Efficacy Predictors of the Third-Line Tyrosine Kinase Inhibitor Therapy in Patients with Chronic Phase of Chronic Myeloid Leukemia: Results of a Multi-Center Study

EG Lomaia1, VA Shuvaev2,3, TV Chitanava1, YuD Matvienko1, IS Martynkevich2, SV Voloshin2, EV Efremova2, ES Mileeva2, MS Fominykh4, AE Kersilova3, EV Karyagina5, NV Il’ina5, NV Dorofeeva6, NV Medvedeva6, AV Klimovich6, TV Shneider7, SA Stepanova7, NF Polezhaikovskaya7, NT Siordiya1, EI Sbityakova1, NS Lazorko1, EN Tochenaya1, DV Motorin1, NA Shnalieva1, YuA Alekseeva1, DB Zammoeva1, AYu Zaritskey1

1 VA Almazov National Medical Research Center, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024

3 VV Veresaev Municipal Clinical Hospital, 10 Lobnenskaya ul., Moscow, Russian Federation, 127644

4 AVA-PETER, Multispecialty Clinic “Skandinaviya”, 55A Liteinyi pr-t, Saint Petersburg, Russian Federation, 191014

5 Municipal Hospital No. 15, 4 Avangardnaya ul., Saint Petersburg, Russian Federation, 198205

6 Municipal Clinical Hospital No. 31, 3 Dinamo pr-t, Saint Petersburg, Russian Federation, 197110

7 Leningrad Regional Clinical Hospital, 45 korp. 2A Lunacharskogo pr-t, Saint Petersburg, Russian Federation, 194291

For correspondence: Tamara Vangelevna Chitanava, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341; e-mail: chitanava.tamara@yandex.ru

For citation: Lomaia EG, Shuvaev VA, Chitanava TV, et al. Efficacy Predictors of the Third-Line Tyrosine Kinase Inhibitor Therapy in Patients with Chronic Phase of Chronic Myeloid Leukemia: Results of a Multi-Center Study. Clinical oncohematology. 2022;15(3):271–81. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-271-281


ABSTRACT

Background. The introduction of tyrosine kinase inhibitors (TKIs) into real-world clinical practice considerably improved the prognosis for patients with chronic myeloid leukemia (CML). However, during long-term follow-up, almost 1/2 and 2/3 of patients in the chronic phase (CP) discontinue TKI therapy of the first or second line, respectively. According to the Russian and International clinical guidelines, the third-line therapy should include allogeneic hematopoietic stem cell transplantation (allo-HSCT). And yet, some patients on the third-line therapy achieve and sustain optimal response on long-term TKI administration. Up to now, no clear-cut prognostic factors of TKI efficacy in the third-line therapy have been identified. This creates a challenge for treatment decision making after the failures of two lines of TKI therapy.

Aim. To assess the efficacy of the third-line TKI therapy in real-world clinical practice and to identify the factors affecting the long-term therapy outcomes in CML-CP.

Materials & Methods. The retrospective study enrolled 73 CML-CP patients aged ≥ 18 years, treated with TKIs in the third-line at 5 specialized institutions in Saint Petersburg and Leningrad Region. Among the patients there were 26 men (35 %). The median age of the patients was 51 years (range 25–88 years).

Results. With the median (range) third-line TKI therapy duration of 14 (1–120) months, the rate of complete cytogenetic response (CCR) was 30 % (n = 22) in the total cohort. The median time before achieving CCR was 9 (4–25) months. With the median follow-up time from the beginning of third-line TKI therapy till the last visit of 25 (3–136) months, progression to accelerated phase or blast crisis was observed only in 13 (17 %) out of 73 patients. Death was reported in 26 % (n = 19) of cases, among them 5 patients whose death was not CML-associated. At the last visit, 13/73 (18 %) patients were still on third-line TKI therapy. Direct and long-term therapy outcomes, including achievement of CCR and assessment of overall and progression-free survivals, were significantly better in patients with any cytogenetic response (CR) than in those without it or without complete hematologic response.

Conclusion. The implementation of TKIs in the third-line CML-CP therapy seems to be suitable for patients with at least some CR, especially if an optimal donor of hematopoietic stem cells is unavailable or if the risk of severe allo-HSCT complications is too high.

Keywords: chronic myeloid leukemia, chronic phase, complete cytogenetic response, tyrosine kinase inhibitors, third-line therapy, allogeneic hematopoietic stem cell transplantation, minimal residual disease.

Received: April 7, 2022

Accepted: June 20, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. doi: 10.1038/s41375-020-0776-2.
  2. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. doi: 10.1182/blood-2013-05-501569.
  3. Клинические рекомендации [Хронический миелолейкоз]: стандарты ведения больных для врачей [электронный документ]. Под ред. А.Г. Туркиной и др. М., 2020. Доступно по: https://npngo.ru/biblioteka/klinicheskie_rekomendatsii__2019_god_ Ссылка активна на 7.04.2022.
    [Clinical guidelines [Chronic myeloid leukemia]: patient management standards for physicians. (Internet) Available from: https://npngo.ru/biblioteka/klinicheskie_rekomendatsii__2019_god_ (accessed 04.2022). (In Russ)]
  4. Туркина А.Г., Зарицкий А.Ю., Шуваев В.А. и др. Клинические рекомендации по диагностике и лечению хронического миелолейкоза. Клиническая онкогематология. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316.
    [Turkina AG, Zaritskii AYu, Shuvaev VA, et al. Clinical Recommendations for the Diagnosis and Treatment of Chronic Myeloid Leukemia. Clinical oncohematology. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316. (In Russ)]
  5. Hochhaus A, Larson RA, Guilhot F, et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N Engl J Med. 2017;376(10):917–27. doi: 10.1056/NEJMoa1609324.
  6. Stone RM, Kim DW, Kantarjian HM, et al. Dasatinib dose-optimization study in chronic phase chronic myeloid leukemia (CML-CP): three-year follow-up with dasatinib 100 mg once daily and landmark analysis of cytogenetic response and progression-free survival (PFS). J Clin Oncol. 2009;27(15_suppl):7007. doi: 10.1200/jco.2009.27.15_suppl.7007.
  7. Shah NP, Cortes JE, Schiffer CA, et al. Five-year follow-up of patients with imatinib-resistant or -intolerant chronic-phase chronic myeloid leukemia (CML-CP) receiving dasatinib. J Clin Oncol. 2011;29(15_suppl):6512. doi: 10.1200/jco.2011.29.15_suppl.6512.
  8. Kantarjian HM, Giles FJ, Bhalla KN, et al. Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow-up results. Blood. 2011;117(4):1141–5. doi: 10.1182/blood-2010-03-277152.
  9. Cortes JE, Kantarjian HM, Brummendorf TH, et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood. 2011;118(17):4567–76. doi: 10.1182/blood-2011-05-355594.
  10. Gambacorti-Passerini C, Cortes JE, Lipton JH, et al. Safety and efficacy of second-line bosutinib for chronic phase chronic myeloid leukemia over a five-year period: final results of a phase I/II study. Haematologica. 2018;103(8):1298–307. doi: 10.3324/haematol.2017.171249.
  11. Шуваев В.А., Виноградова О.Ю., Мартынкевич И.С. и др. Опыт и перспективы клинического применения бозутиниба у пациентов с хроническим миелолейкозом. Клиническая онкогематология. 2018;11(4):288–94. doi: 10.21320/2500-2139-2018-11-4-288-294.
    [Shuvaev VA, Vinogradova OYu, Martynkevich IS, et al. Clinical Experience and Perspectives of Bosutinib Use in Patients with Chronic Myeloid Leukemia. Clinical oncohematology. 2018;11(4):288–94. doi: 10.21320/2500-2139-2018-11-4-288-294. (In Russ)]
  12. Лазорко Н.С., Ломаиа Е.Г., Романова Е.Г. и др. Ингибиторы тирозинкиназ второго поколения и их токсичность у больных в хронической фазе хронического миелолейкоза. Клиническая онкогематология. 2015;8(3):302–8. doi: 10.21320/2500-2139-2015-8-3-302-308.
    [Lazorko NS, Lomaia EG, Romanova EG, et al. Second Generation Tyrosine Kinase Inhibitors and Their Toxicity in Treatment of Patients in Chronic Phase of Chronic Myeloid Leukemia. Clinical oncohematology. 2015;8(3):302–8. doi: 21320/2500-2139-2015-8-3-302-308. (In Russ)]
  13. Giralt SA, Arora M, Goldman JM, et al. Impact of imatinib therapy on the use of allogeneic haematopoietic progenitor cell transplantation for the treatment of chronic myeloid leukaemia. Br J Haematol. 2007;137(5):461–7. doi: 10.1111/j.1365-2141.2007.06582.x.
  14. Лазорко Н.С., Ломаиа Е.Г., Зарицкий А.Ю. и др. Результаты третьей линии таргетной терапии у больных хроническим миелолейкозом в хронической фазе при непереносимости или неэффективности двух ингибиторов тирозинкиназ. Клиническая онкогематология. 2016;9(3):352–3.
    [Lazorko NS, Lomaia EG, Zaritskey AYu, et al. The results of the third-line targeted therapy in chronic myeloid leukemia patients in chronic phase with intolerability or inefficacy of two tyrosine kinase inhibitors. Clinical oncohematology. 2016;9(3):352–3. (In Russ)]
  15. Russo Rossi A, Breccia M, Abruzzese E, et al. Outcome of 82 chronic myeloid leukemia patients treated with nilotinib or dasatinib after failure of two prior tyrosine kinase inhibitors. Haematologica. 2013;98(3):399–403. doi: 10.3324/haematol.2012.064337.
  16. Lauseker M, Hanfstein B, Haferlach C, et al. Equivalence of BCR-ABL transcript levels with complete cytogenetic remission in patients with chronic myeloid leukemia in chronic phase. J Cancer Res Clin Oncol. 2014;140(11):1965–9. doi: 10.1007/s00432-014-1746-8.
  17. Pfirrmann M, Hochhaus A, Lauseker M, et al. Recommendations to meet statistical challenges arising from endpoints beyond overall survival in clinical trials on chronic myeloid leukemia. Leukemia. 2011;25(9):1433–8. doi: 10.1038/leu.2011.116.
  18. Kantarjian H, O’Brien S, Jabbour E, et al. Impact of treatment end point definitions on perceived differences in long-term outcome with tyrosine kinase inhibitor therapy in chronic myeloid leukemia. J Clin Oncol. 2011;29(23):3173–8. doi: 10.1200/JCO.2010.33.4169.
  19. Ongoren S, Eskazan AE, Suzan V, et al. Third-line treatment with second-generation tyrosine kinase inhibitors (dasatinib or nilotinib) in patients with chronic myeloid leukemia after two prior TKIs: real-life data on a single center experience along with the review of the literature. Hematology. 2018;23(4):212–20. doi: 10.1080/10245332.2017.1385193.
  20. Ibrahim AR, Paliompeis C, Bua M, et al. Efficacy of tyrosine kinase inhibitors (TKIs) as third-line therapy in patients with chronic myeloid leukemia in chronic phase who have failed 2 prior lines of TKI therapy. Blood. 2010;116(25):5497–500. doi: 10.1182/blood-2010-06-291922.
  21. Bosi GR, Fogliatto LM, Costa TEV, et al. What happens to intolerant, relapsed or refractory chronic myeloid leukemia patients without access to clinical trials? Hematol Transfus Cell Ther. 2019;41(3):222–8. doi: 10.1016/j.htct.2018.11.005.
  22. Garg RJ, Kantarjian H, O’Brien S, et al. The use of nilotinib or dasatinib after failure to 2 prior tyrosine kinase inhibitors: long-term follow-up. Blood. 2009;114(20):4361–8. doi: 10.1182/blood-2009-05-221531.
  23. Ribeiro BF, Miranda EC, Albuquerque DM, et al. Treatment with dasatinib or nilotinib in chronic myeloid leukemia patients who failed to respond to two previously administered tyrosine kinase inhibitors—a single center experience. Clinics (Sao Paulo). 2015;70(8):550–5. doi: 10.6061/clinics/2015(08)04.
  24. Cortes JE, Khoury HJ, Kantarjian HM, et al. Long-term bosutinib for chronic phase chronic myeloid leukemia after failure of imatinib plus dasatinib and/or nilotinib. Am J Hematol. 2016;91(12):1206–14. doi: 10.1002/ajh.24536.
  25. Garcia-Gutierrez V, Milojkovic D, Hernandez-Boluda JC, et al. Safety and efficacy of bosutinib in fourth-line therapy of chronic myeloid leukemia patients. Ann Hematol. 2019;98(2):321–30. doi: 10.1007/s00277-018-3507-2.
  26. Giles FJ, le Coutre PD, Pinilla-Ibarz J, et al. Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia. 2013;27(1):107–12. doi: 10.1038/leu.2012.181.
  27. Shah NP, Guilhot F, Cortes JE, et al. Long-term outcome with dasatinib after imatinib failure in chronic-phase chronic myeloid leukemia: follow-up of a phase 3 study. Blood. 2014;123(15):2317–24. doi: 10.1182/blood-2013-10-532341.
  28. Milojkovic D, Nicholson E, Apperley JF, et al. Early prediction of success or failure of treatment with second-generation tyrosine kinase inhibitors in patients with chronic myeloid leukemia. Haematologica. 2010;95(2):224–31. doi: 10.3324/haematol.2009.012781.
  29. Tan J, Xue M, Pan J, et al. Responses to Dasatinib as a Second- and Third-Line Tyrosine Kinase Inhibitor in Chronic Phase Chronic Myeloid Leukaemia Patients. Acta Haematol. 2019;142(2):79–86. doi: 10.1159/000495335.
  30. Jabbour E, Bahceci E, Zhu C, et al. Predictors of Long-Term Cytogenetic Response Following Dasatinib Therapy of Patients with Chronic-Phase Chronic Myeloid Leukemia (CML-CP). Blood. 2009;114(22):3296. doi: 10.1182/blood.V114.22.3296.3296.
  31. Soverini S, Hochhaus A, Nicolini FE, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118(5):1208–15. doi: 10.1182/blood-2010-12-326405.

Stratification of Patients with Multiple Myeloma: State-of-the-Art and Prospects

AYu Aksenova1, AS Zhuk2, EI Stepchenkova1,3, SV Gritsaev4

1 Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, Russian Federation, 199034

2 ITMO National Research University, 49 lit. A Kronverkskii pr-t, Saint Petersburg, Russian Federation, 197101

3 NI Vavilov Institute of General Genetics, Saint Petersburg branch, 7/9 Universitetskaya nab., Saint Petersburg, Russian Federation, 199034

4 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024

For correspondence: Anna Yurevna Aksenova, PhD in Biology, 17 Botanicheskaya ul., Saint Petersburg, Russian Federation, 198504; Tel.: +7(812)428-40-09; e-mail: a.aksenova@spbu.ru; Sergei Vasilevich Gritsaev, MD, PhD, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024; Tel.: +7(812)717-54-68; e-mail: gritsaevsv@mail.ru

For citation: Aksenova AYu, Zhuk AS, Stepchenkova EI, Gritsaev SV. Stratification of Patients with Multiple Myeloma: State-of-the-Art and Prospects. Clinical oncohematology. 2022;15(3):259–70. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-259-270


ABSTRACT

In recent years, there has been a substantial progress in improving progression-free survival (PFS) and quality of life of multiple myeloma (MM) patients. This has become possible through implementation of novel drugs into clinical practice which were developed on the basis of multiomic molecular genetic studies in MM. The results of these studies also enabled to assess genetic heterogeneity of tumor cells in MM. That allowed to identify types and prevalence of single-nucleotide variations, structural chromosomal aberrations, and abnormal copy numbers of chromosomes in the genome of malignant plasma cells. It was shown that MM patients can have quite different spectra of detected genetic defects in the tumor. High genetic disease heterogeneity is one of the major causes of differences in drug efficacy and PFS. The present review comprehensively discusses the value of some chromosomal aberrations in risk stratification of MM patients. It describes the most prevalent aberrations, also those associated with high and low risk of early MM progression which have already been included in different international prognostic scores. Besides, the additional aberrations were determined which are potentially applicable in clinical practice. Special attention was paid to risk assessment in case a number of different chromosome rearrangements are identified in a patient. The review outlines challenges and prospects of dealing with the information on chromosome rearrangements in choosing the most optimal treatment strategy and assessing of its efficacy. In this context, emphasis is laid on integrating genetic data and such clinical parameters as age, comorbidity, renal failure, bone lesions, indications for autologous hematopoietic stem cell transplantation, etc.

Keywords: multiple myeloma, international staging systems, chromosome rearrangements, R-ISS, R2-ISS, mSMART, MASS.

Received: March 28, 2022

Accepted: June 5, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Бессмельцев C.C. Множественная миелома (патогенез, клиника, диагностика, дифференциальный диагноз). Часть I. Онкогематология. 2013;3(6):237–57.
    [Bessmeltsev SS. Multiple myeloma (pathogenesis, clinical features, diagnosis, differential diagnosis). Part I. Onkogematologiya. 2013;3(6):237–57. (In Russ)]
  2. Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95(5):548–67. doi: 10.1002/ajh.25791.
  3. Binder M, Nandakumar B, Rajkumar SV, et al. Mortality trends in multiple myeloma after the introduction of novel therapies in the United States. Leukemia. 2021;36(3):801–8. doi: 10.1038/s41375-021-01453-5.
  4. Chalopin T, Vallet N, Theisen O, et al. No survival improvement in patients with high-risk multiple myeloma harbouring del(17p) and/or t(4;14) over the two past decades. Br J Haematol. 2021;194(3):635–8. doi: 10.1111/bjh.17488.
  5. Aksenova AY, Zhuk AS, Lada AG, et al. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers. 2021;13(23):5949. doi: 10.3390/cancers13235949.
  6. Rasillo A, Tabernero MD, Sanchez ML, et al. Fluorescence in situ hybridization analysis of aneuploidization patterns in monoclonal gammopathy of undetermined significance versus multiple myeloma and plasma cell leukemia. Cancer. 2003;97(3):601–9. doi: 10.1002/cncr.11100.
  7. Rajkumar SV, Kumar S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020;10(9):94. doi: 10.1038/s41408-020-00359-2.
  8. Walker BA, Wardell CP, Murison A, et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 2015;6:6997. doi: 10.1038/ncomms7997.
  9. Rustad EH, Yellapantula V, Leongamornlert D, et al. Timing the initiation of multiple myeloma. Nat Commun. 2020;11(1):1–14. doi: 10.1038/s41467-020-15740-9.
  10. Plowright EE, Li Z, Bergsagel PL, et al. Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood. 2000;95(3):992–8.
  11. Alvarez JV, Frank DA. Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol Ther. 2004;3(11):1045–50. doi: 10.4161/cbt.3.11.1172.
  12. Ramlee MK, Wang J, Toh WX, Li S. Transcription regulation of the human telomerase reverse transcriptase (hTERT) gene. Genes. 2016;7(8):50. doi: 10.3390/genes7080050.
  13. Marango J, Shimoyama M, Nishio H, et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood. 2008;111(6):3145–54. doi: 10.1182/blood-2007-06-092122.
  14. Xie Z, Chng WJ. MMSET: Role and therapeutic opportunities in multiple myeloma. Biomed Res Int. 2014;2014:636514. doi: 10.1155/2014/636514.
  15. Dutta AK, Fink JL, Grady JP, et al. Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia. 2019;33(2):457–68. doi: 10.1038/s41375-018-0206-x.
  16. Maura F, Bolli N, Rustad EH, et al. Moving from Cancer Burden to Cancer Genomics for Smoldering Myeloma: A Review. JAMA Oncol. 2020;6(3):425–32. doi: 10.1001/jamaoncol.2019.4659.
  17. Maura F, Bolli N, Angelopoulos N, et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun. 2019;10(1):1–12. doi: 10.1038/s41467-019-11680-1.
  18. Konigsberg R, Ackermann J, Kaufmann H, et al. Deletions of chromosome 13q in monoclonal gammopathy of undetermined significance. Leukemia. 2000;14(11):1975–9. doi: 10.1038/sj.leu.2401909.
  19. Avet-Loiseau H, Li JY, Morineau N, et al. Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myelome. Blood. 1999;94(8):2583–9.
  20. Shaughnessy J, Tian E, Sawyer J, et al. High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood. 2000;96(4):1505–11. doi: 10.1182/blood.v96.4.1505.
  21. Walker BA, Leone PE, Chiecchio L, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116(15). doi: 10.1182/blood-2010-04-279596.
  22. Chavan SS, He J, Tytarenko R, et al. Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker. Blood Cancer J. 2017;7(2):e535. doi: 10.1038/bcj.2017.12.
  23. Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132(6):587–97. doi: 10.1182/blood-2018-03-840132.
  24. Manier S, Salem KZ, Park J, et al. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14(2):100–13. doi: 10.1038/nrclinonc.2016.122.
  25. Lode L, Eveillard M, Trichet V, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica. 2010;95(11):1973–6. doi: 10.3324/haematol.2010.023697.
  26. Oliva S, De Paoli L, Ruggeri M, et al. A longitudinal analysis of chromosomal abnormalities in disease progression from MGUS/SMM to newly diagnosed and relapsed multiple myeloma. Ann Hematol. 2021;100(2):437–43. doi: 10.1007/s00277-020-04384-w.
  27. Lopez-Corral L, Gutierrez NC, Vidriales MB, et al. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clin Cancer Res. 2011;17(7):1692–700. doi: 10.1158/1078-0432.CCR-10-1066.
  28. Mikulasova A, Smetana J, Wayhelova M, et al. Genomewide profiling of copy-number alteration in monoclonal gammopathy of undetermined significance. Eur J Haematol. 2016;97(6):568–75. doi: 10.1111/EJH.12774.
  29. Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5(1):1–13. doi: 10.1038/ncomms3997.
  30. Walker BA, Boyle EM, Wardell CP, et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol. 2015;33(33):3911–20. doi: 10.1200/JCO.2014.59.1503.
  31. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  32. Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: The experience of the Intergroupe Francophone du Myelome. Blood. 2007;109(8):3489–95. doi: 10.1182/blood-2006-08-040410.
  33. Jovanovic KK, Escure G, Demonchy J, et al. Deregulation and targeting of TP53 pathway in multiple myeloma. Front Oncol. 2019;8:665. doi: 10.3389/fonc.2018.00665.
  34. Walker BA, Mavrommatis K, Wardell CP, et al. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019;33(1):159–70. doi: 10.1038/s41375-018-0196-8.
  35. Chin M, Sive JI, Allen C, et al. Prevalence and timing of TP53 mutations in del(17p) myeloma and effect on survival. Blood Cancer J. 2017;7(9):e610. doi: 10.1038/bcj.2017.76.
  36. Corre J, Perrot A, Caillot D, et al. del(17p) without TP53 mutation confers a poor prognosis in intensively treated newly diagnosed patients with multiple myeloma. Blood. 2021;137(9):1192–5. doi: 10.1182/blood.2020008346.
  37. Martello M, Poletti A, Borsi E, et al. Clonal and subclonal TP53 molecular impairment is associated with prognosis and progression in multiple myeloma. Blood Cancer J. 2022;12(1):15. doi: 10.1038/S41408-022-00610-Y.
  38. Абрамова Т.В., Обухова Т.Н., Грибанова Е.О. и др. Структура и значение цитогенетических перестроек у больных множественной миеломой. Гематология и трансфузиология. 2021;66(1):54–67. doi: 10.35754/0234-5730-2021-66-1-54-67.
    [Abramova TV, Obukhova TN, Gribanova EO, et al. Structure and significance of cytogenetic abnormalities in patients with multiple myeloma. Russian journal of hematology and transfusiology. 2021;66(1):54–67. doi: 10.35754/0234-5730-2021-66-1-54-67. (In Russ)]
  39. Schmidt TM, Fonseca R, Usmani SZ. Chromosome 1q21 abnormalities in multiple myeloma. Blood Cancer J. 2021;11(4):1–11. doi: 10.1038/s41408-021-00474-8.
  40. Shi L, Wang S, Zangari M, et al. Over-expression of CKS1B activates both MEK/ERK and JAK/STAT3 signaling pathways and promotes myeloma cell drug-resistance. Oncotarget. 2010;1(1):22–33. doi: 10.18632/ONCOTARGET.105.
  41. Schmidt TM, Barwick BG, Joseph N, et al. Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. 2019;9(12):94. doi: 10.1038/s41408-019-0254-0.
  42. Neben K, Lokhorst HM, Jauch A, et al. Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood. 2012;119(4):940–8. doi: 10.1182/blood-2011-09-379164.
  43. Minguela A, Vasco-Mogorron MA, Campillo JA, et al. Predictive value of 1q21 gain in multiple myeloma is strongly dependent on concurrent cytogenetic abnormalities and first-line treatment. Am J Cancer Res. 2021;11(9):4438.
  44. Giri S, Huntington SF, Wang R, et al. Chromosome 1 abnormalities and survival of patients with multiple myeloma in the era of novel agents. Blood Adv. 2020;4(10):2245–53. doi: 10.1182/bloodadvances.2019001425.
  45. Weinhold N, Salwender HJ, Cairns DA, et al. Chromosome 1q21 abnormalities refine outcome prediction in patients with multiple myeloma – a meta-analysis of 2,596 trial patients. Haematologica. 2021;106(10):2754–8. doi: 10.3324/HAEMATOL.2021.278888.
  46. Shaughnessy J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27 Kip1 and an aggressive clinical course in multiple myeloma. Hematology. 2005;10(Suppl 1):117–26. doi: 10.1080/10245330512331390140.
  47. Hanamura I. Gain/amplification of chromosome arm 1q21 in multiple myeloma. Cancers. 2021;13(2):1–16. doi: 10.3390/cancers13020256.
  48. Mikulasova A, Wardell CP, Murison A, et al. The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma. Haematologica. 2017;102(9):1617–25. doi: 10.3324/haematol.2017.163766.
  49. Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: Incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108(5):1724–32. doi: 10.1182/blood-2006-03-009910.
  50. Greipp PR, Miguel JS, Dune BGM, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–20. doi: 10.1200/JCO.2005.04.242.
  51. Dimopoulos MA, Barlogie B, Smith TL, Alexanian R. High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med. 1991;115(12):931–5. doi: 10.7326/0003-4819-115-12-931.
  52. Terpos E, Katodritou E, Roussou M, et al. High serum lactate dehydrogenase adds prognostic value to the international myeloma staging system even in the era of novel agents. Eur J Haematol. 2010;85(2):114–9. doi: 10.1111/J.1600-0609.2010.01466.X.
  53. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–21. doi: 10.1038/LEU.2009.174.
  54. Chng WJ, Dispenzieri A, Chim CS, et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28(2):269–77. doi: 10.1038/LEU.2013.247.
  55. Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: A report from international myeloma working group. J Clin Oncol. 2015;33(26):2863–9. doi: 10.1200/JCO.2015.61.2267.
  56. Boyd KD, Ross FM, Chiecchio L, et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia. 2012;26(2):349–55. doi: 10.1038/LEU.2011.204.
  57. Ravi G, Gonsalves WI. Current diagnosis, risk stratification and treatment paradigms in newly diagnosed multiple myeloma. Cancer Treat Res Commun. 2021;29:100444. doi: 10.1016/J.CTARC.2021.100444.
  58. Wallington-Beddoe CT, Mynott RL. Prognostic and predictive biomarker developments in multiple myeloma. J Hematol Oncol. 2021;14(1):1–15. doi: 10.1186/S13045-021-01162-7.
  59. Mikhael JR, Dingli D, Roy V, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo stratification of myeloma and risk-adapted therapy (mSMART) consensus guidelines 2013. Mayo Clin Proc. 2013;88(4):360–76. doi: 10.1016/J.MAYOCP.2013.01.019.
  60. Dispenzieri A, Rajkumar SV, Gertz MA, et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc. 2007;82(3):323–41. doi: 10.4065/82.3.323.
  61. Cho HJ, Jung SH, Jo JC, et al. Development of a new risk stratification system for patients with newly diagnosed multiple myeloma using R-ISS and 18F-FDG PET/CT. Blood Cancer J. 2021;11(12):190. doi: 10.1038/S41408-021-00577-2.
  62. Galieni P, Travaglini F, Vagnoni D, et al. The detection of circulating plasma cells may improve the Revised International Staging System (R-ISS) risk stratification of patients with newly diagnosed multiple myeloma. Br J Haematol. 2021;193(3):542–50. doi: 10.1111/BJH.17118.
  63. Mellors PW, Binder M, Ketterling RP, et al. Metaphase cytogenetics and plasma cell proliferation index for risk stratification in newly diagnosed multiple myeloma. Blood Adv. 2020;4(10):2236. doi: 10.1182/BLOODADVANCES.2019001275.
  64. Terpos E, Katodritou E, Tsiftsakis E, et al. Cystatin-C is an independent prognostic factor for survival in multiple myeloma and is reduced by bortezomib administration. Haematologica. 2009;94(3):372–9. doi: 10.3324/HAEMATOL.2008.000638.
  65. Zhang J, Jiang Y, Guo D, et al. The role of cystatin C in multiple myeloma. Int J Lab Hematol. 2022;44(1):135–41. doi: 10.1111/IJLH.13695.
  66. Chen X, Liu L, Chen M, et al. A Five-Gene Risk Score Model for Predicting the Prognosis of Multiple Myeloma Patients Based on Gene Expression Profiles. Front Genet. 2021;12:785330. doi: 10.3389/FGENE.2021.785330/BIBTEX.
  67. Rangel-Pozzo A, Yu PLI, Lal S, et al. Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma. Cancers. 2021;13(8):1969. doi: 10.3390/CANCERS13081969.
  68. D’Agostino M, Lahuerta J-J, Wester R, et al. A New Risk Stratification Model (R2-ISS) in Newly Diagnosed Multiple Myeloma: Analysis of Mature Data from 7077 Patients Collected By European Myeloma Network within Harmony Big Data Platform. Blood. 2020;136(Suppl 1):34–7. doi: 10.1182/blood-2020-137021.
  69. Abdallah NH, Binder M, Rajkumar SV, et al. A simple additive staging system for newly diagnosed multiple myeloma. Blood Cancer J. 2022;12(1):21. doi: 10.1038/S41408-022-00611-X.
  70. Dimopoulos MA, Moreau P, Terpos E, et al. Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. HemaSphere. 2021;5(2):e528. doi: 10.1097/HS9.0000000000000528.
  71. Touzeau C, Maciag P, Amiot M, Moreau P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia. 2018;32(9):1899–907. doi: 10.1038/s41375-018-0223-9.
  72. Paner A, Patel P, Dhakal B. The evolving role of translocation t(11;14) in the biology, prognosis, and management of multiple myeloma. Blood Rev. 2020;41:100643. doi: 10.1016/j.blre.2019.100643.
  73. Greenberg AJ, Rajkumar S V, Therneau TM, et al. Relationship between initial clinical presentation and the molecular cytogenetic classification of myeloma. Leukemia. 2014;28(2):398–403. doi: 10.1038/LEU.2013.258.
  74. Abdallah N, Rajkumar SV, Greipp P, et al. Cytogenetic abnormalities in multiple myeloma: association with disease characteristics and treatment response. Blood Cancer J. 2020;10(8):1–9. doi: 10.1038/s41408-020-00348-5.
  75. Sato S, Kamata W, Okada S, Tamai Y. Clinical and prognostic significance of t(4;14) translocation in multiple myeloma in the era of novel agents. Int J Hematol. 2021;113(2):207–13. doi: 10.1007/S12185-020-03005-6.
  76. Shah MY, Martinez-Garcia E, Phillip JM, et al. MMSET/WHSC1 enhances DNA damage repair leading to an increase in resistance to chemotherapeutic agents. Oncogene. 2016;35(45):5905–15. doi: 10.1038/onc.2016.116.
  77. Jaksic W, Trudel S, Chang H, et al. Clinical outcomes in t(4;14) multiple myeloma: a chemotherapy-sensitive disease characterized by rapid relapse and alkylating agent resistance. J Clin Oncol. 2005;23(28):7069–73. doi: 10.1200/JCO.2005.17.129.
  78. Avet-Loiseau H, Leleu X, Roussel M, et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol. 2010;28(30):4630–4. doi: 10.1200/JCO.2010.28.3945.
  79. An G, Xu Y, Shi L, et al. Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica. 2014;99(2):353–9. doi: 10.3324/haematol.2013.088211.
  80. Caro J, Al Hadidi S, Usmani S, et al. How to Treat High-Risk Myeloma at Diagnosis and Relapse. Am Soc Clin Oncol Educ Book. 2021;41(41):291–309. doi: 10.1200/edbk_320105.
  81. Marneni N, Chakraborty R. Current Approach to Managing Patients with Newly Diagnosed High-Risk Multiple Myeloma. Curr Hematol Malig Rep. 2021;16(2):148–61. doi: 10.1007/S11899-021-00631-7.
  82. Rajkumar SV. Sequencing of myeloma therapy: Finding the right path among many standards. Hematol Oncol. 2021;39(Suppl 1):68–72. doi: 10.1002/HON.2848.
  83. Bal S, Giri S, Godby KN, Costa LJ. New regimens and directions in the management of newly diagnosed multiple myeloma. Am J Hematol. 2021;96(3):367–78. doi: 10.1002/AJH.26080.
  84. Ntanasis-Stathopoulos I, Gavriatopoulou M, Kastritis E, et al. Multiple myeloma: Role of autologous transplantation. Cancer Treat Rev. 2020;82:101929. doi: 10.1016/j.ctrv.2019.101929.
  85. Cavo M, Gay F, Beksac M, et al. Autologous haematopoietic stem-cell transplantation versus bortezomib–melphalan–prednisone, with or without bortezomib–lenalidomide–dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 2020;7(6):e456–e468. doi: 10.1016/S2352-3026(20)30099-5.
  86. Vaxman I, Visram A, Kapoor P, et al. Outcomes of multiple myeloma patients with del 17p undergoing autologous stem cell transplantation. Am J Hematol. 2021;96(1):E35–E38. doi: 10.1002/AJH.26023.
  87. Gagelmann N, Eikema DJ, de Wreede LC, et al. Upfront stem cell transplantation for newly diagnosed multiple myeloma with del(17p) and t(4;14): a study from the CMWP-EBMT. Bone Marrow Transplant. 2021;56(1):210–7. doi: 10.1038/S41409-020-01007-W.
  88. Srour SA, Saliba RM, Bashir Q, et al. Influence of Overlapping Genetic Abnormalities on Treatment Outcomes of Multiple Myeloma. Transplant Cell Ther. 2021;27(3):243.e1–243.e6. doi: 10.1016/j.jtct.2020.10.021.
  89. Croft J, Ellis S, Sherborne AL, et al. Copy number evolution and its relationship with patient outcome—an analysis of 178 matched presentation-relapse tumor pairs from the Myeloma XI trial. Leukemia. 2021;35(7):2043–53. doi: 10.1038/s41375-020-01096-y.
  90. Perrot A, Lauwers-Cances V, Tournay E, et al. Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J Clin Oncol. 2019;37(19):1657–65. doi: 10.1200/JCO.18.00776.
  91. Shah V, Sherborne AL, Walker BA, et al. Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients. Leukemia. 2018;32(1):102–10. doi: 10.1038/LEU.2017.179.
  92. Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–5. doi: 10.1182/BLOOD-2011-11-390658.
  93. Chretien ML, Corre J, Lauwers-Cances V, et al. Understanding the role of hyperdiploidy in myeloma prognosis: Which trisomies really matter? Blood. 2015;126(25):2713–9. doi: 10.1182/blood-2015-06-650242.
  94. Hebraud B, Magrangeas F, Cleynen A, et al. Role of additional chromosomal changes in the prognostic value of t(4;14) and del(17p) in multiple myeloma: the IFM experience. Blood. 2015;125(13):2095–100. doi: 10.1182/BLOOD-2014-07-587964.
  95. Takamatsu H, Yamashita T, Kurahashi S, et al. Clinical Implications of t(11;14) in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation. Biol Blood Marrow Transplant. 2019;25(3):474–9. doi: 10.1016/J.BBMT.2018.11.003.
  96. John L, Krauth MT, Podar K, Raab MS. Pathway-directed therapy in multiple myeloma. Cancers. 2021;13(7):1668. doi: 10.3390/cancers13071668.
  97. Leow CCY, Low MSY. Targeted therapies for multiple myeloma. J Pers Med. 2021;11(5):334. doi: 10.3390/jpm11050334.
  98. Goldman-Mazur S, Vesole DH, Jurczyszyn A. Clinical implications of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematol Pol. 2021;52(1):18–28. doi: 10.5603/AHP.2021.0004.
  99. Cardona-Benavides IJ, de Ramon C, Gutierrez NC. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells. 2021;10(2):336. doi: 10.3390/cells10020336.
  100. Mao XH, Zhuang JL, Zhao DD, et al. IgH translocation with undefined partners is associated with superior outcome in multiple myeloma patients. Eur J Haematol. 2020;105(3):326–34. doi: 10.1111/ejh.13440.
  101. Hassan H, Szalat R. Genetic predictors of mortality in patients with multiple myeloma. Appl Clin Genet. 2021;14:241–54. doi: 10.2147/TACG.S262866.
  102. Sessa M, Cavazzini F, Cavallari M, et al. Tangle of genomic aberrations drives multiple myeloma and correlates with clinical aggressiveness of the disease: a comprehensive review from a biological perspective to clinical trial results. Genes. 2020;11(12):1–24. doi: 10.3390/GENES11121453.
  103. Jackson GH, Pawlyn C, Cairns DA, et al. Carfilzomib, lenalidomide, dexamethasone, and cyclophosphamide (KRdc) as induction therapy for transplant-eligible, newly diagnosed multiple myeloma patients (Myeloma XI+): Interim analysis of an open-label randomised controlled trial. PLOS Med. 2021;18(1):e1003454. doi: 10.1371/JOURNAL.PMED.1003454.
  104. Qiang YW, Ye S, Chen Y, et al. MAF protein mediates innate resistance to proteasome inhibition therapy in multiple myeloma. Blood. 2016;128(25):2919–30. doi: 10.1182/BLOOD-2016-03-706077.
  105. Rajkumar VS. Multiple myeloma: selection of initial chemotherapy for symptomatic disease. Available from: https://www.uptodate.com/contents/multiple-myeloma-selection-of-initial-chemotherapy-for-symptomatic-disease (accessed 23.03.2022).
  106. Qiang YW, Ye S, Huang Y, et al. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma. BMC Cancer. 2018;18(1):1–13. doi: 10.1186/S12885-018-4602-4/FIGURES/6.
  107. Mateos MV, Martinez BP, Gonzalez-Calle V. High-risk multiple myeloma: how to treat at diagnosis and relapse? Hematology. 2021;2021(1):30–6. doi: 10.1182/HEMATOLOGY.2021000229.
  108. Sonneveld P, Avet-Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood. 2016;127(24):2955–62. doi: 10.1182/blood-2016-01-631200.
  109. Costa LJ, Usmani SZ. Defining and Managing High-Risk Multiple Myeloma: Current Concepts. J Natl Compr Canc Netw. 2020;18(12):1730–7. doi: 10.6004/JNCCN.2020.7673.
  110. Jurczyszyn A, Charlinski G, Suska A, Vesole DH. The importance of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematol Pol. 2021;52(4):361–70. doi: 10.5603/AHP.2021.0069.
  111. Garifullin A, Voloshin S, Shuvaev V, et al. Significance of Modified Risk Stratification Msmart 3.0 and Autologous Stem Cell Transplantation for Patients with Newly Diagnosed Multiple Myeloma. Blood. 2019;134(Suppl_1):5593. doi: 10.1182/BLOOD-2019-130092.

Prognostic Value of the Degree of Tumor Tissue Infiltration by CD15-Positive Granulocytes in Nodular Sclerosis Classical Hodgkin’s Lymphoma

EA Perfilova, DA D’yakonov, MS Minaev

Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027

For correspondence: Elena Aleksandrovna Perfilova, PhD in Veterinary Medicine, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027; Tel.: +7(996)896-08-67; e-mail: lperf78@gmail.com

For citation: Perfilova EA, D’yakonov DA, Minaev MS. Prognostic Value of the Degree of Tumor Tissue Infiltration by CD15-Positive Granulocytes in Nodular Sclerosis Classical Hodgkin’s Lymphoma. Clinical oncohematology. 2022;15(3):253–8. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-253-258


ABSTRACT

Classical Hodgkin’s lymphoma (cHL) nodular sclerosis type is one of the most common malignant lymphoproliferative diseases among younger people. The tumor is considered to be potentially curable. However, despite successful application of standard treatment methods, primary resistance and relapses occur. At present, many researchers focus on studying the value of tumor microenvironment in the prognosis of the course and progression of cHL, aiming at identifying new therapeutic targets. The present paper shows that the relative count of CD15-positive granulocytes in patients with favorable course of the disease is significantly lower than in therapy-refractory patients. The cut-off of tumor microenvironment cells expressing CD15 was 8 %. The data obtained provide the basis for determining prognostic value of CD15-positive granulocytes in nodular sclerosis cHL and presenting this cell pool as a potential therapeutic target.

Keywords: classical Hodgkin’s lymphoma, nodular sclerosis, CD15 granulocytes, tumor microenvironment.

Received: April 8, 2022

Accepted: June 17, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Демина Е.А., Тумян Г.С., Моисеева Т.Н. Лимфома Ходжкина. Клинические рекомендации. Современная онкология. 2020;22(2):6–33.
    [Demina EA, Tumyan GS, Moiseeva TN. Hodgkin’s lymphoma. Clinical guidelines. Sovremennaya onkologiya. 2020;22(2):6–33. (In Russ)]
  2. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018. 356 с.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. 356 р. (In Russ)]
  3. Мочкин Н.Е., Н.Е., Саржевский В.О., Дубинина Ю.Н. и др. Результаты лечения классической лимфомы Ходжкина, включающего высокодозную химиотерапию с трансплантацией аутологичных гемопоэтических стволовых клеток, в НМХЦ им. Н.И. Пирогова. Клиническая онкогематология. 2018;11(3):234–40. doi: 10.21320/2500-2139-2018-11-3-234-240.
    [Mochkin NE, Sarzhevskii VO, Dubinina YuN, et. al. Outcome of Classical Hodgkin’s Lymphoma Treatment Based on High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantation: The Experience in the NI Pirogov Russian National Medical Center of Surgery. Clinical oncohematology. 2018;11(3):234–40. doi: 10.21320/2500-2139-2018-11-3-234-240. (In Russ)]
  4. Беляева Е.С., Сусулева Н.А., Валиев Т.Т. Значение интенсивной химиотерапии для лечения детей с распространенными стадиями лимфомы Ходжкина. РМЖ. Мать и дитя. 2020;3(2):149–54. doi: 10.32364/2618-8430-2020-3-2-149-154.
    [Belyaeva ES, Susuleva NA, Valiev TT. The importance of intensive chemotherapy for advanced Hodgkin lymphoma in children. Russian Journal of Woman and Child Health. 2020;3(2):149–54. doi: 10.32364/2618-8430-2020-3-2-149-154. (In Russ)]
  5. Олейник Е.К., Шибаев М.И., Игнатьев К.С. Микроокружение опухоли: формирование иммунного профиля. Медицинская иммунология. 2020;22(2):207–20.
    [Oleinik EK, Shibaev MI, Ignat’ev KS. Tumor microenvironment: the formation of the immune profile. Meditsinskaya immunologiya. 2020;22(2):207–20. (In Russ)]
  6. Sionov RV, Fridlender ZG, Granot Z. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenviron. 2015;8(3):125–58. doi: 10.1007/s12307-014-0147-5.
  7. Uribe-Querol E, Rosales C. Neutrophils in Cancer: Two Sides of the Same Coin. J Immunol Res. 2015;2015:983698. doi: 10.1155/2015/983698.
  8. Лисяный Н.И., Лисяный А.А. Нейтрофилы и онкогенез. Клиническая онкология. 2018;8(1):40–5.
    [Lisyanyi NI, Lisyanyi AA. Neutrophils and oncogenesis. Klinicheskaya onkologiya. 2018;8(1):40–5. (In Russ)]
  9. Потапнев М.П., Гущина Л.М., Мороз Л.А. Фенотипическая и функциональная гетерогенность субпопуляций нейтрофилов в норме и при патологии. Иммунология. 2019;5:84–96.
    [Potapnev MP, Gushchina LM, Moroz LA. Phenotypic and functional heterogeneity of neutrophil subpopulations in norm and pathology. Immunologiya. 2019;5:84–96. (In Russ)]
  10. Слуханчук Е.В. NETs и онкологический процесс. Акушерство, гинекология и репродукция. 2021;15(1):107–16. doi: 17749/2313-7347/ob.gyn.rep.2021.204.
    [Slukhanchuk EV. NETs and oncologic process. Akusherstvo, ginekologia i reprodukcia. 2021;15(1):107–16. doi: 10.17749/2313-7347/ob.gyn.rep.2021.204. (In Russ)]
  11. Fridlender ZG, Albelda SM. Tumor-associated neutrophils: Friend or foe? Carcinogenesis. 2012;33(5):949–55. doi: 10.1093/carcin/bgs123.
  12. Francischetti IMB, Alejo JC, Sivanandham R, et al. Neutrophil and Eosinophil Extracellular Traps in Hodgkin Lymphoma. HemaSphere. 2021;5(9):e633. doi: 10.1097/HS9.0000000000000633.
  13. Romano A, Pavoni C, Di Raimondo F, et al. The neutrophil to lymphocyte ratio (NLR) and the presence of large nodal mass are independent predictors of early response: A subanalysis of the prospective phase II PET-2-adapted HD0607 trial. Cancer Med. 2020;9(23):8735–46. doi: 10.1002/cam4.3396.
  14. Manfroi B, Moreaux J, Righini C, et al. Tumor-associated neutrophils correlate with poor prognosis in diffuse large B-cell lymphoma patients. Blood Cancer J. 2018;8(7):66. doi: 10.1038/s41408-018-0099-y.

Quality of Life and Efficacy of Triplet IxaRd Therapy in Relapsed/Refractory Multiple Myeloma: Results of a Multi-Center Pilot Real-World Study

TI Ionova1,2, OYu Vinogradova3,4,5, YuB Kochkareva3, EE Markova3, KD Kaplanov6, MN Shirokova6,7, TV Shelekhova8, AN Levanov8, AV Kopylova9, OYu Li10, TA Mitina11, OA Rukavitsyn12, PI Simashova12, LV Anchukova13, EN Babich14, SA Volkova15, DB Dasheeva16, MV Demchenkova17, SK Dubov18, TV Esenina19, LE Ivanova17, TL Kravchuk20, EV Rimashevskaya21, MT Savinova22, NO Saraeva23, NM Porfirieva1, TP Nikitina1,2, VV Ptushkin3

1 Multinational Center for Quality of Life Research, 1 Artilleriiskaya ul., Saint Petersburg, Russian Federation, 191014

2 Saint Petersburg State University Hospital, 154 Fontanki nab., Saint Petersburg, Russian Federation, 198103

3 Moscow Municipal Center for Hematology, SP Botkin City Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

4 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova ul., Moscow, Russian Federation, 117997

5 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela ul., Moscow, Russian Federation, 117997

6 SP Botkin City Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

7 Volgograd Regional Clinical Oncology Dispensary, 78 Zemlyachki ul., Volgograd, Russian Federation, 400138

8 VI Razumovskii Saratov State Medical University, 112 Bolshaya Kazach’ya ul., Saratov, Russian Federation, 410012

9 Lipetsk Municipal Hospital No. 3 “Svobodnyi sokol”, 10 Ushinskogo ul., Lipetsk, Russian Federation, 398007

10 Sakhalin Regional Clinical Hospital, 430 Mira pr-t, Yuzhno-Sakhalinsk, Russian Federation, 693004

11 MF Vladimirskii Moscow Regional Research Clinical Institute, 61/2 Shchepkina ul., Moscow, Russian Federation, 129110

12 NN Burdenko Main Military Clinical Hospital, 3 Gospital’naya pl., Moscow, Russian Federation, 105094

13 Vologda Regional Clinical Hospital, 17 Lechebnaya ul., Vologda, Russian Federation, 160002

14 Yugry District Clinical Hospital, 40 Kalinina ul., Khanty-Mansiisk, Russian Federation, 628011

15 Privolzhsky Research Medical University, 10/1 Minina i Pozharskogo pl., Nizhny Novgorod, Russian Federation, 603005

16 Zabaikalsky Krai Oncology Dispensary, 104 Leningradskaya ul., Chita, Russian Federation, 672027

17 Irkutsk Regional Cancer Center, 32 Frunze ul., Irkutsk, Russian Federation, 664035

18 Krai Clinical Hospital No. 2, 55 Russkaya ul., Vladivostok, Russian Federation, 690105

19 Amurskaya Regional Clinical Hospital, 26 Voronkova ul., Blagoveshchensk, Russian Federation, 675000

20 Tomsk National Research Medical Center, 5 Kooperativnyi per., Tomsk, Russian Federation, 634009

21 Russian Medical Academy of Postgraduate Education, 38 Smolnaya ul., Moscow, Russian Federation, 125445

22 Municipal Clinical Hospital No. 16, 121 Gagarina ul., Kazan, Russian Federation, 420039

23 Irkutsk Regional Clinical Hospital, 100 Yubileinyi mikroraion, Irkutsk, Russian Federation, 664049

For correspondence: Tatyana Pavlovna Nikitina, MD, PhD, 1 Artilleriiskaya ul., Saint Petersburg, Russian Federation, 191014; Tel.: +7(962)710-17-12; e-mail: qolife@mail.ru

For citation: Ionova TI, Vinogradova OYu, Kochkareva YuB, et al. Quality of Life and Efficacy of Triplet IxaRd Therapy in Relapsed/Refractory Multiple Myeloma: Results of a Multi-Center Pilot Real-World Study. Clinical oncohematology. 2022;15(3):240–52. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-240-252


ABSTRACT

Aim. To study quality of life (QoL) indicators and symptom profile as well as treatment satisfaction of patients with relapsed/refractory multiple myeloma (r/r MM) on triplet therapy based on ixazomib combined with lenalidomide and dexamethasone (IxaRd); to assess efficacy and safety of IxaRd protocol in real-world clinical practice.

Materials & Methods. The study enrolled 40 patients with confirmed r/r MM diagnosis, aged > 18 years, at 18 Russian health care institutions. They received at least one line of prior therapy and were IxaRd-eligible. Clinical and QoL indicators were assessed according to the RAND SF-36, and symptoms were evaluated using the ESAS-R questionnaire prior to IxaRd therapy and in 1, 3, 6, 9, 12, 15, and 18 months after its start. Besides, patients filled out checklists for assessment of treatment satisfaction at all time-points after therapy onset. The analysis of clinical IxaRd efficacy included assessment of treatment response by IMWG 2011 criteria, as well as response duration, overall survival (OS), and progression-free survival (PFS). The analysis of IxaRd safety was based on reporting adverse events (AEs), including severe ones (SAEs). To analyze patient-reported QoL and symptom changes during follow-up, GEE was used. To determine clinically meaningful changes, an effect size was calculated.

Results. The study included 40 r/r MM patients (mean age 63 ± 9 years, 65 % women). Median disease duration before IxaRd therapy onset was 55 months (range 2–99 months). 60 % of patients had IIIA/IIIB Durie-Salmon stage. With the median IxaRd duration of 7.5 months, clinical benefit rate was 71.8 %. Complete response was reported in 7.7 % of patients, stringent complete response in 2.6 % of patients, very good partial response in 5.1 % of patients, partial response in 30.8 % of patients, and minor response was achieved in 25.6 % of patients. Stable disease was reported in 15.4 % of patients, and disease progression was identified in 10.3 % patients, including immunochemical relapse in 1 patient. The median response duration was 16.3 months (95% confidence interval [95% CI] 15.4–17.3 months), the median PFS was 10.6 months (95% CI 6.3–16.3 months). The median OS was not reached; the 1-year OS after IxaRd therapy onset was 85.2 % (95% CI 71–99 %). AEs on IxaRd therapy were reported in 55 % of patients, SAEs were reported in 3 (7.5 %) patients. Positive QoL changes were observed on IxaRd therapy. QoL improvement was meaningful in terms of physical functioning, role-physical functioning, general health, vitality, and mental health, compared to baseline. Moreover, a considerable decrease of pain, fatigue, and nausea was revealed. On the whole, 87.5 % of patients were satisfied with the triplet IxaRd therapy.

Conclusion. The results of the present pilot study demonstrate efficacy and safety of the triplet IxaRd therapy (all per os) in real-world clinical practice from r/r MM patients’ and physicians’ perspective. Our data testify to the importance of patients’ feedback in the evaluation of therapy efficacy.

Keywords: multiple myeloma, relapsed/refractory, ixazomib, quality of life, real-world clinical practice.

Received: March 16, 2022

Accepted: June 6, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Менделеева Л.П., Вотякова О.М., Рехтина И.Г. и др. Множественная миелома. Современная онкология. 2020;22(4):6–28. doi: 10.26442/18151434.2020.4.200457.
    [Mendeleeva LP, Votiakova OM, Rekhtina IG., et al. Multiple myeloma. Journal of Modern Oncology. 2020;22(4):6–28. doi: 26442/18151434.2020.4.200457. (In Russ)]
  2. Dimopoulos MA, Moreau P, Terpos E, et al. Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021;32(3):309–22. doi: 10.1016/j.annonc.2020.11.014.
  3. Costa LJ, Omel J, Brown EE. Recent Trends in Multiple Myeloma Incidence and Survival By Age, Race and Ethnicity in the US. Blood. 2016;128(22):4774. doi: 10.1182/blood.V128.22.4774.4774.
  4. Bazarbachi AH, Al Hamed R, Malard F, et al. Relapsed refractory multiple myeloma: a comprehensive overview. Leukemia. 2019;33:2343–57. doi: 10.1038/s41375-019-0561-2.
  5. Novik A, Salek S, Ionova T (eds). Guidelines. Patient-reported outcomes in hematology. Genoa: Forum service editore; 2012. 203 p.
  6. Sonneveld P, Verelst SG, Lewis P, et al. Review of health-related quality of life data in multiple myeloma patients treated with novel agents. Leukemia. 2013;27(10):1959–69. doi: 10.1038/leu.2013.185.
  7. Kvam AK, Waage A. Health-related quality of life in patients with multiple myeloma – does it matter? Haematologica. 2015;100(6):704–5. doi: 10.3324/haematol.2015.127860.
  8. Nielsen LK, Jarden M, Andersen CL, et al. A systematic review of health-related quality of life in longitudinal studies of myeloma patients. Eur J Haematol. 2017;99(1):3–17. doi: 10.1111/ejh.12882.
  9. Galinsky J, Richard S. Patient Reported Outcome Measures (PROMs) in myeloma: are they fit for the future? 2018. Myeloma UK; 2018.
  10. Sonneveld P, De Witb E, Moreau P. How have evolutions in strategies for the treatment of relapsed/refractory multiple myeloma translated into improved outcomes for patients? Cri Rev Oncol Hematol. 2017;112:153–70. doi: 10.1016/j.critrevonc.2017.02.007.
  11. Cook G, Zweegman S, Mateos MV, et al. A question of class: treatment options for patients with relapsed and/or refractory multiple myeloma. Crit Rev Oncol Hematol. 2018;121:74–89. doi: 10.1016/j.critrevonc.2017.11.016.
  12. Tabayashi T. Management of multiple myeloma in the relapsed/refractory patient. Rinsho Ketsueki. 2019;60(9):1257–64. doi: 10.11406/rinketsu.60.1257.
  13. Рехтина И.Г., Менделеева Л.П. Эффективность помалидомидсодержащих программ у больных множественной миеломой при рефрактерности к леналидомиду. Онкогематология. 2019;14(1):8–13. doi: 10.17650/1818-8346-2019-14-1-8-13.
    [Rekhtina IG, Mendeleeva LP. Efficiency of pomalidomide therapy in patients with multiple myeloma refractory to lenalidomide. Oncohematology 2019;14(1):8–13. doi: 10.17650/1818-8346-2019-14-1-8-13. (In Russ)]
  14. Жеребцова В.А., Воробьев В.И., Гемджян Э.Г. и др. Карфилзомиб, леналидомид и дексаметазон в терапии рецидивов и рефрактерного течения множественной миеломы в реальной клинической практике. Терапевтический архив. 2021;93(7):785–92. doi: 10.26442/00403660.2021.07.200956.
    [Zherebtsova VA, Vorobyev VI, Gemdzhian EG, et al. Carfilzomib, lenalidomide and dexamethasone in relapsed/refractory multiple myeloma patients: the real-life experience. Terapevticheskii arkhiv. 2021;93(7):785–92. doi: 10.26442/00403660.2021.07.200956. (In Russ)]
  15. Moreau P, Masszi T, Grzasko N, et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;374(17):1621–34. doi: 10.1056/NEJMoa1516282.
  16. Brayer J, Baz R. The potential of ixazomib, a second generation proteasome inhibitor, in the treatment of multiple myeloma. Ther Adv Hematol. 2017;8(7):209–20. doi: 10.1177/2040620717710171.
  17. Richardson PG, Kumar S, Laubach JP, et al. New developments in the management of relapsed/refractory multiple myeloma – the role of ixazomib. J Blood Med. 2017;8:107–21. doi: 10.2147/jbm.s102328.
  18. Семочкин С.B. Иксазомиб в лечении рецидивирующей множественной миеломы. Медицинский совет. 2018;10:84–91. doi: 10.21518/2079-701X-2018-10-84-91.
    [Semochkin SV. Ixazomib in the treatment of relapsed multiple myeloma. Meditsinskiy sovet. 2018;10:84–91. doi: 10.21518/2079-701X-2018-10-84-91. (In Russ)]
  19. Ludwig H, Ponisch W, Knop S, et al. Quality of life in patients with relapsed/refractory multiple myeloma during ixazomib-thalidomide-dexamethasone induction and ixazomib maintenance therapy and comparison to the general population. Leuk Lymphoma. 2020;61(2):377–86. doi: 10.1080/10428194.2019.1666381.
  20. Пядушкина Е.А., Деркач Е.В., Игнатьева В.И. и др. Организационно-экономические аспекты применения триплетов в терапии рецидивирующей и рефрактерной множественной миеломы в условиях российского здравоохранения. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021;14(2):136–50. doi: 10.17749/2070-4909/farmakoekonomika.2021.098.
    [Pyadushkina ЕА, Derkach ЕV, Ignatyeva VI, et al. Organizational and economic aspects of triplet therapy of relapsed/refractory multiple myeloma in the Russian healthcare setting. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2021;14(2):136–50. doi: 10.17749/2070-4909/farmakoekonomika.2021.098. (In Russ)]
  21. Davies F, Rifkin R, Costello C, et al. Real-world comparative effectiveness of triplets containing bortezomib (B), carfilzomib (C), daratumumab (D), or ixazomib (I) in relapsed/refractory multiple myeloma (RRMM) in the US Ann Hematol. 2021;100:2325–37. doi: 10.1007/s00277-021-04534-8.
  22. Terpos E, Ramasamy K, Maouche N, et al. Real-world effectiveness and safety of ixazomib-lenalidomide-dexamethasone in relapsed/refractory multiple myeloma. Ann Hematol. 2020;99(5):1049–61. doi: 10.1007/s00277-020-03981-z.
  23. Yang Y, Xia ZJ, Zhang WH, et al. The efficacy and safety profile of ixazomib/lenalidomide/dexamethasone in relapsed/refractory multiple myeloma: a multicenter real-world study in China. Zhonghua Xue Ye Xue Za Zhi. 2021;42(8):628–34. doi: 10.3760/cma.j.issn.0253-2727.2021.08.003.
  24. Hajek R, Minarik J, Straub J, et al. Ixazomib-lenalidomide-dexamethasone in routine clinical practice: effectiveness in relapsed/refractory multiple myeloma. Future Oncol. 2021;17(19):2499–512. doi: 10.2217/fon-2020-1225.
  25. Varga G, Nagy Z, Demeter J, et al. Real World Efficacy and Safety Results of Ixazomib Lenalidomide and Dexamethasone Combination in Relapsed/Refractory Multiple Myeloma: Data Collected from the Hungarian Ixazomib Named Patient Program. Pathol Oncol Res. 2019;25(4):1615–20. doi: 10.1007/s12253-019-00607-2.
  26. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]
  27. Durie BGM, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measure myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36(3):842–54. doi: 10.1002/1097-0142(197509)36:3<842::aid-cncr2820360303>3.0.co;2-u.
  28. Greipp PR, San Miguel JF, Durie BG, et al. International Staging System for Multiple Myeloma. J Clin Oncol. 2005;23(15):3412–20. doi: 10.1200/JCO.2005.04.242.
  29. Rajkumar SV, Harousseau J-L, Durie B, et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. 2011;117(18):4691–5. doi: 10.1182/blood-2010-10-299487.
  30. Common Terminology Criteria for Adverse Evens (CTCAE 4) Version 4.0. Available from: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE4.032010-06-14QuickReference5х7.pdf (accessed 28.03.2022).
  31. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 10.1016/0021-9681(87)90171-8.
  32. Hays RD, Sherbourne CD, Mazel RM. User’s manual for medical outcomes study (MOS) core measures of health-related quality of life. RAND Corporation, 1995; MR-162-RC. Available from: www.rand.org (accessed 28.03.2022).
  33. Novik AA, Ionova TI, Kishtovich AV, et al. Stratification of patients using QoL parameters by the method of integral profiles. Quality Life Res. 2003;12(7):770.
  34. Bruera E, Kuehn N, Miller MJ, et al. The Edmonton Symptom Assessment System (ESAS): a simple method of the assessment of palliative care patients. J Palliat Care. 1991;7:6–9.
  35. Watanabe SM, Nekolaichuk C, Beaumont C, et al. A multi-centre comparison of two numerical versions of the Edmonton Symptom Assessment System in palliative care patients. J Pain Symptom Manage. 2011;41(2):456–68. doi: 10.1016/j.jpainsymman.2010.04.020.
  36. Atkinson MJ, Sinha A, Hass SL, et al. Validation of a general measure of treatment satisfaction, the Treatment Satisfaction Questionnaire for Medication (TSQM), using a national panel study of chronic disease. Health Qual Life Outcomes. 2004;2:12. doi: 10.1186/1477-7525-2-12.
  37. Morris SB, DeShon RP. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol Methods. 2002;7(1):105–25. doi: 10.1037/1082-989x.7.1.105.
  38. Angst F, Aeschlimanna A, Angst J. The minimal clinically important difference raised the significance of outcome effects above the statistical level, with methodological implications for future studies. J Clin Epidemiol. 2017;82:128–36. doi: 10.1016/j.jclinepi.2016.11.016.
  39. Revicki D, Hays RD, Cella DE, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol. 2008;61(2):102–9. doi: 10.1016/j.jclinepi.2007.03.012.
  40. Виноградова О.Ю., Птушкин В.В., Черников М.В. и др. Эпидемиология множественной миеломы в городе Москва. Терапевтический архив. 2019;91(7):83–92. doi: 10.26442/00403660.2019.07.000305.
    [Vinogradova OYu, Ptushkin VV, Chernikov MV, et al. Epidemiology of multiple myeloma in city Moscow. Terapevticheskii arkhiv. 2019;91(7):83–92. doi: 10.26442/00403660.2019.07.000305. (In Russ)]
  41. Семочкин С.В. Длительная непрерывная терапия как новая стратегия лечения рецидивирующей или рефрактерной множественной миеломы. Онкогематология. 2020;15(2):29–41. doi: 10.17650/1818-8346-2020-15-2-29-41.
    [Semochkin SV. Long-term continuous treatment as a new strategy for relapsed or refractory multiple myeloma. Oncohematology. 2020;15(2):29–41. doi: 10.17650/1818-8346-2020-15-2-29-41. (In Russ)]
  42. Семочкин С.В. Новые ингибиторы протеасомы в терапии множественной миеломы. Онкогематология. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40.
    [Semochkin SV. New proteasome inhibitors in the management of multiple myeloma. Oncohematology. 2019;14(2):29–40. doi: 10.17650/1818-8346-2019-14-2-29-40. (In Russ)]
  43. Pozzi S, Bari A, Pecherstorfer M, Vallet S. Management of Adverse Events and Supportive Therapy in Relapsed/Refractory Multiple Myeloma. Cancers. 2021;13(19):4978. doi: 10.3390/cancers13194978.

Efficacy and Safety of Pola-BR Combination in Relapsed/Refractory Aggressive В-Cell Non-Hodgkin’s Lymphomas: A Russian Multi-Center Study

OG Smykova1, AA Semenova2, YuB Chernykh3, TA Mitina3, AV Kildyushevskii3, SK Kravchenko4, AE Misyurina4, AU Magomedova4, EA Baryakh5, SV Samarina6, NP Volkov1, VV Markelov1, PV Kotselyabina1, LV Fedorova1, KV Lepik1, EV Kondakova1, LV Stelmakh1, VV Baykov1, NB Mikhailova1, IS Moiseev1, GS Tumyan2, EA Osmanov2, AD Kulagin1

1 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

2 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

3 MF Vladimirskii Moscow Regional Research Clinical Institute, 61/2 Shchepkina ul., Moscow, Russian Federation, 129110

4 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

5 Municipal Clinical Hospital No. 52, 3 Pekhotnaya ul., Moscow, Russian Federation, 123182

6 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027

For correspondence: Olesya Gennadevna Smykova, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022; Tel.: +7(981)144-67-95; e-mail: olesya.gen@gmail.com

For citation: Smykova OG, Semenova AA, Chernykh YuB, et al. Efficacy and Safety of Pola-BR Combination in Relapsed/Refractory Aggressive В-Cell Non-Hodgkin’s Lymphomas: A Russian Multi-Center Study. Clinical oncohematology. 2022;15(3):232–9. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-232-9


ABSTRACT

Aim. To analyze the first experience of administering polatuzumab vedotin combined with bendamustine and rituximab (Pola-BR) in clinical practice at some specialized institutions in the Russian Federation.

Materials & Methods. The prospective multi-center study enrolled 39 patients with relapsed/refractory aggressive В-cell non-Hodgkin’s lymphomas (B-NHLs): 31 (79 %) patients with diffuse large B-cell lymphoma, 7 (18 %) patients with primary mediastinal (thymic) large B-cell lymphoma, and 1 (3 %) patient with gray zone lymphoma. There were 20 men and 19 women aged 19–69 years (median 43 years). All the patients were treated with Pola-BR protocol: bendamustine 90 mg/m2 on Days 1 and 2, rituximab 375 mg/m2 on Day 1, and polatuzumab vedotin 1.8 mg/kg on Day 1 of each 21-day cycle. Full treatment with 6 cycles was completed by 19 patients. PET-CT was performed prior to therapy and after the 2nd, 4th, and 6th Pola-BR cycles. The tumor response was evaluated according to the Lugano 2014 criteria. The toxicity profile was assessed by means of reporting adverse events according to the NCI CTCAE, version 5.0.

Results. Objective response to the therapy, according to the Lugano 2014 criteria, was identified in 24 (61.5 %) patients: 19 (48.7 %) of them showed the complete response, and 5 (12.8 %) of them showed the partial one. Stable disease as best response to the therapy was reported in 3 (7.7 %) patients, disease progression was observed in 12 (30.8 %) patients. By the time of data analysis, the median follow-up duration was 16.8 months (range 5.3–24.2 months). The 2-year overall survival (OS) was 44 % (95% confidence interval [95% CI] 24–62 %), the median OS was 20.8 months. The 2-year progression-free survival (PFS) was 27 % (95% CI 12–43 %), the median PFS was 7.3 months. Adverse events of grade 3/4 included anemia (n = 4; 10.3 %), neutropenia (n = 15; 38.5 %), thrombocytopenia (n = 3; 7.7 %), and febrile neutropenia (n = 2; 5.1 %). In 2 patients with history of hepatitis B, the virus reactivation was identified on Pola-BR therapy. No cases of peripheral neuropathy were observed.

Conclusion. Results obtained in real-world clinical practice correspond to the previously published data and demonstrate that polatuzumab vedotin therapy (Pola-BR protocol) has a controllable toxicity profile and is, therefore, a promising chemotherapy method of relapsed/refractory aggressive B-NHL treatment.

Keywords: polatuzumab vedotin, aggressive B-NHLs, relapsed/refractory, treatment outcomes.

Received: March 13, 2022

Accepted: June 8, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphomas: Clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1998;16(8):2780–95. doi: 10.1200/JCO.1998.16.8.2780.
  2. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.
  3. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. (In Russ)]
  4. Бабичева Л.Г., Поддубная И.В. Первая линия терапии агрессивных неходжкинских лимфом в российской клинической практике: данные исследования EQUILIBRIUM. Онкогематология. 2020;15(2):10–8. doi: 10.17650/1818-8346-2020-15-2-10-18.
    [Babicheva LG, Poddubnaya IV. The first-line therapy of aggressive non-Hodgkin’s lymphomas in Russian clinical practice: data from the EQUILIBRIUM study. Oncohematology. 2020;15(2):10–8. doi: 10.17650/1818-8346-2020-15-2-10-18. (In Russ)]
  5. Coiffier B, Thieblemont C, Van Den Neste E, et al. Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood. 2010;116(12):2040–5. doi: 10.1182/blood-2010-03-276246.
  6. Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(27):4184–90. doi: 10.1200/JCO.2010.28.1618.
  7. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-03-769620.
  8. Vardhana S, Hamlin PA, Yang J, et al. Outcomes of Relapsed and Refractory Primary Mediastinal (Thymic) Large B Cell Lymphoma Treated with Second-Line Therapy and Intent to Transplant. Biol Blood Marrow Transplant. 2018;24(10):2133–8. doi: 10.1016/j.bbmt.2018.06.009.
  9. Dunleavy K, Wilson WH. Primary mediastinal B-cell lymphoma and mediastinal gray zone lymphoma: do they require a unique therapeutic approach? 2015;125(1):33–9. doi: 10.1182/blood-2014-05-575092.
  10. Dornan D, Bennett F, Chen Y, et al. Therapeutic potential of an anti-CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. 2009;114(13):2721–9. doi: 10.1182/blood-2009-02-205500.
  11. Pfeifer M, Zheng B, Erdmann T, et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. 2015;29(7):1578–86. doi: 10.1038/leu.2015.48.
  12. Polivy® (Polatuzumab vedotin-piiq) for injection, for intravenous use. Available from: https://www.gene.com/download/pdf/polivy_prescribing.pdf (accessed 24.03.2022).
  13. Palanca-Wessels MC, Czuczman M, Salles G, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015;16(6):704–15. doi: 10.1016/S1470-2045(15)70128-2.
  14. Morschhauser F, Flinn IW, Advani R, et al. Polatuzumab vedotin or pinatuzumab vedotin plus rituximab in patients with relapsed or refractory non-Hodgkin lymphoma: final results from a phase 2 randomised study (ROMULUS). Lancet Haematol. 2019;6(5):e254–e265. doi: 10.1016/S2352-3026(19)30026-2.
  15. Vacirca JL, Acs PI, Tabbara IA, et al. Bendamustine combined with rituximab for patients with relapsed or refractory diffuse large B cell lymphoma. Ann Hematol. 2014;93(3):403–9. doi: 10.1007/s00277-013-1879-x.
  16. Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab Vedotin in Relapsed or Refractory Diffuse Large B-Cell Lymphoma. J Clin Oncol. 2020;38(2):155–65. doi: 10.1200/JCO.19.00172.
  17. Sehn LH, Hertzberg M, Opat S, et al. Polatuzumab vedotin plus bendamustine and rituximab in relapsed/refractory DLBCL: survival update and new extension cohort data. Blood Adv. 2022;6(2):533–43. doi: 10.1182/bloodadvances.2021005794.
  18. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68. doi: 10.1200/JCO.2013.54.8800.
  19. Tilly H, Morschhauser F, Sehn LH, et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N Engl J Med. 2022;386(4):351–63. doi: 10.1056/NEJMoa2115304.

In Memory of Professor A.Yu. Zaritskey

16 октября 2021 г. после продолжительной болезни скончался Андрей Юрьевич Зарицкий, один из ведущих ученых России в области гематологии, выдающийся клиницист, доктор медицинских наук, профессор, директор института онкологии и гематологии Национального медицинского исследовательского центра им. В.А. Алмазова.

Андрей Юрьевич Зарицкий родился 11 марта 1950 г. в Ленинграде. В 1973 г. окончил Первый Ленинградский медицинский институт им. акад. И.П. Павлова.

Его профессиональный путь начался на кафедре внутренних болезней этого же института, где он успешно закончил обучение по специальности «Гематология» в 1975 г. в ординатуре и 1978 г. в аспирантуре. Будучи одним из любимых учеников академика РАМН Владимира Андреевича Алмазова, Андрей Юрьевич под его руководством занимался прорывными для своего времени исследованиями микроокружения лейкозных клеток. В аспирантуре он работал над темой «Колониеобразующая способность костного мозга, колониестимулирующая активность лейкоцитов периферической крови и плазмы у гематологически здоровых лиц и больных хроническими лимфопролиферативными заболеваниями». В 1979 г. Андрей Юрьевич Зарицкий успешно защищает диссертацию по данной теме и становится кандидатом медицинских наук. Продолжая изучать биологию лейкозных клеток и их микроокружения, в 1996 г. он заканчивает работу над докторской диссертацией по теме: «Исследование фибробластных клеток костного мозга у больных с заболеваниями системы крови». В 2001 г. ему присвоено ученое звание профессора.

Андрей Юрьевич Зарицкий посвятил гематологии всю свою жизнь, активно занимался научной, лечебной и преподавательской деятельностью в избранной им области. В течение многих лет он был научным руководителем отделения гематологии Городской больницы № 31 г  Санкт-Петербурга, был профессором кафедры факультетской терапии Первого Санкт-Петербургского медицинского университета им. акад. И.П. Павлова. В 2008 г. Андрей Юрьевич организовал гематологическую службу в ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава РФ и возглавил Институт гематологии НМИЦ. В институте проводились и проводятся работы в области фундаментальных, прикладных и трансляционных исследований злокачественных опухолей системы крови.

В Институте гематологии, в настоящее время переименованном в Институт онкологии и гематологии ФГБУ «НМИЦ им. В.А. Алмазова», под руководством проф. А.Ю. Зарицкого появились и успешно развивались научные и практические сферы гематологии. Созданы новые клинические отделения онкогематологии для детей и взрослых, где были внедрены инновационные методы химио- и иммунотерапии онкогематологических заболеваний, а также современные методы диагностики и мониторинга результатов терапии.

Андрей Юрьевич Зарицкий свободно владел английским языком, активно развивал международное сотрудничество с зарубежными коллегами. Он был активным членом рабочей группы по хроническому миелолейкозу и хроническому лимфолейкозу Европейской сети по изучению лейкозов (European LeukemiaNet), был экспертом международного уровня, соавтором рекомендаций European LeukemiaNet 2020 г. по лечению хронического миелоидного лейкоза. Благодаря его организаторским способностям и известности как ученого ему было предложено участие в нескольких международных широкомасштабных исследовательских проектах European LeukemiaNet, а также в научной работе, проводившейся Международным консорциумом в рамках 7-рамочной программы ЕС (SystemAge, WorkPackage 4).

Он принимал активное участие в развитии молекулярной диагностики и мониторинга результатов терапии хронического миелолейкоза в России, в т. ч. в организации международной стандартизации методики количественного определения гена BCR-ABL. Андрей Юрьевич Зарицкий был избран Послом в России крупнейшего онкологического центра США MD Anderson Cancer Centre, был представителем International Chronic Myeloid Leukemia Foundation (Международного фонда по ХМЛ) в России. В рамках программы клинического наставничества фонда iCMLf Андрей Юрьевич делился опытом и знаниями с коллегами из стран СНГ. Он был приглашенным спикером на многих международных конференциях, проводимых не только в России, но и в Украине, Республике Беларусь, Узбекистане, Казахстане.

Проф. А.Ю. Зарицкий вел регулярную просветительскую работу в рамках семинаров, региональных и всероссийских конференций, делился своими научными и клиническими знаниями с коллегами из разных регионов России.

Андрей Юрьевич также вел просветительскую деятельность среди пациентов, проводил школы в рамках программы «Право жить» и при поддержке Всероссийского общества онкогематологии «Содействие», был главным исследователем более чем в 40 клинических исследованиях инновационных лекарственных препаратов для лечения пациентов онкогематологического профиля.

Профессор Андрей Юрьевич Зарицкий был членом редакционной коллегии журналов «Трансляционная медицина», «Вестник гематологии».

За долгие годы работы он воспитал плеяду учеников, которые продолжают лечебную, исследовательскую и педагогическую работу как в НМИЦ им. В.А. Алмазова, так и в ведущих гематологических центрах нашей страны и мира. На его счету более 360 научных публикаций, несколько монографий и патентов. За заслуги в области здравоохранения Андрей Юрьевич Зарицкий награжден нагрудным знаком «Отличник здравоохранения».

Андрей Юрьевич поражал и заражал своей неисчерпаемой энергией, был человеком пытливого и проницательного ума, обширной эрудиции и колоссального трудолюбия. Он был искренним и открытым человеком, при этом очень принципиальным и требовательным как к себе, так и к своим ученикам и коллегам. Умел находить единомышленников, быть настоящим другом. Таким его помнят многочисленные коллеги и друзья.


Из воспоминаний коллег

I first met Professor Andrey Zaritskey during last year of medical school, he was assigned as our teacher in Hematology course. I owe him my choice of Hematology as my future specialty. At that time, we had very limited options for therapy of acute leukemia patients, with limited supportive care options, and I saw how difficult and acutely ill patients with hematologic malignancies are. AYu told me at that time: “These are very sick patients. Someone must treat these patients. And I think this should be you”. With those words, I continue to treat leukemia patients now at MD Anderson Cancer Center, for more than 25 years in my career. AYu was mentoring me in my laboratory research when I started my work at hematology hospital and later in clinic. He had unrelenting passion in science and always asked “out-of-the box” questions that could lead to discoveries. I inherited for life his enthusiasm and curiosity in laboratory and clinical research, that shaped my career, leading me to what I am now, physician-scientist. Professor Zaritskey was that rare hybrid of excellent clinician, thoughtful and forward-looking researcher, outstanding mentor and a wonderful human being. He has helped in many ways his multiple trainees, their relatives and friends, and was highly respected and loved by his colleagues and mentees. Professor Zaritskey was highly regarded nationally and internationally for his efforts in treatment of CML patients in Russia. He was integral part of multiple hematology schools disseminating the knowledge of CML therapy across multiple regions of the country. Dr. Zaritskey attended ASH and other international meetings, visited several times MD Anderson and became an ambassador at SOHO hematology meeting. AYu worked till the very last minute. Even being very ill confined to the hospital bed, he continued consulting responsibilities on his clinical unit, guided laboratory research and chaired international virtual conference. His dedication, passion to science and hematology and his nature of a human being with big heart will be always inspiring me in my life and professional career.

Marina Konopleva, MD, PhD, Professor, Member of the clinical faculty in the Departments of Leukemia and Stem Cell Transplantation of the MD Anderson Cancer Center (Houston, USA)

Я впервые встретила профессора Андрея Юрьевича Зарицкого на последнем курсе медицинского факультета, он был назначен нашим преподавателем гематологии. Именно благодаря ему я выбрала гематологию своей будущей специальностью. В то время у нас были очень ограниченные возможности лечения пациентов с острыми лейкозами, ограниченные варианты поддерживающей терапии, и я видела, насколько тяжелыми бывают пациенты с онкогематологическими заболеваниями. Андрей Юрьевич сказал мне тогда: «Эти пациенты очень больны. Кто-то должен их лечить. И я думаю, что это должны быть Вы». С этими словами я продолжаю лечить пациентов с лейкозом в онкологическом центре им. М.Д. Андерсона (MD Anderson Cancer Center) на протяжении всей своей карьеры, более 25 лет. Андрей Юрьевич был моим наставником в лабораторных исследованиях, когда я начинала работать в гематологической больнице, а затем — в клинике. Он обладал неослабевающей страстью к науке и всегда задавал нестандартные вопросы, которые могли привести к открытиям. Я на всю жизнь унаследовала его энтузиазм и жажду знаний в лабораторных и клинических исследованиях, которые определили мою карьеру и позволили мне стать тем, кем я сейчас являюсь, — врачом-ученым. Профессор Зарицкий сочетал в себе качества прекрасного клинициста, вдумчивого и прогрессивного исследователя, выдающегося наставника и замечательного человека, что встречается так редко. Он во многом помогал своим многочисленным ученикам, их родственникам и друзьям, его очень уважали и любили коллеги и подопечные. Профессор Зарицкий пользовался большим уважением на национальном и международном уровнях за приложенные усилия в области лечения пациентов с хроническим миелоидным лейкозом (ХМЛ) в России. Он был неотъемлемой частью нескольких гематологических школ, обеспечив распространение знаний о терапии ХМЛ во многих регионах страны. Доктор Зарицкий участвовал в конференциях ASH и других международных встречах, несколько раз посетил онкологический центр им. М.Д. Андерсона и стал послом на гематологической конференции SOHO. Андрей Юрьевич работал до последней минуты. Даже будучи очень больным и прикованным к больничной койке, он продолжал консультировать свое клиническое отделение, руководил лабораторными исследованиями и был председателем на Международной виртуальной конференции. Его преданность делу, страсть к науке и гематологии и качества человека с большим сердцем всегда будут вдохновлять меня в моей жизни и профессиональной карьере.

Марина Юрьевна Коноплева, д-р мед. наук, профессор, член клинического факультета отделения лейкоза и трансплантации стволовых клеток онкологического центра им. М.Д. Андерсона (Хьюстон, США)


European LeukemiaNet

Coordinator:

Prof. Dr. Dr. h. c. R. Hehlmann

ELN Foundation

Im Langgewann 45

69469 Weinheim

E-mail: hehlmann.eln@gmail.com

Date: 29.01.2022

The hematologic community lost a leader and international communicator, I lost a friend. Professor Dr. Andrey Zaritskey died in St. Petersburg after fighting a malicious disease for 4 years.

I met Andrey Zaritskey around 2005 when he on behalf of Paul’s University and the Almazov National Research Center joined the European LeukemiaNet (ELN) highlighting his comprehensive research interests and his cooperative spirit. Upon his invitation, I visited St. Petersburg in September 2006 starting 15 years of fruitful cooperation in the field of leukemia, particularly chronic myeloid leukemia (CML).

Promoting international cooperation, Andrey Zaritskey organized participation of young coworkers in international training and research activities around the world such as Dmitry Motorin in Bologna, Marina Konopleva in Houston and others, including attending the Annual ELN Symposia in Heidelberg and Mannheim/Germany and the Annual Workshops of the European Investigators on CML (EI-CML) across Europe. With Anthony Ho from Heidelberg University he embarked on an official Russian-German cooperation project on stem cells, and with Hagop Kantarjian and Elias Jabbour from MD Anderson Cancer Center (MDACC) in Houston on a Russian-American cooperation on clinical CML research. With the help of Natalya Lazorko of his team, he succeeded hosting in St. Petersburg an EI-CML Workshop in 2013, and an international workshop in cooperation with MDACC and ELN in 2017.

For promoting European integration of research in the field of leukemia Andrey Zaritskey was awarded the ELN Merit Award 2010. He was invited by ELN to join the international panel of experts to help develop the ELN recommendations for treating CML published in “Leukemia” in 2020.

An important aspect of Andrey Zaritskey’s promotional activity was familiarizing international cooperators with the scientific landscape and cultural heritage of St. Petersburg and Russia. Because of his scientific standing and outgoing, but always modest, personality he was well respected and invited to lectures and seminars all over Russia. By taking me along to some of these events he made me feel at home in Russia thereby deepening the spirit of cooperation.

Since 2008, Andrey Zaritskey established as director the new Institute of Hematology at the Almazov National Medical Research Center with research facilities and a transplantation unit. During the 13 years of his directorship he developed the institute into a well working institution with a dedicated, future-oriented team of young doctors and researchers and with international visibility.

The institute is well prepared for continuing top-level research and patient care in international cooperation under his successor, his long-term associate Professor Elza Lomaia.

Профессор Рудигер Хельманн, координатор Европейской сети по изучению лейкозов


Read in PDF

 

Pharmacoeconomic Analysis of CAR-T Cell Therapy in Diffuse Large B-Cell Lymphoma and B-Lineage Acute Lymphoblastic Leukemias

IV Gribkova, AA Zavyalov

Research Institute of Healthcare and Medical Management, 9 Sharikopodshipnikovskaya ul., Moscow, Russian Federation, 115088

For correspondence: Irina Vladimirovna Gribkova, PhD in Biology, 9 Sharikopodshipnikovskaya ul., Moscow, Russian Federation, 115088; Tel.: +7(916)078-73-90; e-mail: igribkova@yandex.ru

For citation: Gribkova IV, Zavyalov AA. Pharmacoeconomic Analysis of CAR-T Cell Therapy in Diffuse Large B-Cell Lymphoma and B-Lineage Acute Lymphoblastic Leukemias. Clinical oncohematology. 2022;15(2):205–12. (In Russ).

DOI: 10.21320/2500-2139-2022-15-2-205-212


ABSTRACT

Genetically modified Т-lymphocytes with chimeric antigen receptors (CAR-T cells) represent a new treatment strategy in relapsed/refractory B-cell malignant neoplasms. In 2017–2018 two CAR-T cell drugs, tisagenlecleucel and axicabtagene ciloleucel, were approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) for clinical use in patients with refractory acute lymphoblastic leukemia and relapsed/refractory B-cell lymphomas. Due to its high efficacy, CAR-T cell therapy is increasingly becoming an integral part of clinical practice. However, this method of chemotherapy is very expensive. The mean cost of tisagenlecleucel is $475,000 and that of axicabtagene ciloleucel is $373,000. It is worth noting that these are only the drug prices which exclude other therapy-related costs. In the studies of 2018–2020 groups of researchers attempted to estimate the CAR-T cell therapy-associated costs. The aim of the present review is to analyze these studies and to assess the total treatment cost and expense structure, as well as to discuss the factors underlying the increasing costs and to explore opportunities to improve availability of the CAR-T technology, on the whole. The results showed that the mean cost of tisagenlecleucel therapy in B-cell lymphoma was $515,150 and that of axicabtagene ciloleucel therapy was $503,955. The treatment cost in acute lymphoblastic leukemia was $580,459. The major factors affecting the total therapy cost were CAR-T cell drug prices, severity of adverse events, and high tumor load prior to CAR-T cell drug infusion. It is agreed that the main opportunities to rise affordability of the CAR-T cell therapy lie in reducing the drug prices (for example, by means of medical facility-based production at its own expense), further therapy improvement aimed at less toxicity, and its implementation at earlier stages of tumor disease.

Keywords: B-cell lymphoma, acute lymphoblastic leukemia, CAR-T cell therapy, chimeric antigen receptor, tisagenlecleucel, axicabtagene ciloleucel, costs, review.

Received: October 29, 2021

Accepted: February 15, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-03-769620.
  2. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi: 10.1016/S1470-2045(14)71170-2.
  3. Roex G, Feys T, Beguin Y, et al. Chimeric Antigen Receptor-T-Cell Therapy for B-Cell Hematological Malignancies: An Update of the Pivotal Clinical Trial Data. Pharmaceutics. 2020;12(2):194. doi: 10.3390/pharmaceutics12020194.
  4. Zheng XH, Zhang XY, Dong QQ, et al. Efficacy and safety of chimeric antigen receptor-T cells in the treatment of B cell lymphoma: a systematic review and meta-analysis. Chin Med J (Engl). 2020;133(1):74–85. doi: 10.1097/CM9.0000000000000568.
  5. Ершов А.В., Демьянов Г.В., Насруллаева Д.А. и др. Новейшие тенденции в совершенствовании CAR-T-клеточной терапии: от лейкозов к солидным злокачественным новообразованиям. Российский журнал детской гематологии и онкологии. 2021;8(2):84–95. doi: 10.21682/2311-1267-2021-8-2-84-95.
    [Ershov AV, Demyanov GV, Nasrullaeva DA, et al. The latest trends in improving CAR-T cell therapy: from leukemias to solid malignant neoplasms. Russian Journal of Pediatric Hematology and Oncology. 2021;8(2):84–95. doi: 10.21682/2311-1267-2021-8-2-84-95. (In Russ)]
  6. Грибкова И.В., Завьялов А.А. CAR Т-клетки для лечения хронического лимфоцитарного лейкоза: обзор литературы. Клиническая онкогематология. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230.
    [Gribkova IV, Zavyalov CAR-Т Cells for the Treatment of Chronic Lymphocytic Leukemia: Literature Review. Clinical oncohematology. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230. (In Russ)]
  7. Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021;67(3):350–60. doi: 10.37469/0507-3758-2021-67-3-350-360.
    [Gribkova IV, Zavyalov AA. Chimeric Antigen Receptor T-Cell Therapy for B-Cell Non-Hodgkin Lymphoma: Opportunities And Challenges. Voprosy onkologii. 2021;67(3):350–60. doi: 10.37469/0507-3758-2021-67-3-350-360. (In Russ)]
  8. Orlowski RJ, Porter DL, Frey NV. The promise of chimeric antigen receptor T cells (CARTs) in leukaemia. Br J Haematol. 2017;177(1):13–26. doi: 10.1111/bjh.14475.
  9. Park JH, Riviere I, Gonen M, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):449–59. doi: 10.1056/NEJMoa1709919.
  10. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439–48. doi: 10.1056/NEJMoa1709866.
  11. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017;377(26):2531–44. doi: 10.1056/NEJMoa1707447.
  12. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med. 2019;380(1):45–56. doi: 10.1056/NEJMoa1804980.
  13. Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20:31–42. doi: 10.1016/S1470-2045(18)30864-7.
  14. Bach PB, Giralt SA, Saltz LB. FDA Approval of Tisagenlecleucel: Promise and Complexities of a $475 000 Cancer Drug. JAMA. 2017;318(19):1861–2. doi: 10.1001/jama.2017.15218.
  15. Nastoupil LJ, Jain MD, Feng L, et al. Standard-of-Care Axicabtagene Ciloleucel for Relapsed or Refractory Large B-Cell Lymphoma: Results From the US Lymphoma CAR T Consortium. J Clin Oncol. 2020;38(27):3119–28. doi: 10.1200/JCO.19.02104.
  16. de Lima Lopes G, Nahas GR. Chimeric antigen receptor T cells, a savior with a high price. Chin Clin Oncol. 2018;7(2):21. doi: 10.21037/cco.2018.04.02.
  17. Makita S, Imaizumi K, Kurosawa S, Tobinai K. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Drugs Context. 2019;8:212567. doi: 10.7573/dic.212567.
  18. Yakoub-Agha I, Chabannon C, Bader P, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020;105(2):297–316. doi: 10.3324/haematol.2019.229781.
  19. Lyman GH, Nguyen A, Snyder S, et al. Economic Evaluation of Chimeric Antigen Receptor T-Cell Therapy by Site of Care Among Patients With Relapsed or Refractory Large B-Cell Lymphoma. JAMA Netw Open. 2020;3(4):e202072. doi: 10.1001/jamanetworkopen.2020.2072.
  20. Lin JK, Muffly LS, Spinner MA, et al. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Multiply Relapsed or Refractory Adult Large B-Cell Lymphoma. J Clin Oncol. 2019;37(24):2105–19. doi: 10.1200/JCO.18.02079.
  21. Harris AH, Hohmann S, Dolan C. Real-World Quality and Cost Burden of Cytokine Release Syndrome Requiring Tocilizumab or Steroids during CAR-T Infusion Encounter. Biol Blood Marrow Transplant. 2020;26(3):S312. doi: 10.1016/j.bbmt.2019.12.389.
  22. Hernandez I, Prasad V, Gellad WF. Total Costs of Chimeric Antigen Receptor T-Cell Immunotherapy. JAMA Oncol. 2018;4(7):994–6. doi: 10.1001/jamaoncol.2018.0977.
  23. Roth JA, Sullivan SD, Lin VW, et al. Cost-effectiveness of axicabtagene ciloleucel for adult patients with relapsed or refractory large B-cell lymphoma in the United States. J Med Econ. 2018;21(12):1238–45. doi: 10.1080/13696998.2018.1529674.
  24. Whittington MD, McQueen RB, Ollendorf DA, et al. Long-term Survival and Cost-effectiveness Associated With Axicabtagene Ciloleucel vs Chemotherapy for Treatment of B-Cell Lymphoma. JAMA Netw Open. 2019;2(2):e190035. doi: 10.1001/jamanetworkopen.2019.0035.
  25. Sarkar RR, Gloude NJ, Schiff D, Murphy JD. Cost-Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Pediatric Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia. J Natl Cancer Inst. 2019;111(7):719–26. doi: 10.1093/jnci/djy193.
  26. Thielen FW, van Dongen-Leunis A, Arons AMM, et al. Cost-effectiveness of anti-CD19 chimeric antigen receptor T-cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. A societal view. Eur J Haematol. 2020;105(2):203–15. doi: 10.1111/ejh.13427.
  27. Yang H, Hao Y, Qi CZ, et al. Estimation of Total Costs in Pediatric and Young Adult Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia Receiving Tisagenlecleucel from a U.S. Hospital’s Perspective. J Manag Care Spec Pharm. 2020;26(8):971–80. doi: 10.18553/jmcp.2020.20052.
  28. Lin JK, Lerman BJ, Barnes JI, et al. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Relapsed or Refractory Pediatric B-Cell Acute Lymphoblastic Leukemia. J Clin Oncol. 2018;36(32):3192–202. doi: 10.1200/JCO.2018.79.0642.
  29. Whittington MD, McQueen RB, Ollendorf DA, et al. Long-term Survival and Value of Chimeric Antigen Receptor T-Cell Therapy for Pediatric Patients With Relapsed or Refractory Leukemia. JAMA Pediatr. 2018;172(12):1161–8. doi: 10.1001/jamapediatrics.2018.2530.
  30. Furzer J, Gupta S, Nathan PC, et al. Cost-effectiveness of Tisagenlecleucel vs Standard Care in High-risk Relapsed Pediatric Acute Lymphoblastic Leukemia in Canada. JAMA Oncol. 2020;6(3):393–401. doi: 10.1001/jamaoncol.2019.5909.
  31. Zhu F, Wei G, Zhang M, et al. Factors Associated with Costs in Chimeric Antigen Receptor T-Cell Therapy for Patients with Relapsed/Refractory B-Cell Malignancies. Cell Transplant. 2020;29:963689720919434. doi: 10.1177/0963689720919434.
  32. Heine R, Thielen FW, Koopmanschap M, et al. Health Economic Aspects of Chimeric Antigen Receptor T-cell Therapies for Hematological Cancers: Present and Future. Hemasphere. 2021;5(2):e524. doi: 10.1097/HS9.0000000000000524.
  33. Zhang LN, Song Y, Liu D. CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. J Hematol Oncol. 2018;11(1):41. doi: 10.1186/s13045-018-0593-5.
  34. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321–30. doi: 10.1182/blood-2016-04-703751.
  35. Kochenderfer JN, Somerville RPT, Lu T, et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol. 2017;35(16):1803–13. doi: 10.1200/JCO.2016.71.3024.
  36. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95. doi: 10.1182/blood-2014-05-552729.
  37. Ran T, Eichmuller SB, Schmidt P, Schlander M. Cost of decentralized CAR T-cell production in an academic nonprofit setting. Int J Cancer. 2020;147(12):3438–45. doi: 10.1002/ijc.33156.
  38. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52. doi: 10.1016/S0140-6736(20)31366-0.
  39. Benjamin R, Graham C, Yallop D, et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet. 2020;396(10266):1885–94. doi: 10.1016/S0140-6736(20)32334-5.
  40. Pfeiffer A, Thalheimer FB, Hartmann S, et al. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Mol Med. 2018;10(11):e9158. doi: 10.15252/emmm.201809158.
  41. Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 2014;5:254. doi: 10.3389/fphar.2014.00254.
  42. Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 2015;350(6258):aab4077. doi: 10.1126/science.aab4077.
  43. Mikkilineni L, Kochenderfer JN. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol. 2021;18(2):71–84. doi: 10.1038/s41571-020-0427-6.
  44. Strati P, Ahmed S, Furqan F, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137(23):3272–6. doi: 10.1182/blood.2020008865.
  45. Gauthier J, Hirayama AV, Hay KA, et al. Comparison of efficacy and toxicity of CD19-specific chimeric antigen receptor T-cells alone or in combination with ibrutinib for relapsed and/or refractory CLL. Blood. 2018;132(Suppl 1):299. doi: 10.1182/blood-2018-99-111061.
  46. Gill SI, Vides V, Frey NV, et al. Prospective clinical trial of anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia shows a high response rate. Blood. 2018;132(Suppl 1):298. doi: 10.1182/blood-2018-99-115418.

Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation in Myelodysplastic Syndromes with Trisomy 8 and/or Monosomy 7

MV Latypova, NN Mamaev, TL Gindina, AI Shakirova, OV Paina, AA Osipova, TV Rudakova, EV Morozova, SN Bondarenko, LS Zubarovskaya

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

For correspondence: Prof. Nikolai Nikolaevich Mamaev, MD, PhD, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022; e-mail: nikmamaev524@gmail.com

For citation: Latypova MV, Mamaev NN, Gindina TL, et al. Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation in Myelodysplastic Syndromes with Trisomy 8 and/or Monosomy 7. Clinical oncohematology. 2022;15(2):198–204. (In Russ).

DOI: 10.21320/2500-2139-2022-15-2-198-204


ABSTRACT

The study assessed the outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in 34 patients with cytogenetically verified variants of myelodysplastic syndrome (MDS) with trisomy 8 and/or monosomy 7, who were treated at the RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation from 2013 to 2020. Both adult and pediatric MDS were analyzed without excluding the variants with two additional chromosomal abnormalities or complex karyotype. The study revealed that а) allo-HSCT should be performed in the treatment of both MDS variants; b) the outcomes of trisomy 8 treatment appeared to be better; c) children with monosomy 7 showed a higher rate of toxic complications in allo-HSCT.

Keywords: myelodysplastic syndromes, cytogenetic variants, trisomy 8, monosomy 7, allo-HSCT.

Received: October 2, 2021

Accepted: March 6, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Ades L, Itzykson R, Fenaux P. Myelodysplastic syndromes. Lancet. 2014;383(9939):2239–52. doi: 10.1016/S0140-6736(13)61901-7.
  2. Robin M, Porcher R, Zinke-Cerwenka W, et al. Allogeneic hematopoietic stem cell transplant in patients with lower risk myelodysplastic syndrome: a retrospective analysis on behalf of the Chronic Malignancy Working Party of the EBMT. Bone Marrow Transplant. 2017;52(2):209–15. doi: 10.1038/bmt.2016.266.
  3. Deeg HJ, Scott BL, Fang M, et al. Five-group cytogenetic risk classification, monosomal karyotype, and outcome after hematopoietic cell transplantation for MDS or acute leukemia evolving from MDS. Blood. 2012;120(7):1395–409. doi: 10.1182/blood-2012-04-423046.
  4. Malcovati L, Hellstrom-Lindberg E, Bowen D, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122(17):1943–64. doi: 1182/blood-2013-03-492884.
  5. Schanz J, Tuchler H, Sole F, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from international database merge. J Clin Oncol. 2012;50(8):820–9. doi: 10.1200/JCO.2011.35.6394.
  6. Nevill TJ, Shepherd JD, Sutherland HJ, et al. IPSS poor-risk karyotype as a predictor of outcome for patients with myelodysplastic syndrome following myeloablative stem cell transplantation. Biol Blood Marrow Transplant. 2009;15(2):205–13. doi: 10.1016/j.bbmt.2008.11.015.
  7. Koenecke C, Gohring G, de Wreede LC, et al. Impact of the revised International Prognostic Scoring System, cytogenetics and monosomal karyotype on outcome after allogeneic stem cell transplantation for myelodysplastic syndromes and secondary acute myeloid leukemia evolving from myelodysplastic syndromes: a retrospective multicenter study of the European Society of Blood and Marrow Transplantation. Haematologica. 2015;100(3):400–8. doi: 10.3324/haematol.2014.116715.
  8. Armand P, Kim HT, DeAngelo DJ, et al. Impact of cytogenetics on outcome of de novo and therapy- related AML and MDS after allogeneic transplantation. Biol Blood Marrow Transplant. 2007;13(6):655–64. doi: 10.1016/j.bbmt.2007.01.079
  9. Konuma T, Miyazaki Y, Ohashi K, et al. Outcomes of allogeneic hematopoietic stem cell transplantation in adults patients with myelodysplastic syndrome harboring trisomy 8. Biol Blood Marrow Transplant. 2017;23(1):75–80. doi: 10.1016/j.bbmt.2016.10.015.
  10. Trobaugh-Lotrario AD, Kletzel M, Quinones RR, et al. Monosomy 7 associated with pediatric acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS): Successful management by allogeneic hematopoietic stem cell transplant (HSCT). Bone Marrow Transplant. 2005;25(2):143–9. doi: 10.1038/sj.bmt.1704753.
  11. Al-Anazi KA. Myelodysplastic disorders, monosomy 7. In: Fuchs O, ed. Myelodysplastic syndromes. IntechOpen; 2016. рр. 131–61. doi: 10.5772/64549.
  12. Itonaga Y, Ishiyama K, Aoki K, et al. Clinical Impact of the loss of chromosome 7q on outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2019;54(9):1471–81. doi: 10.1038/s41409-019-0469-5.
  13. Komrokji RS, Padron E, Ebert BL, et al. Deletion 5q MDS: Molecular and therapeutic implications. Best Pract Res Clin Haematol. 2013;26(4):365–75. doi: 1016/j.beha.2013.10.013.
  14. Gindina TL, Mamaev NN, Afanasyev BV. Chromosome Abnormalities and Hematopoietic Stem Cell Transplantation in Acute Leukemias. In: Larramendy ML, Soloneski S, eds. Chromosomal Abnormalities – A hallmark manifestation of genomic instability. IntechOpen; 2017. рр. 71–86. doi: 10.5772/67802.
  15. Schaffer L, McGovan-Jordan L, Schmid M. An International System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013. 140 p.
  16. Гиндина Т.Л. Характеристика основных цитогенетических изменений у больных острыми лейкозами и их связь с результатами аллогенной трансплантации стволовых клеток: Дис.… д-ра мед. наук. СПб., 2019. 373 с.
    [Gindina TL. Kharakteristika osnovnykh tsitogeneticheskikh izmenenii u bol’nykh ostrymi leikozami i ikh svyaz’ s rezul’tatami allogennoi transplantatsii stvolovykh kletok. (The characteristics of major cytogenetic changes in acute leukemia patients and their association with the outcomes of allogeneic stem cell transplantation.) [dissertation] Saint Petersburg; 2019. 373 p. (In Russ)]
  17. Bersanelli M, Travaglino E, Meggendorfer M, et al. Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. J Clin Oncol. 2021;39(11):1223–33. doi: 10.1200/JCO.20.01659.
  18. Мамаев Н.Н., Латыпова М.В., Шакирова А.И. и др. Роль BAALC-экспрессирующих лейкозных клеток-предшественниц в патогенезе миелодиспластических синдромов. Клиническая онкогематология. 2022;15(1):62–8. doi: 10.21320/2500-2139-2022-15-1-62-68.
    [Mamaev NN, Latypova MV, Shakirova AI, et al. The Role of BAALC-Expressing Leukemia Precursor Cells in the Pathogenesis of Myelodysplastic Syndromes. Clinical oncohematology. 2022;15(1):62–8. doi: 10.21320/2500-2139-2022-15-1-62-68. (In Russ)]

Current Quality-of-Life Aspects in Patients with Classical Ph-Negative Myeloproliferative Neoplasms in the Russian Federation: Results and Discussion of the National Observational Program MPN-QoL-2020

TI Ionova1,2,3,*, EA Andreevskaya4,*, EN Babich5,*, NB Bulieva6,7,*, OYu Vinogradova8,9,10,*, EM Volodicheva11,*, SV Voloshin12,13,14,*, NN Glonina15,*, SK Dubov16,*, NB Esef’eva17,*, AYu Zaritskey18,*, EE Zinina19,*, MO Ivanova20,*, TYu Klitochenko21,*, AV Kopylova22,*, AD Kulagin23,*, GB Kuchma24,25,*, OYu Li26,*, EG Lomaia18,*, AL Melikyan27,*, VYa Melnichenko3,*, SN Menshakova28,*, NV Minaeva29,*, TA Mitina30,*, EV Morozova23,*,TP Nikitina1,2,*, OE Ochirova31,*, AS Polyakov13,*, TI Pospelova32,*, AV Proidakov33,*, OA Rukavitsyn34,*, GSh Safuanova35,36,*, IN Subortseva27,*, MS Fominykh37,*, MV Frolova38,*, TV Shelekhova39,*, DG Sherstnev39,*, TV Shneider40,*, VA Shuvaev12,41,*, ZK Abdulkhalikova23,†, LV Anchukova38,†, IA Apanaskevich15,†, AN Arnautova22,†, MV Barabanshchikova23,†, NV Berlina34,†, AP Bityukov34,†, EA Gilyazitdinova27,†, VI Gilmanshina36,†, EK Egorova27,†, EV Efremova12,†, EB Zhalsanova31,†, EN Kabanova19,†, OB Kalashnikova20,†, AE Kersilova41,†, TI Kolosheinova27,†, PM Kondratovskii16,†, EV Koroleva28,†, AN Kotelnikova34,†, NA Lazareva16,†, NS Lazorko18,†, EV Lyyurova33,†, AS Lyamkina32,†, YuN Maslova20,†, ES Mileeva12,†, NE Mochkin3,†, EK Nekhai16,†, YaA Noskov13,†, ES Osipova29,†, MM Pankrashkina8,†, EV Potanina16,†, OD Rudenko25,†, TYu Rozhenkova36,†, EI Sbityakova18,†, NT Siordiya18,†, AV Talko16,†, EI Usacheva42,†, YuB Chernykh30,†, TV Chitanava18,†, KS Shashkina27,†, DI Shikhbabaeva8,†, KS Yurovskaya23,†

1 Saint Petersburg State University Hospital, 154 Fontanki nab., Saint Petersburg, Russian Federation, 198103

2 Multinational Center for Quality of Life Research, 1 Artilleriiskaya ul., Saint Petersburg, Russian Federation, 191014

3 NI Pirogov National Medical and Surgical Center, 70 Nizhnyaya Pervomaiskaya ul., Moscow, Russian Federation, 105203

4 Krai Clinical Hospital No. 1, 7 Kokhanskogo ul., Chita, Russian Federation, 672038

5 Yugry District Clinical Hospital, 40 Kalinina ul., Khanty-Mansiisk, Russian Federation, 628011

6 I Kant Baltic Federal University, 14 Aleksandra Nevskogo ul., Kaliningrad, Russian Federation, 236041

7 Clinical Hospital of Kaliningrad Region, 74 Klinicheskaya ul., Kaliningrad, Russian Federation, 236016

8 Moscow Municipal Center for Hematology, SP Botkin City Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

9 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova ul., Moscow, Russian Federation, 117997

10 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela ul., Moscow, Russian Federation, 117997

11 Tula Regional Clinical Hospital, 1A korp. 1 Yablochkova ul., Tula, Russian Federation, 300053

12 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024

13 SM Kirov Military Medical Academy, 6 Akademika Lebedeva ul., Saint Petersburg, Russian Federation, 194044

14 II Mechnikov North-Western State Medical University, 47 Piskarevskii pr-t, Saint Petersburg, Russian Federation, 195067

15 SI Sergeev Krai Clinical Hospital No. 1, 9 Krasnodarskaya ul., Khabarovsk, Russian Federation, 680009

16 Krai Center of Hematology, Krai Clinical Hospital No. 2, 55 Russkaya ul., Vladivostok, Russian Federation, 690105

17 Ulyanovsk Regional Clinical Hospital, 7 III Internatsionala ul., Ulyanovsk, Russian Federation, 432017

18 VA Almazov National Medical Research Center, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341

19 Surgut District Clinical Hospital, 14 Energetikov ul., Surgut, Russian Federation, 628408

20 Clinical and Diagnostic Center, IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

21 Volgograd Regional Clinical Oncology Dispensary, 78 Zemlyachki ul., Volgograd, Russian Federation, 400138

22 Lipetsk Municipal Hospital No. 3 “Svobodnyi sokol”, 10 Ushinskogo ul., Lipetsk, Russian Federation, 398007

23 RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 12 Rentgena ul., Saint Petersburg, Russian Federation, 197022

24 Orenburg State Medical University, 6 Sovetskaya ul., Orenburg, Russian Federation, 460000

25 Orenburg Regional Clinical Hospital, 23 Aksakova ul., Orenburg, Russian Federation, 460018

26 Sakhalin Regional Clinical Hospital, 430 Mira pr-t, Yuzhno-Sakhalinsk, Russian Federation, 693004

27 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

28 Regional Clinical Hospital, 105 Peterburgskoe sh., Tver, Russian Federation, 170036

29 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027

30 MF Vladimirskii Moscow Regional Research Clinical Institute, 61/2 Shchepkina ul., Moscow, Russian Federation, 129110

31 NA Semashko Republican Clinical Hospital, 12 Pavlova ul., Ulan-Ude, Russian Federation, 670031

32 Novosibirsk State Medical University, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091

33 Komi Republican Oncology Dispensary, 46 Nyuvchimskoe sh., Syktyvkar, Republic of Komi, Russian Federation, 167904

34 NN Burdenko Main Military Clinical Hospital, 3 Gospital’naya pl., Moscow, Russian Federation, 105229

35 Bashkir State Medical University, 3 Lenina ul., Ufa, Republic of Bashkortostan, Russian Federation, 450008

36 GG Kuvatov Republican Clinical Hospital, 132 Dostoevskogo ul., Ufa, Republic of Bashkortostan, Russian Federation, 450005

37 Multispecialty Clinic “Skandinaviya”, AVA-PETER, 55A Liteinyi pr-t, Saint Petersburg, Russian Federation, 191014

38 Vologda Regional Clinical Hospital, 17 Lechebnaya ul., Vologda, Russian Federation, 160002

39 VI Razumovskii Saratov State Medical University, 6/9 53rd Strelkovoi Divizii ul., Saratov, Russian Federation, 410028

40 Leningrad Regional Clinical Hospital, 45 korp. 2A Lunacharskogo pr-t, Saint Petersburg, Russian Federation, 194291

41 VV Veresaev Municipal Clinical Hospital, 10 Lobnenskaya ul., Moscow, Russian Federation, 127644

42 SM Clinic, 19 korp. 1 Udarnikov pr-t, Saint Petersburg, Russian Federation, 195279

* Coordinators and members of Expert Panel.

Program participants.

For correspondence: Tatyana Pavlovna Nikitina, MD, PhD, 1 Artilleriiskaya ul., Saint Petersburg, Russian Federation, 191014; e-mail: qolife@mail.ru

For citation: Ionova TI, Andreevskaya EA, Babich EN, et al. Current Quality-of-Life Aspects in Patients with Classical Ph-Negative Myeloproliferative Neoplasms in the Russian Federation: Results and Discussion of the National Observational Program MPN-QoL-2020. Clinical oncohematology. 2022;15(2):176–97. (In Russ).

DOI: 10.21320/2500-2139-2022-15-2-176-197


ABSTRACT

Background. The National Observational Program MPN-QoL-2020 was aimed at collecting the data on QoL (quality of life) characteristics and symptoms as well as patient- and physician-related disease and treatment perceptions in classical Ph-negative myeloproliferative neoplasms (MPN) in the Russian Federation.

Aim. Using new standardized forms, to analyze the quality of life among patients with various MPNs, to characterize ubiquitous symptoms and their effect on quality of life among the myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET) patients as well as to describe the perceptions of disease- and therapy-associated problems as reported by patients and hematologists treating them.

Materials & Methods. The study enrolled 1100 patients with Ph-negative MPNs (355 MF, 408 PV, and 337 ET patients at the mean age of 58 ± 14 years, 61 % women). The study also involved 100 hematologists (mean age of 42 ± 12 years, 85 % women) from 37 health and preventive facilities in 8 Federal districts of the Russian Federation. The patients contributed to the study by one-time completing a special MPN10 form for MPN symptom assessment, a special QoL questionnaire HM-PRO for hematological malignancy patients, as well as a patient checklist. The task of hematologists consisted in one-time filling out of a physician checklist and completing the medical records of all the enrolled MPN patients.

Results. For the first time in the Russian Federation, the real clinical practice yielded the data on the quality of life in Ph-negative MPN patients, symptom profiles in different MPNs, and the extent of their effect on everyday life. QoL impairments mostly relate to physical and emotional functioning of MPN patients and to feeding and drinking regime, but rarely to social functioning. More than 1/3 of patients with Ph-negative MPNs reported on considerable QoL impairments. Absolute majority of patients complain of weakness: 92.6 % in MF, 83.7 % in PV, and 82 % in ET. The profiles of relevant symptoms and their intensity differ in various MPNs. The study identified the symptoms which need most to be corrected, both in the view of patients and physicians. There were established differences between patient- and doctor-reported evaluations of the attitude to the disease and treatment as well as the aspects for improvement in physician-patient relationship.

Conclusion. The National Observational Program MPN-QoL-2020 has resulted in characterization of QoL impairments in MPN patients in Russia. It determined the spectrum of particular disease and treatment challenges specific to these patients. Moreover, their unmet needs were updated. The outcomes of MPN-QoL-2020 can serve as a basis for the guidelines for QoL improvement/maintenance in Ph-negative MPNs and for activities aimed at raising MPN patients’ awareness about the disease and its treatment.

Keywords: classical Ph-negative myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, primary myelofibrosis, quality of life, MPN10 form.

Received: October 12, 2021

Accepted: February 10, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и лечению Ph-негативных миелопролиферативных заболеваний (истинной полицитемии, эссенциальной тромбоцитемии, первичного миелофиброза) (редакция 2020 г.). Клиническая онкогематология. 2021;14(2):262–98. doi: 10.21320/2500-2139-2021-14-2-262-298.
    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National Clinical Guidelines on Diagnosis and Treatment of Ph-Negative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis) (Edition 2020). Clinical oncohematology. 2021;14(2):262–98. doi: 10.21320/2500-2139-2021-14-2-262-298. (In Russ)]
  2. Geyer JT, Orazi A. Myeloproliferative neoplasms (BCR-ABL1 negative) and myelodysplastic/myeloproliferative neoplasms: current diagnostic principles and upcoming updates. Int J Lab Hematol. 2016;38(Suppl 1):12–9. doi: 10.1111/ijlh.12509.
  3. Mesa RA, Passamonti F. Individualizing Care for Patients With Myeloproliferative Neoplasms: Integrating Genetics, Evolving Therapies, and Patient-Specific Disease Burden. Am Soc Clin Oncol Educ. 2016;35:e324–e335. doi: 10.1200/EDBK_159322.
  4. Меликян А.Л., Суборцева И.Н., Шуваев В.А. и др. Современный взгляд на диагностику и лечение классических Ph-негативных миелопролиферативных заболеваний. Клиническая онкогематология. 2021;14(1):129–37. doi: 10.21320/2500-2139-2021-14-1-129-137.
    [Melikyan AL, Subortseva IN, Shuvaev VA, et al. Current View on Diagnosis and Treatment of Classical Ph-Negative Myeloproliferative Neoplasms. Clinical oncohematology. 2021;14(1):129–37. doi: 10.21320/2500-2139-2021-14-1-129-137. (In Russ)]
  5. Иванова М.О., Морозова Е.В., Барабанщикова М.В., Афанасьев Б.В. Ph-негативные миелопролиферативные новообра­зования: проблемы диагностики и терапии в России на примере Санкт-Петербурга. Клиническая онкогематология. 2021;14(1):45–52. doi: 10.21320/2500-2139-2021-14-1-45-52.
    [Ivanova MO, Morozova EV, Barabanshchikova MV, Afanasyev BV. Ph-Negative Myeloproliferative Neoplasms: Diagnosis and Treatment Challenges in Russia (the Case of Saint Petersburg). Clinical oncohematology. 2021;14(1):45–52. doi: 10.21320/2500-2139-2021-14-1-45-52. (In Russ)]
  6. Новик А.А., Ионова Т.И. Руководство по исследованию качества жизни в медицине. Под ред. Ю.А. Шевченко. 4-е изд., перераб. и доп. М.: Изд-во Национального медико-хирургического центра им. Н.И. Пирогова, 2021. 664 с.
    [Novik AA, Ionova TI. Rukovodstvo po issledovaniyu kachestva zhizni v meditsine. (Guide to the study of quality of life in medicine.) YuA Shevchenko, ed. 4th revised edition. Moscow: Natsional’nyi mediko-khirurgicheskii tsentr im. I. Pirogova Publ.; 2021. 664 p. (In Russ)]
  7. Mesa R, Miller CB, Thyne M, et al. Myeloproliferative neoplasms (MPNs) have a significant impact on patients’ overall health and productivity: the MPN Landmark survey. BMC Cancer. 2016;16:167. doi: 10.1186/s12885-016-2208-2.
  8. Mesa RA, Miller CB, Thyne M, et al. Differences in Treatment Goals and Perception of Symptom Burden Between Patients With Myeloproliferative Neoplasms (MPNs) and Hematologists/Oncologists in the United States: Findings From the MPN Landmark Survey. Cancer. 2017;123(3):449–58. doi: 10.1002/cncr.30325.
  9. Yu J, Parasuraman S, Paranagama D, et al. Impact of Myeloproliferative neoplasms on patients’ employment status and work productivity in the United States: results from the living with MPNs survey. BMC С 2018;18(1):420. doi: 10.1186/s12885-018-4322-9.
  10. Harrison CN, Koschmieder S, Foltz L, et al. The impact of myeloproliferative neoplasms (MPNs) on patient quality of life and productivity: results from the international MPN Landmark survey. Ann Hematol. 2017;96(10):1653–65. doi: 10.1007/s00277-017-3082-y.
  11. Xiao Z, Chang C-S, Morozova E, et al. Impact of myeloproliferative neoplasms (MPNs) and perceptions of treatment goals amongst physicians and patients in 6 countries: an expansion of the MPN Landmark Survey. HemaSphere. 2019;3(Suppl 1):294–5. doi: 10.1097/01.HS9.0000561008.75001.e7.
  12. Saydam G, Chang C, Morozova E, et al. Impact of myeloproliferative neoplasms (MPNs) and perceptions of treatment goals amongst physicians and patients in 6 countries: an expansion of the MPN Landmark Survey. Leuk Res. 2019;85:S60–S61. doi: 10.1016/S0145-2126(19)30353-4.
  13. Morozova EV, Barabanshchikova MV, Ionova TI, Afanasyev BV. Attitudes to the disease and therapy in patients with chronic Ph-negative myeloproliferative neoplasms: results of the physician and patient surveys in Russia as a part of International Landmark Study. Cell Ther Transplant. 2020;9(2):28–39. doi: 10.18620/ctt-1866-8836-2020-9-2-28-39.
  14. Качество жизни пациентов с миелопролиферативными новообразованиями и отношение пациентов и врачей к проблемам заболевания и лечения: результаты национальной наблюдательной программы МПН-КЖ-2020. Под ред. Т. И. Ионовой. М.: Практическая медицина, 2021. 36 с.
    [Ionova TI, ed. Kachestvo zhizni patsientov s mieloproliferativnymi novoobrazovaniyami i otnoshenie patsientov i vrachei k problemam zabolevaniya i lecheniya: rezul’taty natsional’noi nablyudatel’noi programmy MPN-KZh-2020. (Quality of life of patients with myeloproliferative neoplasms and patient- and doctor-reported attitudes to the disease and treatment issues: outcomes of the National Observational Program MPN-Qol-2020.) Moscow: Prakticheskaya meditsina Publ.; 2021. 36 p. (In Russ)]
  15. Меликян А.Л., Туркина А.Г., Абдулкадыров К.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз). Гематология и трансфузиология. 2014;59(4):31–56.
    [Melikyan AL, Turkina AG, Abdulkadyrov KM, et al. Clinical guidelines for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis). Gematologiya i transfuziologiya. 2014;59(4):31–56. (In Russ)]
  16. Scherber R, Dueck AC, Johansson P, et al. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. 2011;118(2):401–8. doi: 10.1182/blood-2011-01-328955.
  17. Emanuel RM, Dueck AC, Geyer HL, et al. Myeloproliferative Neoplasm (MPN) Symptom Assessment Form Total Symptom Score: Prospective International Assessment of an Abbreviated Symptom Burden Scoring System Among Patients with MPNs. J Clin Oncol. 2012;30(33):4098–103. doi: 10.1200/JCO.2012.42.3863.
  18. Ионова Т.И., Виноградова О.Ю., Ефремова Е.В. и др. Разработка и результаты апробации русской версии опросника MPN10 для оценки симптомов у пациентов с миелопролиферативными новообразованиями с учетом международных рекомендаций. Клиническая онкогематология. 2020;13(2):176–84. doi: 10.21320/2500-2139-2020-13-2-176-184.
    [Ionova TI, Vinogradova OYu, Efremova EV, et al. Development and Validation Results of the Russian MPN10 Form for Symptom Assessment in Patients with Myeloproliferative Neoplasms in Compliance with International Recommendations. Clinical oncohematology. 2020;13(2):176–84. doi: 10.21320/2500-2139-2020-13-2-176-184. (In Russ)]
  19. Goswami P, Oliva EN, Ionova TI, et al. Paper and electronic versions of HM-PRO, a novel patient-reported outcome measure for hematology: an equivalence study. J Comp Eff Res. 2019;8(7):523–33. doi: 10.2217/cer-2018-0108.
  20. Goswami P, Oliva EN, Ionova T, et al. Reliability of a novel haematological malignancy specific patient-reported outcome measure: HM-PRO. Front Pharmacol. 2020;11:571066. doi: 10.3389/fphar.2020.571066.
  21. Afanasyev B, Avtorhanova M, Bannikova M, et al. Implementation of Haematological Malignancies Patient Reported Outcome Measure in Clinical Practice: Haematologists’ Experience. Eur Med J Hematol. 2020;8(1):59–61.
  22. Petruk С, Mathias J. The Myeloproliferative Neoplasm Landscape: A Patient’s Eye View. Adv Ther. 2020;37(5):2050–70. doi: 10.1007/s12325-020-01314-0.
  23. Brochmann N, Flachs EM, Christensen AI, et al. Health-Related Quality of Life in Patients with Philadelphia-Negative Myeloproliferative Neoplasms: A Nationwide Population-Based Survey in Denmark. Cancers. 2020;12(12):3565. doi: 10.3390/cancers12123565.
  24. Gathany A, Scherber RM, Girardo M, et al. Myeloproliferative Neoplasm Quality of Life (MPN-QOL) Study Group: MPN Experimental Assessment of Symptoms By Utilizing Repetitive Evaluation (MEASURE) Trial. Blood. 2018;132(Suppl 1):1762. doi: 10.1182/blood-2018-99-111559.
  25. Langlais BT, Geyer H, Scherber R, et al. Quality of life and symptom burden among myeloproliferative neoplasm patients: do symptoms impact quality of life? Leuk Lymphoma. 2019;60(2):402–8. doi: 10.1080/10428194.2018.1480768.
  26. Mesa R, Palmer J, Eckert R, Huberty J. Quality of Life in Myeloproliferative Neoplasms: Symptoms and Management Implications. Hematol Oncol Clin North Am. 2021;35(2):375–90. doi: 10.1016/j.hoc.2020.12.006.