Gilteritinib as a New Option for the Treatment of Relapsed/Refractory Acute Myeloid Leukemias with FLT3 Gene Mutation: A Literature Review and Three Case Reports

AA Shatilova1, IG Budaeva2, IE Prokop’ev2, YuV Mirolyubova1, DV Ryzhkova2, KV Bogdanov1, TS Nikulina2, AV Petrov2, TV Chitanava1, DV Motorin1, EN Tochenaya2, AI Reshetova1, SV Efremova2, EK Antonov1, VV Ivanov1, AV Petukhov1, YuA Alekseeva1, EG Lomaia1, LL Girshova1

1 Center for Personalized Medicine, VA Almazov National Medical Research Center, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341

2 VA Almazov National Medical Research Center, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341

For correspondence: Aleksina Alekseevna Shatilova, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341; Tel.: +7(911)476-35-58; e-mail: alexina-96@list.ru

For citation: Shatilova AA, Budaeva IG, Prokop’ev IE, et al. Gilteritinib as a New Option for the Treatment of Relapsed/Refractory Acute Myeloid Leukemias with FLT3 Gene Mutation: A Literature Review and Three Case Reports. Clinical oncohematology. 2023;16(1):69–79. (In Russ).

DOI: 10.21320/2500-2139-2023-16-1-69-79


ABSTRACT

Acute myeloid leukemias (AML) are the most ubiquitous of all adult leukemias. The prognosis of the disease depends on its genetic profile. The mutation in FLT3 gene, which codes FMS-like tyrosine kinase 3, is observed in 1/3 of patients and is responsible for a high rate of relapses. The prognosis of relapsed/refractory FLT3-positive AML is extremely poor. The standard intensive therapy rarely yields long-term responses. The new first- and second-generation FLT3 tyrosine kinase inhibitors enriched treatment opportunities for patients with this mutation. Gilteritinib, a potent second-generation FLT3-ITD/TKD inhibitor, is a new effective and well tolerated drug for the treatment of relapsed/refractory FLT3-positive AML. Due to its efficacy, low toxicity, and good manageability, this drug can be administered to all patients, including the elderly or those with severe comorbidities and complications of previous therapy. Besides, this drug can be used in outpatient units. The present paper contains three case reports dealing with different clinical situations in patients with FLT3-positive AML treated with gilteritinib in real-world clinical practice.

Keywords: acute myeloid leukemias, FLT3, gilteritinib.

Received: September 16, 2022

Accepted: December 12, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Shallis RM, Wang R, Davidoff A, et al. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019;36:70–87. doi: 10.1016/j.blre.2019.04.005.
  2. American Cancer Society. Key Statistics for Acute Myeloid Leukemia (AML). Available from: https://www.cancer.org/cancer/acute-myeloid-leukemia/about/key-statistics.html. (accessed 30.09.2022).
  3. Loowenberg B, Rowe JM. Introduction to the review series on advances in acute myeloid leukemia (AML). Blood. 2016;127(1):1. doi: 10.1182/blood-2015-10-662684.
  4. Fathi AT, Chen YB. The role of FLT3 inhibitors in the treatment of FLT3-mutated acute myeloid leukemia. Eur J Haematol. 2017;98(4):330–6. doi: 10.1111/ejh.12841.
  5. Kazi JU, Ronnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev. 2019;99(3):1433–66. doi: 10.1152/physrev.00029.2018.
  6. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911–8.
  7. Patel JP, Gonen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079–89. doi: 10.1056/NEJMoa1112304.
  8. Yanada M, Matsuo K, Suzuki T, et al. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia. 2005;19(8):1345–9. doi: 10.1038/sj.leu.2403838.
  9. Gale RE, Green C, Allen C, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111(5):2776–84. doi: 10.1182/blood-2007-08-109090.
  10. Choi EJ, Lee JH, Lee JH, et al. Comparison of anthracyclines used for induction chemotherapy in patients with FLT3-ITD-mutated acute myeloid leukemia. Leuk Res. 2018;68:51–6. doi: 10.1016/j.leukres.2018.03.006.
  11. Brunet S, Labopin M, Esteve J, et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J Clin Oncol. 2012;30(7):735–41. doi: 10.1200/JCO.2011.36.9868.
  12. Chew S, Mackey MC, Jabbour E. Gilteritinib in the treatment of relapsed and refractory acute myeloid leukemia with a FLT3 mutation. Ther Adv Hematol. 2020;11:2040620720930614. doi: 10.1177/2040620720930614.
  13. Kennedy VE, Smith CC. FLT3 Mutations in Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front Oncol. 2020;10:612880. doi: 10.3389/fonc.2020.612880.
  14. Short NJ, Kantarjian H, Ravandi F, Daver N. Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Ther Adv Hematol. 2019;10:2040620719827310. doi: 10.1177/2040620719827310.
  15. Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N Engl J Med. 2017;377(5):454–64. doi: 10.1056/NEJMoa1614359.
  16. Ueno Y, Kaneko N, Saito R, et al. ASP2215, a novel FLT3/AXL inhibitor: Preclinical evaluation in combination with cytarabine and anthracycline in acute myeloid leukemia (AML). J Clin Oncol. 2014;32(15_suppl):7070. doi: 10.1200/jco.2014.32.15_suppl.7070.
  17. NCCN Clinical Practice Guidelines in Oncology. Acute Myeloid Leukemia. Version 2.2022. Available from: https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf. (accessed 20.06.2022).
  18. Ксоспата® (инструкция по медицинскому применению). Доступно по: https://grls.rosminzdrav.ru/InstrImg/2021/11/24/1475865/fab432db-24de-4e64–89bb-170602489d9f.pdf. Ссылка активна на 30.09.2022.
    [Xospata® (package insert). Available from: https://grls.rosminzdrav.ru/InstrImg/2021/11/24/1475865/fab432db-24de-4e64–89bb-170602489d9f.pdf. Accessed 30.09.2022. (In Russ)]
  19. Pulte ED, Norsworthy KJ, Wang Y, et al. FDA approval summary: gilteritinib for relapsed or refractory acute myeloid leukemia with a FLT3 mutation. Clin Cancer Res. 2021;27(13):3515–21. doi: 10.1158/1078-0432.CCR-20-4271.
  20. Perl AE, Altman JK, Cortes J, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study. Lancet Oncol. 2017;18(8):1061–75. doi: 10.1016/S1470-2045(17)30416-3.
  21. Perl AE, Altman JK, Cortes J, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study. Lancet Oncol. 2017;18(12):e711 [published correction]. Lancet Oncol. 2018;19(7):e335 [published correction]. Lancet Oncol. 2019;20(6):e293 [published correction].
  22. Perl AE, Hosono N, Montesinos P, et al. Clinical outcomes in patients with relapsed/refractory FLT3-mutated acute myeloid leukemia treated with gilteritinib who received prior midostaurin or sorafenib. Blood Cancer J. 2022;12(5):84. doi: 10.1038/s41408-022-00677-7.
  23. Tzogani K, Roshol H, Olsen HH, et al. The European Medicines Agency Review of Gilteritinib (Xospata) for the Treatment of Adult Patients with Relapsed or Refractory Acute Myeloid Leukemia with an FLT3 Mutation. Oncologist. 2020;25(7):e1070–e1076. doi: 10.1634/theoncologist.2019-0976.
  24. Wilson AJ, O’nions J, Subhan M. Successful remission induction therapy with gilteritinib in a patient with de novo FLT3-mutated acute myeloid leukaemia and severe COVID-19. Br J Haematol. 2020;190(4):e189–e191. doi: 10.1111/bjh.16962.
  25. Bocchia M, Carella AM, Mule A, et al. Therapeutic Management of Patients with FLT3 + Acute Myeloid Leukemia: Case Reports and Focus on Gilteritinib Monotherapy. Pharmgenomics Pers Med. 2022;15:393–407. doi: 10.2147/PGPM.S346688.
  26. Gilteritinib Plus Azacitidine Combination Shows Promise in Newly Diagnosed FLT3-Mutated AML. 2021;26(Suppl 1):S10. doi: 10.1002/onco.13652.
  27. Wang ES, Montesinos P, Minden MD, et al. Phase 3 Trial of Gilteritinib Plus Azacitidine Vs Azacitidine for Newly Diagnosed FLT3mut+ AML Ineligible for Intensive Chemotherapy. Blood. 2022;27;140(17):1845–57. doi: 10.1182/blood.2021014586.
  28. Short NJ, DiNardo CD, Daver N, et al. A Triplet Combination of Azacitidine, Venetoclax and Gilteritinib for Patients with FLT3-Mutated Acute Myeloid Leukemia: Results from a Phase I/II Study. Blood; 2021:138(Suppl 1):696. doi: 10.1182/blood-2021-153571.

Asciminib in Chronic Myeloid Leukemia Patients Without Therapeutic Alternatives: Results of the MAP (Managed Access Program, NCT04360005) Trial in Russia

AG Turkina1, EA Kuzmina1, EG Lomaia2, EV Morozova3, EYu Chelysheva1, OA Shukhov1, AN Petrova1, TV Chitanava2, YuYu Vlasova3, IS Nemchenko1, AV Bykova1, EI Sbityakova2, MA Gurianova1, NN Tsyba1, AV Kokhno1, EN Parovichnikova1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 VA Almazov National Medical Research Center, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341

3 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

For correspondence: Elena Andreevna Kuzmina, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(918)167-35-69; e-mail: 1110ekuzmina@gmail.com

For citation: Turkina AG, Kuzmina EA, Lomaia EG, et al. Asciminib in Chronic Myeloid Leukemia Patients Without Therapeutic Alternatives Alternatives: Results of the MAP (Managed Access Program, NCT04360005) Trial in Russia. Clinical oncohematology. 2023;16(1):54–68. (In Russ).

DOI: 10.21320/2500-2139-2023-16-1-54-68


ABSTRACT

Aim. To assess the efficacy and tolerability of asciminib in chronic myeloid leukemia (CML) patients after failure of ≥ 2 lines of tyrosine kinase inhibitors (TKIs) therapy under the МАР (Managed Access Program, NCT04360005) in Russia.

Materials & Methods. The study enrolled 68 patients with Ph-positive CML chronic phase (CF), over 18 years of age, after failure of ≥ 2 lines of TKI therapy. The analysis was conducted on data from 50 patients who were followed-up for at least 3 months and did not undergo allo-HSCT. Dosing regimens were prescribed depending on T315I mutation. Asciminib 200 mg per os was administered twice a day to 20 patients with this mutation, and asciminib 40 mg per os was administered twice a day to 30 patients without this mutation. By the time of admission into the MAP, there were 42 (82 %) CF CML patients as well as 8 patients with second CF after accelerated phase (AF, n = 7) and myeloid blast crisis (BC, n = 1). None of them could be treated with any therapeutic alternative. 92 % of patients had received ≥ 3 lines of prior TKI therapy. Overall survival (OS) and discontinuation-free survival were estimated by the Kaplan-Meier method. A cumulative incidence function (CIF) was used to calculate the probability of achieving response. Multivariate analysis was based on Cox regression model.

Results. The median asciminib treatment duration was 11 months (range 4–30 months). The probable 2-year OS was 96 %. After 12 and 24 months, discontinuation-free survival was 92 % and 70 %, respectively. On asciminib therapy, complete cytogenetic (CCyR/МR2), major molecular (MMR), and deep molecular (MR4) responses were achieved in 17 (42 %), 14 (30 %), and 9 (19 %) patients who had not responded to prior treatment at the point of enrollment. After completing the 12- and 24-month therapy, the probability of CCyR/МR2 achievement was 44 % and 62 %, that of MMR achievement was 32 % and 40 %, and that of MR4 achievement was 26 % and 37 %, respectively. The patients treated with different doses did not significantly differ in achieving either CCyR/МR2 or MMR. By multivariate analysis, the independently significant factor impacting the probability of achieving MMR on asciminib treatment was the best MR (BCR::ABL1 < 1 % vs. 1–10 % vs. ≥ 10 %) after prior TKI therapy (hazard ratio 7.5873; = 0.0072). In 22 (44 %) patients, adverse events (AEs) of all grades were observed, and 8 (16 %) patients showed AEs grade 3/4 (predominantly thrombocythemia and neutropenia). None of the patients discontinued asciminib treatment due to AEs.

Conclusion. Asciminib demonstrated highly promising efficacy in previously TKI-treated patients with T315I mutation (200 mg BID) and without it (40 mg BID). Asciminib can be regarded as therapeutic option after failure of other TKIs. Different doses of asciminib were equally well tolerated, which makes it applicable for patients with intolerance to other TKIs and also provides ground for considering dose increases in non-responders. Good prospects are also expected for studying asciminib efficacy at earlier treatment stages (in first or second lines) as well as in combination with ATP-binding TKIs in CML patients with insufficient response to TKI treatment.

Keywords: chronic myeloid leukemia, asciminib, resistance, third-line therapy, managed access program.

Received: September 22, 2022

Accepted: December 18, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Hochhaus A, Larson RA, Guilhot F, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376(10):917–27. doi: 10.1056/NEJMoa1609324.
  2. Hochhaus A, Saglio G, Hughes TP, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. 2016;30(5):1044–54. doi: 10.1038/leu.2016.5.
  3. Cortes JE, Saglio G, Kantarjian HM, et al. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients Trial. J Clin Oncol. 2016;34(20):2333–40. doi: 10.1200/JCO.2015.64.8899.
  4. Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. Bosutinib Versus Imatinib for Newly Diagnosed Chronic Myeloid Leukemia: Results From the Randomized BFORE Trial. J Clin Oncol. 2018;36(3):231–7. doi: 10.1200/JCO.2017.74.7162.
  5. Giles FJ, le Coutre PD, Pinilla-Ibarz J, et al. Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. 2013;27(1):107–12. doi: 10.1038/leu.2012.181.
  6. Shah NP, Rousselot P, Schiffer C, et al. Dasatinib in imatinib-resistant or -intolerant chronic-phase, chronic myeloid leukemia patients: 7-year follow-up of study CA180-034. Am J Hematol. 2016;91(9):869–74. doi: 10.1002/ajh.24423.
  7. Gambacorti-Passerini C, Cortes JE, Lipton JH, et al. Safety and efficacy of second-line bosutinib for chronic phase chronic myeloid leukemia over a five-year period: Final results of a phase I/II study. 2018;103(8):1298–307. doi: 10.3324/haematol.2017.171249.
  8. Garcia-Gutierrez V, Hernandez-Boluda JC. Current treatment options for chronic myeloid leukemia patients failing second-generation tyrosine kinase inhibitors. J Clin Med. 2020;9(7):2251. doi: 10.3390/jcm9072251.
  9. NCCN Clinical Practice Guidelines in Oncology. Chronic Myeloid Leukemia. Version 1.2023. Available from: www.nccn.org/professionals/physician_gls/pdf/cml.pdf (accessed 25.09.2022).
  10. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. doi: 10.1038/s41375-020-0776-2.
  11. Cortes J, Lang F. Third-line therapy for chronic myeloid leukemia: current status and future directions. J Hematol Oncol. 2021;14(1):44. doi: 10.1186/s13045-021-01055-9.
  12. Hochhaus A, Breccia M, Saglio G, et al. Expert opinion-management of chronic myeloid leukemia after resistance to second-generation tyrosine kinase inhibitors. Leukemia. 2020;34(6):1495–502. doi: 10.1038/s41375-020-0842-9.
  13. Garg RJ, Kantarjian H, O’Brien S, et al. The use of nilotinib or dasatinib after failure to 2 prior tyrosine kinase inhibitors: Long-term follow-up. 2009;114(20):4361–8. doi: 10.1182/blood-2009-05-221531.
  14. Cortes JE, Khoury HJ, Kantarjian HM, et al. Long-term bosutinib for chronic phase chronic myeloid leukemia after failure of imatinib plus dasatinib and/or nilotinib. Am J Hematol. 2016;91(12):1206–14. doi: 10.1002/ajh.24536.
  15. Ibrahim A, Paliompeis C, Bua M, et al. Efficacy of tyrosine kinase inhibitors (TKIs) as third-line therapy in patients with chronic myeloid leukemia in chronic phase who have failed 2 prior lines of TKI therapy. Blood. 2010;116(25):5497–500. doi: 10.1182/blood-2010-06-291922.
  16. Cortes J, Apperley J, Lomaia E, et al. Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: a randomized, open-label phase 2 clinical trial. Blood. 2021;138(21):2042–50. doi: 10.1182/blood.2021012082.
  17. Cortes J, Kim D-W, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404. doi: 10.1182/blood-2016-09-739086.
  18. Garcia-Gutierrez V, Cortes J, Deininger MW, et al. The OPTIC study: a multi-center, randomized phase 2 trial with response-based dose reduction to evaluate three starting doses of ponatinib. Clin Lymphoma Myeloma Leuk. 2016;16:S59–S60. doi: 10.1016/j.clml.2016.07.086.
  19. Breccia M, Pregno P, Spallarossa P, et al. Identification, prevention and management of cardiovascular risk in chronic myeloid leukaemia patients candidate to ponatinib: an expert opinion. Ann Hematol. 2017;96(4):549–58. doi: 10.1007/s00277-016-2820-x.
  20. Chan O, Talati C, Isenalumhe L, et al. Side-effects profile and outcomes of ponatinib in the treatment of chronic myeloid leukemia. Blood Adv. 2020;4(3):530–8. doi: 10.1182/bloodadvances.2019000268.
  21. Soverini S, Hochhaus A, Nicolini FE, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: Recommendations from an expert panel on behalf of European LeukemiaNet. 2011;118(5):1208–15. doi: 10.1182/blood-2010-12-326405.
  22. Redaelli S, Mologni L, Rostagno R, et al. Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors. Am J Hematol. 2012;87(11):E125–8. doi: 10.1002/ajh.23338.
  23. Wylie AA, Schoepfer J, Jahnke W, et al. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature. 2017;543(7647):733–7. doi: 10.1038/nature21702.
  24. Hughes TP, Mauro MJ, Cortes JE, et al. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N Engl J Med. 2019;381(24):2315–26. doi: 10.1056/NEJMoa1902328.
  25. Manley PW, Barys L, Cowan-Jacob SW. The specificity of asciminib, a potential treatment for chronic myeloid leukemia, as a myristate-pocket binding ABL inhibitor and analysis of its interactions with mutant forms of BCR-ABL1 kinase. Leuk Res. 2020;98:106458. doi: 10.1016/j.leukres.2020.106458.
  26. Rea D, Mauro MJ, Boquimpani C, et al. A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. 2021;138(21):2031–41. doi: 10.1182/blood.2020009984.
  27. Cortes JE, Hughes TP, Mauro M, et al. Asciminib, a First-in-Class STAMP Inhibitor, Provides Durable Molecular Response in Patients (pts) with Chronic Myeloid Leukemia (CML) Harboring the T315I Mutation: Primary Efficacy and Safety Results from a Phase 1 Trial. Blood. 2020;136(Suppl 1):47–50. doi: 10.1182/blood-2020-139677.
  28. Shukhov O, Turkina A, Lomaia E, et al. Asciminib managed-access program (MAP) in Russia. EHA Library. 2022;357580: Abstract P718.
  29. Hochhaus A, Gambacorti-Passerini C, Abboud C, et al. Bosutinib for pretreated patients with chronic phase chronic myeloid leukemia: primary results of the phase 4 BYOND study. Leukemia. 2020;34(8):2125–37. doi: 10.1038/s41375-020-0915-9.
  30. Hughes TP, Cortes JE, Rea D, et al. Asciminib Provides Durable Molecular Responses in Patients (pts) With Chronic Myeloid Leukemia in Chronic Phase (CML-CP) With the T315I Mutation: Updated Efficacy and Safety Data from a Phase I Trial. EHA Library. 2022;357566: Abstract P704.
  31. Ассоциация онкологов России, Национальное гематологическое общество. Хронический миелолейкоз: клинические рекомендации [электронный документ]. Доступно по: https://cr.minzdrav.gov.ru/recomend/142_1. Ссылка активна на09.2022.
    [Russian Oncology Association, National Society for Hematology. Chronic myeloid leukemia: clinical guidelines. (Internet) Available from: https://cr.minzdrav.gov.ru/recomend/142_1. Accessed 22.09.2022. (In Russ)]
  32. Rea D, Mauro MJ, Hochhaus A, et al. Efficacy and safety results from ASCEMBL, a phase 3 study of asciminib versus bosutinib (BOS) in patients (pts) with chronic myeloid leukemia in chronic phase (CML-CP) after ≥ 2 prior tyrosine kinase inhibitors (TKIs): Week 96 update. J Clin Oncol. 2022;40(16_Suppl): Abstract 7004.
  33. Garcia-Gutierrez V, Luna A, Alonso-Dominguez JM, et al. Safety and efficacy of asciminib treatment in chronic myeloid leukemia patients in real-life clinical practice. Blood Cancer J. 2021;11(2):16. doi: 10.1038/s41408-021-00420-8.
  34. Кузьмина Е.А., Челышева Е.Ю., Немченко И.С. и др. Характеристика гематологической токсичности и эффективность лечения у больных хроническим миелолейкозом при терапии аллостерическим ингибитором BCR::ABL1-тирозинкиназы асциминибом. Гематология и трансфузиология. 2022;67(S2):233–4.
    [Kuzmina EA, Chelysheva EYu, Nemchenko IS, et al. Characterization of hematologic toxicity and therapy efficacy in chronic myeloid leukemia patients treated with allosteric BCR::ABL1-tyrosine kinase inhibitor Gematologiya i transfuziologiya. 2022;67(S2):233–4. (In Russ)]
  35. Breccia M, Russo Rossi AV, Martino B, et al Asciminib Italian managed access program: efficacy profile in heavily pre-treated CML patients. EHA Library. 2022;357574: Abstract P712.
  36. Innes A, Orovboni V, Claudiani S, et al. Asciminib use in CML: The UK Experience. EHA Library. 2022;357568: Abstract P706.
  37. Kockerols CCB, Janssen JJWM, Blijlevens NMA, et al. Clinical outcome of asciminib treatment in a real-world multi-resistant CML patient population. EHA Library. 2022;357571: Abstract P709.

Chronic Hepatitis С and Oncohematological Diseases

TV Antonova1, MS Nozhkin1, DA Lioznov1,2

1 IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

2 AA Smorodintsev Research Institute of Influenza, 15/17 Professora Popova ul., Saint Petersburg, Russian Federation, 197376

For correspondence: Prof. Tamara Vasilevna Antonova, MD, PhD, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022; e-mail: antonovatv28@yandex.ru

For citation: Antonova TV, Nozhkin MS, Lioznov DA. Chronic Hepatitis С and Oncohematological Diseases. Clinical oncohematology. 2023;16(1):46–53. (In Russ).

DOI: 10.21320/2500-2139-2023-16-1-46-53


ABSTRACT

This review focuses on HCV infection in oncohematological patients. High risk of hepatitis C virus (HCV) infection within this group of patients was proved by a significantly (2.0–2.5 times) higher HCV infection rate in non-Hodgkin’s lymphoma patients compared to population data. Besides, the review demonstrates the importance of HCV in the development and progression of B-cell non-Hodgkin’s lymphomas, which is confirmed by its tumorigenicity. The paper reviews the variant of seronegative (occult) hepatitis С, which is characterized by HCV RNA detected in liver tissue and peripheral blood mononuclear cells by highly sensitive reverse transcription PCR with the absence of serum HCV and HCV RNA antibodies. In this case, patients can present a source of infection. Seronegative hepatitis С is detected in donor blood in 2.2–3.4 % of cases. This infection variant is identified in 20–85 % of oncohematological patients, which needs to be further examined. Comorbid HCV infection is a potential prognostic factor in oncohematological diseases. Oncohematological patients with comorbid chronic hepatitis C (CHC) show considerably worse survival as compared with patients without it. HCV infection is associated with increased complication rates in both chemotherapy and hematopoietic stem cell transplantation (HSCT). Immunochemotherapy, on the other hand, affects CHC exacerbation and progression. High efficacy and good tolerability of direct-acting antiviral agents (DAA) in CHC therapy opened new prospects for their wide use in cases of comorbid diseases. HCV treatment in patients after HSCT still remains an issue. The guidelines for CHC treatment are predominantly formulated with a view to antiviral pre-HSCT therapy which is not always feasible in real-world clinical practice. The review contains examples of effective use of DAA drugs before or after HSCT and a case of antiviral treatment administered simultaneously with HSCT.

Keywords: hepatitis C virus, HCV infection, oncohematology, hematopoietic stem cell transplantation, immunochemotherapy, direct-acting antiviral agents.

Received: June 17, 2022

Accepted: December 10, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Choo QL, Kuo G, Weiner AJ, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989;244(4902):359–62. doi: 10.1126/science.2523562.
  2. Houghton M. Discovery of the hepatitis C virus. Liver Int. 2009;29(Suppl 1):82–8. doi: 10.1111/j.1478-3231.2008.01925.x.
  3. Жебрун А.Б., Калинина О.В. Вирусный гепатит С: эволюция эпидемиологического процесса, эволюция вируса. Журнал микробиологии, эпидемиологии и иммунобиологии. 2016;1:102–12. doi: 10.36233/0372-9311-2016-1-102-112.
    [Zhebrun AB, Kalinina OV. Viral hepatitis C: evolution of the epidemiologic process, evolution of the virus. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii. 2016;1:102–12. doi: 10.36233/0372-9311-2016-1-102-112. (In Russ)]
  4. Simmonds P, Bukh J, Combet C, et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. 2005;42(4):962–73. doi: 10.1002/hep.20819.
  5. Smith DB, Bukh J, Kuiken C, et al. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. 2014;59(1):318–27. doi: 10.1002/hep.26744.
  6. Petruzziello A, Marigliano S, Loquercio G, et al. Global epidemiology of hepatitis C virus infection: updated information on the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol. 2016;22(34):7824–40. doi: 10.3748/wjg.v22.i34.7824.
  7. Чуланов В.П., Исаков В.А., Жданов К.В. и др. Промежуточные результаты международного многоцентрового проспективного наблюдательного исследования «MOSAIC» по оценке эпидемиологии, субъективных и экономических исходов лечения хронического вирусного гепатита С. Инфекционные болезни. 2018;16(1):5–14. doi: 20953/1729-9225-2018-1-5-14.
    [Chulanov VP, Isakov VA, Zhdanov KV, et al. Interim results of the international multicenter prospective observational study to evaluate the epidemiology, humanistic and economic outcomes of treatment for chronic hepatitis C virus (HCV) (MOSAIC). Infektsionnye bolezni. 2018;16(1):5–14. doi: 10.20953/1729-9225-2018-1-5-14. (In Russ)]
  8. Чуланов В.П., Пименов Н.Н., Мамонова Н.А. и др. Хронический гепатит С как проблема здравоохранения России сегодня и завтра. Терапевтический архив. 2015;87(11):5–10. doi: 10.17116/terarkh201587115-10.
    [Chulanov VP, Pimenov NN, Mamonova NA, et al. Chronic hepatitis C In Russia: current challenges and prospects. Terapevticheskii arkhiv. 2015;87(11):5–10. doi: 10.17116/terarkh201587115-10. (In Russ)]
  9. Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2019 г.: Государственный доклад. М.: 2020. 299 с.
    [Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2019: State report. Moscow; 2020. 299 p. (In Russ)]
  10. Дземова А.А., Ганченко Р.А., Трифонова Г.Ф. и др. Хронический гепатит С в Российской Федерации после начала программы элиминации HCV-инфекции. Гепатология и гастроэнтерология. 2020;4(2):165–70. doi: 25298/2616-5546-2020-4-2-165-170.
    [Dzemova AA, Ganchenko RA, Trifonova GF, et al. Chronic hepatitis C in the Russian Federation after starting the HCV elimination program. Gepatologiya i gastroenterologiya. 2020;4(2):165–70. doi: 10.25298/2616-5546-2020-4-2-165-170. (In Russ)]
  11. Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 252 с.
    [Kaprin AD, Starinskii VV, Shakhzadova AO, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2020 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms In Russia in 2019 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; 2021. 252 p. (In Russ)]
  12. Kawamura Y, Ikeda K, Arase Y, et al. Viral elimination reduces incidence of malignant lymphoma in patients with hepatitis. J Am Med Assoc. 2007;120(12):1034–41. doi: 10.1016/j.amjmed.2007.06.022.
  13. Su TH, Liu CJ, Tseng TC, et al. Hepatitis C viral infection increases the risk of lymphoid-neoplasms: A population-based cohort study. Hepatology. 2016;63(3):721–30. doi: 10.1002/hep.28387.
  14. Pozzato G, Mazzaro C, Maso L, et al. Hepatitis C virus and non-Hodgkin’s lymphomas: meta-analysis of epidemiology data and therapy options. World J Hepatol. 2016;8(2):107–16. doi: 10.4254/wjh.v8.i2.107.
  15. Милованова С.Ю., Лысенко Л.В., Милованова Л.Ю. и др. HCV-ассоциированная смешанная криоглобулинемия и В-клеточная неходжкинская лимфома — патогенетически связанные проблемы. Терапевтический архив. 2018;90(6):112–20. doi: 10.26442/terarkh2018906112-120.
    [Milovanova SYu, Lysenko LV, Milovanova LYu, et al. HCV-associated mixed cryoglobulinemia and B-cell non-Hodgkin’s lymphoma are pathogenetically related problems. Terapevticheskii arkhiv. 2018;90(6):112–20. doi: 10.26442/terarkh2018906112-120. (In Russ)]
  16. Minafo YA, Del Padre M, Cristofoletti C, et al. A stereotyped light chain may shape virus-specific B-cell receptors in HCV-dependent lymphoproliferative disorders. Genes Immun. 2020;21(2):131–5. doi: 10.1038/s41435-020-0093-9.
  17. Lotfi AA, Mohamed AE, Shalaby NA, et al. Occult hepatitis C virus infection in patients with malignant lymphoproliferative disorders. Int J Immunopathol Pharmacol. 2020;34:2058738420961202. doi: 10.1177/2058738420961202.
  18. Hirose S, Yamaji Y, Tsuruya K, et al. Rapid regression of B-cell non-Hodgkin’s lymphoma after eradication of hepatitis C virus by direct antiviral agents. Case Rep Gastroenterol. 2019;13(2):336–41. doi: 10.1159/000501546.
  19. Defrancesco I, Zerbi C, Rattotti S, et al. HCV infection and non-Hodgkin lymphomas: an evolving story. Clin Exp Med. 2020;20(3):321–8. doi: 10.1007/s10238-020-00615-6.
  20. Pozzato G, Mazzaro C, Gattei V. Hepatitis C virus-associated non-Hodgkin lymphomas: the endless history. Minerva Medica. 2021;112(2):215–27. doi: 10.23736/S0026-4806.20.07184-0.
  21. Сaсoub P, Comarmond C, Vieira M, et al. HCV-related lymphoproliferative disorders in the direct-acting antiviral era: From mixed cryoglobulinaemia to B-cell lymphoma. J Hepatol. 2021;76(1):174–85. doi: 10.1016/j.jhep.2021.09.023.
  22. Zhang M, Gao F, Peng L, et al. Distinct clinical features and prognostic factors in Hepatitis C virus-associated Non-Hodgkin’s lymphoma: a systematic review and meta-analysis. Cancer Cell Int. 2021;21(1):524. doi: 10.1186/s12935-021-02230-1.
  23. Ножкин М.С. Клинико-лабораторная характеристика течения хронического гепатита С у онкогематологических больных: Автореф. дис.… канд. мед. наук. СПб., 2021. 17 с.
    [Nozhkin MS. Kliniko-laboratornaya kharakteristika techeniya khronicheskogo gepatita C u onkogematologicheskikh bolnykh. (Clinical and laboratory characteristics of the course of chronic hepatitis C in oncohematological ) [dissertation] Saint Petersburg; 2021. 17 р. (In Russ)]
  24. Arico M, Maggiore G, Silini E, et al. Hepatitis C virus infection in children treated for acute lymphoblastic leukemia. Blood. 1994;84(9):2919–22.
  25. Meir H, Balawi I, Nayel H, et al. Hepatitis dysfunction in children with acute lymphoblastic leukemia remission: relation to hepatitis infection. Med Pediatr Oncol. 2001;36(4):469–73. doi: 10.1002/mpo.1111.
  26. Шардаков В.И., Назарова Е.Л., Сухорукова Э.Е. и др. Характеристика иммунного ответа у онкогематологических больных, имеющих хронический гепатит С. Вятский медицинский вестник. 2020;65(1):62–7.
    [Shardakov VI, Nazarova EL, Sukhorukova EE, et al. Characterization of the immune response in oncohematological patients with chronic hepatitis C. Vyatskii meditsinskii vestnik. 2020;65(1):62–7. (In Russ)]
  27. Torres HA, Davila M. Reactivation of hepatitis B virus and hepatitis C virus in patients with cancer. Nat Rev Clin Oncol. 2012;9(3):156–66. doi: 10.1038/nrclinonc.2012.1.
  28. Шаницына С.Е., Бурневич Э.З., Никулкина Е.Н. и др. Факторы риска неблагоприятного прогноза хронического гепатита С. Терапевтический архив. 2019;91(2):59–66. doi: 10.26442/00403660.2019.02.000082.
    [Shchanitcyna SE, Burnevich EZ, Nikulkina EN, et al. Risk factors of unfavorable prognosis of chronic hepatitis C. Terapevticheskii arkhiv. 2019;91(2):59–66. doi: 10.26442/00403660.2019.02.000082. (In Russ)]
  29. Mahale P, Kontoyiannis DP, Chemaly RF, et al. Acute exacerbation and reactivation of chronic hepatitis C virus infection in cancer patients. J Hepatol. 2021;57(6):1177–85. doi: 10.1016/j.jhep.2012.07.031.
  30. Nosotti L, D’Andrea M, Pitidis A, et al. Hepatitis C virus infection prevalence and liver dysfunction in a cohort of B-cell non-Hodgkin’s lymphoma patients treated with immunochemotherapy. Scand J Infect Dis. 2012;44(1):70–3. doi: 10.3109/00365548.2011.611819.
  31. Новик А.А. Возможности трансплантации костного мозга и стволовых кроветворных клеток в терапии гематологических и онкологических заболеваний. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2006;1(1):58–63.
    [Novik AA. Possibilities for bone marrow and hematopoietic stem cell transplantation in the treatment of hematological and oncological diseases. Vestnik Natsionalnogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova. 2006;1(1):58–63. (In Russ)]
  32. Mahmoud HK, Fathy GM, Elhaddad A, et al. Hematopoietic Stem Cell Transplantation in Egypt: Challenges and Opportunities. Mediterr J Hematol Infect Dis. 2020;12(1):e2020023. doi: 10.4084/MJHID.2020.023.
  33. Levitsky D, Sorrell MF. Hepatic complications of hematopoietic cell transplantation. Curr Gastroenterol Rep. 2007;9(1):60–5. doi: 10.1007/s11894-008-0022-y.
  34. Abdelbary H, Magdy R, Moussa M, et al. Liver disease during and after hematopoietic stem cell transplantation in adults: a single-center Egyptian experience. J Egypt Natl Canc Inst. 2020;32(1):11. doi: 10.1186/s43046-020-0020-1.
  35. Kaito S, Doki N, Hishima T, et al. Progressive hepatic cirrhosis early after allogeneic hematopoietic stem cell transplantation in a patient with chronic hepatitis C infection. Turk J Hematol. 2019;36(2):130–3. doi: 10.4274/tjh.galenos.2019.2018.0224.
  36. Castillo I, Rodriguez-Inigo E, Bartolome J, et al. Hepatitis C virus replicates in peripheral blood mononuclear cells of patients with occult hepatitis C virus infection. 2005;54(5):682–5. doi: 10.1136/gut.2004.057281.
  37. Castillo I, Bartolome J, Quiroga JA, et al. Long-term virological follow up of patients with occult hepatitis C virus infection. Liver Int. 2011;31(10):1519–24. doi: 10.1111/j.1478-3231.2011.02613.x.
  38. Вишневская Т.В., Масалова О.В., Альховский С.В. и др. Выявление маркеров репликации вируса гепатита С в мононуклеарных клетках периферической крови больных хроническим гепатитом С. Медицинская иммунология. 2008;10(4–5):397–404. doi: 10.15789/1563-0625-2008-4-5-397-404.
    [Vishnevskaya TV, Massalova OV, Alkhovsky SV, et al. Detection of hepatitis C virus-specific replication markers in peripheral blood mononuclears from the patients with chronic hepatitis C. Medical immunology. 2008;10(4–5):397–404. doi: 10.15789/1563-0625-2008-4-5-397-404. (In Russ)]
  39. Quiroga JA, Castillo I, Llorente S, et al. Identification of serologically silent latent hepatitis C viral infection by detecting an immunoglobulin G antibody to the dominant epitope of the HCV core peptide. J Hepatol. 2009;50(2):256–63. doi: 10.1016/j.jhep.2008.08.021.
  40. Carreno V, Bartolome J, Castillo I, et al. New perspectives in occult hepatitis C virus infection. World J Gastroenterol. 2012;18(23):2887–94. doi: 10.3748/wjg.v18.i23.2887.
  41. De Marco L, Gillio-Tos A, Fiano V, et al. Occult HCV infection: an unexpected finding in a population unselected for hepatic disease. PLoS One. 2009;4(12):e8128. doi: 10.1371/journal.pone.0008128.
  42. Lin H, Chen X, Zhu S, et al. Prevalence of Occult Hepatitis C Virus Infection among Blood Donors in Jiangsu, China. Intervirology. 2016;59(4):204–10. doi: 10.1159/000455854.
  43. Martinez-Rodriguez ML, Uribe-Noguez LA, Arroyo-Anduiza CI, et al. Prevalence and risk factors of Occult Hepatitis C infections in blood donors from Mexico City. PLoS One. 2018;13(10):e0205659. doi: 10.1371/journal.pone.0205659.
  44. Austria A, Wu GY. Occult Hepatitis C Virus Infection: A Review. J Clin Transl Hepatol. 2018;6(2):155–60. doi: 10.14218/JCTH.2017.00053.
  45. Helaly GF, Elsheredy AG, El Basset Mousa AA, et al. Seronegative and occult hepatitis C virus infections in patients with hematological disorders. Arch Virol. 2017;162(1):63–6. doi: 10.1007/s00705-016-3049-7.
  46. Mahrous S, Baraka A, Fathy М, Fayez М. Seronegative and latent hepatitis C viral infections in patients with acute and chronic myeloid leukemia. Egypt J Hosp Med. 2022;86(1):470–6. doi: 10.21608/ejhm.2022.213795.
  47. Yousif MM, Elsadek Fakhr A, Morad EA, et al. Prevalence of occult hepatitis C virus infection in patients who achieved sustained virologic response to direct-acting antiviral agents. Infez Med. 2018;26(3):237–43.
  48. Mazzaro C, Quartuccio L, Adinolfi LE. Review of extrahepatic manifestations of chronic hepatitis C viral infection and the effects of direct-acting antiviral therapy. Viruses. 2021;13(11):2249. doi: 10.3390/v13112249.
  49. Sarakko DM, Marzano A, Rizzetto M. Therapy of chronic viral hepatitis: light at the end of the tunnel? 2022;10(3):534. doi: 10.3390/biomedicines10030534.
  50. Нурмухаметова Е.А., Блохина Н.П., Тихонова Н.Ю. Противовирусная терапия хронического гепатита С: многолетний опыт реальной клинической практики. Инфекционные болезни. 2021;19(3):43–57. doi: 10.20953/1729-9225-2021-3-43-57.
    [Nurmukhametova EA, Blokhina NP, Tikhonova NYu. Antiviral therapy for chronic hepatitis C: many years of real clinical experience. Infektsionnye bolezni. 2021;19(3):43–57. doi: 10.20953/1729-9225-2021-3-43-57. (In Russ)]
  51. Rabaan AA, Al-Ahmed SH, Bazzi AM, et al. Overview of hepatitis C infection, molecular biology and new treatment. J Infect Public Health. 2020;13(5):773–83. doi: 10.1016/j.jiph.2019.11.015.
  52. Fontana RJ, Brown RS, Moreno-Zamora A, et al. Daclatasvir in combination with sofosbuvir or simeprevir in liver transplant recipients with severe recurrent hepatitis C infection. Liver Transpl. 2016;22(4):446–58. doi: 10.1002/lt.24416.
  53. Michot JM, Canioni D, Driss H, et al. Antiviral therapy is associated with a better survival in patients with hepatitis C virus and B-cell non-Hodgkin lymphomas, ANRS HC-13 lympho-C study. Am J Hematol. 2015;90(3):197–203. doi: 10.1002/ajh.23889.
  54. Frigeni M, Besson C, Visco C, et al. Interferon-free compared to interferon-based antiviral regimens as first-line therapy B-cell lymphoproliferative disorders associated with hepatitis C virus infection. Leukemia. 2020;34(5):1462–6. doi: 10.1038/s41375-019-0687-2.
  55. Pinana JL, Serra MА, Hernandez-Boluda JC, et al. Successful treatment of hepatitis C virus infection with sofosbuvir and simeprevir in the early phase of an allogeneic stem cell transplant. Transpl Infect Dis. 2016;18(1):89–92. doi: 10.1111/tid.12474.
  56. Rauwolf K, Herbruggen H, Zollner S, et al. Durable control of hepatitis C through interferon-free antiviral combination therapy immediately prior to allogeneic haematopoietic stem cell transplantation. J Viral. 2019;26(4):454–8. doi: 10.1111/jvh.13046.
  57. Onodera K, Onishi Y, Inoue J, et al. Second direct-acting antiviral therapy for hepatitis C virus infection after umbilical cord blood transplantation: A case report. J Infect Chemother. 2021;27(8):1230–3. doi: 10.1016/j.jiac.2021.02.002.
  58. Iftikhar R, Ahmad P, de Latour R, et al. Special issues related to the diagnosis and management of acquired aplastic anemia in countries with restricted resources, a report on behalf of the Eastern Mediterranean blood and marrow transplantation (EMBMT) group and severe aplastic anemia working party of the European Society for blood and marrow transplantation (SAAWP of EBMT). Bone Marrow Transplant. 2021;56(10):2518–32. doi: 10.1038/s41409-021-01332-8.
  59. Cunningham HE, Shea TC, Grgic T, Lachiewicz AM. Successful treatment of hepatitis C virus infection with direct-acting antivirals during hematopoietic cell transplant. Transpl Infect Dis. 2019;21(3):е13091. doi: 10.1111/tid.13091.
  60. Кичатова В.С., Кюрегян К.К. Современный взгляд на резистентность к препаратам прямого противовирусного действия при лечении вирусного гепатита С. Инфекционные болезни: новости, мнения, обучение. 2019;8(2):64–71. doi: 10.24411/2305-3496-2019-12009.
    [Kichatova VS, Kuregyan KK. Modern view on resistance to direct antiviral drugs in the treatment of viral hepatitis C: analytical review. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2019;8(2):64–71. doi: 10.24411/2305-3496-2019-12009. (In Russ)]
  61. Глобальная стратегия сектора здравоохранения по вирусному гепатиту 2016–2021 гг. На пути к ликвидации вирусного гепатита. Женева: ВОЗ, 2016. 52 с.
    [Global health sector strategy on viral hepatitis 2016–2021. Towards ending viral hepatitis. Geneva: WHO Publ.; 52 p. (In Russ)]
  62. Михайлов М.И., Ющук Н.Д., Малинникова Е.Ю. и др. Проект программы по контролю и ликвидации вирусных гепатитов как проблемы общественного здоровья в Российской Федерации. Инфекционные болезни: новости, мнения, обучение. 2018;7(2):52–8. doi:24411/2305-3496-2018-12005.
    [Mikhaylov MI, Yushchuk ND, Malinnikova EYu, et al. The design of the program for control and elimination of viral hepatitis as public health problem in the Russian Federation. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2018;7(2):52–8. doi: 10.24411/2305-3496-2018-12005. (In Russ)]

Combination of Ibrutinib and Venetoclax in the Therapy of Chronic Lymphocytic Leukemia: A Review of the Latest Data from Clinical Studies

AA Petrenko1,2, MI Kislova1, EA Dmitrieva1, EA Nikitin1,2, VV Ptushkin1,2,3

1 SP Botkin City Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

2 Russian Medical Academy of Postgraduate Education, 2/1 Barrikadnaya ul., Moscow, Russian Federation, 125993

3 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova ul., Moscow, Russian Federation, 117997

For correspondence: Mariya Igorevna Kislova, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284; e-mail: xkislovamariax@gmail.com

For citation: Petrenko AA, Kislova MI, Dmitrieva EA, et al. Combination of Ibrutinib and Venetoclax in the Therapy of Chronic Lymphocytic Leukemia: A Review of the Latest Data from Clinical Studies. Clinical oncohematology. 2023;16(1):37–45. (In Russ).

DOI: 10.21320/2500-2139-2023-16-1-37-45


ABSTRACT

New Bruton’s tyrosine kinase (BTK) inhibitors caused drastic modifications in the therapy of chronic lymphocytic leukemia (CLL). Ibrutinib, the first in its class BTK inhibitor, showed high efficacy in many clinical studies. However, the treatment with BTK inhibitors as monotherapy must not be discontinued. Ibrutinib monotherapy inevitably leads to BTK inhibitor resistance and severe adverse events, which often results in treatment failure. Inhibitor BCL-2 venetoclax combined with BTK inhibitor can increase the therapy efficacy due to the synergetic effect of these agents on different CLL cell populations. Combined therapy potentially providing fixed-duration treatment can yield deeper responses. The present review focuses on ibrutinib and venetoclax combination, summarizes the latest data from clinical studies, and deals with feasibility of combined therapy in terms of its efficacy and safety profile.

Keywords: ibrutinib, BTK inhibitors, venetoclax, BCL-2 inhibitors, targeted agents, chronic lymphocytic leukemia.

Received: October 17, 2022

Accepted: November 10, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Brown JR, Hallek MJ, Pagel JM. Chemoimmunotherapy Versus Targeted Treatment in Chronic Lymphocytic Leukemia: When, How Long, How Much, and in Which Combination? Am Soc Clin Oncol Educ Book. 2016;35:e387–е398. doi: 10.1200/EDBK_159018.
  2. Eichhorst B, Fink AM, Bahlo J, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17(7):928–42. doi: 10.1016/S1470-2045(16)30051-1.
  3. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10. doi: 10.1056/NEJMoa1313984.
  4. Hallek M, Shanafelt TD, Eichhorst B. Chronic lymphocytic leukaemia. 2018;391(10129):1524–37. doi: 10.1016/S0140-6736(18)30422-7.
  5. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi: 10.1056/NEJMoa1215637.
  6. de Rooij MF, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. 2012;119(11):2590–4. doi: 10.1182/blood-2011-11-390989.
  7. Herman SE, Mustafa RZ, Jones J, et al. Treatment with Ibrutinib Inhibits BTK- and VLA-4-Dependent Adhesion of Chronic Lymphocytic Leukemia Cells In Vivo. Clin Cancer Res. 2015;21(20):4642–51. doi: 10.1158/1078-0432.CCR-15-0781.
  8. Barr PM, Owen C, Robak T, et al. Up to 8-year follow-up from RESONATE-2: first-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv. 2022;6(11):3440–50. doi: 10.1182/bloodadvances.2021006434.
  9. Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib-Rituximab or Chemoimmunotherapy for Chronic Lymphocytic Leukemia. N Engl J Med. 2019;381(5):432–43. doi: 10.1056/NEJMoa1817073.
  10. Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL. N Engl J Med. 2018;379(26):2517–28. doi: 10.1056/NEJMoa1812836.
  11. Moreno C, Greil R, Demirkan F, et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(1):43–56. doi: 10.1016/S1470-2045(18)30788-5.
  12. Munir T, Brown JR, O’Brien S, et al. Final analysis from RESONATE: Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019;94(12):1353–63. doi: 10.1002/ajh.25638.
  13. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23. doi: 10.1056/NEJMoa1400376.
  14. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N Engl J Med. 2015;373(25):2425–37. doi: 10.1056/NEJMoa1509388.
  15. Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506. doi: 10.1182/blood-2014-10-606038.
  16. Davids MS, Brander DM, Kim HT, et al. Ibrutinib plus fludarabine, cyclophosphamide, and rituximab as initial treatment for younger patients with chronic lymphocytic leukaemia: a single-arm, multicentre, phase 2 trial. Lancet Haematol. 2019;6(8):e419–e428. doi: 10.1016/S2352-3026(19)30104-8.
  17. Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8. doi: 10.1038/nm.3048.
  18. Fischer K, Al-Sawaf O, Bahlo J, et al. Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions. N Engl J Med. 2019;380(23):2225–36. doi: 10.1056/NEJMoa1815281.
  19. Kater AP, Wu JQ, Kipps T, et al. Venetoclax Plus Rituximab in Relapsed Chronic Lymphocytic Leukemia: 4-Year Results and Evaluation of Impact of Genomic Complexity and Gene Mutations From the MURANO Phase III Study. J Clin Oncol. 2020;38(34):4042–54. doi: 10.1200/JCO.20.00948.
  20. Al-Sawaf O, Zhang C, Lu T, et al. Minimal Residual Disease Dynamics after Venetoclax-Obinutuzumab Treatment: Extended Off-Treatment Follow-up From the Randomized CLL14 Study. J Clin Oncol. 2021;39(36):4049–60. doi: 10.1200/JCO.21.01181.
  21. Kittai AS, Woyach JA. uMRD: “the” endpoint or “an” endpoint for CLL? Blood. 2022;140(8):797–8. doi: 10.1182/blood.2022016927.
  22. Chen SS, Chang BY, Chang S, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia. 2016;30(4):833–43. doi: 10.1038/leu.2015.316.
  23. Cervantes-Gomez F, Lamothe B, Woyach JA, et al. Pharmacological and Protein Profiling Suggests Venetoclax (ABT-199) as Optimal Partner with Ibrutinib in Chronic Lymphocytic Leukemia. Clin Cancer Res. 2015;21(16):3705–15. doi: 10.1158/1078-0432.CCR-14-2809.
  24. Kater AP, Slinger E, Cretenet G, et al. Combined ibrutinib and venetoclax treatment vs single agents in the TCL1 mouse model of chronic lymphocytic leukemia. Blood Adv. 2021;5(23):5410–4. doi: 10.1182/bloodadvances.2021004861.
  25. Slinger E, Thijssen R, Kater AP, Eldering E. Targeting antigen-independent proliferation in chronic lymphocytic leukemia through differential kinase inhibition. Leukemia. 2017;31(12):2601–7. doi: 10.1038/leu.2017.129.
  26. Haselager MV, Kater AP, Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front Oncol. 2020;10:592205. doi: 10.3389/fonc.2020.592205.
  27. Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol. 2020;10:591577. doi: 10.3389/fonc.2020.591577.
  28. Haselager MV, Kielbassa K, Ter Burg J, et al. Changes in Bcl-2 members after ibrutinib or venetoclax uncover functional hierarchy in determining resistance to venetoclax in CLL. Blood. 2020;136(25):2918–26. doi: 10.1182/blood.2019004326.
  29. Deng J, Isik E, Fernandes SM, et al. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia. Leukemia. 2017;31(10):2075–84. doi: 10.1038/leu.2017.32.
  30. Gutierrez C, Wu CJ. Clonal dynamics in chronic lymphocytic leukemia. Blood Adv. 2019;3(22):3759–69. doi: 10.1182/bloodadvances.2019000367.
  31. Lu P, Wang S, Franzen CA, et al. Ibrutinib and venetoclax target distinct subpopulations of CLL cells: implication for residual disease eradication. Blood Cancer J. 2021;11(2):39. doi: 10.1038/s41408-021-00429-z.
  32. Zhang J, Lu X, Li J, Miao Y. Combining BTK inhibitors with BCL2 inhibitors for treating chronic lymphocytic leukemia and mantle cell lymphoma. Biomark Res. 2022;10(1):17. doi: 10.1186/s40364-022-00357-5.
  33. Wierda WG, Allan JN, Siddiqi T, et al. Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results From the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J Clin Oncol. 2021;39(34):3853–65. doi: 10.1200/JCO.21.00807.
  34. Wierda WG, Tam CS, Allan JN, et al. Ibrutinib (Ibr) Plus Venetoclax (Ven) for First-Line Treatment of Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL): 1-Year Disease-Free Survival (DFS) Results From the MRD Cohort of the Phase 2 CAPTIVATE Study. Blood. 2020;136(Suppl 1):16–7. doi: 10.1182/blood-2020-134446.
  35. Ghia P, Allan JN, Siddiqi T, et al. First-Line Treatment with Ibrutinib (Ibr) Plus Venetoclax (Ven) for Chronic Lymphocytic Leukemia (CLL): 2-Year Post-Randomization Disease-Free Survival (DFS) Results from the Minimal Residual Disease (MRD) Cohort of the Phase 2 Captivate Study. Blood. 2021;138(Suppl 1):68. doi: 10.1182/blood-2021-144544.
  36. Tam CS, Allan JN, Siddiqi T, et al. Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: primary analysis of the CAPTIVATE FD cohort. Blood. 2022;139(22):3278–89. doi: 10.1182/blood.2021014488.
  37. Allan JN, Wierda WG, Siddiqi T, et al. Primary analysis of the fixed-duration cohort from the phase 2 CAPTIVATE study of first-line ibrutinib+venetoclax for chronic lymphocytic leukemia/small lymphocytic lymphoma. EHA Library. 2021;324555:S147.
  38. Jain N, Keating M, Thompson P, et al. Ibrutinib and Venetoclax for First-Line Treatment of CLL. N Engl J Med. 2019;380(22):2095–103. doi: 10.1056/NEJMoa1900574.
  39. Jain N, Keating MJ, Thompson PA, et al. Combined Ibrutinib and Venetoclax for First-Line Treatment of Patients with Chronic Lymphocytic Leukemia (CLL): Focus on Long-Term MRD Results. Blood. 2021;138(Suppl 1):3720. doi: 10.1182/blood-2021-154454.
  40. Jain N, Keating M, Thompson P, et al. Ibrutinib Plus Venetoclax for First-line Treatment of Chronic Lymphocytic Leukemia: A Nonrandomized Phase 2 Trial. JAMA Oncol. 2021;7(8):1213–9. doi: 10.1001/jamaoncol.2021.1649.
  41. Kater A, Owen C, Moreno C, et al. Fixed-duration ibrutinib and venetoclax (I+V) versus chlorambucil plus obinutuzumab (CLB+O) for first-line (1L) chronic lymphocytic leukemia (CLL): primary analysis of the phase 3 GLOW study. EHA Library. 2021;330172:LB1902.
  42. Munir T, Moreno C, Owen C, et al. First prospective data on minimal residual disease (MRD) outcomes after fixed-duration ibrutinib plus venetoclax (Ibr+Ven) versus chlorambucil plus obinutuzumab (Clb+O) for first-line treatment of CLL in elderly or unfit patients: the Glow study. Blood. 2021;138(Suppl 1):70. doi: 10.1182/blood-2021-148666.
  43. Kater AP, Owen C, Moreno C, et al. Fixed-Duration Ibrutinib-Venetoclax in Patients with Chronic Lymphocytic Leukemia and Comorbidities. NEJM Evid. 2022;1(7). doi: 10.1056/EVIDoa2200006.
  44. Hillmen P, Rawstron AC, Brock K, et al. Ibrutinib Plus Venetoclax in Relapsed/Refractory Chronic Lymphocytic Leukemia: The CLARITY Study. J Clin Oncol. 2019;37(30):2722–9. doi: 10.1200/JCO.19.00894.
  45. Niemann CU, Levin M-D, Dubois J, et al. Venetoclax and ibrutinib for patients with relapsed/refractory chronic lymphocytic leukemia. Blood. 2021;137(8):1117–20. doi: 1182/blood.2020008608.
  46. Jain N, Keating MJ, Thompson PA, et al. Combined Ibrutinib and Venetoclax in Patients with Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL). Blood. 2019;134(Suppl_1):359. doi: 10.1182/blood-2019-131732.
  47. Scarfo L, Heltai S, Albi E, et al. Minimal residual disease-driven treatment intensification by sequential addition of ibrutinib to venetoclax in relapsed/refractory chronic lymphocytic leukemia: results of the monotherapy and combination phases of the IMPROVE study. Blood. 2020;136(Suppl 1):21–2.
  48. Thompson PA, Wang Y, Keating MJ, et al. Venetoclax Consolidation in Patients with High-Risk CLL Who Have Been on Ibrutinib More Than a Year Achieves a High Rate of Undetectable Minimal Residual Disease. Blood. 2021;138(Suppl 1):3723. doi: 1182/blood-2021-149919.
  49. Petrenko A, Kislova M, Dmitrieva E, et al. P654: Ibrutinib Plus Venetoclax in Patients With Complex Karyotype and Chronic Lymphocytic Leukemia. HemaSphere. 2022;6:552–3. doi: 10.1097/01.HS9.0000845500.06883.11.

Prognostic Models in Medicine

AS Luchinin

Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027

For correspondence: Aleksander Sergeevich Luchinin, MD, PhD, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027; Tel.: +7(919)506-87-86; e-mail: glivec@mail.ru

For citation: Luchinin AS. Prognostic Models in Medicine. Clinical oncohematology. 2023;16(1):27–36. (In Russ).

DOI: 10.21320/2500-2139-2023-16-1-27-36


ABSTRACT

Medical prognostic (prediction) models (MPM) are essential in modern healthcare. They determine health and disease risks and are created to improve diagnosis and treatment outcomes. All MPMs fall into two categories. Diagnostic medical models (DMM) aim at assessing individual risk for a disease present, whereas predictive medical models (PMM) evaluate the risk for development of a disease and its complications in future. This review discusses DMM and PMM characteristics, conditions for their elaboration, criteria for medical application, also in hematology, as well as challenges of their creation and quality check.

Keywords: prognostic model, artificial intelligence.

Received: September 13, 2022

Accepted: December 7, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. Br Med J. 2020;369:m1328. doi: 10.1136/bmj.m1328.
  2. Van Smeden M, Reitsma JB, Riley RD, et al. Clinical prediction models: diagnosis versus prognosis. J Clin Epidemiol. 2021;132:142–5. doi: 10.1016/j.jclinepi.2021.01.009.
  3. Schalling M, Gleiss A, Gisslinger B, et al. Essential thrombocythemia vs. pre-fibrotic/early primary myelofibrosis: discrimination by laboratory and clinical data. Blood Cancer J. 2017;7(12):643. doi: 10.1038/s41408-017-0006-y.
  4. Guncar G, Kukar M, Notar M, et al. An application of machine learning to haematological diagnosis. Sci Rep. 2018;8(1):411. doi: 10.1038/s41598-017-18564-8.
  5. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.
  6. Van de Schans SАM, Steyerberg EW, Nijziel MR, et al. Validation, revision and extension of the Follicular Lymphoma International Prognostic Index (FLIPI) in a population-based setting. Ann Oncol. 2009;20(10):1697–702. doi: 10.1093/annonc/mdp053.
  7. Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863–9. doi: 10.1200/JCO.2015.61.2267.
  8. Лучинин А.С. Искусственный интеллект в гематологии. Клиническая онкогематология. 2022;15(1):16–27. doi: 10.21320/2500-2139-2022-15-1-16-27.
    [Luchinin AS. Artificial Intelligence in Hematology. Clinical oncohematology. 2022;15(1):16–27. doi: 10.21320/2500-2139-2022-15-1-16-27. (In Russ)]
  9. Zhou L, Meng X, Huang Y, et al. An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors. Nat Mach Intell. 2022;4(5):494–503. doi: 10.1038/s42256-022-00483-7.
  10. Szumilas M. Explaining Odds Ratios. J Can Acad Child Adolesc Psychiatry. 2010;19(3):227–29.
  11. Barraclough H, Simms L, Govindan R. Biostatistics Primer: What a Clinician Ought to Know: Hazard Ratios. J Thorac Oncol. 2011;6(6):978–82. doi: 10.1097/JTO.0b013e31821b10ab.
  12. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31. doi: 10.1093/eurheartj/ehu207.
  13. Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17(1):230. doi: 10.1186/s12916-019-1466-7.
  14. Wolff RF, Moons KGM, Riley RD, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51–8. doi: 10.7326/M18-1376.
  15. Moons KGM, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. Br Med J. 2009;338:b606. doi: 10.1136/bmj.b606.
  16. Altman DG, Bland JM. Missing data. Br Med J. 2007;334(7590):424. doi: 10.1136/bmj.38977.682025.2C.
  17. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. Br Med J. 2020;368:m441. doi: 10.1136/bmj.m441.
  18. Jenkins DG, Quintana-Ascencio PF. A solution to minimum sample size for regressions. PloS One. 2020;15(2):e0229345. doi: 10.1371/journal.pone.0229345.
  19. Van Voorhis WCR, Morgan BL. Understanding Power and Rules of Thumb for Determining Sample Sizes. Tutor Quant Meth Psychol. 2007;3(2):43–50. doi: 10.20982/tqmp.03.2.p043.
  20. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9. doi: 10.1016/s0895-4356(96)00236-3.
  21. Bujang MA, Sa’at N, Sidik TMITAB, Joo LC. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays J Med Sci. 2018;25(4):122–30. doi: 10.21315/mjms2018.25.4.12.
  22. Zhou P-Y, Wong AKC. Explanation and prediction of clinical data with imbalanced class distribution based on pattern discovery and disentanglement. BMC Med Inform Decis Mak. 2021;21(1):16. doi: 10.1186/s12911-020-01356-y.
  23. Pauker SG, Kassirer JP. The Threshold Approach to Clinical Decision Making. N Engl J Med. 1980;302(20):1109–17. doi: 10.1056/NEJM198005153022003.
  24. Lee DK. Data transformation: a focus on the interpretation. Korean J Anesthesiol. 2020;73(6):503–8. doi: 10.4097/kja.20137.
  25. Zhang Z. Variable selection with stepwise and best subset approaches. Ann Transl Med. 2016;4(7):136. doi: 10.21037/atm.2016.03.35.
  26. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385395. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3.
  27. de Hond AAH, Leeuwenberg AM, Hooft L, et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. NPJ Digit Med. 2022;5(1):1–13. doi: 10.1038/s41746-021-00549-7.
  28. Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J Intern Med. 2013;4(2):627–35.
  29. Agarwal A, Sharma P, Alshehri M, et al. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Comput Sci. 2021;7:e437. doi: 10.7717/peerj-cs.437.
  30. Hendriksen JMT, Geersing GJ, Moons KGM, de Groot JАH. Diagnostic and prognostic prediction models. J Thromb Haemost. 2013;11(Suppl 1):129–41. doi: 10.1111/jth.12262.
  31. Huang Y, Li W, Macheret F, et al. A tutorial on calibration measurements and calibration models for clinical prediction models. J Am Med Inform Assoc. 2020;27(4):621–33. doi: 10.1093/jamia/ocz228.
  32. Snell KIE, Archer L, Ensor J, et al. External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb. J Clin Epidemiol. 2021;135:79–89. doi: 10.1016/j.jclinepi.2021.02.011.
  33. Ramspek CL, Teece L, Snell KIE, et al. Lessons learnt when accounting for competing events in the external validation of time-to-event prognostic models. Int J Epidemiol. 2022;51(2):615–25. doi: 10.1093/ije/dyab256.
  34. Van Geloven N, Giardiello D, Bonneville EF, et al. Validation of prediction models in the presence of competing risks: a guide through modern methods. Br Med J. 2022;377:e069249. doi: 10.1136/bmj-2021-069249.
  35. Altman DG, Bland JM. Absence of evidence is not evidence of absence. Br Med J. 1995;311(7003):485. doi: 10.1136/bmj.311.7003.485.
  36. Smith GD, Ebrahim S. Data dredging, bias, or confounding. Br Med J. 2002;325(7378):1437–8. doi: 10.1136/bmj.325.7378.1437.
  37. Lakens D, Adolfi FG, Albers CJ, et al. Justify your alpha. Nat Hum Behav. 2018;2(3):168–71. doi: 10.1038/s41562-018-0311-x.
  38. Benjamin DJ, Berger JO, Johannesson M, et al. Redefine statistical significance. Nat Hum Behav. 2018;2(1):6–10. doi: 10.1038/s41562-017-0189-z.
  39. Van Smeden M, Lash TL, Groenwold RHH. Reflection on modern methods: five myths about measurement error in epidemiological research. Int J Epidemiol. 2020;49(1):338–47. doi: 10.1093/ije/dyz251.
  40. Altman DG, Royston P. The cost of dichotomising continuous variables. Br Med J. 2006;332(7549):1080. doi: 10.1136/bmj.332.7549.1080.
  41. Wynants L, van Smeden M, McLernon DJ, et al. Three myths about risk thresholds for prediction models. BMC Med. 2019;17(1):192. doi: 10.1186/s12916-019-1425-3.
  42. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41. doi: 10.1002/sim.2331.
  43. Vargha A, Rudas T, Delaney HD, Maxwell SE. Dichotomization, Partial Correlation, and Conditional Independence. J Educ Behav Stat. 1996;21(3):264–82. doi: 10.3102/10769986021003264.
  44. Basagana X, Pedersen M, Barrera-Gomez J, et al. Analysis of multicentre epidemiological studies: contrasting fixed or random effects modelling and meta-analysis. Int J Epidemiol. 2018;47(4):1343–54. doi: 10.1093/ije/dyy
  45. Лучинин А.С. Лечение пациентов с впервые диагностированной диффузной В-крупноклеточной лимфомой: обзор литературы и метаанализ. Клиническая онкогематология. 2022;15(2):130–9. doi: 10.21320/2500-2139-2022-15-2-130-139.
    [Luchinin AS. Treatment of Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma: A Literature Review and Meta-Analysis. Clinical oncohematology. 2022;15(2):130–9. doi: 10.21320/2500-2139-2022-15-2-130-139. (In Russ)]
  46. Riley RD, Collins GS, Ensor J, et al. Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome. Stat Med. 2022;41(7):1280–95. doi: 10.1002/sim.9275.
  47. Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part I – continuous outcomes. Stat Med. 2019;38(7):1262–75. doi: 10.1002/sim.7993.
  48. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part II – binary and time-to-event outcomes. Stat Med. 2019;38(7):1276–96. doi: 10.1002/sim.7992.
  49. Riley RD, Debray TPA, Collins GS, et al. Minimum sample size for external validation of a clinical prediction model with a binary outcome. Stat Med. 2021;40(19):4230–51. doi: 10.1002/sim.9025.
  50. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. Br Med J. 2009;338:b2393. doi: 10.1136/bmj.b2393.
  51. Petrazzini BO, Naya H, Lopez-Bello F, et al. Evaluation of different approaches for missing data imputation on features associated to genomic data. BioData Min. 2021;14(1):44. doi: 10.1186/s13040-021-00274-7.
  52. Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol. 1996;49(8):907–16. doi: 10.1016/0895-4356(96)00025-x.
  53. Heinze G, Dunkler D. Five myths about variable selection. Transpl Int. 2017;30(1):6–10. doi: 10.1111/tri.12895.
  54. Chen R-C, Dewi C, Huang S-W, Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data. 2020;7(1):52. doi: 10.1186/s40537-020-00327-4.
  55. Moons KGM, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart. 2012;98(9):691–8. doi: 10.1136/heartjnl-2011-301247.
  56. Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-73. doi: 10.7326/M14-0698.
  57. Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med. 2022;28(5):924–33. doi: 10.1038/s41591-022-01772-9.

WHIM Syndrome: A Literature Review and a Report of Two Cases in One Family

MV Marchenko, YuN Kuznetsov, AV Lapina, IA Mikhailova, TA Bykova, TS Shchegoleva, VV Baikov, AD Kulagin

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

For correspondence: Mariya Viktorovna Marchenko, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)338-62-65; e-mail: mv_bogomolova@mail.ru

For citation: Marchenko MV, Kuznetsov YuN, Lapina AV, et al. WHIM Syndrome: A Literature Review and a Report of Two Cases in One Family. Clinical oncohematology. 2023;16(1):14–26. (In Russ).

DOI: 10.21320/2500-2139-2023-16-1-14-26


ABSTRACT

WHIM syndrome (warts, hypogammaglobulinemia, infections, and myelokathexis) is a rare genetic disease associated with activating germline mutations in the gene encoding chemokine receptor CXCR4. WHIM syndrome is manifested by neutropenia, lymphopenia, infections, and degenerative changes of mature neutrophils with bone marrow myeloid hyperplasia (myelokathexis). Some patients show hypogammaglobulinemia, persistent cutaneous, genital, or elsewhere localized warts. There are also cases of congenital heart defects. The present paper extensively analyzes genetic basis, pathophysiology, clinical manifestations, and diagnosis of WHIM syndrome as well as its treatment options. The paper reports two cases in one family.

Keywords: WHIM syndrome, CXCR4, warts, hypogammaglobulinemia, infections, myelokathexis.

Received: August 30, 2022

Accepted: December 2, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Wetzler M, Talpaz M, Kleinerman ES, et al. A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am J Med. 1990;89(5):663–72. doi: 10.1016/0002-9343(90)90187-i.
  2. Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34(1):70–4. doi: 10.1038/ng1149.
  3. Zuelzer WW. “Myelokathexis” – a new form of chronic granulocytopenia. Report of a case. N Engl J Med. 1964;270:699–704. doi: 10.1056/NEJM196404022701402.
  4. Krill CE, Smith HD, Mauer AM. Chronic idiopathic granulocytopenia. N Engl J Med. 1964;270:973–9. doi: 10.1056/NEJM196405072701902.
  5. Beaussant Cohen S, Fenneteau O, Plouvier E, et al. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet J Rare Dis. 2012;7:71. doi: 10.1186/1750-1172-7-71.
  6. Heusinkveld LE, Majumdar S, Gao JL, et al. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol. 2019;39(6):532–56. doi: 10.1007/s10875-019-00665-w.
  7. McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev. 2019;287(1):91–102. doi: 10.1111/imr.12719. PMID: 30565238.
  8. Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature. 1996;382(6594):829–33. doi: 10.1038/382829a0.
  9. Pozzobon T, Goldoni G, Viola A, Molon B. CXCR4 signaling in health and disease. Immunol Lett. 2016;177:6–15. doi: 10.1016/j.imlet.2016.06.006.
  10. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272(5263):872–7. doi: 10.1126/science.272.5263.872.
  11. Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005;6(10):1038–46. doi: 10.1038/ni1251.
  12. Kawai T, Choi U, Whiting-Theobald NL, et al. Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome. Exp Hematol. 2005;33(4):460–8. doi: 10.1016/j.exphem.2005.01.001.
  13. Balabanian K, Lagane B, Pablos JL, et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood. 2005;105(6):2449–57. doi: 10.1182/blood-2004-06-2289.
  14. Gulino AV, Moratto D, Sozzani S, et al. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood. 2004;104(2):444–52. doi: 10.1182/blood-2003-10-3532.
  15. Aprikyan AA, Liles WC, Park JR, et al. Myelokathexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression of bcl-x in neutrophil precursors. Blood. 2000;95(1):320–7. doi: 10.1182/blood.V95.1.320.
  16. McDermott DH, Liu Q, Velez D, et al. A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood. 2014;123(15):2308–16. doi: 10.1182/blood-2013-09-527226.
  17. Balabanian K, Brotin E, Biajoux V, et al. Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood. 2012;119(24):5722–30. doi: 10.1182/blood-2012-01-403378.
  18. Mentzer WC Jr, Johnston RB Jr, Baehner RL, Nathan DG. An unusual form of chronic neutropenia in a father and daughter with hypogammaglobulinaemia. Br J Haematol. 1977;36(3):313–22. doi: 10.1111/j.1365-2141.1977.tb00654.x.
  19. Badolato R, Donadieu J. How I treat warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. Blood. 2017;130(23):2491–8. doi: 10.1182/blood-2017-02-708552.
  20. McGuire PJ, Cunningham-Rundles C, Ochs H, Diaz GA. Oligoclonality, impaired class switch and B-cell memory responses in WHIM syndrome. Clin Immunol. 2010;135(3):412–21. doi: 10.1016/j.clim.2010.02.006.
  21. Handisurya A, Schellenbacher C, Reininger B, et al. A quadrivalent HPV vaccine induces humoral and cellular immune responses in WHIM immunodeficiency syndrome. Vaccine. 2010;28(30):4837–41. doi: 10.1016/j.vaccine.2010.04.057.
  22. Roselli G, Martini E, Lougaris V, et al. CXCL12 Mediates Aberrant Costimulation of B Lymphocytes in Warts, Hypogammaglobulinemia, Infections, Myelokathexis Immunodeficiency. Front Immunol. 2017;8:1068. doi: 10.3389/fimmu.2017.01068.
  23. Dotta L, Notarangelo LD, Moratto D, et al. Long-Term Outcome of WHIM Syndrome in 18 Patients: High Risk of Lung Disease and HPV-Related Malignancies. J Allergy Clin Immunol Pract. 2019;7(5):1568–77. doi: 10.1016/j.jaip.2019.01.045.
  24. Chow KY, Brotin Е, Ben Khalifa Y, et al. A pivotal role for CXCL12 signaling in HPV-mediated transformation of keratinocytes: clues to understanding HPV-pathogenesis in WHIM syndrome. Cell Host Microbe. 2010;8(6):523–33. doi: 10.1016/j.chom.2010.11.006.
  25. Meuris F, Carthagena L, Jaracz-Ros A, et al. The CXCL12/CXCR4 Signaling Pathway: A New Susceptibility Factor in Human Papillomavirus Pathogenesis. PLoS Pathog. 2016;12(12):e1006039. doi: 10.1371/journal.ppat.1006039.
  26. McDermott DH, Gao JL, Liu Q, et al. Chromothriptic cure of WHIM syndrome. Cell. 2015;160(4):686–99. doi: 10.1016/j.cell.2015.01.014.
  27. Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. 2011;144(1):27–40. doi: 10.1016/j.cell.2010.11.055.
  28. Мамаев Н.Н., Гиндина Т.Л., Бойченко Э.Г. Хромотрипсис в онкологии: обзор литературы и собственное наблюдение. Клиническая онкогематология. 2017;10(2):191–205. doi: 10.21320/2500-2139-2017-10-2-191-205.
    [Mamaev NN, Gindina TL, Boichenko EG. Chromothripsis in Oncology: Literature Review and Case Report. Clinical oncohematology. 2017;10(2):191–205. doi: 10.21320/2500-2139-2017-10-2-191-205. (In Russ)]
  29. Auer PL, Teumer A, Schick U, et al. Rare and low-frequency coding variants in CXCR2 and other genes are associated with hematological traits. Nat Genet. 2014;46(6):629–34. doi: 10.1038/ng.2962.
  30. Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. 2014;123(11):1637–46. doi: 10.1182/blood-2013-09-525808.
  31. Dale DC, Dick E, Kelley M, et al Family studies of warts, hypogammaglobulinemia, immunodeficiency, myelokathexis syndrome. Curr Opin Hematol. 2020;27(1):11–7. doi: 10.1097/MOH.0000000000000554.
  32. Latger-Cannard V, Bensoussan D, Bordigoni P. The WHIM syndrome shows a peculiar dysgranulopoiesis: myelokathexis. Br J Haematol. 2006;132(6):669. doi: 10.1111/j.1365-2141.2005.05908.x.
  33. Kim HK, De La Luz Sierra M, Williams CK, et al. G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood. 2006;108(3):812–20. doi: 10.1182/blood-2005-10-4162.
  34. Деордиева Е.А., Швец О.А., Лаберко А.Л. и др. Характеристика группы пациентов с WHIM-синдромом. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(4):68–75. doi: 10.24287/1726-1708-2020-19-4suppl-68-75.
    [Deordieva EA, Shvets OA, Laberko AL, et al. Characteristics of a group of patients with WHIM syndrome. Pediatric Hematology/Oncology and Immunopathology. 2020;19(4):68–75. doi: 10.24287/1726-1708-2020-19-4suppl-68-75. (In Russ)]
  35. McDermott DH, Pastrana DV, Calvo KR, et al. Plerixafor for the Treatment of WHIM Syndrome. N Engl J Med. 2019;380(2):163–70. doi: 10.1056/NEJMoa1808575.
  36. Dale DC, Firkin F, Bolyard AA, et al. Results of a phase 2 trial of an oral CXCR4 antagonist, mavorixafor, for treatment of WHIM syndrome. Blood. 2020;136(26):2994–3003. doi: 10.1182/blood.2020007197.
  37. Dale DC, Alsina L, Azar A, et al. Global Phase 3, Randomized, Placebo-Controlled Trial with Open-Label Extension Evaluating the Oral CXCR4 Antagonist Mavorixafor in Patients with WHIM Syndrome (4WHIM): Trial Design and Enrollment. Blood. 2021;138(Suppl 1):4310. doi: 10.1182/blood-2021-153346.
  38. Handisurya A, Schellenbacher C, Reininger B, et al. A quadrivalent HPV vaccine induces humoral and cellular immune responses in WHIM immunodeficiency syndrome. Vaccine. 2010;28(30):4837–41. doi: 10.1016/j.vaccine.2010.04.057.
  39. Laberko A, Deordieva E, Krivan G, et al. Multicenter Experience of Hematopoietic Stem Cell Transplantation in WHIM Syndrome. J Clin Immunol. 2022;42(1):171-182 doi: 10.1007/s10875-021-01155-8.
  40. Tarzi MD, Jenner M, Hattotuwa K, et al. Sporadic case of warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis syndrome. J Allergy Clin Immunol. 2005;116(5):1101–5. doi: 10.1016/j.jaci.2005.08.040.
  41. Badolato R, Dotta L, Tassone L, et al. Tetralogy of Fallot is an uncommon manifestation of warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. J Pediatr. 2012;161(4):763–5. doi: 10.1016/j.jpeds.2012.05.058.
  42. McDermott DH, De Ravin SS, Jun HS, et al. Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis. Blood. 2010;116(15):2793–802. doi: 10.1182/blood-2010-01-265942.
  43. Leiding JW, Holland SM. Warts and all: human papillomavirus in primary immunodeficiencies. J Allergy Clin Immunol. 2012;130(5):1030–48. doi: 10.1016/j.jaci.2012.07.049.
  44. Mansour S, Josephs KS, Ostergaard P, et al. Redefining WILD syndrome: a primary lymphatic dysplasia with congenital multisegmental lymphoedema, cutaneous lymphovascular malformation, CD4 lymphopaenia and warts. J Med Genet. 2021:jmedgenet-2021–107820. doi: 10.1136/jmedgenet-2021-107820.

CAR-T Therapy of Multiple Myeloma, Based on the Congresses ASH-2021 and ASCO-2022

SV Semochkin1,2

1 PA Gertsen Moscow Oncology Research Institute, branch of the NMRC of Radiology, 3 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

2 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova ul., Moscow, Russian Federation, 117997

For correspondence: Prof. Sergei Vyacheslavovich Semochkin, MD, PhD, 3 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284; e-mail: semochkin_sv@rsmu.ru

For citation: Semochkin SV. CAR-T Therapy of Multiple Myeloma, Based on the of Congresses ASH-2021 and ASCO-2022. Clinical oncohematology. 2023;16(1):1–13. (In Russ).

DOI: 10.21320/2500-2139-2023-16-1-1-13


ABSTRACT

Current treatment of multiple myeloma (ММ) based on proteasome inhibitors, immunomodulating drugs, and monoclonal antibodies has, to a certain extent, reached the limit of its potential. Despite considerable clinical advance, ММ still remains a chronic incurable disease. Tumor-specific T-cell therapy with chimeric antigen receptor (CAR) is a new evolution step towards achieving MM cure. Today, B-cell maturation antigen (BCMA) is regarded as the primary target of CAR-T treatment of MM. This receptor is mainly expressed on the surface of tumor plasma cells in ММ as well as in B-cells of late differentiation stages and normal plasma cells. In 2021–2022, two CAR-T drugs, idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel), were approved for clinical use in the USA and the European Union for patients with relapsed/refractory MM. The studies of these drugs yielded encouraging clinical results. Other antigen (GPRC5D, SLAMF7) cell-based drugs are now in early stages of development. The present review is concerned with latest advances in CAR-T therapy for MM reported at the recent congresses ASH-2021 and ASCO-2022. The review comprehensively discusses the results of the KarMMa (ide-cel, stage II) and CARTITUDE-1 (cilta-cel, stage IB/II) studies. It also provides historical background of CAR-Т cell generation as well as preclinical and on-going clinical trial data on MM. It outlines potential failure causes and prospects of further improvement of the new technology.

Keywords: CAR-T therapy, multiple myeloma, chimeric antigen receptor, B-cell maturation antigen.

Received: June 17, 2022

Accepted: December 2, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Менделеева Л.П., Вотякова О.М., Рехтина И.Г. и др. Множественная миелома. Современная онкология. 2020;22(4):6–28. doi: 10.26442/18151434.2020.4.200457.
    [Mendeleeva LP, Votiakova OM, Rekhtina IG, et al. Multiple myeloma. Journal of Modern Oncology. 2020;22(4):6–28. doi: 10.26442/18151434.2020.4.200457. (In Russ)]
  2. Семочкин С.В. Терапия рецидивирующей и рефрактерной множественной миеломы, отягощенной двойной рефрактерностью (обзор литературы). Онкогематология. 2021;16(3):58–73. doi: 10.17650/1818-8346-2021-16-3-58-73.
    [Semochkin SV. Treatment of double-refractory multiple myeloma. Oncohematology. 2021;16(3):58–73. doi: 10.17650/1818-8346-2021-16-3-58-73. (In Russ)]
  3. Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 2019;129(6):2210–21. doi: 10.1172/JCI126397.
  4. Кувшинов А.Ю., Волошин С.В., Кузяева А.А. и др. Современные представления о CAR-Т-клеточной терапии. Вестник гематологии. 2019;15(2):4–13.
    [Kuvshinov AYu, Voloshin SV, Kuzyaeva AA, et al. Current views on CAR-Т therapy. Vestnik gematologii. 2019;15(2):4–13. (In Russ)]
  5. Abreu TR, Fonseca NA, Goncalves N, Moreira JN. Current challenges and emerging opportunities of CAR-T cell therapies. J Control Release. 2020;319:246–61. doi: 10.1016/j.jconrel.2019.12.047.
  6. Gao GF, Jakobsen BK. Molecular interactions of coreceptor CD8 and MHC class I: the molecular basis for functional coordination with the T-cell receptor. Immunol Today. 2000;21(12):630–6. doi: 10.1016/s0167-5699(00)01750-3.
  7. Tellier J, Nutt SL. Plasma cells: The programming of an antibody-secreting machine. Eur J Immunol. 2019;49(1):30–7. doi: 10.1002/eji.201847517.
  8. Павлова А.А., Масчан М.А., Пономарев В.Б. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы. Онкогематология. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32.
    [Pavlova AA, Maschan MA, Ponomarev VB. Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors. Oncohematology. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32. (In Russ)]
  9. Sadelain M, Riviere I, Riddell S. Therapeutic T cell engineering. Nature. 2017;545(7655):423–31. doi: 10.1038/nature22395.
  10. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993;90(2):720–4. doi: 10.1073/pnas.90.2.720.
  11. Gross G, Eshhar Z. Therapeutic Potential of T Cell Chimeric Antigen Receptors (CARs) in Cancer Treatment: Counteracting Off-Tumor Toxicities for Safe CAR T Cell Therapy. Annu Rev Pharmacol Toxicol. 2016;56:59–83. doi: 10.1146/annurev-pharmtox-010814-124844.
  12. Styczynski J. A brief history of CAR-T cells: from laboratory to the bedside. Acta Haematol Pol. 2020;51(1):2–5. doi: 10.2478/ahp-2020-0002.
  13. Zhao Z, Condomines M, van der Stegen SJC, et al. Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. Cancer Cell. 2015;28(4):415–28. doi: 10.1016/j.ccell.2015.09.004.
  14. Finney HM, Akbar AN, Lawson AD. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 2004;172(1):104–13. doi: 10.4049/jimmunol.172.1.104.
  15. Brentjens RJ, Latouche JB, Santos E, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med. 2003;9(3):279–86. doi: 10.1038/nm827.
  16. Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33. doi: 10.1056/NEJMoa1103849.
  17. Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18. doi: 10.1056/NEJMoa1215134.
  18. Newitt NV. The Incredible Story of Emily Whitehead & CAR T-Cell Therapy. Oncology Times. 2022;44(6):19–21. doi: 10.1097/01.COT.0000824668.24475.b0.
  19. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7. doi: 10.1158/1078-0432.CCR-11-0116.
  20. Couzin-Frankel Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342(6165):1432–3. doi: 10.1126/science.342.6165.1432.
  21. Karlsson H, Svensson E, Gigg C, et al. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors. PLoS One. 2015;10(12):e0144787. doi: 10.1371/journal.pone.0144787.
  22. Ramos CA, Rouce R, Robertson CS, et al. In Vivo Fate and Activity of Second- versus Third-Generation CD19-Specific CAR-T Cells in B Cell Non-Hodgkin’s Lymphomas. Mol Ther. 2018;26(12):2727–37. doi: 10.1016/j.ymthe.2018.09.009.
  23. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15(8):1145–54. doi: 10.1517/14712598.2015.1046430.
  24. El-Daly SM, Hussein J. Genetically engineered CAR T-immune cells for cancer therapy: recent clinical developments, challenges, and future directions. J Appl Biomed. 2019;17(1):11. doi: 10.32725/jab.2019.005.
  25. Maganti HB, Kirkham AM, Bailey AJM, et al. Use of CRISPR/Cas9 gene editing to improve chimeric antigen-receptor T cell therapy: A systematic review and meta-analysis of preclinical studies. Cytotherapy. 2022;24(4):405–12. doi: 10.1016/j.jcyt.2021.10.010.
  26. Gupta A, Gill S. CAR-T cell persistence in the treatment of leukemia and lymphoma. Leuk Lymphoma. 2021;62(11):2587–99. doi: 10.1080/10428194.2021.
  27. David Prize celebrated laureates in 2021. [Internet] Available from: https://dandavidprize.org/previous-laureates/ (accessed 16.06.2022).
  28. Shah N, Chari A, Scott E, et al. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia. 2020;34(4):985–1005. doi: 10.1038/s41375-020-0734-z.
  29. Dogan A, Siegel D, Tran N, et al. B-cell maturation antigen expression across hematologic cancers: a systematic literature review. Blood Cancer J. 2020;10(6):73. doi: 10.1038/s41408-020-0337-y.
  30. Yu B, Jiang T, Liu D, et al. BCMA-targeted immunotherapy for multiple myeloma. J Hematol Oncol. 2020;13(1):125. doi: 10.1186/s13045-020-00962-7.
  31. Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103(2):689–94. doi: 10.1182/blood-2003-06-2043.
  32. Pont MJ, Hill T, Cole GO, et al. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood. 2019;134(19):1585–97. doi: 10.1182/blood.2019000050.
  33. Jew S, Chang T, Bujarski S, et al. Normalization of serum B-cell maturation antigen levels predicts overall survival among multiple myeloma patients starting treatment. Br J Haematol. 2021;192(2):272–80. doi: 10.1111/bjh.16752.
  34. Roex G, Timmers M, Wouters K, et al. Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma. J Hematol Oncol. 2020;13(1):164. doi: 10.1186/s13045-020-01001-1.
  35. Munshi NC, Anderson LD Jr, Shah N, et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med. 2021;384(8):705–16. doi: 10.1056/NEJMoa2024850.
  36. Friedman KM, Garrett TE, Evans JW, et al. Effective Targeting of Multiple B-Cell Maturation Antigen-Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells. Hum Gene Ther. 2018;29(5):585–601. doi: 10.1089/hum.2018.001.
  37. Raje NS, Shah N, Jagannath S, et al. Updated Clinical and Correlative Results from the Phase I CRB-402 Study of the BCMA-Targeted CAR T Cell Therapy bb21217 in Patients with Relapsed and Refractory Multiple Myeloma. Blood. 2021;138(Suppl 1):548. doi: 10.1182/blood-2021-146518.
  38. Hansen DK, Sidana S, Peres L, et al. Idecabtagene vicleucel (Ide-cel) chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory multiple myeloma (RRMM): Real-world experience. J Clin Oncol. 2022;40(16_suppl):8042. doi: 10.1200/JCO.2022.40.16_suppl.8042.
  39. Martin T, Usmani SZ, Berdeja JG, et al. Updated results from CARTITUDE-1: Phase 1B/2 study of Ciltacabtagene Autoleucel, a B-cell maturation antigendirected chimeric antigen receptor T cell therapy, in patients with relapsed/refractory multiple myeloma. Blood. 2021;138(Suppl 1):549. doi: 10.1182/blood-2021-146060.
  40. Usmani SZ, Martin TG, Berdeja JG, et al. Phase 1b/2 study of ciltacabtagene autoleucel, a BCMA-directed CAR-T cell therapy, in patients with relapsed/refractory multiple myeloma (CARTITUDE-1): Two years post-LPI. J Clin Oncol. 2022;40(16_suppl):8028. doi: 10.1200/JCO.2022.40.16_suppl.8028.
  41. Chen W, Fu C, Cai Z, et al. Sustainable Efficacy and Safety Results from Lummicar Study 1: A Phase 1/2 Study of Fully Human B-Cell Maturation Antigen-Specific CAR T Cells (CT053) in Chinese Subjects with Relapsed and/or Refractory Multiple Myeloma. 2021;138(Suppl 1):2821. doi: 10.1182/blood-2021-150124.
  42. Лаптев И.А., Раевская Н.М., Филимонова Н.А., Синеокий С.П. Транспозон piggyBac как инструмент для генетической инженерии. Биотехнология. 2016;32(6):35–44. doi: 10.1016/0234-2758-2016-32-6-35-44.
    [Laptev IA, Raevskaya NM, Filimonova NA, Sineoky SP. The piggyBac Transposon as a Tool in Genetic Engineering. Biotechnology. 2016;32(6):35–44. doi: 10.1016/0234-2758-2016-32-6-35-44. (In Russ)]
  43. Costello C, Derman BA, Kocoglu MH, et al. Clinical Trials of BCMA-Targeted CAR-T Cells Utilizing a Novel Non-Viral Transposon System. Blood. 2021;138(Suppl 1):3858. doi: 10.1182/blood-2021-151672.
  44. Du J, Jiang H, Dong B, et al. Updated Results of a Multicenter First-in-Human Study of BCMA/CD19 Dual-targeting FasT CAR-T GC012F for Patients with Relapsed/Refractory Multiple Myeloma (RRMM). Abstract book of EHA2022 Hybrid Congress Edition. HemaSphere. 2022;6(S3): Abstract S186.
  45. Mailankody S, Liedtke M, Sidana S, et al. Universal Updated Phase 1 Data Validates the Feasibility of Allogeneic Anti-BCMA ALLO-715 Therapy for Relapsed/Refractory Multiple Myeloma. Blood. 2021;138(Suppl 1):651. doi: 10.1182/blood-2021-145572.
  46. Nijhof IS, Casneuf T, van Velzen J, et al. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood. 2016;128(7):959–70. doi: 10.1182/blood-2016-03-703439.
  47. Samur MK, Fulciniti M, Samur AA, et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat Commun. 2021;12(1):868. doi: 10.1038/s41467-021-21177-5.
  48. Martin N, Thompson EG, Brown W, et al. Idecabtagene Vicleucel (ide-cel, bb2121) Responses Are Characterized By Early and Temporally Consistent Activation and Expansion of CAR T Cells with a T Effector Phenotype. Blood. 2020;136(Suppl 1):17–8. doi: 10.1182/blood-2020-134378.
  49. Xu J, Chen L, Yang S, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci USA. 2019;116(19):9543–51. doi: 10.1073/pnas.1819745116.
  50. Семенова Н.Ю., Чубарь А.В., Енукашвили Н.И. и др. Перестройка ключевых элементов стромального микроокружения костного мозга при множественной миеломе. Вестник гематологии. 2020;16(1):15–21.
    [Semenova NYu, Chubar AV, Enukashvili NI, et al. Reconstruction of key elements of the stromal microenvironment of the bone marrow in multiple myeloma. Vestnik gematologii. 2020;16(1):15–21. (In Russ)]
  51. Митина Т.А., Голенков А.К., Митин А.Н. и др. Значение Т-клеточного звена иммунитета при множественной миеломе. Иммунопатология, аллергология, инфектология. 2015;1:90–104. doi: 10.14427/jipai.2015.1.90.
    [Mitina TA, Golenkov AK, Mitin AN, et al. Significance of T-cell immunity in multiple myeloma. Immunopathology, allergology, infectology. 2015;1:90–104. doi: 10.14427/jipai.2015.1.90. (In Russ)]
  52. Garfall AL, Dancy EK, Cohen AD, et al. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv. 2019;3(19):2812–5. doi: 10.1182/bloodadvances.2019000600.
  53. Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 2019;129(6):2210–21. doi: 10.1172/JCI126397.
  54. Einsele H, Cohen AD, Delforge M, et al. Biological correlative analyses and updated clinical data of ciltacabtagene autoleucel (cilta-cel), a BCMA-directed CAR-T cell therapy, in lenalidomide (len)-refractory patients (pts) with progressive multiple myeloma (MM) after 1–3 prior lines of therapy (LOT): CARTITUDE-2, cohort A. J Clin Oncol. 2022;40(16_suppl):8020. doi: 10.1200/JCO.2022.40.16_suppl.8020.
  55. Agha ME, van de Donk NWCJ, Cohen AD, et al. CARTITUDE-2 cohort B: updated clinical date and biological correlative analyses of ciltacabtagene autoleucel in patients with multiple myeloma and early relapse after initial therapy. Abstract book of EHA2022 Hybrid Congress Edition. HemaSphere. 2022;6(S3):178–9.
  56. Cho SF, Xing L, Anderson KC, Tai YT. Promising Antigens for the New Frontier of Targeted Immunotherapy in Multiple Myeloma. Cancers (Basel). 2021;13(23):6136. doi: 10.3390/cancers13236136.
  57. Smith EL, Harrington K, Staehr M, et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci Transl Med. 2019;11(485):eaau7746. doi: 10.1126/scitranslmed.aau7746.
  58. Minnema MC, Krishnan AY, Berdeja JG, et al. Efficacy and safety of talquetamab, a G protein-coupled receptor family C group 5 member D х CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): Updated results from MonumenTAL-1. J Clin Oncol. 2022;40(16_suppl):8015. doi: 10.1200/JCO.2022.40.16_suppl.8015.
  59. Huang H, Hu Y, Zhang M, et al. Phase I open-label single arm study of GPRC5D CAR T-cells (OriCAR-017) in patients with relapsed/refractory multiple myeloma (POLARIS). J Clin Oncol. 2022;40(16_suppl):8004. doi: 10.1200/JCO.2022.40.16_suppl.8004.
  60. Leivas A, Valeri A, Cordoba L, et al. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J. 2021;11(8):146. doi: 10.1038/s41408-021-00537-w.
  61. Ng YY, Du Z, Zhang X, et al. CXCR4 and anti-BCMA CAR co-modified natural killer cells suppress multiple myeloma progression in a xenograft mouse model. Cancer Gene Ther. 2022;29(5):475–83. doi: 10.1038/s41417-021-00365-x.
  62. Wall MA, Turkarslan S, Wu WJ, et al. Genetic program activity delineates risk, relapse, and therapy responsiveness in multiple myeloma. NPJ Precis Oncol. 2021;5(1):60. doi: 10.1038/s41698-021-00185-0.
  63. Dytfeld D, Dhakal B, Agha M, et al. Bortezomib, Lenalidomide and Dexamethasone (VRd) Followed By Ciltacabtagene Autoleucel Versus Vrd Followed By Lenalidomide and Dexamethasone (Rd) Maintenance in Patients with Newly Diagnosed Multiple Myeloma Not Intended for Transplant: A Randomized, Phase 3 Study (CARTITUDE-5). Blood. 2021;138(Suppl 1):1835. doi: 10.1182/blood-2021-146210.
  64. Amatya C, Pegues MA, Lam N, et al. Development of CAR T Cells Expressing a Suicide Gene Plus a Chimeric Antigen Receptor Targeting Signaling Lymphocytic-Activation Molecule F7. Mol Ther. 2021;29(2):702–17. doi: 10.1016/j.ymthe.2020.10.008.

Acute Myeloid Leukemias After the Treatment of Classical Hodgkin’s Lymphoma: A Literature Review

AA Danilenko, SV Shakhtarina, NA Falaleeva

AF Tsyb Medical Radiological Research Centre, branch of the NMRC of Radiology, 4 Koroleva ul., Obninsk, Kaluga Region, Russian Federation, 249036

For correspondence: Anatolii Aleksandrovich Danilenko, MD, PhD, 4 Koroleva ul., Obninsk, Kaluga Region, Russian Federation, 249036; Tel.: +7(909)250-18-10; e-mail: danilenkoanatol@mail.ru

For citation: Danilenko AA, Shakhtarina SV, Falaleeva NA. Acute Myeloid Leukemias After the Treatment of Classical Hodgkin’s Lymphoma: A Literature Review. Clinical oncohematology. 2022;15(4):414–23. (In Russ).

DOI: 10.21320/2500-2139-2022-15-4-414-423


ABSTRACT

Second malignant tumors occurring in classical Hodgkin’s lymphoma (cHL) patients after treatment include mainly solid neoplasms and far more rarely acute myeloid leukemias (AML). At the same time, a relative risk of developing secondary AML substantially exceeds the risks of second (solid) tumors, and the efficacy of secondary AML treatment is considerably lower compared to the outcomes of primary AML treatment. All that implies the importance and relevance of this issue. The present literature review discusses the epidemiology of developing secondary AMLs in patents after cHL treatment. In addition to that, it focuses on modern drugs and technologies for effective treatment of secondary AMLs.

Keywords: classical Hodgkin’s lymphoma, secondary acute myeloid leukemias.

Received: April 15, 2022

Accepted: August 28, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Kanzler H, Kuppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med. 1996;184(4):1495–505. doi: 10.1084/jem.184.4.1495.
  2. Devita VT, Serpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med. 1970;73(6):881–95. doi: 10.7326/0003-4819-73-6-881.
  3. Donaldson SS, Hancock SL, Hoppe RT. The Janeway lecture. Hodgkin’s disease—finding the balance between cure and late effects. Cancer J Sci Am. 1999;5:325–33.
  4. Borchmann P, Eichenauer DA, Engert A. State of the art in the treatment of Hodgkin lymphoma. Nat Rev Clin Oncol. 2012;9(8):450–9. doi: 10.1038/nrclinonc.2012.91.
  5. Federico M, Luminari S, Iannitto E, et al. ABVD compared with BEACOPP compared with CEC for the initial treatment of patients with advanced Hodgkin’s lymphoma: results from the HD2000 Gruppo Italiano per lo Studio dei Linfomi Trial. J Clin Oncol. 2009;27(5):805–11. doi: 10.1200/JCO.2008.17.0910.
  6. Sasse S, Brockelmann PJ, Georgen H, et al. Long-term follow-up of contemporary treatment in early-stage Hodgkin lymphoma: Updated analyses of the German Hodgkin Study Group HD7, HD8, HD10 and HD11 trials. J Clin Oncol. 2017;35(18):1999–2007. doi: 10.1200/JCO.2016.70.9410.
  7. Henry-Amar M, Joly F. Late complications after Hodgkin’s disease. Ann Oncol. 1996;7(Suppl 4):115–26. doi: 10.1093/annonc/7.suppl_4.s115.
  8. Hoppe RT. Hodgkin’s disease: complications of therapy and excess mortality. Ann Oncol. 1997;8(Suppl 1):115–8. doi: 10.1093/annonc/8.suppl_1.s115.
  9. Merli F, Luminari S, Gobbi PG, et al. Long-term results of the HD2000 Trial comparing ABVD versus BEACOPP versus COPP-EBV-CAD in untreated patients with advanced Hodgkin lymphoma: a study by Fondazione Italiana Linfomi. J Clin Oncol. 2016;34(11):1175–81. doi: 10.1200/jco.2015.62.4817.
  10. Hancock SL, Hoppe RT. Long-term complications of treatment and causes of mortality after Hodgkin’s disease. Semin Radiat 1996;6(3):225–42. doi: 10.1053/SRAO00600225.
  11. Dorr FA, Coltman CA Jr. Second cancers following antineoplastic therapy. Curr Probl Cancer. 1985;9(2):1–43. doi: 10.1016/s0147-0272(85)80033-7.
  12. Arseneau JC, Sponzo RW, Levin DL, et al. Nonlymphomatous malignant tumors complicating Hodgkin’s disease: possible association with intensive therapy. N Engl J Med. 1972;287(22):1119–22. doi: 10.1056/NEJM197211302872204.
  13. Brunning RD, Matutes E, Harris NL, et al. Acute myeloid leukemia. World Health Organization of Tumors Pathology and Genetics, Tumors of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001. рр. 75–108. doi: 10.1182/blood-2002-04-1199.
  14. Shulman LN. The biology of alkylating-agent cellular injury. Hematol Oncol Clin North Am. 1993;7(2):325–35. doi: 10.1016/s0889-8588(18)30243-0.
  15. Tucker MA, Coleman CN, Cox RS, et al. Risk of second cancers after treatment for Hodgkin’s disease. N Engl J Med. 1988;318(2):76–81. doi: 10.1056/nejm198801143180203.
  16. van Leeuwen FE, Chorus AM, van den Belt-Dusebout AW, et al. Leukemia risk following Hodgkin’s disease: relation to cumulative dose of alkylating agents, treatment with teniposide combinations, number of episodes of chemotherapy, and bone marrow damage. J Clin Oncol. 1994;12(5):1063–73. doi: 10.1200/jco.1994.12.5.1063.
  17. Cosset JM, Henry-Amar M, Meerwaldt JH. Long-term toxicity of early stages of Hodgkin’s disease therapy: the EORTC experience. EORTC Lymphoma Cooperative Group. Ann Oncol. 1991;2(Suppl 2):77–82. doi: 10.1007/978-1-4899-7305-4_13.
  18. Park DJ, Koeffler HP. Therapy-related myelodysplastic syndromes. Semin Hematol. 1996;33(3):256–73.
  19. Abrahamsen JF, Andersen A, Hannisdal E, et al. Second malignancies after treatment of Hodgkin’s disease: the influence of treatment, follow-up time, and age. J Clin Oncol. 1993;11(2):255–61. doi: 10.1200/jco.1993.11.2.255.
  20. Glicksman AS, Pajak TF, Gottlieb A, et al. Second malignant neoplasms in patients successfully treated for Hodgkin’s disease: a Cancer and Leukemia Group B study. Cancer Treat Rep. 1982;66(4):1035–44.
  21. Delwail V, Jais JP, Colonna P, Andrieu JM. Fifteen-year secondary leukaemia risk observed in 761 patients with Hodgkin’s disease prospectively treated by MOPP or ABVD chemotherapy plus high-dose irradiation. Br J Haematol. 2002;118(1):189–94. doi: 10.1046/j.1365-2141.2002.03564.x.
  22. Coltman C, Dixon D. Second malignancies complicating Hodgkin’s disease: a Southwest Oncology Group 10-year follow-up. Cancer Treat Rep. 1982;66(4):1023–33.
  23. Aisenberg AC. Acute nonlymphocytic leukemia after treatment for Hodgkin’s disease. Am J Med. 1983;75(3):449–54. doi: 10.1016/0002-9343(83)90348-0.
  24. Coleman CN, Williams CJ, Flint AS, et al. Hematologic neoplasia in patients treated for Hodgkin’s disease. N Engl J Med. 1977;97(23):1249–52. doi: 10.1056/NEJM197712082972303.
  25. Holtzman AL, Stahl JM, Zhu S, et al. Does the Incidence of Treatment-Related Toxicity Plateau After Radiatio Therapy: The Long-Term Impact of Integral Dose in Hodgkin’s Lymphoma Survivors. Adv Radiat Oncol. 2019;4(4):699–705. doi: 10.1016/j.adro.2019.07.010.
  26. Henry-Amar M. Second cancer after the treatment of Hodgkin’s disease: a report from the International Database on Hodgkin’s disease. Ann Oncol. 1992;3(Suppl 4):117–28. doi: 10.1093/annonc/3.suppl_4.s117.
  27. Kaldor JM, Day NE, Clarke EA, et al. Leukemia following Hodgkin’s disease. N Engl J Med. 1990;322(1):7–13. doi: 10.1056/NEJM199001043220102.
  28. Brusamolino E, Anselmo AP, Klersy C, et al. The risk of acute leukemia in patients treated for Hodgkin’s disease is significantly higher after combined modality programs than after chemotherapy alone and is correlated with the extent of radiotherapy and type and duration of chemotherapy: a case-control study. Haematologica. 1998;83(9):812–23.
  29. Swerdlow AJ, Douglas AJ, Vaughan-Hudson G, et al. Risk of second primary cancers after Hodgkin’s disease by type of treatment: analysis of 2846 patients in the British National Lymphoma Investigation. Br J Med. 1992;304(6835):1137–43. doi: 10.1136/bmj.304.6835.1137.
  30. Schonfeld SJ, Gilbert ES, Dores GM, et al. Acute myeloid leukemia following Hodgkin lymphoma: a population-based study of 35,511 patients. J Natl Cancer Inst. 2006;98(3):215–8. doi: 10.1093/jnci/djj017.
  31. Pedersen-Bjergaard J, Specht L, Larsen SO, et al. Risk of therapy-related leukemia and preleukemia after Hodgkin’s disease. Lancet. 1987;2(8550):83–8. doi: 10.1016/s0140-6736(87)92744-9.
  32. Leone G, Voso MT, Sica S, et al. Therapy related leukemias: susceptibility, prevention and treatment. Leuk Lymphoma. 2001;41(3–4):255–76. doi: 10.3109/10428190109057981.
  33. Koontz MZ, Horning SJ, Balise R, et al. Risk of therapy-related secondary leukemia in Hodgkin lymphoma: the Stanford University experience over three generations of clinical trials. J Clin Oncol. 2013;31(5):592–8. doi: 10.1200/JCO.2012.44.5791.
  34. Andre MPE, Carde P, Viviani S, et al. Long-term overall survival and toxicities of ABVD vs BEACOPP in advanced Hodgkin lymphoma: A pooled analysis of four randomized trials. Cancer Med. 2020;9(18):6565–75. doi: 10.1002/cam4.3298.
  35. Skoetz N, Will A, Monsef I, et al. Comparison of first-line chemotherapy including escalated BEACOPP versus chemotherapy including ABVD for people with early unfavourable or advanced stage Hodgkin lymphoma. Cohrane Database Syst Rev. 2017;5(5):CD007941. doi: 10.1002/14651858.CD007941.pub3.
  36. Schaapveld M, Aleman BMP, van Eggermond AM, et al. Second Cancer Risk Up to 40 Years after Treatment for Hodgkin’s Lymphoma. N Engl J Med. 2015;373(26):2499–511. doi: 10.1056/NEJMoa1505949.
  37. Eichenauer DA, Thielen I, Haverkamp H, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndromes in patients with Hodgkin lymphoma: a report from the German Hodgkin Study Group. Blood. 2014;123(11):1658–64. doi: 10.1182/blood-2013-07-512657.
  38. Eichenauer DA, Becker I, Monsef I, et al. Secondary malignant neoplasms, progression-free survival and overall survival in patients treated for Hodgkin lymphoma: a systematic review and meta-analysis of randomized clinical trials. Haematologica. 2017;102(10):1748–57. doi: 10.3324/haematol.2017.167478.
  39. Franklin J, Eichenauer DA, Becker I, et al. Optimisation of chemotherapy and radiotherapy for untreated Hodgkin lymphoma patients with respect to second malignant neoplasms, overall and progression-free survival: individual participant data analysis. Cohrane Database Syst Rev. 2017;9(9):CD008814. doi: 10.1002/14651858.CD008814.pub2.
  40. Scholz M, Engert A, Franklin J, et al. Impact of first- and second-line treatment for Hodgkin’s lymphoma on the incidence of AML/MDS and NHL – experience of the German Hodgkin’s Lymphoma Study Group analyzed by a parametric model of carcinogenesis. Ann Oncol. 2011;22(3):681–8. doi: 10.1093/annonc/mdq408.
  41. Leone G, Fianchi L, Voso MT. Therapy-related myeloid neoplasms. Curr Opin Oncol. 2011;23(6):672–80. doi: 10.1097/CCO.0b013e32834bcc2a.
  42. Kumar V, Garg M, Chandra AB, et al. Trends in the Risks of Secondary Cancers in Patients With Hodgkin Lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18(9):576–89. doi: 10.1016/j.clml.2018.05.021.
  43. Baker KS, DeFor TE, Burns LJ, et al. New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol. 2003;21(7):1352–8. doi: 10.1200/jco.2003.05.108.
  44. Bilmon IA, Ashton LJ, Le Marsney RE, et al. Second cancer risk in adults receiving autologous haematopoietic SCT for cancer: a population-based cohort study. Bone Marrow Transplant. 2014;49(5):691–8. doi: 10.1038/bmt.2014.13.
  45. Hodgson DC. Long-term toxicity of chemotherapy and radiotherapy in lymphoma survivors: optimizing treatment for individual patients. Clin Adv Hematol Oncol. 2015;13(2):103–12.
  46. Howe R, Micallef IN, Inwards DJ, et al. Secondary myelodysplastic syndrome and acute myelogenous leukemia are significant complications following autologous stem cell transplantation for lymphoma. Bone Marrow Transplant. 2003;32(3):317–24. doi: 10.1038/sj.bmt.1704124.
  47. Stone RM, Neuberg D, Soiffer R, et al. Myelodysplastic syndrome as a late complication following autologous bone marrow transplantation for non-Hodgkin’s lymphoma. J Clin Oncol. 1994;12(12):2535–42. doi: 10.1200/jco.1994.12.12.2535.
  48. Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 2013;40(6):666–75. doi: 10.1053/j.seminoncol.2013.09.013.
  49. Morton LM, Dores GM, Tucker MA, et al. Evolving risk of therapy-related acute myeloid leukemia following cancer chemotherapy among adults in the United States, 1975–2008. Blood. 2013;121(15):2996–3004. doi: 10.1182/blood-2012-08-448068.
  50. Krishnan A, Bhatia S, Slovak ML, et al. Predictors of therapy-related leukemia and myelodysplasia following autologous transplantation for lymphoma: an assessment of risk factors. Blood. 2000;95(5):1588–93. doi: 10.1182/blood.v95.5.1588.005k38_1588_1593.
  51. Pedersen-Bjergaard J, Andersen MK, Christiansen DH. Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation. Blood. 2000;95(11):3273–9. doi: 10.1182/blood.v95.11.3273.011k15_3273_3279.
  52. Andre M, Henry-Amar M, Blaise D, et al. Treatment-related deaths and second cancer risk after autologous stem cell transplantation for Hodgkin’s disease. Blood. 1998;92(6):1933–40. doi: 10.1182/blood.V92.6.1933.
  53. Hosing C, Munsell M, Yazji S, et al. Risk of therapy-related myelodysplastic syndrome/acute leukemia following high-dose therapy and autologous bone marrow transplantation for non-Hodgkin’s lymphoma. Ann Oncol. 2002;13(3):450–9. doi: 10.1093/annonc/mdf109.
  54. Kalaycio M, Rybicki L, Pohlman B, et al. Risk factors before autologous stem-cell transplantation for lymphoma predict for secondary myelodysplasia and acute myelogenous leukemia. J Clin Oncol. 2006;24(22):3604–10. doi: 10.1200/jco.2006.06.0673.
  55. Metayer C, Curtis RE, Vose J, et al. Myelodysplastic syndrome and acute myeloid leukemia after autotransplantation for lymphoma: a multicenter case–control study. Blood. 2003;101(5):2015–23. doi: 10.1182/blood-2002-04-1261.
  56. Miller JS, Arthur DC, Litz CE, et al. Myelodysplastic syndrome after autologous bone marrow transplantation: an additional late complication of curative cancer therapy. Blood. 1994;83(12):3780–6. doi: 10.1182/blood.v83.12.3780.3780.
  57. Yamasaki S, Suzuki R, Hatano K, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndrome after hematopoietic cell transplantation for lymphoma. Bone Marrow Transplant. 2017;52(7):969–76. doi: 10.1038/bmt.2017.52.
  58. Ge I, Saliba RM, Maadani F. Age and number of apheresis days may predict for development of Secondary Myelodysplastic Syndrome and Acute Myelogenous Leukemia after transplantation for lymphomas. Transfusion. 2017;57(4):1052–7. doi: 10.1111/trf.14016.
  59. Josting A, Wiedenmann S, Franklin J, et al. Secondary myeloid leukemia and myelodysplastic syndromes in patients treated for Hodgkin’s disease: a report from the German Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2003;21(18):3440–6. doi: 10.1200/JCO.2003.07.160.
  60. Hake CR, Graubert TA, Fenske TS. Does autologous transplantation directly increase the risk of secondary leukemia in lymphoma patients? Bone Marrow Transplant. 2007;39(2):59–70. doi: 10.1038/sj.bmt.1705547.
  61. Wong TN, Miller CA, Jotte MRM, et al. Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat Commun. 2018;9(1):455. doi: 10.1038/s41467-018-02858-0.
  62. Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest. 2004;113(2):160–8. doi: 10.1172/JCI200420761.
  63. Forrest DL, Hogge DE, Nevill TJ, et al. High-dose therapy and autologous hematopoietic stem-cell transplantation does not increase the risk of second neoplasms for patients with Hodgkin’s lymphoma: a comparison of conventional therapy alone versus conventional therapy followed by autologous hematopoietic stem-cell transplantation. J Clin Oncol. 2005;23(31):7994–8002. doi: 10.1200/JCO.2005.01.9083.
  64. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  65. Leone G, Fianchi L, Pagano L, Voso MT. Incidence and susceptibility to therapy-related myeloid neoplasms. Chem Biol Interact. 2010;184(1–2):39–45. doi: 10.1016/j.cbi.2009.12.013.
  66. Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2008;22(2):240–8. doi: 10.1038/sj.leu.2405078.
  67. Cowell IG, Austin CA. Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. Int J Environ Res Public Health. 2012;9(6):2075–91. doi: 10.3390/ijerph9062075.
  68. Kayser S, Dohner K, Krauter J, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117(7):2137–45. doi: 10.1182/blood-2010-08-301713.
  69. Shea LK, Uy GL. Choosing induction chemotherapy in therapy-related acute myeloid leukemia. Best Pract Res Clin Haematol. 2019;32(1):89–97. doi: 10.1016/j.beha.2019.02.013.
  70. Ostgard BC, Medeiros H, Sengelov LS, et al Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol. 2015;33(31):3641–9. doi: 10.1200/jco.2014.60.0890.
  71. Boddu P, Kantarjian HM, Garcia-Manero G, et al. Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Adv. 2017;1(17):1312–23. doi: 10.1182/bloodadvances.2017008227.
  72. Lowenberg B, Pabst T, Vellenga E, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364(11):1027–36. doi: 10.1056/NEJMoa1010222.
  73. Lee J-H, Joo Y-D, Kim H, et al. A randomized trial comparing standard versus high-dose daunorubicin induction in patients with acute myeloid leukemia. Blood. 2011;118(14):3832–41. doi: 10.1182/blood-2011-06-361410.
  74. Lancet JE, Uy GL, Cortes JE. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J Clin Oncol. 2018;36(26):2684–92. doi: 10.1200/JCO.2017.77.6112.
  75. Walter RB, Othus M, Orlowski KF, et al. Unsatisfactory efficacy in randomized study of reduced-dose CPX-351 for medically less fit adults with newly diagnosed acute myeloid leukemia or other high-grade myeloid neoplasm. Haematologica. 2018;103(3):e106–e109. doi: 10.3324/haematol.2017.182642.
  76. Willemze R, Suciu S, Meloni G, et al. High-dose cytarabine in induction treatment improves the outcome of adult patients younger than age 46 years with acute myeloid leukemia: results of the EORTC-GIMEMA AML-12 trial. J Clin Oncol. 2014;32(3):219–28. doi: 10.1200/JCO.2013.51.8571.
  77. Theyab A, Algahtani M, Alsharif KF, et al. New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. J Hematol. 2021;26(1):628–36. doi: 10.1080/16078454.2021.1965725.
  78. Leith CP, Kopecky KJ, Chen JM, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood. 1999;94(3):1086–99.
  79. Becker PS, Medeiros BC, Stein AS, et al. G-CSF priming, clofarabine, and high dose cytarabine (GCLAC) for upfront treatment of acute myeloid leukemia, advanced myelodysplastic syndrome or advanced myeloproliferative neoplasm. Am J Hematol. 2015;90(4):295–300. doi: 10.1002/ajh.23927.
  80. Vulaj V, Perissinotti AJ, Uebel JR, et al. The FOSSIL Study: FLAG or standard 7+3 induction therapy in secondary acute myeloid leukemia. Leuk Res. 2018;70:91–6. doi: 10.1016/j.leukres.2018.05.011.
  81. Richardson DR, Green SD, Foster MC, Zeidner JF. Secondary AML Emerging After Therapy with Hypomethylating Agents: Outcomes, Prognostic Factors, and Treatment Options. Curr Hematol Malig Rep. 2021;16(1):97–111. doi: 10.1007/s11899-021-00608-6.
  82. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17. doi: 10.1182/blood-2018-08-868752.
  83. Cortes JE, Heidel FH, Heuser M, et al. A Phase 2 Randomized Study of Low Dose Ara-C with or without Glasdegib (PF-04449913) in Untreated Patients with Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome. Blood. 2016;128(22):99. doi: 10.1182/blood.V128.22.99.99.
  84. Sengsayadeth S, Labopin M, Boumendil A. Transplant Outcomes for Secondary Acute Myeloid Leukemia: Acute Leukemia Working Party of the European Society for Blood and Bone Marrow Transplantation Study. Biol Blood Marrow Transplant. 2018l;24(7):1406–14. doi: 10.1016/j.bbmt.2018.04.008.
  85. Tang F-F, Huang X-J, Zhang X-H, et al. Allogeneic hematopoietic cell transplantation for adult patients with treatment-related acute myeloid leukemia during first remission: Comparable to de novo acute myeloid leukemia. Leuk Res. 2016;47:8–15. doi: 10.1016/j.leukres.2016.05.005.
  86. Michelis FV, Atenafu EG, Gupta V, et al. Comparable outcomes post allogeneic hematopoietic cell transplant for patients with de novo or secondary acute myeloid leukemia in first remission. Bone Marrow Transplant. 2015;50(7):907–13. doi: 10.1038/bmt.2015.59.
  87. Nilsson C, Hulegardh E, Garelius H, et al. Secondary Acute Myeloid Leukemia and the Role of Allogeneic Stem Cell Transplantation in a Population-Based Setting. Biol Blood Marrow Transplant. 2019;25(9):1770–8. doi: 10.1016/j.bbmt.2019.05.038.
  88. Oliai С, Schiller G. How to address second and therapy-related acute myelogenous leukaemia. Br J Haematol. 2020;188(1):116–28. doi: 10.1111/bjh.16354.

Cytogenetic Characterization of Complex Karyotypes by Multicolor FISH in Myelodysplastic Syndromes and Associated Acute Myeloid Leukemias

MV Latypova, NN Mamaev, TYu Gracheva, TL Gindina

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

For correspondence: Prof. Nikolai Nikolaevich Mamaev, MD, PhD, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022; e-mail: nikmamaev524@gmail.com

For citation: Latypova MV, Mamaev NN, Gracheva TYu, Gindina TL. Cytogenetic Characterization of Complex Karyotypes by Multicolor FISH in Myelodysplastic Syndromes and Associated Acute Myeloid Leukemias. Clinical oncohematology. 2022;15(4):396–413. (In Russ).

DOI: 10.21320/2500-2139-2022-15-4-396-413


ABSTRACT

Complex karyotypes (CK) were thoroughly analyzed by using the data of multicolor FISH in 27 patients with myelodysplastic syndromes (MDS) and MDS-associated acute myeloid leukemias (AMLm). Despite a vast variety of identified genetic impairments, chromosomes 5, 8, and 7 appeared to be most frequently (79 %, 76 %, and 73 %, respectively) involved in rearrangements, a fact also documented in literature. In view of this, two independent cytogenetic subgroups with chromosome 5/7 and 5/7/8 rearrangements were formed. Chromosomes 5 and 7 predominantly showed unbalanced karyotype, and chromosome 8 was characterized by its combinations with trisomies. The study also revealed that complex markers, more often than the other ones, contain chromosome 7 material, which has not so far been adequately explained. At the same time, the accumulation of chromosome 8 material in CK was associated with a more favorable course of underlying disease. On the other hand, detailed structural analysis of some supercomplex CK markers affords grounds for the assertion that chromothripsis notably participates in their formation. The overall survival of MDS and AMLm patients in artificially formed joint subgroups with combinations of involved chromosomes 5/7 and 5/7/8 was significantly lower than in AMLm (= 0.035).

Keywords: MDS, MDS-associated AML, complex karyotypes and markers, chromothripsis, multicolor FISH, chromosome 5, 7, and 8 rearrangements, clinical value.

Received: June 4, 2022

Accepted: September 7, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Haase D, Stevensson KE, Neuberg D, et al. TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostics groups. Leukemia 2019;33(7):1747–58. doi: 10.1038/s41375-018-0351-2.
  2. Volkert S, Kohlmann A, Schnittger S, et al. Association of the type 5q loss with complex karyotype? Clonal evolution, TP53 mutation status, and prognosis in acute myeloid leukemia and myelodysplastic syndrome. Genes Chromosomes Cancer. 2014;53(5):402–10. doi: 10.1002/gcc.22151.
  3. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-7331964.
  4. Zemanova Z, Michalova K, Brezinova J, et al. The incidence and clinical implications of chromothripsis in bone marrow cells of patients with myelodysplastic syndromes (MDS). Haematologica. 2016;101:65–70.
  5. Мамаев Н.Н., Гиндина Т.Л., Бойченко Э.Г. Хромотрипсис в онкологии: обзор литературы и собственное наблюдение. Клиническая онкогематология. 2017;10(2):191–205. doi: 10.21320/2500-2139-2017-10-2-191-205.
    [Mamaev NN, Gindina TL, Boichenko EG. Chromothripsis in Oncology: Literature Review and Case Report. Clinical oncohematology. 2017;10(2):191–205. doi: 10.21320/2500-2139-2017-10-2-191-205. (In Russ)]
  6. Limbergen HV, Poppe B, Michaux L, et al. Identification of Cytogenetic Subclasses and Recurring Chromosomal Aberrations in AML and MDS with Complex Karyotypes Using M-FISH. Genes Chromosomes Cancer. 2002;33(1):60–72. doi: 10.1002/gcc.1212.
  7. Xu W, Li J-Y, Liu Q, et al. Multiplex fluorescence in situ hybridization in identifying chromosome involvement of complex karyotypes in de novo myelodysplastic syndromes and acute myeloid leukemia. Int J Lab Hematol. 2010; 2(1 Pt 1):e86–e95. doi: 10.1111/j.1751-553X.2008.01101.
  8. Zemanova Z, Michalova K, Buryova H, et al. Involvement of deleted chromosome 5 in complex chromosomal aberrations in newly diagnosed myelodysplastic syndromes (MDS) is correlated with extremely adverse prognosis. Leuk Res. 2014;38(5):537–44. doi: 10.1016/j.leukres.2014.01.012.
  9. McGowan-Jordan J, Hastings RJ, Moore S, eds. ISCN 2020: An International System for Human Cytogenomic Nomenclature (2020) (Cytogenetic and Genome Research). S. Karger; 2020.
  10. Гиндина Т.Л. Характеристика основных цитогенетических изменений у больных острыми лейкозами и их связь с результатами аллогенной трансплантации стволовых клеток: Дис. … д-ра мед. наук. СПб., 2019. 373 с.
    [Gindina TL. Kharakteristika osnovnykh tsitogeneticheskikh izmenenii u bol’nykh ostrymi leikozami i ikh svyaz’ s rezul’tatami allogennoi transplantatsii stvolovykh kletok. (The characterization of major cytogenetic changes in acute lymphocytic leukemia patients and their association with the outcomes of allogeneic stem cell transplantation.) [dissertation] Saint Petersburg; 2019. 373 p. (In Russ)]
  11. Латыпова М.В., Мамаев Н.Н., Гиндина Т.Л. и др. Результаты трансплантации аллогенных гемопоэтических стволовых клеток при миелодиспластических синдромах с трисомией 8 и/или моносомией 7. Клиническая онкогематология. 2022;15(2):198–204. doi: 10.21320/2500-2139-2022-15-2-198-204.
    [Latypova MV, Mamaev NN, Gindina TL, et al. Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation in Myelodysplastic Syndromes with Trisomy 8 and/or Monosomy 7. Clinical oncohematology. 2022;15(2):198–204. doi: 10.21320/2500-2139-2022-15-2-198-204. (In Russ)]
  12. Мамаев Н.Н., Латыпова М.В., Шакирова А.И., и др. Роль BAALC-экспрессирующих лейкозных клеток-предшественниц в патогенезе миелодиспластических синдромов. Клиническая онкогематология. 2022;15(1):62–8. doi: 10.21320/2500-2139-2022-15-1-62-68.
    [Mamaev NN, Latypova MV, Shakirova AI, et al. The Role of BAALC-Expressing Leukemia Precursor Cells in the Pathogenesis of Myelodysplastic Syndromes. Clinical oncohematology. 2022;15(1):62–8. doi: 10.21320/2500-2139-2022-15-1-62-68. (In Russ)]
  13. Barouk-Simonet E, Soenen-Cornu V, Roumier C, et al. Role of multiplex FISH in identifying chromosome involvement in myelodysplastic syndromes and acute myeloid leukemias with complex karyotypes: a report on 28 cases. Cancer Genet Cytogenet. 2005;157(2):118–26. doi: 10.1016/j.cancergenetcyto.2004.06.012.

The Importance of Complementary Immunological Markers in the Diagnosis of Minimal Residual Disease in Multiple Myeloma

EE Tolstykh1, OS Chuvadar2, AA Semenova1, NA Kupryshina1, OP Kolbatskaya1, YuI Klyuchagina1, OA Kolomeitsev1, GS Tumyan1, NN Tupitsyn1

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Center of Clinical Oncology and Hematology, 4a Semashko ul., Simferopol, Republic of Crimea, Russian Federation, 295026

For correspondence: Prof. Nikolai Nikolaevich Tupitsyn, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(925)537-15-82; e-mail: nntca@yahoo.com

For citation: Tolstykh EE, Chuvadar OS, Semenova AA, et al. The Importance of Complementary Immunological Markers in the Diagnosis of Minimal Residual Disease in Multiple Myeloma. Clinical oncohematology. 2022;15(4):388–95. (In Russ).

DOI: 10.21320/2500-2139-2022-15-4-388-395


ABSTRACT

Background. The population of non-tumor plasma cells in healthy subjects’ bone marrow is known to be fairly heterogeneous. Among them, there may be a small number of CD19–, CD56+, CD45– plasma cells which differ from the main bulk of the normal plasmacytic cells by the lack of CD19 and CD45 expression and the presence of CD56 expression. It is the fact which makes the monitoring of minimal residual disease (MRD) especially challenging in multiple myeloma (MM) since normal and aberrant plasma cells should be compared. For this reason, a study of such complementary diagnostic markers as CD27, CD28, CD117, and CD81 is extremely important.

Aim. To analyze the role of complementary diagnostic markers (CD27, CD28, CD117, and CD81) of MRD in MM patients at different disease stages.

Materials & Methods. The present study enrolled 62 MM patients aged 31–76 years (median 58 years); 25 women and 37 men. The analysis focused on morphological and immunophenotypic properties of bone marrow plasma cells. MRD was detected by 8-color flow cytometry with the use of FACSCanto II Flow Cytometer (USA) based on EuroFlow standards.

Results. At the stage of primary diagnosis of MM, the immunophenotype of plasma cells was analyzed in all 62 patients using two 8-color panels recommended by the EuroFlow Consortium (2012). In accordance with primary immunophenotyping data, MRD was evaluated on the basis of not only the main diagnostic markers of plasma cells (CD38, CD138, CD45, CD56, and CD19), but also the complementary ones, such as CD27, CD28, CD117, and CD81. The study was basically conducted after induction therapy and upon remission. With cut-off > 0.01 % of aberrant plasma cells, the MRD incidence was the following: 91.0 % with CD27, 90.6 % with CD28, 87.0 % with CD117, and 96.7 % with CD81 markers. Respectively, no MRD was detected in 9.0 % with CD27, 9.4 % with CD28, 13.0 % with CD117, and 3.3 % with CD81 markers.

Conclusion. Using the set of complementary markers including CD27, CD28, CD117, and CD81 allows to establish a more accurate MRD status in MM, i.e. either negative or positive one, taking into account the expression of basic antigens CD38, CD138, CD45, CD56, and CD19.

Keywords: multiple myeloma, minimal residual disease, plasma cells, bone marrow, multicolor flow cytometry.

Received: March 2, 2022

Accepted: August 30, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017.
  2. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–e548. doi: 10.1016/S1470-2045(14)70442-5.
  3. Злокачественные новообразования в России в 2019 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2020. 252 с.
    [Kaprin AD, Starinskii VV, Shakhzadova AO, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2019 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2019 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; 252 p. (In Russ)]
  4. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018. 324 с.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. 324 р. (In Russ)]
  5. van Dongen JJ, Lhermitte L, Bottcher S, et al. EuroFlow antibody panels for standardized n-dimentional flow cytometric immunophenotyling of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908–75. doi: 10.1038/leu.2012.120.
  6. Flores-Montero J, de Tute R, Paiva B, et al. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications or MRD detection in multiple myeloma. Cytometry B Clin Cytom. 2016;90(1):61–72. doi: 10.1002/cyto.b.21265.
  7. Mateo G, Montalban MA, Vidriales MB, et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol. 2008;26(16):2737–44. doi: 10.1200/JCO.2007.15.4120.
  8. Chen F, Hu Y, Wang X, et al. Expression of CD81 and CD117 in plasma cell myeloma and the relationship to prognosis. Cancer Med. 2018;7(12):5920–7. doi: 10.1002/cam4.1840.