National Clinical Guidelines on Diagnosis and Treatment of Ph-Negative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis) (Edition 2020)

AL Melikyan1, AM Kovrigina1, IN Subortseva1, VA Shuvaev2, EV Morozova3, EG Lomaia4, BV Afanasyev3, TA Ageeva5, VV Baikov3, OYu Vinogradova6, SV Gritsaev2, AYu Zaritskey4, TI Ionova7, KD Kaplanov6, IS Martynkevich2, TA Mitina8, ES Polushkina9, TI Pospelova5, MA Sokolova1, AB Sudarikov1, AG Turkina1, YuV Shatokhin10, RG Shmakov9, VG Savchenko1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

3 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

4 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

5 Novosibirsk State Medical University, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091

6 Moscow Municipal Center for Hematology, SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

7 NI Pirogov Clinic for High Medical Technology, Saint Petersburg State University, 7/9 Universitetskaya emb., Saint Petersburg, Russian Federation, 199034

8 NF Vladimirskii Moscow Regional Research Clinical Institute, 61/2 Shchepkina str., Moscow, Russian Federation, 129110

9 VI Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina str., Moscow, Russian Federation, 117997

10 ФГБОУ ВО «Ростовский государственный медицинский университет» Минздрава России, Нахичеванский пер., д. 29, Ростов-на-Дону, Российская Федерация, 344022

For correspondence: Anait Levonovna Melikyan, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: anoblood@ mail.ru

For citation: Melikyan AL, Kovrigina AM, Subortseva IN, et al. National Clinical Guidelines on Diagnosis and Treatment of Ph-Negative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis) (Edition 2020). Clinical oncohematology. 2021;14(2):262–98. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-262-298


ABSTRACT

The development of National clinical guidelines on diagnosis and treatment of Ph-negative myeloproliferative neoplasms comes in response to the need to standardize the approach to diagnosis and treatment. The availability of clinical guidelines can facilitate the choice of adequate treatment strategy, provides practicing physicians with exhaustive and up-to-date information on advantages and shortcomings of different treatment methods as well as lets health professionals better assess expected extents of treatment required by patients. In 2013 a working group was formed to develop and formulate clinical guidelines on the treatment of myeloproliferative neoplasms. These guidelines were first published in 2014, afterwards they were revised and republished. The dynamic development of current hematology presupposes constant updating of knowledge and implementation of new diagnosis and treatment methods in clinical practice. In this context clinical guidelines present a dynamic document to be continuously amended, expanded, and updated in accordance with scientific findings and new requirements of specialists who deal directly with this category of patients. The present edition is an upgraded version of clinical guidelines with updated information on the unification of constitutional symptoms assessment using MPN-SAF TSS questionnaire (MPN10), on applying prognostic scales in primary myelofibrosis, assessing therapy efficacy in myeloproliferative neoplasms, revising indications for prescription, on dose correction, and discontinuation of targeted drugs (ruxolitinib). The guidelines are intended for oncologists, hematologists, healthcare executives, and medical students.

Keywords: myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, primary myelofibrosis, JAK2V617F, CALR, MPL, prognosis, hydroxyurea, interferon-α, ruxolitinib, anagrelide.

Received: November 12, 2020

Accepted: February 23, 2021

Read in PDF

Статистика Plumx английский

 

Comparative Analysis of Myelofibrosis Treatment Outcomes with the Use of Ruxolitinib Versus Ruxolitinib with Subsequent Allogeneic Hematopoietic Stem Cell Transplantation

MV Barabanshchikova, EV Morozova, YuYu Vlasova, TL Gindina, AV Evdokimov, IM Barkhatov, VV Baikov, IO Ivanova, TA Rudakova, EA Bakin, IS Moiseev, AD Kulagin

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Mariya Vladimirovna Barabanshchikova, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(911)164-01-57; e-mail: maria.barabanshikova.spb@gmail.com

For citation: Barabanshchikova MV, Morozova EV, Vlasova YuYu, et al. Comparative Analysis of Myelofibrosis Treatment Outcomes with the Use of Ruxolitinib Versus Ruxolitinib with Subsequent Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2021;14(1):22–30. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-22-30


ABSTRACT

Aim. To comparatively analyze myelofibrosis treatment outcomes with the use of ruxolitinib versus ruxolitinib with subsequent allogeneic hematopoietic stem cell transplantation (allo-HSCT) as well as to assess the efficacy of ruxolitinib in pre- and post-transplantation periods.

Materials & Methods. The study enrolled 78 myelofibrosis patients who were referred to the RM Gorbacheva Scientific Research Institute to determine the indications for allo-HSCT. Allo-HSCT was performed in 33 patients, among them 32 patients with ruxolitinib pre-conditioning (ruxolitinib + allo-HSCT group). They received reduced intensity conditioning (fludarabine 180 mg/m2 and busulfan 10 mg/kg). Graft-versus-host disease (GVHD) prophylaxis included cyclophosphamide 50 mg/kg on Day +3 and Day +4, ruxolitinib 10 mg per day from Day +5 to Day +100 (n = 31), rabbit antithymocyte globulin, tacrolimus, and mycophenolate mofetil (n = 2). Ruxolitinib without allo-HSCT was administered to 45 patients (ruxolitinib group). Between the groups there were no significant differences with respect to gender, age, diagnosis, and molecular genetic variant.

Results. Median therapy duration in ruxolitinib group was 16 months (range 2–78 months). In 2 (4 %) patients partial response was achieved, 8 (20 %) patients showed clinical improvement, in 16 (39 %) patients stable disease (SD) was reported, in 15 (37 %) patients disease progression (DP) was detected. The treatment succeeded in reducing the spleen size in 8 (20 %) patients and in relieving disease symptoms in 16 (39 %) patients. Cumulative incidence of progression within 3 years was 44 % (95% confidence interval [95% CI] 27–60 %). In ruxolitinib + allo-HSCT group median ruxolitinib therapy duration was 7 months (range 3–22 months.). As a result, clinical improvement in 9 (28 %) cases, SD in 17 cases (53 %), and DP in 6 (19 %) cases were observed. In 5 (20 %) patients acute GVHD of grade 2–4, in 3 (12 %) patients acute GVHD of grade 3–4, and in 6 (24 %) patients chronic medium severity GVHD were identified. Within 1 year non-relapse mortality was 28 % (95% CI 14–44 %). The 3-year cumulative incidence of relapse was 12 % (95% CI 3–28 %) in ruxolitinib + allo-HSCT group. According to the landmark analysis performed throughout 6 months from the first visit to the center, the 3-year overall survival in the group with allo-HSCT was 80 %, whereas in ruxolitinib group it was 41 % (= 0.022), 12-month landmark analysis resulted in 77 % and 43 % (= 0.028), and 18-month landmark analysis showed 86 % and 46 % (= 0.015) in two groups, respectively.

Conclusion. Despite the efficacy of JAK1/2 inhibitor ruxolitinib, the risk of myelofibrosis progression is not to be underestimated. Therefore, in DIPSS intermediate-2 and high-risk patients the issue about performing allo-HSCT should be promptly clarified.

Keywords: myelofibrosis, ruxolitinib, allogeneic hematopoietic stem cell transplantation.

Received: September 28, 2020

Accepted: December 15, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Arber D, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  2. Cervantes F. How I treat myelofibrosis. Blood. 2014;124(17):2635–42. doi: 10.1182/blood-2014-07-575373.
  3. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.). Гематология и трансфузиология. 2018;63(3):275–315.
    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition of 2018). Gematologiya i transfuziologiya. 2018;63(3):275–315. (In Russ)]
  4. Verstovsek S, Mesa R, Gotlib J, et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N Engl J Med. 2012;366(9):799–807. doi: 10.1056/nejmoa1110557.
  5. Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10(1):156. doi: 10.1186/s13045-017-0527-7.
  6. Morozova E, Barabanshikova M, Gindina T, et al. Hematopoietic stem cell transplantation and other therapeutic options in primary myelofibrosis: a review and two case reports. Cell Ther Transplant. 2016;5(2):21–32. doi: 10.18620/1866-8836-2016-5-2-21-32.
  7. Kroger N, Giorgino T, Scott B, et al. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015;125(21):3347–50. doi: 10.1182/blood-2014-10-608315.
  8. Passamonti F, Cervantes F, Vannucchi A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  9. Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(26):5264–70. doi: 10.1182/blood-2009-07-234880.
  10. Morozova E, Barabanshikova M, Moiseev I, et al. A Prospective Pilot Study of Graft-versus-Host Disease Prophylaxis with Post-Transplantation Cyclophosphamide and Ruxolitinib in Patients with Myelofibrosis. Acta Haematologica. 2020:1–8. doi: 10.1159/000506758.
  11. Thiele J, Kvasnicka HM, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  12. Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013;122(8):1395–8. doi: 10.1182/blood-2013-03-488098.
  13. Singer M, Deutschman C, Seymour C, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801. doi: 10.1001/jama.2016.0287.
  14. De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21. doi: 10.1086/588660.
  15. McDonald GB, Hinds MS, Fisher LD, et al. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Intern Med. 1993;118(4):255–67. doi: 10.7326/0003-4819-118-4-199302150-00003.
  16. Gowin K, Ballen K, Ahn K, et al. Survival following allogeneic transplant in patients with myelofibrosis. Blood Adv. 2020;4(9):1965–73. doi: 10.1182/bloodadvances.2019001084.
  17. Dafni U. Landmark Analysis at the 25-Year Landmark Point. Circ Cardiovasc Qual Outcomes. 2011;4(3):363–71. doi: 10.1161/circoutcomes.110.957951.
  18. Барабанщикова М.В. Клинико-морфологические особенности и факторы прогноза при Ph-негативных хронических миелопролиферативных заболеваниях: Автореф. дис. … мед. наук. СПб., 2016.
    [Barabanshchikova MV. Kliniko-morfologicheskie osobennosti i faktory prognoza pri Ph-negativnykh khronicheskikh mieloproliferativnykh zabolevaniyakh. (Clinical morphological characteristics and prognostic factors in Ph-negative chronic myeloproliferative diseases.) [dissertation] Saint Petersburg; (In Russ)]
  19. Gowin K, Ballen K, Ahn K, et al. Survival following allogeneic transplant in patients with myelofibrosis. Blood Adv. 2020;4(9):1965–73. doi: 10.1182/bloodadvances.2019001084.
  20. Ruggiu M, Cassinat B, Kiladjian J, et al. Should Transplantation Still Be Considered for Ph1-Negative Myeloproliferative Neoplasms in Transformation? Biol Blood Marrow Transplant. 2020;26(6):1160–70. doi: 10.1016/j.bbmt.2020.02.019.
  21. Shanavas M, Popat U, Michaelis L, et al. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients with Myelofibrosis with Prior Exposure to Janus Kinase 1/2 Inhibitors. Biol Blood Marrow Transplant. 2016;22(3):432–40. doi: 10.1016/j.bbmt.2015.10.005.
  22. Alchalby H, Yunus D, Zabelina T, et al. Incidence and risk factors of poor graft function after allogeneic stem cell transplantation for myelofibrosis. Bone Marrow Transplant. 2016;51(9):1223–7. doi: 10.1038/bmt.2016.98.
  23. Рудакова Т.А., Кулагин А.Д., Климова О.У. и др. Тяжелая гипофункция трансплантата после аллогенной трансплантации гемопоэтических стволовых клеток у взрослых пациентов: частота, факторы риска, исходы. Клиническая онкогематология. 2019;12(3):309–18. doi: 10.21320/2500-2139-2019-12-3-309-318.
    [Rudakova TA, Kulagin AD, Klimova OU, et al. Severe “Poor Graft Function” after Allogeneic Hematopoietic Stem Cell Transplantation in Adult Patients: Incidence, Risk Factors, and Outcomes. Clinical oncohematology. 2019;12(3):309–18. doi: 10.21320/2500-2139-2019-12-3-309-318. (In Russ)]
  24. Rashidi A, Hamadani M, Zhang M, et al. Outcomes of haploidentical vs matched sibling transplantation for acute myeloid leukemia in first complete remission. Blood Adv. 2019;3(12):1826–36. doi: 10.1182/bloodadvances.2019000050.
  25. Gupta V, Kosiorek HE, Mead A, et al. Ruxolitinib Therapy Followed by Reduced-Intensity Conditioning for Hematopoietic Cell Transplantation for Myelofibrosis: Myeloproliferative Disorders Research Consortium 114 Study. Biol Blood Marrow Transplant. 2019;25(2):256–64. doi: 10.1016/j.bbmt.2018.09.001.
  26. Zeiser R, von Bubnoff N, Butler J, et al. Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease. N Engl J Med. 2020;382(19):1800–10. doi: 10.1056/nejmoa1917635.
  27. Pu JJ, Poulose J, Malysz J, et al. Impact of ruxolitinib on myelofibrosis patients post allogeneic stem cell transplant—a pilot study. Br J Haematol. 2019;186(5):е130–е133. doi: 10.1111/bjh.15967.
  28. Kroger N, Shahnaz Syed Abd Kadir S, Zabelina T, et al. Peritransplantation Ruxolitinib Prevents Acute Graft-versus-Host Disease in Patients with Myelofibrosis Undergoing Allogenic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018;24(10):2152–6. doi: 10.1016/j.bbmt.2018.05.023.
  29. Choi J, Cooper ML, Alahmari B, et al. Pharmacologic blockade of JAK1/JAK2 reduces GvHD and preserves the graft-versus-leukemia effect. PLoS ONE. 2014;9(10):e109799. doi: 10.1371/journal.pone.0109799.

Early Response and Long-Term Outcomes of Ruxolitinib Therapy in Myelofibrosis: Multicenter Retrospective Study in 10 Centers of the Russian Federation

EG Lomaia1, NT Siordiya1, OM Senderova2, OE Ochirova3, EB Zhalsanova3, AYu Furtovskaya1, GP Dimov4, MG Pozina4, OYu Li5, KB Trizna6, MA Mikhalev7, EV Sokurova8, AA Otmorskaya9, AS Khazieva10, VV Ust’yantseva11, YuD Rogovaya1, AYu Zaritskey1

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Irkutsk Regional Clinical Hospital, 100 Yubileinyi microdistrict, Irkutsk, Russian Federation, 664049

3 NA Semashko Republican Clinical Hospital, 12 Pavlova str., Ulan-Ude, Russian Federation, 670031

4 Municipal Clinical Hospital No. 1, 16 Vorovskogo str., Chelyabinsk, Russian Federation, 454048

5 Sakhalin Regional Clinical Hospital, 430 Mira pr-t, Yuzhno-Sakhalinsk, Russian Federation, 693004

6 Tomsk Regional Clinical Hospital, 96 Ivana Chernykh str., Tomsk, Russian Federation, 634063

7 Krasnoyarsk Interdistrict Clinical Hospital No. 7, 4 Akademika Pavlova str., Krasnoyarsk, Russian Federation, 660003

8 Vladivostok Polyclinic No. 4, 5 Voropaeva str., Vladivostok, Russian Federation, 690000

9 Regional Clinical Hospital, 1 Lyapidevskogo str., Barnaul, Russian Federation, 656024

10 Krasnoyarsk Regional Clinical Hospital, 3A Partizana Zheleznyaka str., Krasnoyarsk, Russian Federation, 660022

11 Railway Clinical Hospital, the Chelyabinsk Railway Station, 41 Tsvillinga str., Chelyabinsk, Russian Federation, 454000

For correspondence: Nadiya Tamazovna Siordiya, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; e-mail: siordian@list.ru

For citation: Lomaia EG, Siordiya NT, Senderova OM, et al. Early Response and Long-Term Outcomes of Ruxolitinib Therapy in Myelofibrosis: Multicenter Retrospective Study in 10 Centers of the Russian Federation. Clinical oncohematology. 2020;13(3):335–45 (In Russ).

DOI: 10.21320/2500-2139-2020-13-3-335-345


ABSTRACT

Aim. To assess the efficacy of targeted therapy with ruxolitinib in patients with myelofibrosis in real clinical practice in Russia. To determine the prognostic value of spleen reduction in the early stages of ruxolitinib treatment and its effect on overall survival.

Materials & Methods. The present retrospective study was based on the data of 10 centers of Russia. It included 56 myelofibrosis (primary or post-polycythemic and post-thrombocythemic) patients who received ruxolitinib. The median age of patients was 56 years (range 26–76 years). Most of them (59 %) were considered intermediate-1 risk according to DIPSS and had massive splenomegaly (80 %), and constitutional symptoms (86 %). The initial drug dose was 30 mg per day in 64 % of cases, and the level of thrombocytes was ≥ 200 × 109/L in 61 % of patients. The spleen size was evaluated by palpation.

Results. By the start of data collection most of patients (79 %) had been treated with ruxolitinib. In no case therapy was withdrawn for the reason of drug toxicity. On ruxolitinib constitutional symptoms were reversed in 70 %, 87 %, and 98 % of patients by months 1, 3 and 6, respectively. In 36 % and 46 % of patients by months 3 and 6, respectively, ≥ 50 % decrease in spleen size was observed. Overall, in 31 % and 27 % of cases the size of the spleen decreased by less than 25 % by months 3 and 6, respectively. The factors affecting the changes in spleen size have not been identified. The probability of overall survival by years 2 and 5 of follow-up was 97 % and almost 70 %, respectively. This parameter was significantly affected by the extent of spleen size reduction by month 3 of follow-up as well as by its initial size.

Conclusion. Ruxolitinib shows high efficacy for both decrease of general myelofibrosis symptoms and reduction in spleen size. The extent of spleen reduction is an important prognostic factor. In patients with insufficient spleen reduction an increase in drug dose is advisable. If it is not possible, alternative methods of treatment should be sought.

Keywords: myelofibrosis, ruxolitinib, spleen size changes, constitutional symptoms, overall survival.

Received: January 31, 2020

Accepted: May 15, 2020

Read in PDF


REFERENCES

  1. Tefferi A, Lasho TL, Jimma T, et al. One Thousand Patients With Primary Myelofibrosis: The Mayo Clinic Experience. Mayo Clin Proc. 2012;87(1):25–33. doi: 10.1016/j.mayocp.2011.11.001.

  2. Patriarca F, Bacigalupo A, Sperotto A, et al. Allogeneic hematopoietic stem cell transplantation in myelofibrosis: the 20-year experience of the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Haematologica. 2008;93(10):1514–22. doi: 10.3324/haematol.12828.

  3. Harrison CN, Mesa RA, Kiladjian JJ, et al. Health-related quality of life and symptoms in patients with myelofibrosis treated with ruxolitinib versus best available therapy. Br J Haematol. 2013;162(2):229–39. doi: 10.1111/bjh.12375.

  4. Verstovsek S, Mesa RA, Gotlib I, et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N Engl J Med. 2012;366(9):799–807. doi: 10.1056/NEJMoa1110557.

  5. Verstovsek S, Mesa RA, Gotlib I, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55. doi: 10.1186/s13045-017-0417-z.

  6. Miller CB, Komrokji RS, Mesa RA, et al. Practical Measures of Clinical Benefit With Ruxolitinib Therapy: An Exploratory Analysis of COMFORT-I. Clin Lymphoma Myel Leuk. 2017;17(8):479–87. doi: 10.1016/j.clml.2017.05.015.

  7. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51. doi: 10.1182/blood-2009-03-209262.

  8. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  9. Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. 2013;122(8):1395–8. doi: 10.1182/blood-2013-03-488098.

  10. Джакави® (инструкция по медицинскому применению). Novartis Pharma, AG (Швейцария). Доступно по: https://www.vidal.ru/drugs/jakavi Ссылка активна на 15.05.2020.[Jakavi® (package insert). Novartis Pharma, AG, Switzerland. Available from: https://www.vidal.ru/drugs/jakavi__38878. (accessed 15.05.2020) (In Russ)]

  11. Verstovsek S, Kantarjian HM, Estrov Z, et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood. 2012;120(6):1202–9. doi: 10.1182/blood-2012-02-414631.

  12. Vannucchi AM, Kantajian HM, Kiladjian JJ, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica. 2015;100(9):1139–45. doi: 10.3324/haematol.2014.119545.

  13. Mesa RA, Verstovsek S, Gupta V, et al. Effects of ruxolitinib treatment on metabolic and nutritional parameters in patients with myelofibrosis from COMFORT-I. Clin Lymphoma Myel Leuk. 2015;15(4):214–21.e1. doi: 10.1016/j.clml.2014.12.008.

  14. Palandri F, Palumbo GA, Bonifacio M, et al. Baseline factors associated with response to ruxolitinib: an independent study on 408 patients with myelofibrosis. Oncotarget. 2017;8(45):79073–86. doi: 10.18632/oncotarget.18674.

  15. Palandri F, Tiribelli M, Benevolo G, et al. Efficacy and safety of ruxolitinib in intermediate-1 IPSS risk myelofibrosis patients: Results from an independent study. Hematol Oncol. 2018;36(1):285–90. doi: 10.1002/hon.2429.

  16. Palandri F, Catani L, Bonifacio M, et al. Ruxolitinib in elderly patients with myelofibrosis: impact of age and genotype. A multicentre study on 291 elderly patients. Br J Haematol. 2018;183(1):35–46. doi: 10.1111/bjh.15497.

  17. Harrison CN, Schaap N, Vannucchi A, et al. Fedratinib (FEDR) in myelofibrosis (MF) patients previously treated with ruxolitinib (RUX): A reanalysis of the JAKARTA-2 study. HemaSphere. 2019;3:671–72. doi: 10.1097/01.hs9.0000564100.83392.c9.

  18. Al-Ali HK, Griesshammer M, le Coutre P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: a snapshot of 1144 patients in the JUMP trial. 2016;101(9):1065–73. doi: 10.3324/haematol.2016.143677.

Targeted Therapy of Myelofibrosis

OYu Vinogradova1,3,4, VA Shuvaev2, IS Martynkevich2, MM Pankrashkina1,3, MS Fominykh2, EV Efremova2, KYu Krutikova2, LB Polushkina2, NN Sharkunov1, SV Voloshin2, AV Chechetkin2

1SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

2Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

3Dmitrii Rogachev National Medical Pediatric Hematology, Oncology and Immunology Research Center, 1 Samory Mashela str., Moscow, Russian Federation, 117198

4NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Ol’ga Yur’evna Vinogradova, MD, PhD, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284; Tel.: 8(495)945-97-61; e-mail: olgavinz@mail.ru.

For citation: Vinogradova OYu, Shuvaev VA, Martynkevich IS, et al. Targeted Therapy of Myelofibrosis. Clinical oncohematology. 2017;10(4):471–8 (In Russ).

DOI: 10.21320/2500-2139-2017-10-4-471-478


ABSTRACT

Background. Myelofibrosis (primary myelofibrosis, post-essential trombocythemia myelofibrosis, post-polycythemia myelofibrosis) is the most complex and pressing problem among all Ph-negative myeloproliferative diseases. The present article summarizes the author’s experience of using new Janus kinase inhibitors in routine clinical practice, and compares the data with the results of other clinical research.

Aim. To evaluate the use of ruxolitinib in patients with myelofibrosis.

Materials & Methods. Our analysis includes 48 patients (21 men and 27 women) with histologically verified myelofibrosis (primary myelofibrosis in 36 cases, post-essential trombocythemia myelofibrosis in 10 cases, and post-polycythemia myelofibrosis in 2 cases) in a chronic stage. All patients received ruxolitinib. Median age at the start of therapy was 60 years (range from 35 to 79). Massive splenomegaly (≥ 10 cm below the costal margin) was found in 34 (71 %) of 48 patients. The initial dose of ruxolitinib was determined by the platelet level. The efficacy of the therapy was evaluated in accordance with ELN 2013 criteria.

Results. Median duration of treatment was 18 months (range from 1 to 50 months). Symptoms of intoxication were relieved in 33 of 37 patients (89 %). The spleen size decreased in 64 % of patients. In 33 % of cases spleen size did not change, whereas an increase was observed in 3 % of patients. In the majority of patients hemoglobin level remained stable through the course of treatment. Three of 14 transfusion dependent patients did not require blood transfusions after 3 months of therapy. In patients with high thrombocyte levels prior to ruxolitinib therapy the mean level was approaching normal by the end of the 1st month of treatment. The median JAK2V617F mutant allele burden at the beginning treatment was 56.5 % (n = 20; 22.5–126.1 %). After 6 moths of treatment it accounted for 62.3 % (n = 11; 25.4–79.7 %) and in 12 months accounted for 47.4 % (n = 12; 14.2–102.2 %). By the time of the analysis 42 of 48 patients continued the ruxolitinib treatment (88 %). Death occurred in 4 patients. Overall 1-year (92 %) and 2-year (87 %) survival corresponds to the data of COMFORT-I, COMFORT-II and JUMP clinical trials.

Conclusion. Ruxolitinib showed to be an effective treatment for myelofibrosis. The most pronounced and rapid effect ruxolitinib had on the spleen size and the symptoms of intoxication. The tolerability of ruxolitinib was satisfactory in the majority of patients. According to the author’s data, ruxolitinib had a small impact on the JAK2V617F mutant allele burden. The overall survival rate in patients with myelofibrosis, receiving ruxolitinib in the clinical setting was similar to that of in the clinical trials.

Keywords: primary myelofibrosis, post-essential trombocythemia myelofibrosis, post-polycythemia myelofibrosis, JAK2V617F, ruxolitinib, clinical practice, targeted therapy.

Received: February 11, 2017

Accepted: May 22, 2017

Read in PDF


REFERENCES

  1. Абдулкадыров К.М., Шуваев В.А., Мартынкевич И.С. Миелопролиферативные новообразования. М.: Littera, 2016. 304 с.[Abdulkadyrov KM, Shuvayev VA, Martynkevich IS. Mieloproliferativnye novoobrazovaniya. (Myeloproliferative Neoplasms.) Moscow: Littera Publ.; 2016. 304 p. (In Russ)]
  2. Абдулкадыров К.М., Шуваев В.А., Мартынкевич И.С. Первичный миелофиброз: собственный опыт и новое в диагностике и лечении. Онкогематология. 2015;10(2):25–35. doi: 10.17650/1818-8346-2015-10-2-26-36.[Abdulkadyrov KM, Shuvayev VA, Martynkevich IS. Primary myelofibrosis: own experience and news from diagnostic and treatment. Oncohematology. 2015;10(2):25–35. doi: 10.17650/1818-8346-2015-10-2-26-36. (In Russ)]
  3. Shuvaev V, Martynkevich I, Abdulkadyrova A, et al. Ph-Negative Chronic Myeloproliferative Neoplasms–Population Analysis, a Single Center 10-years’ Experience. Blood (56th ASH Annual Meeting Abstracts). 2014;124(21): Abstract 5556.
  4. Shuvaev V, Udaleva V, Golovchenko R, et al. Primary myelofibrosis–a survey based on the 20-years’ experience of a single center. Haematologica. 2013;98(Suppl 1):624.
  5. Cervantes F, Passamonti F, Barosi G. Life expectancy and prognostic factors in the classic BCR/ABL-negative myeloproliferative disorders. Leukemia. 2008;22(5):905–14. doi: 10.1038/leu.2008.72.
  6. Абдулкадыров К.М., Шуваев В.А., Мартынкевич И.С. Критерии диагностики и современные методы лечения первичного миелофиброза. Вестник гематологии. 2013;9(3):44–78.[Abdulkadyrov KM, Shuvayev VA, Martynkevich IS. Diagnostic criteria and current methods of primary myelofibrosis treatment. Vestnik gematologii. 2013;9(3):44–78. (In Russ)]
  7. Gupta V, Hari P, Hoffman R. Allogeneic hematopoietic cell transplantation for myelofibrosis in the era of JAK inhibitors. Blood. 2012;120(7):1367–79. doi: 10.1182/blood-2012-05-399048.
  8. Vannucchi AM, Kantarjian HM, Kiladjian J-J, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica. 2015;100(9):1139–45. doi: 10.3324/haematol.2014.119545.
  9. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2008;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  10. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2009;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  11. Gangat N, Caramazza D, Vaidya R, et al. DIPSS Plus: A Refined Dynamic International Prognostic Scoring System for Primary Myelofibrosis That Incorporates Prognostic Information from Karyotype, Platelet Count, and Transfusion Status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/jco.2010.32.2446.
  12. Vannucchi AM, Rotunno G, Pascutto C, Pardanani A. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project. (56th ASH Annual Meeting and Exposition, San-Francisco, December 6–9, 2014) Blood. 2014;2014:P405.
  13. Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013;122(8):1395. doi: 10.1182/blood-2013-03-488098.
  14. Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30(8):1701–7. doi: 10.1038/leu.2016.148.
  15. Verstovsek S, Mesa RA, Gotlib J, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55. doi: 10.1186/s13045-017-0417-z.
  16. Al-Ali HK, Griesshammer M, le Coutre P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: a snapshot of 1144 patients in the JUMP trial. Haematologica. 2016;101(9):1065–73. doi: 10.3324/haematol.2016.143677.

Allogeneic Hematopoietic Stem Cell Transplantation in Myelofibrosis

MV Barabanshchikova, EV Morozova, VV Baikov, IM Barkhatov, NN Mamaev, SN Bondarenko, AL Alyanskii, LS Zubarovskaya, BV Afanas’ev

R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Lyudmila Stepanovna Zubarovskaya, DSci, Professor, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)338-62-64; e-mail: zubarovskaya_ls@mail.ru

For citation: Barabanshchikova MV, Morozova EV, Baikov VV, et al. Allogeneic Hematopoietic Stem Cell Transplantation in Myelofibrosis. Clinical oncohematology. 2016;9(3):279-86 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-279-286


ABSTRACT

Background & Aims. At present, the allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only treatment option with curative potential in patients with myelofibrosis (MF), especially in intermediate and high risk categories. The aim of the study is to perform a retrospective analysis of allo-HSCT outcomes in MF patients.

Materials & Methods. Outcomes of allo-HSCT in 11 intermediate-2 (= 3) and high (= 6) risk patients (based on Dynamic International Prognostic Scoring Scale, DIPSSplus) performed in the R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation over the period from 2005 till 2015 were analyzed in the study. Two more patients underwent allo-HSCT in MF blast phase. Two patients received ruxolitinib before allo-HSCT and 1 patient before and after allo-HSCT. Reduced intensity conditioning regimen was used in all cases.

Results. Primary engraftment was documented in 8 patients. 72 % of patients achieved complete hematological remission. Molecular remission and myelofibrosis regression were confirmed in 5 patients. 5 of 11 patients were still with remission and followed-up by the date of the paper submission. The overall two-year survival was 46 %.

Conclusion. Allo-HSCT is an effective treatment option for MF patients. Further trials are required to evaluate an optimal timing for allo-HSCT in MF patients and efficacy of Janus kinase (JAK) inhibitors as pre- and posttransplant therapy in MF.


Keywords: myelofibrosis, allo-HSCT, reduced intensity conditioning regimen, ruxolitinib.

Received: January 28, 2016

Accepted: March 22, 2016

Read in  PDF (RUS)pdficon


REFERENCES

  1. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  2. Passamonti F, Rumi E, Caramella M, et al. A dynamic prognostic model to predict survival in post-polycythemia vera myelofibrosis. Blood. 2008;111(7):3383–7. doi: 10.1182/blood-2007-11-121434.
  3. Passamonti F, Rumi E, Arcaini L, et al. Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica. 2008;93(11):1645–51. doi: 10.3324/haematol.13346.
  4. Dupriez BB, Morel P, Demory JL, et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood. 1996;88(3):1013–8.
  5. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2009;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  6. Gangat N, Caramazza D, Vaidya R, et al. DIPSS Plus: A Refined Dynamic International Prognostic Scoring System for Primary Myelofibrosis That Incorporates Prognostic Information From Karyotype, Platelet Count, and Transfusion Status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/jco.2010.32.2446.
  7. Vannucchi AM, Guglielmelli P, Rotunno G, et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project. ASH; 2014. Abstract 405.
  8. Verstovsek S, Mesa R, Gotlib J, et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica. 2015;100(4):479–88. doi: 10.3324/haematol.2014.115840.
  9. Kvasnicka HM, Thiele J, Bueso-Ramos CE, et al. Long-Term Effects of Ruxolitinib on Bone Marrow Morphology in Patients With Myelofibrosis and Comparison to Best Available Therapy. Haematologica. 2014;14: Abstract S155. doi:10.1016/j.clml.2014.06.098.
  10. Giorgino T, Scott BL, Ditschkowski M, et al. CME Article Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015;125(21):3347–51. doi: 10.1182/blood-2014-10-608315.
  11. Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(26):5264–70. doi: 10.1182/blood-2009-07-234880.
  12. Thiele J, Kvasnica HM, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  13. Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant. 2015;21(3):389–401. doi: 10.1016/j.bbmt.2014.12.001.
  14. Kroger N, Zabelina T, Alchalby H, et al. Dynamic of bone marrow fibrosis regression predicts survival after allogeneic stem cell transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2014;20(6):812–5. doi: 10.1016/j.bbmt.2014.02.019.
  15. Slot S, Smits K, van de Donk NW, et al. Effect of conditioning regimens on graft failure in myelofibrosis: a retrospective analysis. Bone Marrow Transplant. 2015;11;1424–31. doi: 10.1038/bmt.2015.172.
  16. Shanavas M, Popat U, Michaelis LC, et al. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients with Myelofibrosis with Prior Exposure to Janus Kinase 1/2 Inhibitors. Biol Blood Marrow Transplant. 2016;22(3):432–40. doi: 10.1016/j.bbmt.2015.10.005.
  17. Verstovsek S, Kantarjian H, Mesa RA, et al. Safety and Efficacy of INCB018424, a JAK1 and JAK2 Inhibitor, in Myelofibrosis. N Engl J Med. 2010;363(12):1117–27. doi: 10.1056/nejmoa1002028.
  18. Stubig T, Alchalby H, Ditschkowski M, et al. JAK inhibition with ruxolitinib as pretreatment for allogeneic stem cell transplantation in primary or post-ET/PV myelofibrosis. Leukemia. 2014;28(8):1736–8. doi: 10.1038/leu.2014.86.
  19. Jaekel N, Behre G, Behning A, et al. Allogeneic hematopoietic cell transplantation for myelofibrosis in patients pretreated with the JAK1 and JAK2 inhibitor ruxolitinib. Bone Marrow Transplant. 2014;49(2):179–84. doi: 10.1038/bmt.2013.173.