.
  37. Benjamini O, Kantarjian H, Rios MB, et al. Patient-driven discontinuation of tyrosine kinase inhibitors: single institution experience. Leuk Lymphoma. 2014;55(12):2879–86. doi: 10.3109/10428194.2013.831092.
  38. Hochhaus A, Masszi T, Giles FJ, et al. Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study. Leukemia. 2017;31(7):1525–31. doi: 10.1038/leu.2017.63.
  39. Ross DM, Masszi T, Casares GMT, et al. Durable treatment-free remission in patients with chronic myeloid leukemia in chronic phase following frontline nilotinib: 96-week update of the ENESTfreedom study. J Cancer Res Clin Oncol. 2018;144(5):945–54. doi: 10.1007/s00432-018-2604-x.
  40. Mahon FX, Boquimpani C, Kim DW, et al. Treatment-Free Remission After Second-Line Nilotinib Treatment in Patients With Chronic Myeloid Leukemia in Chronic Phase: Results From a Single-Group, Phase 2, Open-Label Study. Ann Intern Med. 2018;168(7):461–70. doi: 10.7326/M17-1094.
  41. Kimura S, Imagawa J, Murai K, et al. Treatment-free remission after first-line dasatinib discontinuation in patients with chronic myeloid leukaemia (first-line DADI trial): a single-arm, multicentre, phase 2 trial. Lancet Haematol. 2020;7(3):e218–e225. doi: 10.1016/S2352-3026(19)30235-2.
  42. Imagawa J, Tanaka H, Okada M, et al. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): a multicentre phase 2 trial. Lancet Haematol. 2015;2(12):e528–e535. doi: 10.1016/s2352-3026(15)00196-9.
  43. Okada M, Imagawa J, Tanaka H, et al. Final 3-year Results of the Dasatinib Discontinuation Trial in Patients With Chronic Myeloid Leukemia Who Received Dasatinib as a Second-line Treatment. Clin Lymphoma Myel Leuk. 2018;18(5):353–60.e1. doi: 10.1016/j.clml.2018.03.004.
  44. Rea D, Nicolini FE, Tulliez M, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood. 2017;129(7):846–54. doi: 10.1182/blood-2016-09-742205.
  45. Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2006;108(6):1809–20. doi: 10.1182/blood-2006-02-005686.
  46. Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27(35):6041–51. doi: 10.1200/JCO.2009.25.0779.
  47. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. doi: 10.1182/blood-2013-05-501569.
  48. Radich JP, Hochhaus A, Giles FJ, et al. Analyses of Predictors of Durable Treatment-Free Remission in Patients with Chronic Myeloid Leukemia in Chronic Phase Following Frontline or Second-Line Nilotinib. 2019;134(Suppl_1):2932. doi: 10.1182/blood-2019-129393.
  49. D’Adda M, Farina M, Schieppati F, et al. The e13a2 BCR-ABL transcript negatively affects sustained deep molecular response and the achievement of treatment-free remission in patients with chronic myeloid leukemia who receive tyrosine kinase inhibitors. Cancer. 2019;125(10):1674–82. doi: 10.1002/cncr.31977.
  50. Legros L, Nicolini FE, Etienne G, et al. Second tyrosine kinase inhibitor discontinuation attempt in patients with chronic myeloid leukemia. Cancer. 2017;123(22):4403–10. doi: 10.1002/cncr.30885.
  51. Shih YT, Cortes JE, Kantarjian HM. Treatment value of second-generation BCR-ABL1 tyrosine kinase inhibitors compared with imatinib to achieve treatment-free remission in patients with chronic myeloid leukaemia: a modelling study. Lancet Haematol. 2019;6(8):e398–e408. doi: 10.1016/S2352-3026(19)30087-0.
  52. Шуваев В.А., Абдулкадыров К.М., МартынкевичИ.С., Фоминых М.С. Выбор терапии первой линии хронического миелолейкоза: моделирование клинико-экономических факторов. Клиническая онкогематология. 2015;8(1):78–83. doi: 10.21320/2500-2139-2015-8-1-78-83.
    [Shuvaev VA, Abdulkadyrov KM, Martynkevich IS, Fominykh MS. First Line Treatment Choice for Chronic Myelogenous Leukemia: Modeling of Clinical and Economic Factors. Clinical oncohematology. 2015;8(1):78–83. doi: 10.21320/2500-2139-2015-8-1-78-83. (In Russ)]
  53. Рубрикатор клинических рекомендаций. Хронический миелолейкоз [электронный документ]. Доступно по: http://cr.rosminzdrav.ru/#!/recomend/120. Ссылка активна на 23.10.2020.
    [List of clinical guidelines. Chronic myeloid leukemia. [Internet] Available from: http://cr.rosminzdrav.ru/#!/recomend/120. (accessed 10.2020) (In Russ)]
  54. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. doi: 10.1038/s41375-020-0776-

The Improvement of Treatment Outcomes in Multiple Myeloma Patients Non-Eligible for HDCT and Auto-HSCT Using New Approaches to Early Lines of Therapy (Meeting of Expert Panel)

ПРЕДСЕДАТЕЛЬ ЭКСПЕРТНОЙ ГРУППЫ:

Лариса Павловна Менделеева — д-р мед. наук, профессор, заместитель генерального директора по научной работе и инновациям ФГБУ «НМИЦ гематологии» Минздрава России, г. Москва.

ЭКСПЕРТЫ:

Вадим Вадимович Птушкин — д-р мед. наук, профессор кафедры онкологии, гематологии и лучевой терапии РНИМУ им. Н.И. Пирогова Минздрава России, главный внештатный специалист-гематолог ДЗ г. Москвы, заместитель главного врача по гематологии ГКБ им. С.П. Боткина.

Максим Валерьевич Соловьев — канд. мед. наук, заведующий отделением интенсивной высокодозной химиотерапии парапротеинемических гемобластозов ФГБУ «НМИЦ гематологии» Минздрава России, г. Москва.

Сергей Вячеславович Семочкин — д-р мед. наук, профессор кафедры онкологии и гематологии РНИМУ им. Н.И. Пирогова Минздрава России, г. Москва.

Станислав Семенович Бессмельцев — д-р мед. наук, профессор, заместитель директора по научной работе ФГБУ РосНИИГТ ФМБА России, г. Санкт-Петербург.

Камиль Даниялович Капланов — заведующий отделением гематологии ГБУЗ «Волгоградский областной клинический онкологический диспансер», главный гематолог Комитета по здравоохранению администрации Волгоградской области, г. Волгоград.

Андрей Александрович Мацуга — врач-гематолог, главный внештатный гематолог МУ «Управление здравоохранения г. Ростова-на-Дону».

Валентина Захаровна Молоствова — главный внештатный гематолог МЗ ДФО, заместитель главного врача по терапии, Краевая клиническая больница № 1, г. Хабаровск.

Елена Евгеньевна Зинина — главный внештатный специалист гематолог ДЗ Ханты-Мансийского автономного округа Югры, заведующий отделением гематологии Центра клинико-диагностического (гематологии) Ханты-Мансийского автономного округа Югры.

Read in PDF


REFERENCES

  1. Множественная миелома: клинические рекомендации. (электронный ресурс) Доступно по: http://cr.rosminzdrav.ru/#!/schema/122. Ссылка активна на 05.2020.

  2. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2018 г. (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена, 2019. 250 с.

  3. Altekruse SF, Kosary CL, Krapcho M, et al. SEER Cancer Statistics Review. Bethesda, MD: National Cancer Institute; 1975–2007. Available from: http://seer.cancer.gov/csr/1975_2007/ (accessed 6.05.2020).

  4. Usmani SZ, Weiss BM, Plesner T, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood. 2016;128(1):37–44.

  5. Дарзалекс® (инструкция по медицинскому применению). Доступно по: https://www.vidal.ru/drugs/darzalex. Ссылка активна на 07.2020.

  6. Facon T, Kumar S, Plesner T, et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N Engl J Med. 2019;380(22):2104–15.

  7. Mateos MV, Dimopoulos MA, Cavo M, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378(6):1518–28.

  8. Weisel KC, Sonneveld P, Mateos MV, et al. Oral presentation at the 61st annual meeting of the American Society of Hematology (ASH). Orlando, Fl. December 7–10, 2019. #3192.

  9. Kaufman JL, Dimopoulos MA, Leiba M, et al. Efficacy and safety of daratumumab, lenalidomide, and dexamethasone (D-Rd) in relapsed or refractory multiple myeloma (RRMM): updated subgroup analysis of POLLUX based on cytogenetic risk. J Clin Oncol. 2019;37(15_suppl):8038.

New Technology Capabilities of Direct Antiglobulin Test

EA Poponina, EV Butina, AV Iovdii, OD Maksimov, GA Zaitseva, IV Paramonov

Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

For citation: Elena Aleksandrovna Poponina, MD, PhD, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; Tel.: +7(8332)54-51-83; e-mail: senkina.elena@rambler.ru

For correspondence: Poponina EA, Butina EV, Iovdii AV, et al. New Technology Capabilities of Direct Antiglobulin Test. Clinical oncohematology. 2020;13(4):426–9. (In Russ).

DOI: 10.21320/2500-2139-2020-13-4-426-429


ABSTRACT

Background. Direct antiglobulin test (DAT) is used to identify erythrocyte-fixed antibodies and complement components. Gel methods are applied to differentiate immunoglobulin class and subclass in positive DAT, which allows to study the nature of anemia and assess the risk of immune hemolysis.

Aim. To assess the rate of positive DAT in oncohematological patients, to determine class and subclass of erythrocyte-fixed immunoglobulins, and to evaluate their contribution in hemolytic complications.

Materials & Methods. In 393 oncohematological patients at the Kirov Research Institute of Hematology and Transfusiology differentiated DAT was studied using gel test with Bio-Rad (USA) testing sets.

Results. The rate of positive DAT in oncohematological patients varied for different diseases from 6.2 % to 25.2 %, in the total group it was 15.5 %. It accounted for 6.2 % in acute leukemias, 6.3 % in myelodysplastic syndrome, 10 % in chronic myeloid leukemia, 11.9 % in Hodgkin’s lymphoma, 15.4 % in chronic lymphocytic leukemia, 21 % in non- Hodgkin’s lymphoma, and 25.2 % in multiple myeloma. In multiple myeloma, acute leukemia, Hodgkin’s lymphoma, and chronic myeloid leukemia patients the positive test was associated with IgG subclasses 2 and 4. In chronic lymphocytic leukemia and non-Hodgkin’s lymphoma patients IgG1 subclass 1, IgM and C3c, C3d complement components were detected on erythrocyte surfaces. It was shown that IgG2/IgG4 detection was not accompanied by any clinical or laboratory signs of immune hemolysis, IgG1 was responsible for destruction of erythrocytes in 50 % of cases, whereas the detection of C3c, C3d complement components was associated with hemolytic manifestations in 100 % of cases.

Conclusion. Positive DAT should be interpreted in light of laboratory and clinical data. Differentiated test helps to predict hemolytic complications in oncohematological patients.

Keywords: direct antiglobulin test, immunoglobulin class and subclass, immune hemolysis.

Received: April 27, 2020

Accepted: August 20, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Sokol R, Hewitt S, Stamps B. Autoimmune haemolysis: an 18-year study of 865 cases referred to a regional transfusion center. Br Med J. 1981;282(6281):2023–7. doi: 10.1136/bmj.282.6281.2023.

  2. Минеева Н.В., Кробинец И.И., Бодрова Н.Н., Богданова И.О. Применение прямого антиглобулинового теста для выявления аутоантител при анемиях различного генеза. Онкогематология. 2017;12(3):57–62. doi: 10.17650/1818-8346-2017-12-3-57-62. [Mineeva NV, Krobinets II, Bodrova NN, Bogdanova IO. The use of direct antiglobulin test to detect antibodies in patients with anemia of various origins. Oncohematology. 2017;12(3):57–62. doi: 10.17650/1818-8346-2017-12-3-57-62. (In Russ)]

  3. Michel M. Classification and therapeutic approaches in autoimmune hemolytic anemia: an update. Expert Rev Hematol. 2011;4(6):607–18. doi: 10.1586/ehm.11.60.

  4. Judd W, Butch S, Oberman H, et al. The evaluation of a positive direct antiglobulin test in pretransfusion testing. Transfusion. 1980;20(1):17–23. doi: 10.1046/j.1537-2995.1980.20180125036.x.

  5. Packman C. Hemolytic anemia due to warm autoantibodies. Blood Rev. 2008;22(1):17–31. doi: 10.1016/j.blre.2007.08.001.

  6. Go R, Winters J, Kay N. How I treat autoimmune hemolytic anemia. Blood. 2017;129(22):2971–9. doi: 10.1182/blood-2016-11-693689.

  7. Berentsen S. Role of Complement in Autoimmune Hemolytic Anemia. Transfus Med Hemother. 2015;42(5):303–10. doi: 10.1159/000438964.

  8. Crisp D, Pruzanski W. B-Cell neoplasms with homogeneous cold-reacting antibodies (cold agglutinins). Am J Med. 1982;72(6):915–22. doi: 10.1016/0002-9343(82)90852-x.

  9. Jager U, D’Sa S, Schorgenhofer C, et al. Inhibition of complement C1s improves severe hemolytic anemia in cold agglutinin disease: a first-in-human trial. Blood. 2019;133(9):893–901. doi: 10.1182/blood-2018-06-856930.

  10. Parker V, Tormey C. The Direct Antiglobulin Test: Indications, Interpretation, and Pitfalls. Arch Pathol Lab Med. 2017;141(2):305–10. doi: 10.5858/arpa.2015-0444-rs.

  11. Тураев Р.Г., Бельская Е.Е. Проба Кумбса в лабораторной диагностике иммунопатологических состояний. Трансфузиология. 2017;1(18):59–64. [Turaev RG, Belskaya EE. Direct Coombs test in laboratory diagnosis of immunopathological states. Transfuziologiya. 2017;1(18):59–64. (In Russ)]

  12. Ricci F, Tedeschi A, Vismara E, et al. Should a Positive Direct Antiglobulin Test Be Considered a Prognostic Predictor in Chronic Lymphocytic Leukemia? Clin Lymphoma Myel Leuk. 2013;13(4):441–6. doi: 10.1016/j.clml.2013.02.024.

  13. Zantek N, Koepsell S, Tharp D, Cohn C. The direct antiglobulin test: A critical step in the evaluation of hemolysis. Am J Hematol. 2012;87(7):707–9. doi: 10.1002/ajh.23218.

  14. Rottenberg Y, Yahalom V, Shinar E, et al. Blood Donors with a Positive Direct Antiglobulin Test Are at Increased Risk for Hematologic Malignancies and Cancer in General. Blood. 2007;110(11):2903. doi: 10.1182/blood.v110.11.2903.2903.

  15. Rottenberg Y, Yahalom V, Shinar E, et al. Blood donors with positive direct antiglobulin tests are at increased risk for cancer. Transfusion. 2009;49(5):838–42. doi: 10.1111/j.1537-2995.2008.02054.x.

  16. Hannon J. Management of Blood Donors and Blood Donations From Individuals Found to Have a Positive Direct Antiglobulin Test. Transfus Med Rev. 2012;26(2):142–52. doi: 10.1016/j.tmrv.2011.08.004.

  17. Garratty G. The James Blundell Award Lecture 2007: Do we really understand immune red cell destruction? Transfus Med. 2008;18(6):321–34. doi: 10.1111/j.1365-3148.2008.00891.x.

Listeria monocytogenes Meningitis in a Female Patient with Primary Mediastinal (Thymic) Large B-Cell Lymphoma: A Case Report

AM Pronina1, SV Zhuravleva1, GS Yunaev1, IZ Zavodnova1, IA Kurmukov2

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 AS Loginov Moscow Clinical Scientific Center, 89 Entuziastov sh., Moscow, Russian Federation, 111123

For correspondence: Ildar Anvarovich Kurmukov, MD, PhD, 89 Entuziastov sh., Moscow, Russian Federation, 111123; e-mail: kurmukovia@gmail.com

For citation: Pronina AM, Zhuravleva SV, Yunaev GS, et al. Listeria monocytogenes Meningitis in a Female Patient with Primary Mediastinal (Thymic) Large B-Cell Lymphoma: A Case Report. Clinical oncohematology. 2020;13(4):420–5. (In Russ).

DOI: 10.21320/2500-2139-2020-13-4-420-425


ABSTRACT

Listeriosis with severe clinical manifestations in the form of bacteraemia, sepsis, and meningitis/meningoencephalitis is a rare but a challenging issue of supportive care in oncohematology. Early diagnosis of listeriosis, as well as any other infection, is hampered by severe general manifestations of a malignant lymphoproliferative disorder or tumor complications and its treatment. In patients with pronounced decreased drug-induced immunity listeriosis is usually characterized as a rapidly developing and, as a rule, severe disease with high immediate mortality. The present article offers a case report of severe listeria infection in a female patient admitted to the intensive care unit for the treatment of primary mediastinal (thymic) large B-cell lymphoma with a large tumor mass in anterior mediastinum complicated by mediastinal and superior vena cava compression syndromes.

Keywords: primary mediastinal (thymic) large B-cell lymphoma, listeriosis, meningitis, supportive care.

Received: June 14, 2020

Accepted: September 17, 2020

Read in PDF


REFERENCES

  1. Hernandez-Milian A, Payeras-Cifre A. What Is New in Listeriosis? Biomed Res Int. 2014;2014:358051. doi: 10.1155/2014/358051.

  2. Pagliano P, Arslan F, Ascione T. Epidemiology and treatment of the commonest form of listeriosis: meningitis and bacteraemia. Le Infezioni in Medicina. 2017;25(3):210–6.

  3. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–63. doi: 10.1001/jama.1993.03510240069035.

  4. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.

  5. Freitag NE, Port GC, Miner MD. Listeria monocytogenes – from saprophyte to intracellular pathogen. Nat Rev Microbiol. 2009;7(9):623–8. doi: 10.1038/nrmicro2171.

  6. Курмуков И.А. Бактериальные и грибковые инфекционные осложнения ближайшего и раннего периода трансплантации. Трансплантология. 2010;2:5–9. doi: 10.23873/2074-0506-2010-0-2-5-9.[Kurmukov IA. Bacterial and fungal infectious complications in the immediate and early periods of transplantation. Transplantologiya. 2010;2:5–9. doi: 10.23873/2074-0506-2010-0-2-5-9. (In Russ)]

  7. Jensen AK, Simonsen J, Ethelberg S. Use of Proton Pump Inhibitors and the Risk of Listeriosis: A Nationwide Registry-based Case-Control Study. Clin Infect Dis. 2017;64(7):845–51. doi: 10.1093/cid/ciw860.

  8. Yildiz O, Aygen B, Esel D, et al. Sepsis and Meningitis Due to Listeria Monocytogenes. Yonsei Med J. 2007;48(3):433–9. doi: 10.3349/ymj.2007.48.3.43

  9. Обухова О.А., Курмуков И.А., Боровкова Н.Б. и др. Диагностическая чувствительность биомаркеров сепсиса при тяжелой инфекции у онкологических больных, получивших противоопухолевое лечение. Онкогинекология. 2018:26(2):54–61.[Obukhova OA, Kurmukov IA, Borovkova NB, et al. Diagnostic sensitivity of biomarkers of sepsis resulting from severe infection in cancer patients who underwent antitumor treatment. Onkoginekologiya. 2018:26(2):54–61. (In Russ)]

  10. Курмуков И.А., Кашия Ш.Р., Обухова О.А. и др. Первичная диагностика сепсиса у пациентов, получающих лекарственное лечение по поводу онкологического заболевания: сравнение критериев SIRS и SOFA. Трансляционная медицина. 2017;4(2):46–51. doi: 10.18705/2311-4495-2017-4-2-46-51. [Kurmukov IA, Kashiya ShR, Obukhova OA, et al. Primary diagnosis of sepsis in patients receiving medical treatment for oncological disease: comparison of SIRS and SOFA criteria. Translational Medicine. 2017;4(2):46–51. doi: 10.18705/2311-4495-2017-4-2-46-51. (In Russ)]

  11. van Veen KEB, Brouwer MC, van der Ende A, et al. Bacterial Meningitis in Patients using Immunosuppressive Medication: a Population-based Prospective Nationwide Study. J Neuroimmune Pharmacol. 2017;12(2):213–8. doi: 10.1007/s11481-016-9705-6.

  12. Hof H. An update on the medical management of listeriosis. Expert Opin Pharmacother. 2004;5(8):1727–35. doi: 10.1517/14656566.5.8.1727.

Quality of Life of Hematologists in the Russian Federation According to the RAND SF-36 Questionnaire

NN Tsyba1, TI Ionova2,3, OV Lazareva1, TP Nikitina2,3, NM Porfir’eva3, AN Petrova1, TTs Garmaeva1,4, AG Turkina1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 NI Pirogov Clinic for High Medical Technology, Saint Petersburg State University, 13-15 Kadetskaya line, Saint Petersburg, Russian Federation, 199004

3 Multinational Center for Quality of Life Research, 1 Artilleriiskaya str., Saint Petersburg, Russian Federation, 191014

4 RUDN University, 6 Miklukho-Maklaya str., Moscow, Russian Federation, 117198

For correspondence: Nikolai Nikolaevich Tsyba, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-15-10; e-mail: tsyba2007@yandex.ru; Olga Veniaminovna Lazareva, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: stakhino@gmail.com

For citation: Tsyba NN, Ionova TI, Lazareva OV, et al. Quality of Life of Hematologists in the Russian Federation According to the RAND SF-36 Questionnaire. Clinical oncohematology. 2020;13(4):411–9. (In Russ).

DOI: 10.21320/2500-2139-2020-13-4-411-419


ABSTRACT

Medical profession is notable for its enormous social value and associated with no less responsibility. At the same time, society’s requirements for doctors constantly increase. The regulation of medical activities in various disciplines becomes more and more stringent. The aim of the present article was to study the quality of life of 104 hematologists working in different regions of the Russian Federation. For this purpose, the Russian-language version of RAND SF-36 health survey questionnaire was used. Young doctors aged 35–44 years showed lowest scores on mental health inventory which may indicate negative emotional status and a low level of positive emotions. Compared to relatively healthy respondents, hematologists show a low level of emotional role functioning that may also indicate negative emotional status which in turn negatively affects the quality of health care delivery and appears to be a contributing factor in burnout syndrome. Compared to relatively healthy respondents, hematologists show higher pain scores which may indicate a specific attitude of doctors to pain due to their professional approach. Similar quality of life indicators indirectly suggest that hematologists in different regions of the Russian Federation regard their professional activities as a priority, and it affects their quality of life. Both the results obtained and the literature review prove the relevance of the study of human resources and development of programs aimed at continuity of personnel in the health care system. The quality of life of doctors in different disciplines should become the object of comprehensive sociological, clinical, and sanitation studies which will permit to design a program to improve the quality of life of the medical professionals.

Keywords: quality of life, hematologist, doctors’ quality of life, RAND SF-36 questionnaire.

Received: May 18, 2020

Accepted: September 4, 2020

Read in PDF


REFERENCES

  1. Новик А.А., Ионова Т.И. Руководство по исследованию качества жизни в медицине. СПб.: Нева; М.: Олма-Пресс, 2002. [Novik AA, Ionova TI. Rukovodstvo po issledovaniyu kachestva zhizni v meditsine. (Guidelines for the study of the quality of life in medicine.) Saint Petersburg: Neva Publ.; Moscow: Olma-Press Publ.; 2002. (In Russ)]

  2. Решетников А.В. Доклад на научно-практической конференции с международным участием «Социологическое осмысление интегрального понятия качество жизни и методология его оценки». М., 2019. [Reshetnikov AV. Report at international scientific-practical conference “Sociological insight into integral conception of quality of life and methodology of its evaluation”. Moscow; 2019. (In Russ)]

  3. Hays RD, Sherbourne CD, Mazel R. User’s Manual for the Medical Outcomes Study (MOS) Core Measures of Health-Related Quality of Life. Santa Monica: RAND Corporation; 1995. Available from: https://www.rand.org/pubs/monograph_reports/MR162.html. (accessed 25.06.2020).

  4. Амирджанова В.Н., Горячев Д.В., Коршунов Н.И. и др. Популяционные показатели качества жизни по опроснику SF-36 (результаты многоцентрового исследования качества жизни «Мираж»). Научно-практическая ревматология. 2008;1:36–48. [Amirdzhanova VN, Goryachev DV, Korshunov NI, et al. Population indicators of quality of life in the SF-36 questionnaire (results of a multicenter study of quality of life “Mirage”). Nauchno-prakticheskaya revmatologiya. 2008;1:36–48. (In Russ)]

  5. Карасева Л.А. Качество трудовой жизни сестринского персонала лечебно-профилактических учреждений. Вестник Самарского государственного университета. Естественно-научная серия. 2006;4(44):188–94. [Karaseva LA. Quality of work life of nursing staff in health prevention centers. Vestnik Samarskogo gosudarstvennogo universiteta. Estestvenno-nauchnaya seriya. 2006;4(44):188–94. (In Russ)]

  6. Жулина Е.Г. Формирование и развитие качества трудовой жизни: теория, методология исследования, социально-экономическое управление: Автореф. дис. … д-ра экон. наук. Саратов, 2011. [Zhulina EG. Formirovanie i razvitie kachestva trudovoi zhizni: teoriya, metodologiya issledovaniya, sotsialno-ekonomicheskoe upravlenie. (Organization and development of quality of work life: theory, methodology of study, social, and economic management.) [dissertation] Saratov; 2011. (In Russ)]

  7. Аксенова Т.А., Горбунов В.В., Пархоменко Ю.В. Артериальная гипертензия, гиперхолестеринемия и другие факторы риска заболеваний сердца у студентов медицинского вуза. Вестник Волгоградского государственного медицинского университета. 2009;3:60–2. [Aksenova TA, Gorbunov VV, Parkhomenko YuV. Arterial hypertension, hypercholesterolemia, and other risk factors of cardiac disorders in medical students. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta. 2009;3:60–2. (In Russ)]

  8. Комисарова Е.М., Шпагина Л.А., Позднякова С.К. и др. Характеристика липидного спектра крови и состояния сосудисто-тромбоцитарного гемостаза у медицинских работников с артериальной гипертензией. Медицина труда и промышленная экология. 2010;8:22–7. [Komisarova EM, Shpagina LA, Pozdnyakova SK, et al. Characterization of blood lipids and vascular platelet hemostasis in medical professionals with arterial hypertension. Meditsina truda i promyshlennaya ekologiya. 2010;8:22–7. (In Russ)]

  9. Авхименко М.М. Некоторые факторы риска труда медика. Медицинская помощь. 2003;2:25–9. [Avkhimenko MM. Some risk factors for work life of medical professionals. Meditsinskaya pomoshch. 2003;2:25–9. (In Russ)]

  10. Симонова Н.И. Значимость психосоциальных факторов трудового процесса для работников различных профессий в современных условиях. Медицина труда и промышленная экология. 2008;6:41–7. [Simonova NI. Importance of psychosocial factors of work processes for various professionals in the current context. Meditsina truda i promyshlennaya ekologiya. 2008;6:41–7. (In Russ)]

  11. Olson EJ, Drage LA, Auger RR. Sleep deprivation, physician performance, and patient safety. Chest. 2009;136(5):1389–96. doi: 10.1378/chest.08-1952.

  12. Гурьянов М.С. Образ и условия жизни медицинских работников. Вестник РУДН. Серия «Медицина». 2009;4:507–10. [Gur’yanov MS. Lifestyle and living conditions of medical professionals. Vestnik RUDN. Seriya “Meditsina”. 2009;4:507–10. (In Russ)]

  13. Гурьянов М.С. Применение факторного анализа для оценки взаимосвязи здоровья, образа и качества жизни медицинских работников. Медицинский альманах. 2011;1(14):21–3. [Gur’yanov MS. Factor analysis applied for evaluating the interrelationship of health, lifestyle, and quality of life of medical professionals. Meditsinskii almanakh. 2011;1(14):21–3. (In Russ)]

  14. Говорин Н.В., Бодагова Е.А. Социальное функционирование и качество жизни врачей. Забайкальский медицинский вестник. 2012;2:71–7. [Govorin NV, Bodagova EA. Social functioning and quality of life of doctors. Zabaikalskii meditsinskii vestnik. 2012;2:71–7. (In Russ)]

  15. Fujimura Y, Tanii H, Saijoh K. Inpatient satisfaction and job satisfaction/stress of medical workers in a hospital with the 7:1 nursing care system (in which 1 nurse cares for 7 patients at a time). Environ Health Prevent Med. 2011;16(2):113–22. doi: 10.1007/s12199-010-0174-x.

  16. Матвейчик Т.В., Иванова В.И., Вальчук А.Э. Медицинские сестры Беларуси: социологическое исследование. Медицинские новости (Минск). 2005;11:50–3. [Matveichik TV, Ivanova VI, Valchuk AE. Nursing staff in Belarus: sociological study. Meditsinskie novosti (Minsk). 2005;11:50–3. (In Russ)]

  17. Ковалев Е.П. Некоторые результаты компаративного анализа качества жизни врачей в российской провинции. Медицинский альманах. 2019;5–6:7–10. doi: 10.21145/2499-9954-2019-5-7-10. [Kovalev EP. Some results of comparative analysis of quality of life of doctors in the Russian province. Medical Almanac. 2019;5–6:7–10. doi: 10.21145/2499-9954-2019-5-7-10. (In Russ)]

Successful Treatment of Aplastic Anemia in the Kyrgyz Republic

SM Mamatov, EM Sadabaev, OA Dzhakypbaev, MO Eralieva

IK Akhunbaev Kyrgyz State Medical Academy, 92 Akhunbaev str., Bishkek, Kyrgyz Republic, 720020

For correspondence: Sagynali Murzaevich Mamatov, 92 Akhunbaev str., Bishkek, Kyrgyz Republic, 720020; Tel.: 996(555)48-00-77; е-mail: s.480077@mail.ru

For citation: Mamatov SM, Sadabaev EM, Dzhakypbaev OA, Eralieva MO. Successful Treatment of Aplastic Anemia in the Kyrgyz Republic. Clinical oncohematology. 2020;13(4):406–10. (In Russ).

DOI: 10.21320/2500-2139-2020-13-4-406-410


ABSTRACT

Aim. To assess the outcomes of combined immunosuppressive therapy in patients with severe aplastic anemia (АА) reflecting the first experience with the use of antithymocyte globulin and cyclosporine A at the National Center of Oncology and Hematology of Kyrgyz Republic Ministry of Health.

Materials & Methods. The trial included 24 AA patients (14 men and 10 women) aged 18–70 years. All patients received combined immunosuppressive therapy at the Hematology Department of the National Center of Oncology and Hematology of Kyrgyz Republic Ministry of Health (Bishkek).

Results. Initially the effect of immunosuppressive therapy was observed in 15 (62.5 %) out of 24 AA patients, 9 (37.5 %) patients did not respond to it. In 12 months after the start of combined immunosuppressive therapy the effect of it was reported in 18 (75 %) patients, 6 (25 %) patients showed no effect. The outcomes of combined immunosuppressive therapy in our study were independent of the age of patients and severity of the disease.

Conclusion. The first experience with the use of combined immunosuppressive therapy in patients with severe AA proved to be highly successful in terms of its efficacy. Immunosuppressive therapy comes first when allogeneic hematopoietic stem cell transplantation from a relative donor is not possible. Combined immunosuppressive therapy started immediately after AA diagnosis gives hope for achieving stable remission and blood components (erythrocytes, thrombocytes) transfusion independence.

Keywords: aplastic anemia, combined immunosuppressive therapy, antithymocyte globulin, cyclosporine A.

Received: May 15, 2020

Accepted: September 3, 2020

Read in PDF


REFERENCES

  1. Young NS. Aplastic anemia. N Engl J Med. 2018;379(17):1643–56. doi: 10.1056/NEJMra1413485.

  2. Montane E, Ibanez L, Vidal X, et al. Epidemiology of aplastic anemia: a prospective multicenter study. Haematologica. 2008;93(4):518–23. doi: 10.3324/haematol.12020.

  3. Bacigalupo How I treat acquired aplastic anemia. Blood. 2017;129(11):1428–36. doi: 10.1182/blood-2016-08-693481.

  4. Scheinberg Aplastic anemia: therapeutic updates in immunosuppression and transplantation. Hematology Am Soc Hematol Educ Program. 2012;2012(1):292–300. doi: 10.1182/asheducation.v2012.1.292.3798310.

  5. Feng X, Scheinberg P, Biancotto A, et al. In vivo effects of horse and rabbit antithymocyte globulin in patients with severe aplastic anemia. Haematologica. 2014;99(9):1433–40. doi: 10.3324/haematol.2014.106542.

  6. Camitta BM, Rozman C, Marin P, et al. Criteria for severe aplastic anaemia. Lancet. 1988;331(8580):303–4. doi: 10.1016/s0140-6736(88)90388-1.

  7. Михайлова Е.А., Паровичникова Е.Н., Кулагин А.Д. и др. Клинические рекомендации по лечению апластической анемии (комбинированная иммуносупрессивная терапия). М., 2018. 18 с. [Mikhailova EA, Parovichnikova EN, Kulagin AD, et al. Klinicheskie rekomendatsii po lecheniyu aplasticheskoi anemii (kombinirovannaya immunosupressivnaya terapiya). (Clinical guidelines for aplastic anemia treatment (combined immunosuppressive therapy).) Moscow; 2018. 18 р. (In Russ)]

  8. Marsh JC, Ball SE, Cavenagh J, et al. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol. 2009;147(1):43–70. doi: 1111/j.1365-2141.2009.07842.x.

  9. Scheinberg P, Rios O, Scheinberg P, et al. Prolonged cyclosporine administration after antithymocyte globulin delays but does not prevent relapse in severe aplastic anemia. Am J Hematol. 2014;89(6):571–4. doi: 1002/ajh.23692.

  10. Михайлова Е.А., Фидарова З.Т., Устинова Е.Н. и др. Комбинированная иммуносупрессивная терапия больных апластической анемией: эффективность повторных курсов антитимоцитарного глобулина. Гематология и трансфузиология. 2014;59(4):11–8. [Mikhailova EA, Fidarova ZT, Ustinova EN, et al. Combined immunosuppressive therapy of aplastic anemia: efficacy of repeated courses of antithymocyte globulin. Gematologiya i transfuziologiya. 2014;59(4):11–8. (In Russ)]

  11. Peinemann F, Labeit AM. Stem cell transplantation of matched sibling donors compared with immunosuppressive therapy for acquired severe aplastic anaemia: a Cochrane systematic review. BMJ Open.2014;4(7):e005039. doi: 1136/bmjopen-2014-005039.

  12. Михайлова Е.А., Савченко В.Г. Спленэктомия в программной терапии апластической анемии. Терапевтический архив. 2006;8:52–7. [Mikhailova EA, Savchenko VG. Splenectomy in programmed therapy of aplastic anemia. Terapevticheskii arkhiv. 2006;8:52–7. (In Russ)]

Pattern of Immunocompetent Peripheral Blood Cell Subpopulations in B-Cell Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

EG Kuzmina, TYu Mushkarina, TV Konstantinova, SV Zatsarenko, SV Shakhtarina, AYu Terekhova, NA Falaleeva, LYu Grivtsova

AF Tsyb Medical Radiological Research Centre, branch of the NMRC of Radiology, 4 Koroleva str., Obninsk, Kaluga Region, Russian Federation, 249036

For correspondence: Svetlana Valer’evna Zatsarenko, 4 Koroleva str., Obninsk, Kaluga Region, Russian Federation, 249031; e-mail: vesper04@mail.ru

For citation: Kuzmina EG, Mushkarina TYu, Konstantinova TV, et al. Pattern of Immunocompetent Peripheral Blood Cell Subpopulations in B-Cell Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Clinical oncohematology. 2020;13(4):395–405. (In Russ).

DOI: 10.21320/2500-2139-2020-13-4-395-405


ABSTRACT

Background. In the WHO classification small lymphocytic lymphoma (SLL) and B-cell chronic lymphocytic leukemia (В-CLL) are combined into one nosological entity of lymphoid tumors due to their similar tumor cell immunophenotype. Up to now, there is no consensus on either their similarities or the differences between them. Distinction between В-CLL and SLL is drawn with respect to clinical and hematological manifestations of tumors. The reason for the differences that determine tumor spreading in a patient may lie in specific states of some immune system components. Comparison of immune system parameters within the CLL/SLL model provides a unique opportunity to trace the behavior of immunity indicators in local und disseminated pathogenetically similar neoplastic processes and to identify possible prognostic factors.

Aim. To compare quantitative representations of peripheral blood lymphocyte subpopulations in SLL and В-CLL.

Materials & Methods. Immunocompetent cells (relative and absolute Т- and NK-cell counts), immunophenotype, and tumor clone volume were assessed using multicolor flow cytometry based on the expression of СD3, CD4, CD8, CD16, CD19, CD20, CD23, CD5, CD79b, FMC7, CD22, CD43, CD38 antigens, and immunoglobulins light chain Igκ and Igλ. Before chemotherapy onset, the data of 17 SLL and 81 CLL patients (22 of them with B-lymphocyte count of 35–79 % and 59 with 80–99 %) were compared. As a control, peripheral blood lymphocyte subpopulations in 50 relatively healthy individuals (blood donors) were analyzed.

Results. The analysis of NK-cells and Т-lymphocyte subpopulations in SLL showed the preserved number of killer/cytotoxic cells of innate and adaptive immunity (CD16+, CD8+), the reduction of CD4+ Т-cell count, and CD4/CD8 ratio. In CLL a considerable increase of main subpopulations of residual normal lymphocytes was detected. However, the extent of their increase proved to be considerably lower than increase in the volume of tumor B-cell clone, which signifies a rising exhaustion of immune system effector components.

Conclusion. The present study yielded characteristic features of residual normal lymphocyte subpopulations in SLL and CLL with different leukocytosis grades. SLL patients demonstrated the reduction of relative and absolute Т-cell counts with Т-helper (CD3+, СD4+) phenotype, and the increase of cytotoxic CD8+ Т-cells and NK-cells. Lymphocytosis (35–79 %) in the CLL-I group was due not only to tumor В-cells but also to Т-killer (CD16+, CD8+) and Т-helper (CD4+) absolute counts, which were 1.7–2.5 times higher than in SLL and the control group. Residual lymphocyte subpopulation pattern (80–99 %) in the CLL-II group compared with the control group was characterized by a significantly higher absolute count of CD8+ T-cells and CD16+ NK-cells, as well as higher Т-regulatory index compared with SLL and CLL-I groups. These data point to the necessity for further and more detailed study of residual lymphocyte subpopulation pattern within the CLL/SLL model in order to identify additional predisposing factors.

Keywords: chronic lymphocytic leukemia/small lymphocytic lymphoma, tumor B-cell clone, peripheral blood lymphocyte subpopulations, flow cytometry.

Received: April 22, 2020

Accepted: August 30, 2020

Read in PDF


REFERENCES

  1. Jaffe ES, Harris NL, Stein H, Vardiman JW (eds). World Health Organization Classification of Tumors. Pathology and genetics of tumors of hematopoietic and lymphoid tissues. Lyon: IARC Press; 2016. pp. 121–32.

  2. Луговская С.А., Почтарь М.Е. Гематологический атлас. 4-е издание, дополненное. М.: Триада, 2016. 434 с. [Lugovskaya SA, Pochtar ME. Gematologicheskii atlas. (Hematology Atlas.) 4th revised edition. Moscow: Triada Publ.; 434 p. (In Russ)]

  3. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М., 2018. 356 с. [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (National Russian guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow; 2018. 356 р. (In Russ)]

  4. Луговская С.А., Козинец Г.И. Гематология пожилого возраста. М.: Триада, 2010. 193 с. [Lugovskaya SA, Kozinets GI. Gematologiya pozhilogo vozrasta. (Hematology of the elderly.) Moscow: Triada Publ.; 2010. 193 p. (In Russ)]

  5. Tees MT, Flinn IW. Chronic lymphocytic leukemia and small lymphocytic lymphoma: two faces of the same disease. Expert Rev Hematol. 2017;10(2):137–46. doi: 10.1080/17474086.2017.1270203.

  6. Tibaldi E, Brunati AM, Zonta F, et al. Lyn-mediated SHP-1 recruitment to CD5 contributes to resistance to apoptosis of B-cell chronic lymphocytic leukemia cells. Leukemia. 2011;25(11):1768–81. doi: 10.1038/leu.2011.152.

  7. Williams JF, Petrus MJ, Wright JA, et al. Fas-mediated lysis of chronic lymphocytic leukaemia cells: role of type I versus type II cytokines and autologous FasL-expressing T cells. Br J Haematol. 1999;107(1):99–105. doi: 1046/j.1365-2141.1999.01670.x.

  8. Захаров С.Г., Голенков А.К., Мисюрин А.В. и др. Экспрессия основных генов внешнего пути апоптоза у больных с впервые выявленным хроническим лимфолейкозом в сравнении с клиническими данными. Российский биотерапевтический журнал. 2018;17(2):41–6. doi: 10.17650/1726-9784-2018-17-2-41-46. [Zakharov SG, Golenkov AK, Misyurin AV, et al. Expression of the apoptosis-releated genes in patients with newly diagnosed chronic lymphocytic leukemia in clinical data context. Russian Journal of Biotherapy. 2018;17(2):41–6. doi: 10.17650/1726-9784-2018-17-2-41-46. (In Russ)]

  9. Rawstron AC, Villamor N, Ritgen M, et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007;21(5):956–64. doi: 10.1038/sj.leu.2404584.

  10. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56. doi: 1182/blood-2007-06-093906.

  11. Купрышина Н.А., Тупицын Н.Н. Проточная цитометрия в онкогематологии. Часть II. Основы и нововведения в диагностике хронического лимфолейкоза. Клиническая онкогематология. 2012;5(4):349–54. [Kupryshina NA, Tupitsyn NN. Flow cytometry in oncohematology. Part II. Fundamentals and innovations in chronic lymphocytic leukemia diagnosis. Klinicheskaya onkogematologiya. 2012;5(4):349–54. (In Russ)]

  12. Тупицына Д.Н., Купрышина Н.А., Гривцова Л.Ю. Критерии минимальной остаточной болезни В-клеточного хронического лимфолейкоза в диагностике индолентных лимфом. Вестник гематологии. 2011;7(1):52–3. [Tupitsyna DN, Kupryshina NA, Grivtsova LYu. Criteria for minimal residual disease of B-cell chronic lymphocytic leukemia in the diagnosis of indolent  Vestnik gematologii. 2011;7(1):52–3. (In Russ)]

  13. Bagnara D, Kaufman MS, Calissano C, et al. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood. 2011;117(20):5463–72. doi: 10.1182/blood-2010-12-324210.

  14. Казанский Д.Б. Т-лимфоциты в развитии хронического лимфолейкоза. Клиническая онкогематология. 2012;5(2):85–95.[Kazanskii DB. T-lymphocytes in progression of chronic lymphocytic leukemia. Klinicheskaya onkogematologiya. 2012;5(2):85–95. (In Russ)]

  15. Свирновский А.И. Хронический лимфоцитарный лейкоз: парадигмы и парадоксы. Медицинские новости. 2008;13:7–19. [Svirnovskii AI. Chronic lymphocytic leukemia: paradigms and paradoxes. Meditsinskie novosti. 2008;13:7–19. (In Russ)]

  16. Халафян А.А. Statistica Статистический анализ данных. М.: Бином-Пресс, 2007. 512 c. [Khalafyan AA. Statistika 6. Statisticheskii analiz dannykh. (Statistica 6. Statistical data analysis.) Moscow: Binom-Press Publ.; 2007. 512 р. (In Russ)]

  17. Дубровская Л.И., Князев Г.Б. Компьютерная обработка естественно-научных данных методами многомерной прикладной статистики. Томск: ТМЛ-Пресс, 2011. 120 с. [Dubrovskaya LI, Knyazev GB. Komp’yuternaya obrabotka estestvenno-nauchnykh dannykh metodami mnogomernoi prikladnoi statistiki. (Computer processing of natural science data by methods of multivariate applied statistics.) Tomsk: TML-Press Publ.; 2011. 120 p. (In Russ)]

  18. Marti GE, Rawstron AC, Ghia P, et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol. 2005;130(3):325–32. doi: 10.1111/j.1365-2141.2005.05550.x.

  19. Rawstron AC, Bennett FL, O’Connor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359(6):575–83. doi: 10.1056/NEJMoa075290.

  20. Kern W, Bacher U, Haferlach C, et al. Monoclonal B-cell lymphocytosis is closely related to chronic lymphocytic leukaemia and may be better classified as early-stage CLL. Br J Haematol. 2012;57(1):86–96. doi: 1111/j.13652141.2011.09010.

  21. Shanafelt TD, Kay NE, Call TG, et al. MBL or CLL: which classification best categorizes the clinical course of patients with an absolute lymphocyte count ≥5×109L−1 but a B-cell lymphocyte count <5×109L−1. Leuk Res. 2008;32(9):458–61. doi: 1016/j.leukres.2007.11.030.

  22. Berland R, Wortis HH. Origins and function of B-1 cells with notes on the role of CD5. Ann Rev Immunol. 2002;20(1):253–300. doi: 1146/annurev.immunol.20.100301.064833.

  23. Rawstron AС, Green MJ, Kuzmicki A, et al. Monoclonal B lymphocytes with the characteristics of “indolent” chronic lymphocytic leukemia are present in 5% of adults with normal blood counts. Blood. 2002;100(2):635–9. doi: 10.1182/blood.v100.2.635.

  24. Dameshek W. Chronic lymphocytic leukemia-an accumulative disease of immunologically incompetent lymphocytes. Blood. 1967;29(4):566–84. doi: 1182/blood-2016-05-716159.

  25. Zhen JF, Bao F, Zhu MX, et al. Relationship of the changes of peripheral blood immuno-cell subsets with the prognosis of B cell lymphoma patients. Zhongguo Shi Yan XueYe Hue Za Zhi. 2018;26(6):1657–62. doi: 7534/j.issn/1009-2137.2018.06.013.

  26. Cantwell M, Hua T, Pappas J, Kipps TJ. Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Nat Med. 1997;9(3):984–9. doi: 10.1038/nm0997-984.

  27. Ravandi F, O’Brien S. Immune defects in patients with chronic lymphocytic leukemia. Cancer Immunol Immunother. 2006;55(2):197–209. doi: 1007/s00262-005-0015-8.

  28. Бадмажапова Д.С., Гальцева И.В., Звонков Е.Е. и др. Особенности экспрессии антигенов, участвующих в формировании иммунологического синапса, при хроническом лимфолейкозе. Онкогематология. 2018;13(1):103–14. doi: 17650/1818-8346-2018-13-1-103-114. [Badmazhapova DS, Galtseva IV, Zvonkov EE, et al. Expression features of antigens involved in the formation of immunological synapse in chronic lymphocytic leukemia. Oncohematology. 2018;13(1):103–14. doi: 10.17650/1818-8346-2018-13-1-103-114. (In Russ)]

  29. Dianzani U, Omede P, Marmont F, et al. Expansion of T cells expressing low CD4 or CD8 levels in B-cell chronic lymphocytic leukemia: correlation with disease status and neoplastic phenotype. Blood. 1994;83(8):2198–205. doi: 10.1182/blood.V83.8.2198.2198.

  30. Jadidi-Niaragh F, Yousefi M, Memarian A, et al. Increased Frequency of CD8+ and CD4+ Regulatory T Cells in Chronic Lymphocytic Leukemia: Association with Disease Progression. Cancer Invest. 2013;31(2):121–31. doi: 10.3109/07357907.2012.756110.

  31. Mackus WJ, Frakking FN, Grummels A, et al. Expansion of CMV-specific CD8+CD45RA+CD27- T cells in B-cell chronic lymphocytic leukemia. Blood. 2003;102(3):1057–63. doi: 10.1182/blood-2003-01-0182.

  32. Porakishvili N, Roschupkina T, Kalber T, et al. Expansion of CD4+ T cells with a cytotoxic phenotype in patients with B-chronic lymphocytic leukaemia (B-CLL). Clin Exper Immunol. 2001;126(1):29–36. doi: 10.1046/j.1365-2249.2001.01639.x.

  33. Serrano D, Monteiro J, Allen SL, et al. Clonal expansion within the CD4+CD57+ and CD8+CD57+ T cell subsets in chronic lymphocytic leukemia. J Immunol. 1997;158(3):1482–9.

  34. de Totero D, Reato G, Mauro F, et al. IL4 production and increased CD30 expression by a unique CD8+ T-cell subset in B-cell chronic lymphocytic leukaemia. Br J Haematol. 1999;104(3):589–99. doi: 1046/j.1365-2141.1999.01219.x.

  35. Ticchioni M, Essafi M, Jeandel PY, et al. Homeostatic chemokines increase survival of B-chronic lymphocytic leukemia cells through inactivation of transcription factor FOXO3a. Oncogene. 2007;50(26):7081–91. doi: 10.1038/sj.onc.1210519.

  36. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;11(3):991–8. doi: 10.1038/ni1102-991.

  37. Rassenti LZ, Jain S, Keating MJ, et al. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood. 2008;112(5):1923–30. doi: 10.1182/blood-2007-05-092882.

  38. Nuckel H, Rebmann V, Durig J, et al. HLA-G expression is associated with an unfavorable outcome and immunodeficiency in chronic lymphocytic leukemia. Blood. 2005;105(4):1694–8. doi: 10.1182/blood-2004-08-3335.

  39. Kantor AB, Meril CE, Gercenberg LA, Hillson JL. An unbiased analysis of V-H-D-J(H) sequences from B-1a, B-1b, and conventional B cells. J Immunol. 1997;158(3):1175–86.

  40. Sasson SC, Smith S, Seddiki N, et al. IL-7 receptor is expressed on adult pre-B-cell acute lymphoblastic leukemia and other B-cell derived neoplasms and correlates with expression of proliferation and survival markers. Cytokine. 2010;50(1):58–68. doi: 10.1016/j.cyto.2009.2.001.

  41. Gaidano G, Foa R, Dalla-Favera R. Molecular pathogenesis of chronic lymphocytic leukemia. J Clin Invest. 2012;122(10):3432–8. doi: 10.1172/JCI64101.

  42. Lam QLK, Wang S, Ko OKH, et al. Leptin signaling maintains B-cell homeostasis via induction of Bcl-2 and Cyclin D1. Proc Natl Acad Sci USA. 2010;107(31):13812–7. doi: 10.1073/pnas.1004185107.

  43. Мainou-Fowler T, Proctor SJ, Miller S, Dickinson AM. Expression and production of interleukin 4 in B-cell chronic lymphocytic leukaemia. Leuk Lymphoma. 2001;42(4):689–98. doi: 10.3109/10428190109099331.

  44. Majolini MB, D’Elios MM, Galieni P, et al. Expression of the T-cell-specific tyrosine kinase Lck in normal B-1 cells and in chronic lymphocytic leukemia B cells. Blood. 1998;91(9):3390–6. doi: 10.1182/blood.V91.9.3390.

  45. Frishman J, Long B, Knospe W, et al. Genes for interleukin 7 are transcribed in leukemic cell subsets of individuals with chronic lymphocytic leukemia. J Exper Med. 1993;177(4):955–64. doi: 1084/jem.177.4.955.

  46. Scrivener S, Kaminski ER, Demaine A, Prentice AG. Analysis of the expression of critical activation/interaction markers on peripheral blood T cells in B-cell chronic lymphocytic leukaemia: evidence of immune dysregulation. Br J Haematol. 2001;112(4):959–64. doi: 10.1046/j.1365-2141.2001.02672.x.

  47. Sthoeger ZM, Wakai M, Tse DB, et al. Production of autoantibodies by CD5-expressing B-lymphocytes from patients with chronic lymphocytic leukemia. J Exper Med. 1989;169(1):255–68. doi: 10.1084/jem.169.1.255.

  48. Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа, 2010. 752 с. [Yarilin AA. Immunologiya. (Immunology.) Moscow: GEOTAR-Media Publ.; 2010. 752 p. (In Russ)]

  49. Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118(7):2427–37. doi: 10.1172/JCI35017.

  50. Billadeau DD, Burkhardt JK. Regulation of Cytoskeletal Dynamics at the Immune Synapse: New Stars Join the Actin Troupe. 2006;11(7):1451–60. doi: 10.1111/j.1600-0854.2006.00491.x.

  51. Gorgun G, Holderried TA, Zahrieh D, et al. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest. 2005;115(7):1797–805. doi: 10.1172/JCI24176.

  52. Mittal S, Marshall NA, Duncan L, et al. Local and systemic induction of CD4+CD25+ regulatory T-cell population by non-Hodgkin lymphoma. Blood. 2008;111(11):5359–70. doi: 1182/blood-2007-08-105395.

  53. D’Arena G, Simeon V, D’Auria F, et al. Regulatory T-cells in chronic lymphocytic leukemia: actor or innocent bystander? Am J Blood Res. 2013;3(1):52–7.

  54. Кузьмина Е.Г., Мушкарина Т.Ю., Константинова Т.В. Регуляторные T-лимфоциты (Treg) при лимфопролиферативных заболеваниях. Современная онкология. 2016;18(5):41–2. [Kuzmina EG, Mushkarina TYu, Konstantinova TV. Regulatory T-cells (Treg) in lymphoproliferative diseases. Sovremennaya onkologiya. 2016;18(5):41–2. (In Russ)]

  55. Тупицына Д.Н., Ковригина А.М., Тумян Г.С. и др. Клиническое значение внутриопухолевых FOXP3+ Т-регуляторных клеток при солидных опухолях и фолликулярных лимфомах: обзор литературы и собственные данные. Клиническая онкогематология. 2012;5(3):193–203. [Tupitsyna DN, Kovrigina AM, Tumyan GS, et al. Clinical significance of intratumoral FOXP3+ T-regulatory cells in solid tumors and follicular lymphomas: literature review and own experience. Klinicheskaya onkogematologiya. 2012;5(3):193–203. (In Russ)]

  56. Yang ZZ, Novak AJ, Ziesmer SC, et al. CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25– T cells. Blood. 2007;110(7):2537–44. doi: 10.1182/blood-2007-03-082578.

  57. Beyer M, Kochanek M, Darabi K, et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood. 2005;106(6):2018–25. doi: 10.1182/blood-2005-02-0642.

  58. Мушкарина Т.Ю., Кузьмина Е.Г., Константинова Т.В., Гривцова Л.Ю. Регуляторные Т-клетки в костном мозге и периферической крови при В-клеточном хроническом лимфолейкозе. Иммунология гемопоэза. 2019;17(2):32–8. [Mushkarina TYu, Kuzmina EG, Konstantinova TV, Grivtsova LYu. Regulatory T-cells in bone marrow and peripheral blood in B-cell chronic lymphocytic leukemia. Immunologiya gemopoeza. 2019;17(2):32–8. (In Russ)]

Clinical and Immunomorphological Characteristics of Lymphomatoid Papulosis Type E (Literature Review and Case Report)

TT Valiev1, AM Kovrigina2, TS Belysheva1

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Timur Teimurazovich Valiev, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; e-mail: timurvaliev@mail.ru

For citation: Valiev TT, Kovrigina AM, Belysheva TS. Clinical and Immunomorphological Characteristics of Lymphomatoid Papulosis Type E (Literature Review and Case Report). Clinical oncohematology. 2020;13(4):389–94. (In Russ).

DOI: 10.21320/2500-2139-2020-13-4-389-394


ABSTRACT

Lymphomatoid papulosis (LP) is a rare variant of benign lymphoproliferative disease with skin involvement. Based on clinical, morphological, and immunobiological characteristics, WHO hematopoietic and lymphoid tissue tumor classification (2016) differentiates between several LP types: А, В, С, D, Е, and with 6p25.3 rearrangement. The present article reviews the literature on clinical course, pathomorphological, immunological, and biomolecular characteristics of LP in adults and children. For the first time in the domestic literature, it provides a case report of LP, type E, in a 2-year-old child. Differential diagnosis and optimal disease management of LP are also described in detail.

Keywords: lymphomatoid papulosis, clinical features, diagnosis, treatment.

Received: June 9, 2020

Accepted: September 15, 2020

Read in PDF


REFERENCES

  1. Gross TG, Termuhlen AM. Pediatric non-Hodgkin lymphoma. Curr Hematol Malig Rep. 2008;3(3):167–73. doi: 10.1007/s11899-008-0024-8.

  2. Macaulay Lymphomatoid papulosis: A continuing self-healing eruption, clinically benign—histologically malignant. Arch Dermatol. 1968;97(1):23–30. doi: 10.1001/archderm.97.1.23.

  3. Liu HL, Hoppe RT, Kohler S, et al. CD30+ cutaneous lymphoproliferative disorders: the Stanford experience in lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma. J Am Acad Dermatol. 2003;49(6):1049–58. doi: 10.1016/s0190-9622(03)02484-8.

  4. Wieser I, Oh CW, Talpur R, et al. Lymphomatoid papulosis: treatment response and associated lymphomas in a study of 180 patients. J Am Acad Dermatol. 2016;74(1):59–67. doi: 10.1016/j.jaad.2015.09.013.

  5. Martorell-Calatayud А, Hernandez-Martin А, Colmenero I, et al. Lymphomatoid Papulosis in Children: Report of 9 Cases and Review of the Literature. Actas Dermosifiliogr. 2010;101(8):693–701.

  6. Sauder MB, O’Malley JT, LeBoeuf NR. CD30+ lymphoproliferative disorders of the skin. Hematol Oncol Clin North Am. 2017;31(2):317–34. doi: 10.1016/j.hoc.2016.11.006.

  7. Duvic M. CD30+ neoplasms of the skin. Curr Hematol Malig Rep. 2011;6(4):245–50. doi: 10.1007/s11899-011-0096-8.

  8. Валиев Т.Т., Виноградова Е.Ю., Гилязитдинова Е.А. и др. Случай саркомной трансформации лимфоматоидного папулеза. Гематология и трансфузиология. 2006;5:44–6. [Valiev TT, Vinogradova EYu, Gilyazitdinova EA, et al. A case of sarcomatous transformation of lymphomatoid papulosis. Gematologiya i transfuziologiya. 2006;5:44–6. (In Russ)]

  9. Nijsten T, Curiel-Lewandrowski C, Kadin ME. Lymphomatoid papulosis in children: a retrospective cohort study of 35 cases. Arch Dermatol. 2004;140(3):306–12. doi: 10.1001/archderm.140.3.306.

  10. LeBoit Lymphomatoid papulosis and cutaneous CD30+ lymphoma. Am J Dermatopathol. 1996;18(3):221–35. doi: 10.1097/00000372-199606000-00001.

  11. El Shabrawi-Caelen L, Kerl H, Cerroni L. Lymphomatoid papulosis: reappraisal of clinicopathologic presentation and classification into subtypes A, B, and C. Arch Dermatol. 2004;140(4):441–7. doi: 10.1001/archderm.140.4.441.

  12. Kempf W, Kazakov DV, Scharer L, et al. Angioinvasive lymphomatoid papulosis: a new variant simulating aggressive lymphomas. Am J Surg Pathol. 2013;37(1):1–13. doi: 10.1097/PAS.0b013e3182648596.

  13. Sharaf MA, Romanelli P, Kirsner R, Miteva M. Angioinvasive lymphomatoid papulosis: another case of a newly described variant. Am J Dermatopathol. 2014;36(3):75–7. doi: 10.1097/DAD.0b013e3182943394.

  14. Scarisbrick JJ, Evans AV, Woolford AJ, et al. Regional lymphomatoid papulosis: a report of four cases. Br J Dermatol. 1999;141(6):1125–8. doi: 10.1046/j.1365-2133.1999.03218.x.

  15. Ba W, Yin G, Yang J, et al. Lymphomatoid papulosis type E with a CD56+ immunophenotype presented with purpura-like lesions. J Cutan Pathol. 2019;46(7):542–5. doi: 10.1111/cup.13472.

  16. Kiavash K, Abner SM, Malone JC. New variant lymphomatoid papulosis type E preceding and coexisting with mycosis fungoides – a case report and review of the literature. J Cutan Pathol. 2015;42(12):1018–23. doi: 10.1111/cup.12606.

  17. Fujimura T, Lyu C, Tsuchiyama K, Aiba S. CD30-Positive Angioinvasive Lymphomatoid Papulosis (Type E) Developing from Parapsoriasis en Plaque. Case Rep Oncol. 2018;11(3):850–4. doi: 10.1159/000495689.

  18. Kempf W, Pfaltz K, Vermeer MH, et al. EORTC, ISCL, and USCLC consensus recommendations for the treatment of primary cutaneous CD30-positive lymphoproliferative disorders: lymphomatoid papulosis and primary cutaneous anaplastic large-cell lymphoma. 2011;118(15):4024–35. doi: 10.1182/blood-2011-05-351346.

  19. Kakizaki A, Fujimura T, Kambayashi Y, et al. Comparison of CD163+ Macrophages and CD206+ Cells in Lesional Skin of CD30+ Lymphoproliferative Disorders of Lymphomatoid Papulosis and Primary Cutaneous Anaplastic Large-cell Lymphoma. Acta Derm Venereol. 2015;95(5):600–2. doi: 10.2340/00015555-2016.