Heme Oxygenase-1/Ferritin in Protection of Leukemia Cells from Oxidative Stress Induced by Catalytic System “Teraphtal + Ascorbic Acid”

TA Sidorova, OO Ryabaya, AA Prokof’eva, DA Khochenkov

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Tat’yana Aleksandrovna Sidorova, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; e-mail: tatsid@yahoo.com

For citation: Sidorova TA, Ryabaya OO, Prokof’eva AA, Khochenkov DA. Heme Oxygenase-1/Ferritin in Protection of Leukemia Cells from Oxidative Stress Induced by Catalytic System “Teraphtal + Ascorbic Acid”. Clinical oncohematology. 2019;12(4):416–27 (In Russ).

DOI: 10.21320/2500-2139-2019-12-4-416-427


ABSTRACT

Background. As is well known, cytotoxic mechanism of antitumor agent, i.e. catalytic system “teraphtal + ascorbic acid” (“TF+AA”), is associated with production of reactive oxygen species (ROS) and induction of oxidative stress in it. The “heme oxygenase-1/ferritin” (HО-1/Ft) system contributes to antioxidant defense.

Aim. To analyze HО-1/Ft value in protection of leukemia cells from toxicity induced by antitumor agent “TF+AA”.

Materials & Methods. The study was based on human leukemia cell lines K562 and U937. HО-1/Ft basal and drug-induced expression on mRNA and protein levels was analyzed by real-time RT-PCR and Western blot, ROS concentration in cells was determined by flow cytometry, and drug cytotoxicity was measured by MTT assay.

Results. Our data showed constitutively active HO-1 in U937 myelomonoblasts whereas in K562 erythroblasts the expression of this protein was blocked on the mRNA level. Hemin, HO-1 agonist, induces HO-1 and Ft co-expression in U937 cells on the mRNA and protein levels. HO-1/Ft activation by hemin in U937 cells does not affect their “TF+AA” sensitivity and doubles, for example, the cytarabine sensitivity. “TF+AA” appeared to cause up-regulation of HO-1/Ft genes, the expression of which quadruples or increases by half, respectively, compared with basal level. Preincubation of U937 myelomonoblasts with deferoxamine, iron chelator, results in doubling of their “TF+AA” resistance. However, the use of iron-containing TF analogs leads to its doubled cytotoxicity.

Conclusion. In leukemia cell line U937 with constitutively active НО-1/Ft the heme-dependent activation of it does not considerably contribute to protection of cells from “TF+AA” toxicity. The system “TF+AA” is -1 and Ft expression inducer in U937 myelomonoblasts. Cytotoxic mechanism of “TF+AA” involves intracellular pool of “labile” non-heme iron, the level of which affects the drug sensibility of leukemia cells.

Keywords: heme oxygenase-1, ferritin, sodium salt of cobalt 4,5-octacarboxyphthalocyanine, iron 4,5-octacarboxyphthalocyanine, human leukemia cell lines.

Received: April 1, 2019

Accepted: September 3, 2019

Read in PDF


REFERENCES

  1. Yoshida T, Kikuchi G. Sequence of the reaction of heme catabolism catalyzed by the microsomal heme oxygenase system. FEBS Lett. 1974;48(2):256–61. doi: 10.1016/0014-5793(74)80481-3.

  2. Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 1968;61(2):748–55.

  3. Ryter SW, Otterbein LE, Morse D, Choi AM. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. In: Vallyathan V, Shi X, Castranova V, eds. Oxygen/Nitrogen Radicals: Cell Injury and Disease. Springer; 2002. pp. 249–63. doi: 10.1007/978-1-4615-1087-1_29.

  4. Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA. 1988;85(24):9748–52. doi: 10.1073/pnas.85.24.9748.

  5. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95. doi: 10.1152/physrev.00018.2001.

  6. Gozzelino R, Arosio P. Iron Homeostasis in Health and Disease. Int J Mol Sci. 2016;17(1):E130. doi: 10.3390/ijms17010130.

  7. Cheng HT, Yen CJ, Chang CC, et al. Ferritin heavy chain mediates the protective effect of heme oxygenase-1 against oxidative stress. Biochim Biophys Acta. 2015;1850(12):2506–17. doi: 10.1016/j.bbagen.2015.09.018.

  8. Balla G, Jacob HS, Balla J, et al. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992;267(25):18148–53.

  9. Lin Q, Weis S, Yang G, et al Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem. 2007;282(28):20621–3.3 doi: 10.1074/jbc.m607954200.

  10. Biswas C, Shah N, Muthu M, et al. Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem. 2014;289(39):26882–94. doi: 10.1074/jbc.M114.567685.

  11. Vanella L, Barbagallo I, Tibullo D, et al. The non-canonical functions of the heme oxygenases. Oncotarget. 2016;7(42):69075–86. doi: 10.18632/oncotarget.11923.

  12. Bian C, Zhong M, Nisar MF, et al. A novel heme oxygenase-1 splice variant, 14kDa HO-1, promotes cell proliferation and increases relative telomere length. Biochem Biophys Res Commun. 2018;500(2):429–34. doi: 10.1016/j.bbrc.2018.04.096.

  13. Abraham NG, Kappas A. Heme oxygenase and the cardiovascular-renal system. Free Radic Biol Med. 2005;39(1):1–25. doi: 10.1016/j.freeradbiomed.2005.03.010.

  14. Mayerhofer M, Florian S, Krauth MT. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res. 2004;64(9):3148–54. doi: 10.1158/0008-5472.can-03-1200.

  15. Schaefer B, Behrends S. Translocation of heme oxygenase-1 contributes to imatinib resistance in chronic myelogenous leukemia. Oncotarget. 2017;8(40):67406–21. doi: 10.18632/oncotarget.18684.

  16. Li Volti G, Tibullo D, Vanella L, et al. The Heme Oxygenase System in Hematological Malignancies. Antioxid Redox Signal. 2017;27(6):363–77. doi: 10.1089/ars.2016.6735.

  17. Zhe N, Wang J, Chen S, et al. Heme oxygenase-1 plays a crucial role in chemoresistance in acute myeloid leukemia. Hematology. 2015;20(7):384–91. doi: 10.1179/1607845414Y.0000000212.

  18. Herrmann H, Kneidinger M, Cerny-Reiterer S, et al. The Hsp32 inhibitors SMA-ZnPP and PEG-ZnPP exert major growth-inhibitory effects on D34+/CD38+ and CD34+/CD38- AML progenitor cells. Curr Cancer Drug Targets. 2012;12(1):51–63. doi: 10.2174/156800912798888992.

  19. Wu W, Ma D, Wang P, et al. Potential crosstalk of the interleukin-6-heme oxygenase-1-dependent mechanism involved in resistance to lenalidomide in multiple myeloma cells. FEBS J. 2016;283(5):834–49. doi: 10.1111/febs.13633.

  20. Raju VS, Maines MD. Coordinated expression and mechanism of induction of HSP32 (heme oxygenase-1) mRNA by hyperthermia in rat organs. Biochim Biophys Acta. 1994;1217(3):273–80. doi: 10.1016/0167-4781(94)90286-0.

  21. Vile GF, Tyrrell RM. Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. J Biol Chem. 1993;268(20):14678–81.

  22. McDonald JT, Kim K, Norris AJ, et al. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res. 2010;70(21):8886–95. doi: 10.1158/0008-5472.CAN-10-0171.

  23. Lin F, Girotti AW. Hyperresistance of leukemia cells to photodynamic inactivation after long-term exposure to hemin. Cancer Res. 1996;56(20):4636–43.

  24. Mitani K, Fujita H, Fukuda Y, et al. The role of inorganic metals and metalloporphyrins in the induction of haem oxygenase and heat-shock protein 70 in human hepatoma cells. Biochem J. 1993;290(Pt 3):819–25. doi: 10.1042/bj2900819.

  25. Ogborne RM, Rushworth SA, Charalambos CA, et al. Haem oxygenase-1: a target for dietary antioxidants. Biochem Soc Trans. 2004;32(Pt 6):1003–5. doi: 10.1042/bst0321003.

  26. Grosser N, Hemmerle A, Berndt G, et al. The antioxidant defense protein heme oxygenase 1 is a novel target for statins in endothelial cells. Free Radic Biol Med. 2004;37(12):2064–71. doi: 10.1016/j.freeradbiomed.2004.09.009.

  27. Cui ZG, Ogawa R, Tsuneyama K, et al. Insight into the molecular mechanism of heme oxygenase-1 induction by docosahexaenoic acid in U937 cells. Chem Biol Interact. 2015;238:180–8. doi: 10.1016/j.cbi.2015.07.005.

  28. Choi BM, Kim YM, Jeong YR, et al. Induction of heme oxygenase-1 is involved in anti-proliferative effects of paclitaxel on rat vascular smooth muscle cells. Biochem Biophys Res Commun. 2004;321(1):132–7. doi: 10.1016/j.bbrc.2004.06.120.

  29. Visner GA, Lu F, Zhou H, et al Rapamycin induces heme oxygenase-1 in human pulmonary vascular cells: implications in the antiproliferative response to rapamycin. Circulation. 2003;107(6):911–6. doi: 10.1161/01.cir.0000048191.75585.60.

  30. Rushworth SA, MacEwan DJ. HO-1 underlies resistance of AML cells to TNF-induced apoptosis. Blood. 2008;111(7):3793–801. doi: 10.1182/blood-2007-07-104042.

  31. Shan Y, Pepe J, Lu TH, et al. Induction of the heme oxygenase-1 gene by metalloporphyrins. Arch Biochem Biophys. 2000;380(2):219–27.

  32. Yang G, Nguyen X, Ou J, et al. Unique effects of zinc protoporphyrin on HO-1 induction and apoptosis. Blood. 2001;97(5):1306–13. doi: 10.1182/blood.v97.5.1306.

  33. Hou W, Shan Y, Zheng J, et al. Zinc mesoporphyrin induces rapid and marked degradation of the transcription factor Bach1 and up-regulates HO-1. Biochim Biophys Acta. 2008;1779(3):195–203. doi: 10.1016/j.bbagrm.2008.01.006.

  34. Davudian S, Mansoori B, Shajari N, et al. BACH1, the master regulator gene: A novel candidate target for cancer therapy. Gene. 2016;588(1):30–7. doi: 10.1016/j.gene.2016.04.040.

  35. Zhang X, Guo J, Wei X, et al. Bach1: Function, Regulation, and Involvement in Disease. Oxid Med Cell Longev. 2018;2018:1–8. doi: 10.1155/2018/1347969.

  36. Sun J, Hoshino H, Takaku K, et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 2002;21(19):5216–24. doi: 10.1093/emboj/cdf516.

  37. Ogawa K, Sun J, Taketani S, et al. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J. 2001;20(11):2835–43. doi: 10.1093/emboj/20.11.2835.

  38. Suzuki H, Tashiro S, Hira S, et al. Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1. EMBO J. 2004;23(13):2544–53. doi: 10.1038/sj.emboj.7600248.

  39. Shan Y, Lambrecht RW, Donohue SE, Bonkovsky HL. Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J. 2006;20(14):2651–3. doi: 10.1096/fj.06-6346fje.

  40. Suzuki H, Tashiro S, Sun J, et al. Cadmium induces nuclear export of Bach1, a transcriptional repressor of heme oxygenase-1 gene. J Biol Chem. 2003;278(49):49246–53. doi: 10.1074/jbc.m306764200.

  41. Heck D, Vetrano A, Mariano T, et al. UVB light stimulates production of reactive oxygen species. J Biol Chem. 2003;278(25):22432–6. doi: 10.1074/jbc.c300048200.

  42. Grasso S, Scifo C, Cardile V, et al. Adaptive responses to the stress induced by hyperthermia or hydrogen peroxide in human fibroblasts. Exp Biol Med (Maywood). 2003;228(5):491–8. doi: 10.1177/15353702-0322805-12.

  43. Ji K, Fang L, Zhao H, et al. Ginger Oleoresin Alleviated γ-Ray Irradiation-Induced Reactive Oxygen Species via the Nrf2 Protective Response in Human Mesenchymal Stem Cells. Oxid Med Cell Longev. 2017;2017:1–12. doi: 10.1155/2017/1480294.

  44. Chow JM, Shen SC, Huan SK, et al. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol. 2005;69(12):1839–51. doi: 10.1016/j.bcp.2005.03.017.

  45. Cao H, Wang Y, Wang Q, et al. Taxol prevents myocardial ischemia-reperfusion injury by inducing JNK-mediated HO-1 expression. Pharm Biol. 2016;54(3):555–60. doi: 10.3109/13880209.2015.1060507.

  46. Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221–47. doi: 10.1007/s00018-016-2223-0.

  47. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116. doi: 10.1146/annurev.pharmtox.46.120604.141046.

  48. Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22. doi: 10.1006/bbrc.1997.6943.

  49. Reichard JF, Motz GT, Puga A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucl Acids Res. 2007;35(21):7074–86. doi: 10.1093/nar/gkm638.

  50. Sun J, Brand M, Zenke Y, et al. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc Natl Acad Sci USA. 2004;101(6):1461–6. doi: 10.1073/pnas.0308083100.

  51. Eisenstein RS, Garcia-Mayol D, Pettingell W, Munro HN. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc Natl Acad Sci USA. 1991;88(3):688–92. doi: 10.1073/pnas.88.3.688.

  52. Lin JJ, Daniels-McQueen S, Gaffield L, et al. Specificity of the induction of ferritin synthesis by hemin. Biochim Biophys Acta. 1990;1050(1–3):146–50. doi: 10.1016/0167-4781(90)90156-v.

  53. Sheftel AD, Kim SF, Ponka P. Non-heme induction of heme oxygenase-1 does not alter cellular iron metabolism. J Biol Chem. 2007;282(14):10480–6. doi: 10.1074/jbc.m700240200.

  54. Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood. 2002;99(10):3505–16. doi: 10.1182/blood.v99.10.3505.

  55. Tsuji Y, Ayaki H, Whitman SP, et al. Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol Cell Biol. 2000;20(16):5818–27. doi: 10.1128/mcb.20.16.5818-5827.2000.

  56. Pietsch EC, Chan JY, Torti FM, Torti SV. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J Biol Chem. 2003;278(4):2361–9. doi: 10.1074/jbc.m210664200.

  57. Munro HN. Iron regulation of ferritin gene expression. J Cell Biochem. 1990;44(2):107–15. doi: 10.1002/jcb.240440205.

  58. Kato J, Kobune M, Ohkubo S, et al. Iron/IRP-1-dependent regulation of mRNA expression for transferrin receptor, DMT1 and ferritin during human erythroid differentiation. Exp Hematol. 2007;35(6):879–87. doi: 10.1016/j.exphem.2007.03.005.

  59. Cermak J, Balla J, Jacob HS, et al. Tumor cell heme uptake induces ferritin synthesis resulting in altered oxidant sensitivity: possible role in chemotherapy efficacy. Cancer Res. 1993;53(21):5308–13.

  60. Regan RF, Kumar N, Gao F, Guo Y. Ferritin induction protects cortical astrocytes from heme-mediated oxidative injury. Neuroscience. 2002;113(4):985–94. doi: 10.1016/s0306-4522(02)00243-9.

  61. Lanceta L, Mattingly JM, Li C, Eaton JW. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death. PLoS One. 2015;10(8):e0134144. doi: 10.1371/journal.pone.0134144.

  62. Lin F, Girotti AW. Hemin-enhanced resistance of human leukemia cells to oxidative killing: antisense determination of ferritin involvement. Arch Biochem Biophys. 1998;352(1):51–8. doi: 10.1006/abbi.1998.0588.

  63. Gozzelino R, Soares MP. Coupling heme and iron metabolism via ferritin H chain. Antioxid Redox Signal. 2014;20(11):1754–69. doi: 10.1089/ars.2013.5666.

  64. Петрова Е.Г., Борисенкова С.А., Калия О.Л. Окисление аскорбиновой кислоты в присутствии фталоцианиновых комплексов металлов и химические аспекты каталитической терапии рака: научное издание. Сообщение 2. Катализ октакарбоксифталоцианином кобальта. Продукты реакции. Известия РАН. Серия химическая. 2004;10:2224–7.

    [Petrova EG, Borisenkova SA, Kaliya OL. Oxidation of ascorbic acid in the presence of phthalocyanine metal complexes and chemical aspects of catalytic therapy of cancer. 2. Catalysis by cobalt octacarboxyphthalocyanine. Reaction products. Izvestiya RAN. Seriya khimicheskaya. 2004;10:2224–7. (In Russ)]

  65. Сидорова Т.А., Вагида М.С., Калия О.Л., Герасимова Г.К. Роль каталазы в защите опухолевых клеток от окислительного стресса, индуцированного бинарной каталитической системой «терафтал + аскорбиновая кислота». Клиническая онкогематология. 2014;7(3):282–9.

    [Sidorova ТА, Vagida MS, Kaliya OL, Gerasimova GK. Role of Catalase in Protection of Cancer Cells from Oxidative Stress Induced by Binary Catalytic System “Teraphtal + Ascorbic Acid”. Klinicheskaya onkogematologiya. 2014;7(3):282–9. (In Russ)]

  66. Bradford M.M. A rapid and sensitive for the quentitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analyt Biochem. 1976;72:248–54.

  67. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5.

  68. Alves LR, Costa ES, Sorgine MH, et al Heme-oxygenases during erythropoiesis in K562 and human bone marrow cells. PLoS One. 2011;6(7):e21358. doi: 10.1371/journal.pone.0021358.

  69. Ding Y, Zhang YZ, Furuyama K, et al. Down-regulation of heme oxygenase-2 is associated with the increased expression of heme oxygenase-1 in human cell lines. FEBS J. 2006;273(23):5333–46.

  70. Miyazaki T, Kirino Y, Takeno M, et al. Expression of heme oxygenase-1 in human leukemic cells and its regulation by transcriptional repressor Bach1. Cancer Sci. 2010;101(6):1409–16. doi: 10.1111/j.1349-7006.2010.01550.x.

  71. Kweon MH, Adhami VM, Lee JS, Mukhtar H. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J Biol Chem. 2006;281(44):33761–72. doi: 10.1074/jbc.m604748200.

  72. Ma J, Yu KN, Cheng C et al. Targeting Nrf2-mediated heme oxygenase-1 enhances non-thermal plasma-induced cell death in non-small-cell lung cancer A549 cells. Arch Biochem Biophys. 2018;658:54–65. doi: 10.1016/j.abb.2018.09.015.

  73. Okabe-Kado J, Hayashi M, Honma Y, Hozumi M. Enhancement by hemin of the sensitivity of K562 human leukemic cells to 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1986;46(3):1239–43.

  74. Honma Y, Onozuka Y, Okabe-Kado J, et al. Hemin enhances the sensitivity of erythroleukemia cells to 1-beta-D-arabinofuranosylcytosine by both activation of deoxycytidine kinase and reduction of cytidine deaminase activity. Cancer Res. 1991;51(17):4535–8.

  75. Cheong JW, Kim Y, Eom JI, et al. Enhanced autophagy in cytarabine arabinoside-resistant U937 leukemia cells and its potential as a target for overcoming resistance. Mol Med Rep. 2016;13(4):3433–40. doi: 10.3892/mmr.2016.4949.

  76. Mucha O, Podkalicka P, Czarnek M, et al. Pharmacological versus genetic inhibition of heme oxygenase-1 – the comparison of metalloporphyrins, shRNA and CRISPR/Cas9 system. Acta Biochim Pol. 2018;65(2):277–86. doi: 10.18388/abp.2017_2542.

  77. De Domenico I, Ward DM, Kaplan J. Specific iron chelators determine the route of ferritin degradation. Blood. 2009;114(20):4546–51. doi: 10.1182/blood-2009-05-224188.

Teraphtal (sodium salt of cobalt 4,5-carboxyphthalocyanine) Decreases Sensitivity of Tumor Cells to Anthracycline Antibiotics and Mitoxantrone in Vitro

TA Sidorova1, OO Ryabaya1, VV Tatarskii1, DA Khochenkov1, ES Ivanova1, OL Kaliya2

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 State Research Center NIOPIC, 1 bld. 4 B. Sadovaya str., Moscow, Russian Federation, 123995

For correspondence: Tat’yana Aleksandrovna Sidorova, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; e-mail: tatsid@yahoo.com

For citation: Sidorova TA, Ryabaya ОО, Tatarskii VV, et al. Teraphtal (sodium salt of cobalt 4,5-carboxyphthalocyanine) Decreases Sensitivity of Tumor Cells to Anthracycline Antibiotics and Mitoxantrone in Vitro. Clinical oncohematology. 2018;11(1):10–25.

DOI: 10.21320/2500-2139-2018-11-1-10-25


ABSTRACT

Background. Anthracycline antibiotics (AA) are widely used in clinical oncohematology. As is well known АА cytotoxicity diminishes in the presence of hemin (FePPIX), an endogenous metalloporphyrine.

Aim. To study effect of teraphtal (TPh) and its structural analog FePPIX on cytotoxicity of “anthraquinone” drugs AA and mitoxantrone (MiTOX) in vitro.

Materials & Methods. The study was performed using human leukemia cells of K562 line and HCT 116 adenocarcinoma cell line. TPh ability to prevent AA-induced tumor cell death has been estimated by the following methods: MTT assays, flow cytometry, light microscopy, cytochemical method for determination of b-galactosidase expression using X-Gal substrate, DNA electrophoresis, LDH release, real time RT-PCR, and radiometric method.

Results. In the presence of TPh (10 µM) the AA and MiTOX cytotoxicity diminishes approximately 4- and 20-fold respectively. The TPh protective potency is dependent on the AA chemical structure. In the presence of TPh aclarubicin toxicity remains constant. The TPh/FePPIX protection from the AA cytotoxicity can involve the same mechanism reducing the ability of the cells, including the leukemia tumor cells, to accumulate AA in the presence of modulators. TPh/FePPIX protects human tumor cells from AA-induced death, such as apoptosis, necrosis, and accelerated senescence (АS). АS in K562 leukemia cell line induced by AA + TPh/FePPIX results in cell-suspension-derived-small-cell colonies. Вeclin-lysosomal pathway of autophagy is not engaged in reducing of the AA toxicity of K562 cells in the presence of TPh.

Conclusion. Reducing of the AA toxicity and revival of cell population growth in the presence of TPh/FePPIX should be taken into consideration when using hematoporphyrins and phthalocyanines having a structure similar to TPh as sensitizers in the chemotherapy protocols.

Keywords: anthracycline antibiotics, mitoxantrone, teraphtal, hemin, human tumor cells, drug induced senescence, autophagy.

Received: July 2, 2017

Accepted: November 13, 2017

Read in PDF 


REFERENCES

  1. Arcamone FM. Fifty years of chemical research at Farmitalia. Chemistry. 2009;15(32):7774–91. doi: 10.1002/chem.200900292.
  2. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57(7):727–41. doi: 10.1016/s0006-2952(98)00307-4.
  3. Doroshow JH. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res. 1983;43(10):4543–51.
  4. Doroshow JH, Davies KJ. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem. 1986;261(7):3068–74.
  5. Demant EJ. Inactivation of cytochrome c oxidase activity in mitochondrial membranes during redox cycling of doxorubicin. Biochem Pharmacol. 1991;41(4):543–52. doi: 10.1016/0006-2952(91)90626-g.
  6. Sinha BK, Mason RP. Is Metabolic Activation of Topoisomerase II Poisons Important In The Mechanism Of Cytotoxicity? J Drug Metab Toxicol. 2015;6(3):186. doi: 10.4172/2157-7609.1000186.
  7. Robinson NC. Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr. 1993;25(2):153–63. doi: 10.1007/bf00762857.
  8. Nicolay K, de Kruijff B. Effects of adriamycin on respiratory chain activities in mitochondria from rat liver, rat heart and bovine heart. Evidence for a preferential inhibition of complex III and IV. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1987;892(3):320–30. doi: 10.1016/0005-2728(87)90236-2.
  9. Claypool SM, Koehler CM. The complexity of cardiolipin in health and disease. Trends Biochem Sci. 2012;37(1):32–41. doi: 10.1016/j.tibs.2011.09.003.
  10. Paradies G, Paradies V, De Benedictis V, et al. Functional role of cardiolipin in mitochondrial bioenergetics. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 2014;1837(4):408–17. doi: 10.1016/j.bbabio.2013.10.006.
  11. Kagan VE, Bayir HA, Belikova NA, et al. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med. 2009;46(11):1439–53. doi: 10.1016/j.freeradbiomed.2009.03.004.
  12. Petrosillo G, Casanova G, Matera M, et al. Interaction of peroxidized cardiolipin with rat-heart mitochondrial membranes: induction of permeability transition and cytochrome c release. FEBS Lett. 2006;580(27):6311–6. doi: 10.1016/j.febslet.2006.10.036.
  13. Frost B-M, Eksborg S, Bjork O, et al. Pharmacokinetics of doxorubicin in children with acute lymphoblastic leukemia: multi-institutional collaborative study. Med Pediatr Oncol. 2002;38(5):329–37. doi: 10.1002/mpo.10052.
  14. Toldo S, Goehe RW, Lotrionte M, et al. Comparative cardiac toxicity of anthracyclines in vitro and in vivo in the mouse. PLoS One. 2013;8(3):e58421. doi: 10.1371/journal.pone.0058421.
  15. Wang Z, Wang J, Xie R, et al. Mitochondria-derived reactive oxygen species play an important role in doxorubicin-induced platelet apoptosis. Int J Mol Sci. 2015;6(5):11087–100. doi: 10.3390/ijms160511087.
  16. Heart EA, Karandrea S, Liang X, et al. Mechanisms of Doxorubicin Toxicity in Pancreatic β-Cells. Toxicol Sci. 2016;152(2):395–405. doi: 10.1093/toxsci/kfw096.
  17. Wu X, Hasinoff BB. The antitumor anthracyclines doxorubicin and daunorubicin do not inhibit cell growth through the formation of iron-mediated reactive oxygen species. Anticancer Drugs. 2005;16(1):93–9. doi: 10.1097/00001813-200501000-00014.
  18. Tarasiuk J, Frezard F, Garnier-Suillerot A, Gattegno L. Anthracycline incorporation in human lymphocytes. Kinetics of uptake and nuclear concentration. Biochim Biophys Acta. 1989;1013(2):109–17. doi: 10.1016/0167-4889(89)90038-4.
  19. Swift LP, Rephaeli A, Nudelman A, et al. Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death. Cancer Res. 2006;66(9):4863–71. doi: 10.1158/0008-5472.can-05-3410.
  20. Skladanowski A, Konopa J. Interstrand DNA crosslinking induced by anthracyclines in tumour cells. Biochem Pharmacol. 1994;47(12):2269–78. doi: 10.1016/0006-2952(94)90265-8.
  21. Tewey KM, Rowe TC, Yang L, et al. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science. 1984;226(4673):466–8. doi: 10.1126/science.6093249.
  22. Mordente A, Meucci E, Martorana GE, et al. Topoisomerases and Anthracyclines: Recent Advances and Perspectives in Anticancer Therapy and Prevention of Cardiotoxicity. Curr Med Chem. 2017;24(15):1607–26. doi: 10.2174/0929867323666161214120355.
  23. Hajji N, Mateos S, Pastor N, et al. Induction of genotoxic and cytotoxic damage by aclarubicin, a dual topoisomerase inhibitor. Mutat Res. 2005;583(1):26–35. doi: 10.1016/j.mrgentox.2005.01.012.
  24. Nitiss JL, Pourquier P, Pommier Y. Aclacinomycin A stabilizes topoisomerase I covalent complexes. Cancer Res. 1997;57(20):4564–9.
  25. Bridewell DJ, Finlay GJ, Baguley BC. Differential actions of aclarubicin and doxorubicin: the role of topoisomerase I. Oncol Res. 1997;9(10):535–42.
  26. Bogason A, Bhuiyan H, Masquelier M, et al. Uptake of anthracyclines in vitro and in vivo in acute myeloid leukemia cells in relation to apoptosis and clinical response. Eur J Clin Pharmacol. 2009;65(12):1179–86. doi: 10.1007/s00228-009-0734-4.
  27. Dartsch DC, Schaefer A, Boldt S, et al. Comparison of anthracycline-induced death of human leukemia cells: programmed cell death versus necrosis. Apoptosis. 2002;7(6):537–48. doi: 10.1023/a:1020647211557.
  28. Koceva-Chyla A, Jedrzejczak M, Skierski J, et al. Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: relation to drug cytotoxicity and caspase-3 activation. Apoptosis. 2005;10(6):1497–514. doi: 10.1007/s10495-005-1540-9.
  29. Chang BD, Broude EV, Dokmanovic M, et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 1999;59(15):3761–7.
  30. te Poele RH, Okorokov AL, Jardine L, et al. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 2002;62(6):1876–83.
  31. Czyz M, Jakubowska J, Sztiller-Sikorska M. STI571/doxorubicin concentration-dependent switch for diverse caspase actions in CML cell line K562. Biochem Pharmacol. 2008;75(9):1761–73. doi: 10.1016/j.bcp.2008.02.004.
  32. Yang MY, Lin PM, Liu YC, et al. Induction of cellular senescence by doxorubicin is associated with upregulated miR-375 and induction of autophagy in K562 cells. PLoS One. 2012;7(5):e37205. doi: 10.1371/journal.pone.0037205.
  33. Mayer P, Gorisse MC, Carpentier Y, Desoize B. Effects of aclarubicin on growth, differentiation and apoptosis of tumor cells in vitro. Bull Cancer. 1994;81(8):670–6.
  34. Rogalska A, Koceva-Chyla A, Jozwiak Z. Aclarubicin-induced ROS generation and collapse of mitochondrial membrane potential in human cancer cell lines. Chem Biol Interact. 2008;176(1):58–70. doi: 10.1016/j.cbi.2008.07.002.
  35. Maejima Y, Adachi S, Ito H, et al. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7(2):125–36. doi: 10.1111/j.1474-9726.2007.00358.x.
  36. Sultana R, Di Domenico F, Tseng M, et al. Doxorubicin-induced thymus senescence. J Proteome Res. 2010;9(12):6232–41. doi: 10.1021/pr100465m.
  37. Litwiniec A, Grzanka A, Helmin-Basa A, et al. Features of senescence and cell death induced by doxorubicin in A549 cells: organization and level of selected cytoskeletal proteins. J Cancer Res Clin Oncol. 2010;136(5):717–36. doi: 10.1007/s00432-009-0711-4.
  38. Eom YW, Kim MA, Park SS, et al. Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene. 2005;24(30):4765–77. doi: 10.1038/sj.onc.1208627.
  39. Joyner DE, Bastar JD, Randall RL. Doxorubicin induces cell senescence preferentially over apoptosis in the FU-SY-1 synovial sarcoma cell line. J Orthop Res. 2006;24(6):1163–9. doi: 10.1002/jor.20169.
  40. Zingoni A, Cecere F, Vulpis E, et al. Genotoxic Stress Induces Senescence-Associated ADAM10-Dependent Release of NKG2D MIC Ligands in Multiple Myeloma Cells. J Immunol. 2015;195(2):736–48. doi: 10.4049/jimmunol.1402643.
  41. Dabritz JH, Yu Y, Milanovic M, et al. CD20-Targeting Immunotherapy Promotes Cellular Senescence in B-Cell Lymphoma. Mol Cancer Ther. 2016;15(5):1074–81. doi: 10.1158/1535-7163.MCT-15-0627.
  42. Gewirtz DA, Alotaibi M, Yakovlev VA, Povirk LF. Tumor Cell Recovery from Senescence Induced by Radiation with PARP Inhibition. Radiat Res. 2016;186(4):327–32. doi: 10.1667/rr14437.1.
  43. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12. doi: 10.1002/path.2697.
  44. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18(4):571–80. doi: 10.1038/cdd.2010.191.
  45. Gewirtz DA. Autophagy and senescence in cancer therapy. J Cell Physiol. 2014;229(1):6–9. doi: 10.1002/jcp.24420.
  46. Svensson SP, Lindgren S, Powell W, Green H. Melanin inhibits cytotoxic effects of doxorubicin and daunorubicin in MOLT 4 cells. Pigment Cell Res. 2003;16(4):351–4. doi: 10.1034/j.1600-0749.2003.00030.x.
  47. Heaney ML, Gardner JR, Karasavvas N, et al. Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs. Cancer Res. 2008;68(19):8031–8. doi: 10.1158/0008-5472.can-08-1490.
  48. Tsiftsoglou AS, Wong W, Wheeler C, et al. Prevention of anthracycline-induced cytotoxicity in hemopoietic cells by hemin. Cancer Res. 1986;46(7):3436–40.
  49. Tsiftsoglou AS, Wong W, Robinson SH. Analysis of hemin-induced protection of human hemopoietic cells from the cytotoxic effects of anthracyclines. Cancer Res. 1988;48(13):3566–70.
  50. Papadopoulou LC, Tsiftsoglou AS. Mitochondrial cytochrome c oxidase as a target site for daunomycin in K-562 cells and heart tissue. Cancer Res. 1993;53(5):1072–8.
  51. Papadopoulou LC, Tsiftsoglou AS. Effects of hemin on apoptosis, suppression of cytochrome c oxidase gene expression, and bone-marrow toxicity induced by doxorubicin (adriamycin). Biochem Pharmacol. 1996;52(5):713–22. doi: 10.1016/0006-2952(96)00349-8.
  52. Nagai T, Kikuchi S, Ohmine K, et al. Hemin reduces cellular sensitivity to imatinib and anthracyclins via Nrf2. J Cell Biochem. 2008;104(2):680–91. doi: 10.1002/jcb.21659.
  53. Bohmer RM, Hoffmann K, Morstyn G. Hematoporphyrin derivative and anthracyclines mutually inhibit cellular uptake and toxicity. Cancer Chemother Pharmacol. 1987;20(1):16–20. doi: 10.1007/bf00252953.
  54. Сидорова Т.А., Какпакова Е.С., Власенкова Н.К. и др. Различная реакция на терафтал культивируемых in vitro клеток, экспрессирующих Р-гликопротеин, и клеток, не экспрессирующих этот белок. Цитология. 2001;43:889–90.
    [Sidorova TA, Kakpakova ES, Vlasenkova NK, et al. Differences in teraphtal response of in vitro cultured cells expressing P-glycoprotein and those without this expression. Tsitologiya. 2001;43:889–90. (In Russ)]
  55. Сидорова Т.А., Вагида М.С., Калия О.Л., Герасимова Г.К. Роль каталазы в защите опухолевых клеток от окислительного стресса, индуцированного бинарной каталитической системой «терафтал + аскорбиновая кислота». Клиническая онкогематология. 2014;7(3):282–9.
    [Sidorova TA, Vagida MS, Kaliya OL, Gerasimova GK. Role of catalase in protection of cancer cells from oxidative stress induced by binary catalytic system “teraphtal + ascorbic acid”. Klinicheskaya onkogematologiya. 2014;7(3):282–9. (In Russ)]
  56. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92(20):9363–7. doi: 10.1073/pnas.92.20.9363.
  57. Ling YH, Priebe W, Perez-Soler R. Apoptosis induced by anthracycline antibiotics in P388 parent and multidrug-resistant cells. Cancer Res. 1993;53(8):1845–52.
  58. Cummings BS, Schnellmann RG. Measurement of cell death in mammalian cells. Curr Protoc Pharmacol. 2004;25(12.8):12.8.1–22. doi: 10.1002/0471141755.ph1208s25.
  59. Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17(5):421–33. doi: 10.1016/j.chembiol.2010.04.012.
  60. Сидорова Т.А., Пятакова Н.В., Северина И.С. и др. Растворимая гуанилатциклаза (рГЦ) в реализации гипотензивного и антиагрегантного эффектов терафтала (ТФ, натриевая соль 4,5-октакарбоксифталоцианина кобальта). Клиническая онкогематология. 2016;9(2):138–47. doi: 10.21320/2500-2139-2016-9-2-138-147.
    [Sidorova TA, Pyatakova NV, Severina IS, et al. Soluble Guanylyl Cyclase (sGC) in Mechanisms of Hypotensive and Antiaggregatory Effects Induced by Teraphtal (TP, sodium salt 4,5-cardoxyphtalocyanin-cobalt). Clinical oncohematology. 2016;9(2):138–47. doi: 10.21320/2500-2139-2016-9-2-138-147. (In Russ)]
  61. Forrest RA, Swift LP, Rephaeli A, et al. Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation. Biochem Pharmacol. 2012;83(12):1602–12. doi: 10.1016/j.bcp.2012.02.026.
  62. Konopa J. G2 block induced by DNA crosslinking agents and its possible consequences. Biochem Pharmacol. 1988;37(12):2303–9. doi: 10.1016/0006-2952(88)90355-3.
  63. Barlogie B, Drewinko B, Johnston DA, Freireich EJ. The effect of adriamycin on the cell cycle traverse of a human lymphoid cell line. Cancer Res. 1976;36(6):1975–9.
  64. Mosieniak G, Sliwinska MA, Alster O, et al. Polyploidy Formation in Doxorubicin-Treated Cancer Cells Can Favor Escape from Senescence. Neoplasia. 2015;17(12):882–93. doi: 10.1016/j.neo.2015.11.008.
  65. Wu PC, Wang Q, Grobman L, et al. Accelerated cellular senescence in solid tumor therapy. Exp Oncol. 2012;34(3):298–305.
  66. Zucker RM, Adams DJ, Bair KW, Elstein KH. Polyploidy induction as a consequence of topoisomerase inhibition. A flow cytometric assessment. Biochem Pharmacol. 1991;42(11):2199–208. doi: 10.1016/0006-2952(91)90357-b.
  67. McGahon AJ, Brown DG, Martin SJ, et al. Downregulation of Bcr-Abl in K562 cells restores susceptibility to apoptosis: characterization of the apoptotic death. Cell Death Differ. 1997;4(2):95–104. doi: 10.1038/sj.cdd.4400213.
  68. Masquelier M, Zhou QF, Gruber A, Vitols S. Relationship between daunorubicin concentration and apoptosis induction in leukemic cells. Biochem Pharmacol. 2004;67(6):1047–56. doi: 10.1016/j.bcp.2003.10.025.
  69. Nagai K, Nagasawa K, Koma M, et al. Contribution of an unidentified sodium-dependent nucleoside transport system to the uptake and cytotoxicity of anthracycline in mouse M5076 ovarian sarcoma cells. Biochem Pharmacol. 2006;71(5):565–73. doi: 10.1016/j.bcp.2005.11.017.
  70. Aniogo EC, George BPA, Abrahamse H. Phthalocyanine induced phototherapy coupled with doxorubicin; a promising novel treatment for breast cancer. Expert Rev Anticancer Ther. 2017;17(8):693–702. doi: 10.1080/14737140.2017.1347505.

Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro

AV Petukhov1, VA Markova2, DV Motorin1, AK Titov1, NS Belozerova2, PM Gershovich2, AV Karabel’skii2, RA Ivanov2, EK Zaikova1, EYu Smirnov2, PA Butylin1, AYu Zaritskey1

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Biocad Biotechnology Company, 34-A Svyazi str., Strel’na, Saint Petersburg, Russian Federation, 198515

For correspondence: Andrei Yur’evich Zaritskey, MD PhD, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(812)702-68-28, Fax: +7(812)702-37-65; e-mail: zaritskey@gmail.com

For citation: Petukhov AV, Markova VA, Motorin DV, et al. Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro. Clinical oncohematology. 2018;11(1):1–9.

DOI: 10.21320/2500-2139-2018-11-1-1-9


ABSTRACT

Background. The most promising variant of adoptive immunotherapy of the B-line oncohematological diseases includes the use of cells with the chimeric antigen receptor (CAR T-cells), that showed extraordinary results in clinical studies.

Aim. To manufacture CAR T-cells for the clinical use and to study their cytotoxicity in vitro.

Methods. Human T-lymphocytes were transduced by the lentiviral vector containing anti-CD19-CAR, RIAD, and GFP genes. The T-cell transduction efficacy was assessed on the basis of GFP protein signal by flow cytometry. Propidium iodide was used to analyse the cell viability. Cytotoxic activity of the manufactured CAR T-cells was studied in the presence of the target cells being directly co-cultivated. Analysis of the number and viability of CAR T-cells and cytokine expression was performed by flow cytometry.

Results. The viability of the transduced T-cells and GFP expression reached 91.87 % and 50.87 % respectively. When cultured in the presence of IL-2 and recombinant CD19 (the target antigen), the amount of CAR-T after 120 h of the process was 1.4 times larger compared with the period of 48 h. In the cytotoxic test of co-cultivation CAR-T with the K562-CD19+ cells the percentage of CAR-T increased to 57 % and 84.5 % after 48 h and 120 h of exposure respectively. When cultured with the K562 cells (test line not expressing CD19) the number of CAR T-cells decreased to 36.2 % within 48 h while the number of K562 cells increased to 58.3 %. The viability of target cells in the experimental and control groups was 3.5 % and 36.74 % respectively. Comparison of IL-6 level in the control and experimental groups revealed that the differences are insignificant, as opposed to the level of other cytokines (IFN-γ, IL-2, TNF) which proved to be different in both groups.

Conclusion. The present work resulted in the production of anti-CD19 CAR T-cells with adequate viability. The in vitro model demonstrated their cytotoxicity. Manufacturing of CAR T-cells for clinical use is the first step of the development of adoptive immunotherapy in the Russian Federation.

Keywords: CAR T-cells, adoptive immunotherapy, acute lymphoblastic leukemia, non-Hodgkin’s lymphomas, lentiviral transduction, graft-versus-host reaction, сytokine release syndrome.

Received: September 15, 2017

Accepted: December 7, 2017

Read in PDF 


REFERENCES

  1. Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2015;13(1):10–24. doi: 10.1038/nrclinonc.2015.128.
  2. Podhorecka M, Markowicz J, Szymczyk A, Pawlowski J. Target therapy in hematological malignances: new monoclonal antibodies. Int Sch Res Not. 2014;2014(3):1–16. doi: 10.1155/2014/701493.
  3. Hussaini M. Biomarkers in Hematological Malignancies: A Review of Molecular Testing in Hematopathology. Cancer Control. 2015;22(2):158–66. doi: 10.1177/107327481502200206.
  4. Forman SJ, Rowe JM. The myth of the second remission of acute leukemia in the adult. Blood. 2013;121(7):1077–82. doi: 10.1182/blood-2012-08-234492.
  5. Im A, Pavletic SZ. Immunotherapy in hematologic malignancies: past, present, and future. J Hematol Oncol. 2017;10(1):94. doi: 10.1186/s13045-017-0453-8.
  6. Luskin MR, DeAngelo DJ. Chimeric Antigen Receptor Therapy in Acute Lymphoblastic Leukemia Clinical Practice. Curr Hematol Malig Rep. 2017;12(4):370–9. doi: 10.1007/s11899-017-0394-x.
  7. Fesnak A, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81. doi: 10.1038/nrc.2016.97.
  8. Lim W, June C. The Principles of Engineering Immune Cells to Treat Cancer. Cell. 2017;168(4):724–40. doi: 10.1016/j.cell.2017.01.016.
  9. Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98. doi: 10.1158/2159-8290.CD-12-0548.
  10. Brentjens RJ, Davila ML, Riviere I, et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci Transl Med. 2013;5(177):177ra38. doi: 10.1126/scitranslmed.3005930.
  11. Maude SL, Frey N, Shaw P, et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N Engl J Med. 2014;371(16):1507–17. doi: 10.1056/NEJMoa1407222.
  12. Turtle CJ, Hanafi L-A, Berger C, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38. doi: 10.1172/JCI85309.
  13. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi: 10.1016/S0140-6736(14)61403-3.
  14. Onea AS, Jazirehi AR. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas. Am J Cancer Res. 2016;6(2):403–24.
  15. Kebriaei P, Singh H, Huls MH, et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest. 2016;126(9):3363–76. doi: 10.1172/JCI86721.
  16. ICML 2017: Data From the TRANSCEND Trial of JCAR017 in Relapsed and Refractory Aggressive B-Cell Non-Hodgkin Lymphoma — The ASCO Post. Available from: http://www.ascopost.com/News/57764 (accessed 7.10.2017).
  17. Locke FL, Neelapu SS, Bartlett NL, et al. Abstract CT019: Primary results from ZUMA-1: a pivotal trial of axicabtagene ciloleucel (axicel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (NHL). Cancer Res. 2017;77(13 Suppl):CT019. doi: 10.1158/1538-7445.AM2017-CT019.
  18. Kalos M, Levine BL, Porter DL, et al. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci Transl Med. 2011;3(95):95ra73. doi: 10.1126/scitranslmed.3002842.
  19. Porter DL, Hwang W-T, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. doi: 10.1126/scitranslmed.aac5415.
  20. Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 2015;33:9–15. doi: 10.1016/j.coi.2015.01.002.
  21. Павлова А.А., Масчан М.А., Пономарев В.Б. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы. Онкогематология. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32. [Pavlova AА, Maschan MА, Ponomarev VB. Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors. Oncohematology. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32. (In Russ)]
  22. Dai H, Wang Y, Lu X, Han W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. J Natl Cancer Inst. 2016;108(7):1–15. doi: 10.1093/jnci/djv439.
  23. Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics. 2016;3:16014. doi: 10.1038/mto.2016.14.
  24. Holzinger A, Barden M, Abken H. The growing world of CAR T cell trials: a systematic review. Cancer Immunol Immunother. 2016;65(12):1433–50. doi: 10.1007/s00262-016-1895-5.
  25. Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant. 2010;16(9):1245–56. doi: 10.1016/j.bbmt.2010.03.014.
  26. Gong MC, Latouche JB, Krause A, et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia. 1999;1(2):123–7.
  27. Davila ML, Sadelain M. Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol. 2016;104(1):6–17. doi: 10.1007/s12185-016-2039-6.
  28. Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood. 2016;127(26):3312–20. doi: 10.1182/blood-2016-02-629063.
  29. Grupp S, Kalos M, Barrett D, et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. N Engl J Med. 2013;368(16):1509–18. doi: 10.1056/NEJMoa1215134.
  30. Yu H, Sotillo E, Harrington C, et al. Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma. Am J Hematol. 2017;92(1):E11–E13. doi: 10.1002/ajh.24594.
  31. Sotillo E, Barrett DM, Black KL, et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015;5(12):1282–95. doi: 10.1158/2159-8290.CD-15-1020.
  32. Fischer J, Paret C, El Malki K, et al. CD19 Isoforms Enabling Resistance to CART-19 Immunotherapy Are Expressed in B-ALL Patients at Initial Diagnosis. J Immunother. 2017;40(5):187–95. doi: 10.1097/CJI.0000000000000169.
  33. Jacoby E, Nguyen SM, Fountaine TJ, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320. doi: 10.1038/ncomms12320.
  34. Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–10. doi: 10.1182/blood-2015-08-665547.
  35. Zah E, Lin M-Y, Silva-Benedict A, et al. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res. 2016;4(6):498–508. doi: 10.1158/2326-6066.CIR-15-0231.
  36. Shah NN, Stetler-Stevenson M, Yuan CM, et al. Minimal Residual Disease Negative Complete Remissions Following Anti-CD22 Chimeric Antigen Receptor (CAR) in Children and Young Adults with Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL). Blood. 2016;128(22):650.
  37. Davila ML, Riviere I, Wang X, et al. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Sci Transl Med. 2014;6(224):224ra25. doi: 10.1126/scitranslmed.3008226.
  38. Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90. doi: 10.1038/nm.3838.
  39. Hay KA, Turtle CJ. Chimeric Antigen Receptor (CAR) T Cells: Lessons Learned from Targeting of CD19 in B-Cell Malignancies. Drugs. 2017;77(3):237–45. doi: 10.1007/s40265-017-0690-8.
  40. Wehbi VL, Tasken K. Molecular mechanisms for cAMP-mediated immunoregulation in T cells – role of anchored protein kinase a signaling units. Front Immunol. 2016;7:1–19. doi: 10.3389/fimmu.2016.00222.
  41. Newick K, O’Brien S, Sun J, et al. Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization. Cancer Immunol Res. 2016;4(6):541–51. doi: 10.1158/2326-6066.CIR-15-0263.
  42. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783–4. doi: 10.1038/nmeth.3047.
  43. Kochenderfer JN, Feldman SA, Zhao Y, et al. Construction and Preclinical Evaluation of an Anti-CD19 Chimeric Antigen Receptor. J Immunother. 2009;32(7):689–702. doi: 10.1097/CJI.0b013e3181ac6138.
  44. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. doi: 10.1186/2162-3619-1-36.
  45. Uckun FFM, Jaszcz W, Ambrus JJL, et al. Detailed Studies on Expression and Function of CD19 Surface Determinant by Using B43 Monoclonal Antibody and the Clinical Potential of Anti-CD19 Immunotoxins. Blood. 1988;71(1):13–29.
  46. Wei G, Ding L, Wang J, et al. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017;6(1):10. doi: 10.1186/s40164-017-0070-9.
  47. Barrett DM, Singh N, Hofmann TJ, et al. Interleukin 6 Is Not Made By Chimeric Antigen Receptor T Cells and Does Not Impact Their Function. Blood. 2016;128(22):2016–7.
  48. Singh N, Hofmann TJ, Gershenson Z, et al. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy. 2017;19(7):867–80. doi: 10.1016/j.jcyt.2017.04.001.
  49. Hartmann J, Schussler‐Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183–97. doi: 10.15252/emmm.201607485.
  50. Hagen T. Novartis Sets a Price of $475,000 for CAR T-Cell Therapy. Available from: http://www.onclive.com/web-exclusives/novartis-sets-a-price-of-475000-for-car-tcell-therapy (accessed 31.10.2017).
  51. Yang Y, Jacoby E, Fry TJ. Challenges and opportunities of allogeneic donor-derived CAR T cells. Curr Opin Hematol. 2015;22(6):509–15. doi: 10.1097/MOH.0000000000000181.
  52. Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 2017;8(8):573–89. doi: 10.1007/s13238-017-0411-9.

PF-114, a Novel Inhibitor of Bcr-Abl Chimeric Tyrosine Kinase, Attenuates Intracellular CrkL Phosphorylation and Kills Chronic Myeloid Leukemia Cells

ES Kolotova1, VV Tatarskii1, AA Zeifman2,3, OV Stroganov2,3, VS Stroilov2,3, IYu Titov2,3, FN Novikov2,3, AA Kalinina1, GG Chilov2,3, AA Shtil1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 N.D. Zelinskii Institute of Organic Chemistry, 47 Leninskii pr-t, Moscow, Russian Federation, 119991

3 Fusion Pharma, 18 bld. 2 Generala Dorokhova str., Moscow, Russian Federation, 119530

For correspondence: Aleksandr Al’bertovich Shtil’, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: + 7(499)612-78-34; e-mail: shtilaa@yahoo.com

For citation: Kolotova ES, Tatarskii VV, Zeifman AA, et al. PF-114, a Novel Inhibitor of Bcr-Abl Chimeric Tyrosine Kinase, Attenuates Intracellular CrkL Phosphorylation and Kills Chronic Myeloid Leukemia Cells. Clinical oncohematology. 2016;9(1):1–5 (In Russ).

DOI: 10.21320/2500-2139-2016-9-1-1-5


ABSTRACT

Background & Aims. The chimeric tyrosine kinase Bcr-Abl triggers malignant transformation of myeloid cells via phosphorylation of a number of substrates including the CrkL adaptor protein. Pharmacological inhibition of Bcr-Abl mediated signaling is a major strategy in treatment of patients with chronic myeloid leukemia (CML). A new specific Bcr-Abl inhibitor (PF-114) was designed using a molecular modeling approach. The paper defines the cytotoxicity of PF-114 against CML cells and its effect on the CrkL phosphorylation.

Methods. The cytotoxicity was determined using the MTT assay. The total intracellular CrKL pool (phosphorylated and non-phosphorylated forms) was determined by means of flow cytometry.

Results. Exposure of Bcr-Abl-positive, K562 cell line to PF-114 blocked intracellular CrkL phosphorylation and caused cell death. In contrast, virtually no phosphorylated CrkL was detectable in Bcr-Abl-negative HL60, U937 and Jurkat leukemia cell lines.

Conclusion. Absence of phosphorylation in Bcr-Abl-negative cells (HL60, U937 and Jurkat) and death of HL60 cells under the effect of PF-114 at concentrations exceeding those required to kill K562 cells supports the emergence of PF-114 as a promising drug candidate for CML.


Keywords: chronic myeloid leukemia, Bcr-Abl tyrosine kinase, protein phosphorylation, flow cytometry, cytotoxicity.

Received: September 15, 2015

Accepted: October 8, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Mace ML, Dahl J, Jabbour EJ. Which tyrosine-kinase inhibitor to use first in chronic phase chronic myelogenous leukemia? Expert Opin Pharmacother. 2015;16(7):999–1007. doi: 10.1517/14656566.2015.1031107.
  2. Grover P, Shi H, Baumgartner M, Camacho CJ, Smithgall TE. Fluorescence polarization screening assays for small molecule allosteric modulators of ABL kinase function. PLoS One. 2015;10(7):e0133590. doi: 10.1371/journal.pone.0133590.
  3. Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. Structure and dynamic regulation of Abl kinases. J Biol Chem. 2013;288(8):5443–50. doi: 10.1074/jbc.r112.438382.
  4. Клиническая онкогематология: Руководство для врачей. Под ред. М.А. Волковой. 2-е изд., перераб. и доп. М.: Медицина, 2007. С. 555.
    [Volkova MA, ed. Klinicheskaya onkogematologiya: Rukovodstvo dlya vrachei. (Clinical oncohematology: guidelines for doctors.) 2nd revised edition. Moscow: Meditsina Publ.; 2007. p. 555 (In Russ)]
  5. Panigrahi S, Stetefeld J, Jangamreddy JR, et al. Modeling of molecular interaction between apoptin, BCR-Abl and CrkL – an alternative approach to conventional rational drug design. PLoS One. 2012;7(1):e28395. doi: 10.1371/journal.pone.0028395.
  6. Nichols GL, Raines MA, Vera JC, et al. Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood. 1994;84(9):2912–8.
  7. Jangamreddy JR, Panigrahi S, Lotfi K, et al. Mapping of apoptin-interaction with BCR-ABL1, and development of apoptin-based targeted therapy. Oncotarget. 2014;5(16):7198–211. doi: 10.18632/oncotarget.2278.
  8. Lucas CM, Harris RJ, Giannoudis A, et al. BCR-ABL1 tyrosine kinase activity at diagnosis, as determined via the pCrkL/CrkL ratio, is predictive of clinical outcome in chronic myeloid leukaemia. Br J Haematol. 2010;149(3):458–60. doi: 10.1111/j.1365-2141.2009.08066.x.
  9. O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004. doi: 10.1056/nejmoa022457.
  10. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. doi: 10.1182/blood-2013-05-501569.
  11. Cortes JE, Kantarjian H, Shah NP, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367(22):2075–88. doi: 10.1056/nejmoa1205127.
  12. Mian AA, Rafiei A, Haberbosch I, et al. PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against Philadelphia chromosome-positive (Ph+) leukemias harboring the T315I mutation. Leukemia. 2015;29(5):1104–14. doi: 10.1038/leu.2014.326.
  13. Hamilton A, Elrick L, Myssina S, et al. BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry. Leukemia. 2006;20(6):1035–9. doi: 10.1038/sj.leu.2404189.
  14. Knebel A. Kinasource protein kinase substrate screen KESTREL. Available from: (accessed 21.03.2016).
  15. Lin YH, Park ZY, Lin D, et al. Regulation of cell migration and survival by focal adhesion targeting of Lasp-1. J Cell Biol. 2004;165(3):421–32. doi: 10.1083/jcb.200311045.
  16. Frietsch JJ, Kastner C, Grunewald TG, et al. LASP1 is a novel BCR-ABL substrate and a phosphorylation-dependent binding partner of CRKL in chronic myeloid leukemia. Oncotarget. 2014;5(14):5257–71. doi: 10.18632/oncotarget.2072.
  17. Liang X, Hajivandi M, Veach D, et al. Quantification of change in phosphorylation of BCR-ABL kinase and its substrates in response to Imatinib treatment in human chronic myelogenous leukemia cells. Proteomics. 2006;6(16):4554–64. doi: 10.1002/pmic.200600109.

Role of Enzymatic Activity in Producing an Antiproliferative Effect of L-Asparaginases

VS Pokrovskii1, MV Komarova2, SS Aleksandrova3, MV Pokrovskaya3, MS Kalish’yan1, SSh Karshieva1, EM Treshchalina1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 S.P. Korolev Samara State Aerospace University, 34 Moskovskoye sh., Samara, Russian Federation, 443086

3 V.N. Orekhovich Scientific Research Institute of Biomedical Chemistry, 10 bld. 8 Pogodinskaya str., Moscow, Russian Federation, 119121

For correspondence: Vadim Sergeevich Pokrovskii, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-14-09; e-mail: vadimpokrovsky@gmail.com

For citation: Pokrovskii VS, Komarova MV, Aleksandrova SS, et al. Role of Enzymatic Activity in Producing an Antiproliferative Effect of L-Asparaginases. Clinical oncohematology. 2015;8(2):120–8 (In Russ).


ABSTRACT

Background & Aims. E. coli (EcA) and Erwinia chrysanthemi (ErA) L-asparaginases have been used in antitumor chemotherapy for acute lymphoblastic leukemias since 1970s. Reports of their effect in a combined therapy of NK/T-cell and skin T-cell lymphomas have been published lately. The aim of this paper is to evaluate the relation between antiproliferative and enzymatic activities of L-asparaginases of different origin.

Methods. We conducted a prospective study of in vitro/in vivo enzymatic and antiproliferative activity of several new L-asparaginases: Yersinia pseudotuberculosis (YpA), Rhodospirillum rubrum (RrA), Wolinella succinogenes (WsA), Erwinia carotovora (EwA) in comparison with Escherichia coli L-asparaginase (EcA). Km, kcat and Vmax were calculated for evaluation of kinetic parameters. Cell lines of human transplantable tumors were used to analyze the cytotoxic activity, and DBA2 female mice with the body weight of 18–24 g with intraperitoneally transplanted Fisher lymphadenosis L5178Y (3–12 passage) from the bank of the N.N. Blokhin Russian Cancer Research Center were used for assessment of the antitumor activity.

Results. The use of type II L-asparaginases (EcA, EwA, YpA and WsA) permitted to determine a clear tendency: IC50 rises simultaneously with Km (r = 0.66; = 0.007). Using single-dose range of 2000–8000 IU/kg in mice the highest efficacy was shown for L-asparaginases with Km = 0.017 and 0.054 mМ in comparison with L-asparaginases with lower enzymatic activity, as confirmed by corresponding odds ratio values in the stratified Cox proportional regression model. The pair-wise comparison of Kaplan-Meier curves and Cox regression method showed that WsA displays the best Km/antiproliferative activity ratio both in vitro and in vivo. In the L5178 mice model, it has been shown that WsA decreases the risk of treatment failure by 4–6 times, as compared to L-asparaginases with Km = 0.017 mМ (EcA and YpA) using a single-dose range of 500–1000 IU/kg and 2000–8000 IU/kg, RR = 0.16 and 0.28, respectively.

Conclusion. The obtained results confirmed the predictive value of enzymatic activity for demonstration of statistically significant antiproliferative activity both in vitro and in vivo. However, a statistical analysis demonstrated that this prognosis is not absolute for some enzymes or dose ranges. For instance, there might not be such correlation for high effective single dosed > 12 000 IU/kg.


Keywords: L-asparaginase, antitumor activity, enzymatic activity, mechanism of action.

Received: November 8, 2014

Accepted: January 28, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Rizzari C, Conter V, Stary J, et al. Optimizing asparaginase therapy for acute lymphoblastic leukemia. Curr Opin Oncol. 2013;25(Suppl 1):S1–9. doi: 10.1097/CCO.0b013e32835d7d85.
  2. Salzer W, Seibel N, Smith M. Erwinia asparaginase in pediatric acute lymphoblastic leukemia. Expert Opin Biol Ther. 2012;12(10):1407–14. doi: 10.1517/14712598.2012.718327.
  3. Gui W, Yang B, Shen Q, et al. Successful treatment with L-asparaginase based regimen for primary pulmonary NK/T cell lymphoma: a case report and review of the literature. Clin Respir J. 2014;9(4):493–6. doi: 10.1111/crj.12156.
  4. Emadi A, Zokaee H, Sausville EA. Asparaginase in the treatment of non-ALL hematologic malignancies. Cancer Chemother Pharmacol. 2014;73(5):875–83. doi: 10.1007/s00280-014-2402-3.
  5. Tse E, Kwong YL. Practical management of natural killer/T-cell lymphoma. Curr Opin Oncol. 2012;24(5):480–6. doi: 10.1097/CCO.0b013e3283556142.
  6. Avramis VI, Panosyan EH. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future. Clin Pharmacokinet. 2005;44(4):367–93. doi: 10.2165/00003088-200544040-00003.
  7. Avramis VI, Tiwari PN. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomed. 2006;1(3):241–54.
  8. Panosyan EH, Grigoryan RS, Avramis IA, et al. Deamination of glutamine is a prerequisite for optimal asparagine deamination by asparaginases in vivo (CCG-1961). Anticancer Res. 2004;24(2C):1121–5.
  9. Rotoli BM, Uggeri J, Dall’Asta V, et al. Inhibition of glutamine synthetase triggers apoptosis in asparaginase-resistant cells. Cell Physiol Biochem. 2005;15(6):281–92. doi: 10.1159/000087238.
  10. Tardito S, Uggeri J, Bozzetto C, et al. The inhibition of glutamine synthetase sensitizes human sarcoma cells to L-asparaginase. Cancer Chemother Pharmacol. 2007;60(5):751–8. doi: 10.1007/s00280-007-0421-z.
  11. Ankel EG, Zirneski J, Ring BJ, Holcenberg JS. Effect of asparaginase on cell membranes of sensitive and resistant mouse lymphoma cells. In Vitro. 1984;20(5):376–84. doi: 10.1007/bf02619582.
  12. Liu JJ, Dai XJ, Xu Y, et al. Inhibition of lymphoma cell proliferation by peroxisomal proliferator-activated receptor-g ligands via Wnt signaling pathway. Cell Biochem Biophys. 2012;62(1):19–27. doi: 10.1007/s12013-011-9253-x.
  13. Fidler IJ, Montgomery PC. Effects of L-asparaginase on lymphocyte surface and blastogenesis. Cancer Res. 1972;32(11):2400–6.
  14. Покровский В.С., Лесная Н.А., Трещалина Е.М. и др. Перспективы разработки новых ферментных противоопухолевых препаратов. Вопросы онкологии. 2011;57(2):155–64.
    [Pokrovskii VS, Lesnaya NA, Treshchalina EM, et al. Perspectives of development of new enzymatic antitumor agents. Voprosy onkologii. 2011;57(2):155–64. (In Russ)]
  15. Sidoruk KV, Pokrovsky VS, Borisova AA, et al. Creation of producent, optimization of expression and purification of recombinant Yersinia pseudotuberculosis L-asparaginase. Bull Exp Biol Med. 2011;152(2):219–23. doi: 10.1007/s10517-011-1493-7.
  16. Pokrovskaya MV, Pokrovsky VS, Aleksandrova SS, et al. Recombinant intracellular Rhodospirillum riubrum L-asparaginase with low L-glutaminase activity and antiproliferative effect. Biochemistry (Mosc.). Suppl B: Biomed Chem. 2012;6(2):121–31. doi: 10.1134/s1990750812020096.
  17. Покровский В.С., Анисимова Н.Ю., Покровская М.В. и др. Антипролиферативная активность рекомбинантной L-аспарагиназы Rhodospirillum rubrum. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2011;22(4):24–31.
    [Pokrovskii VS, Anisimova NYu, Pokrovskaya MV, et al. Antiproliferative activity of recombinant Rhodospirillum rubrum L-asparaginase. Vestnik RONTs im. N.N. Blokhina RAMN. 2011;22(4):24–31. (In Russ)]
  18. Трещалина Е.М. Коллекция опухолевых штаммов человека. М.: Практическая медицина, 2009. 171 с.
    [Treshchalina EM. Kollektsiya opukholevykh shtammov cheloveka. (Collection of human tumor strains.) Moscow: Prakticheskaya Meditsina Publ.; 2009. 171 p. (In Russ)]
  19. Трещалина Е.М., Жукова О.С., Герасимова Г.К. и др. Методические рекомендации по доклиническому изучению противоопухолевой активности лекарственных средств. В кн.: Руководство по проведению доклинических исследований лекарственных средств. Ч. I. М.: Гриф и К, 2012. С. 642–57.
    [Treshchalina EM, Zhukova OS, Gerasimova GK, et al. Guidelines for preclinical studies of antitumor activity of medicinal agents. In: Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. (Guidelines for preclinical studies of medicinal agents.) Part I. Moscow: Grif & K Publ.; 2012. pp. 642–57. (In Russ)]
  20. Трещалина Е.М. Противоопухолевая активность веществ природного происхождения. М.: Практическая медицина, 2005.
    [Treshchalina EM. Protivoopukholevaya aktivnost’ veshchestv prirodnogo proiskhozhdeniya. (Antitumor activity of substances of natural origin.) Moscow: Prakticheskaya Meditsina Publ.; 2005. (In Russ)]
  21. Chabner BA, Longo DL. Cancer Chemotherapy and Biotherapy: Principles and Practice. Philadelphia: Lippincott-Raven; 2001.
  22. Newson R. Parameters behind “nonparametric” statistics: Kendall’s tau, Somers’ D and median differences. Stata J. 2002;2(1):45–64.
  23. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Statist Med. 1998;17(8):857–72. doi: 10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e.
  24. Borek D, Jaskolski M. Sequence analysis of enzymes with asparaginase activity. Acta Biochimica Polonica. 2001;48(4):893–902.

Correlation between Expression of RARa Transcription Factor and Genes of VEGFR3-Dependent Signaling System in Multiple Myeloma

NN Kalitin, IV Buravtsova

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Nikolai Nikolaevich Kalitin, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-17-69; e-mail: f.oskolov@mail.ru

For citation: Kalitin NN, Buravtsova IV. Correlation between Expression of RARa Transcription Factor and Genes of VEGFR3-Dependent Signaling System in Multiple Myeloma. Clinical oncohematology. 2015;8(1):31–5 (In Russ).


ABSTRACT

Background. All-trans retinoic acid (ATRA) is a natural metabolite of vitamin A, which can regulate the gene expression by means of interaction between different types of nuclear retinoic acid receptors (RARs). It has been demonstrated that it may lead to suppression of in vivo and in vitro tumor cell growth and can contribute to its survival. For example, in a number of studies, it has been demonstrated that one of RAR subtypes, RARa, modulates expression of a number of vascular endothelial growth factors (VEGFs), mainly VEGF-A. At the same time, the exact mechanisms regulating the RARa-mediated regulation of VEGF (especially VEGF-C and VEGF-D and their receptor VEGFR3) expression are still unclear.

Methods. Changes in expression of mRNAs of VEGF-C, VEGF-D genes and their receptor VEGFR3 in a group of 17 multiple myeloma patients before and after treatment were analyzed in the article. The obtained data were then compared with changes in gene expression of the RARa receptor.

Results. It has been found that overall levels of VEGF-C, VEGF-D and VEGFR3 gene expression were reduced in response to the therapy. Changes in expression of these genes correlated with the RARa expression.

Conclusions. The correlation between VEGF-C, VEGF-D and VEGFR3 expression and RARa expression could indicate a possible involvement of RARa- protein in regulation of VEGFR3-associated signaling system gene expression.

Scientific value. These results may describe a possible mechanism of VEGF-C, VEGF-D and VEGFR3 expression by the RARa transcription factor.


Keywords: multiple myeloma, gene expression, VEGFR3-dependent system, RARa.

Received: August 27, 2014

Accepted: October 20, 2014

Read in  PDF (RUS)pdficon


REFERENCES

  1. Neufeld G. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13(1):9–22.
  2. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84. doi: 10.1038/nm0603-677.
  3. Ristimaki A, Narko K, Enholm B, et al. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem. 1998;273(14):8413–8.
  4. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10(9):940–54.
  5. Leid M, Kastner P, Chambon P. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci. 1992;17(10):427–33. doi: 10.1016/0968-0004(92)90014-z.
  6. Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995;83(6):841–50. doi: 10.1016/0092-8674(95)90200-7.
  7. Delacroix L, Moutier E, Altobelli G, et al. Cell-specific interaction of retinoic acid receptors with target genes in mouse embryonic fibroblasts and embryonic stem cells. Mol Cell Biol. 2010;30(1):231–44. doi: 10.1128/mcb.00756-09.
  8. Eifert C, Sangster-Guity N, Yu LM, et al. Global gene expression profiles associated with retinoic acid-induced differentiation of embryonal carcinoma cells. Mol Reprod Dev. 2006;73(7):796–824. doi: 10.1002/mrd.20444.
  9. Maeno T, Tanaka T, Sando Y, et al. Stimulation of vascular endothelial growth factor gene transcription by all trans retinoic acid through Sp1 and Sp3 sites in human bronchioloalveolar carcinoma cells. Am J Respir Cell Mol Biol. 2002;26(2):246–53. doi: 10.1165/ajrcmb.26.2.4509.
  10. Tsuzuki S, Kitajima K, Nakano T, et al. Cross talk between retinoic acid signaling and transcription factor GATA-2. Mol Cell Biol. 2004;24(15):6824–36. doi: 10.1128/mcb.24.15.6824-6836.2004.
  11. Kappel A, Schlaeger TM, Flamme I, et al. Role of SCL/Tal-1, GATA, and its transcription factor binding sites for the regulation of flk-1 expression during murine vascular development. Blood. 2000;96(9):3078–85.
  12. Durie BGM, Salmon SE. A clinical staging system for multiple myeloma. Cancer. 1975;36(3):842–54. doi: 10.1002/1097-0142(197509)36:3<842::aid-cncr2820360303>3.0.co;2-u.
  13. Rajkumar SV, Leong T, Roche PC, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res. 2000;6(8):3111–6.
  14. Vacca A, Ribatti D, Presta M, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood. 1999;93(9):3064–73.
  15. Schafer G, Wissmann C, Hertel J, et al. Regulation of vascular endothelial growth factor D by orphan receptors hepatocyte nuclear factor-4A and chicken ovalbumin upstream promoter transcription factors 1 and 2. Cancer Res. 2008;68(2):457–66. doi: 10.1158/0008-5472.CAN-07-5136.
  16. Калитин Н.Н., Какпакова Е.С., Карамышева А.Ф. Влияние ретиноевой кислоты на экспрессию мРНК генов факторов роста эндотелия сосудов VEGF и рецептора VEGFR1 в культурах клеток множественной миеломы человека. Вопросы биологической, медицинской и фармацевтической химии. 2012;10:64–8.
    [Kalitin NN, Kakpakova ES, Karamysheva AF. Effect of retinoid acid on expression of mRNA in genes of vascular endothelial growth factor VEGF and VEGFR1 receptor in cultures of human multiple myeloma cells. Voprosy biologicheskoi, meditsinskoi i farmatsevticheskoi khimii. 2012;10:64–8. (In Russ)]

Role of Catalase in Protection of Cancer Cells from Oxidative Stress induced by Binary Catalytic System “Teraphtal + Ascorbic acid”

Т.А. Sidorova1, M.S. Vagida1, O.L. Kaliya2, G.K. Gerasimova1

1 N.N. Blokhin Russian Cancer Research Center of RAMS, Moscow, Russian Federation

2 State Scientific Center NIOPIC, Moscow, Russian Federation

For citation: Sidorova Т.А., Vagida M.S., Kaliya O.L., Gerasimova G.K. Role of Catalase in Protection of Cancer Cells from Oxidative Stress induced by Binary Catalytic System “Teraphtal + Ascorbic acid”. Klin. onkogematol. 2014; 7(3): 282–9. (In Russ.)


ABSTRACT

The efficacy of a novel anti-tumor agent binaric catalitic system “teraphtal + ascorbic acid” [BCS (T+A)], generating reactive oxygen species, may depend on the activity of enzymes of the cellular antioxidant defense system including catalase (CAT). To evaluate the role of CAT in cancer cell defense from oxidative stress induced by BCS (T+A), we studied the following biomarkers: the expression level and basal activity of CAT in cells, and its sensitivity to specific inhibitor, aminotriazole (3-AT). We found that functionally active CAT was expressed constitutively in cultures of human tumor cells of different hystogenesis grown in vitro; at that the basal levels of CAT-protein expression and CAT-enzyme activity depend on cell types. The efficacy of CAT inhibiting by 3-AT (the parameter IC50 3-АТ) is the same for cells of all tested cultures, it ranges from 20 to 25 mM and does not depend on the level of CAT protein expression in cells. No direct correlation was found between the biological CAT characteristics and their sensitivity to BCS (T+A) for cells of different hystogenesis. In case of pharmacological CAT inhibition, the cytotoxic activity of BCS (T+A) is doubled, whereas the human tumor cell sensitization degree (increased sensitivity) to BCS (T+A) depends on their type.


Keywords: human tumor cells, BCS (T+A), oxidative stress, catalase, aminotriazol.

Address correspondence to: tatsid@yahoo.com

Accepted: May 07, 2014

Read in PDF(RUS)pdficon


REFERENCES

  1. Paletta-Silva R., Rocco-Machado N., Meyer-Fernandes J.R. NADPH oxidase biology and the regulation of tyrosine kinase receptor signaling and cancer drug cytotoxicity. Int. J. Mol. Sci. 2013; 14(2): 3683–704.
  2. Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012; 24(5): 981–90.
  3. Peus D., Vasa R.A., Meves A. et al. H2 O2 is an important mediator of UVB-induced EGF-receptor phosphorylation in cultured keratinocytes. J. Invest. Dermatol. 1998; 110(6): 966–71.
  4. Heck D., Vetrano A., Mariano T. et al. UVB light stimulates production of reactive oxygen species. J. Biol. Chem. 2003; 278(25): 22432–6.
  5. Saran M., Bors W. Radiation chemistry of physiological saline reinvestigated: evidence that chloride-derived intermediates play a key role in cytotoxicity. Radiat. Res. 1997; 147(1): 70–7.
  6. Buettner G.R., Need M.J. Hydrogen peroxide and hydroxyl free radical production by hematoporphyrin derivative, ascorbate and light. Cancer Lett. 1985; 25(3): 297–304.
  7. Arrick B.A., Griffo W., Cohn Z., Nathan C. Hydrogen peroxide from cellular metabolism of cystine. A requirement for lysis of murine tumor cells by vernolepin, a glutathione-depleting antineoplastic. J. Clin. Invest. 1985; 76(2): 567–74.
  8. Valko M., Leibfritz D., Moncol J. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007; 39(1): 44–84.
  9. Cadenas E., Davies K.J.A. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 2000; 29: 222–30.
  10. Zhuang S., Yan Y., Daubert R.A. et al. ERK promotes hydrogen peroxideinduced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. Am. J. Physiol. Renal. Physiol. 2007; 292(1): 440–7.
  11. Choi K., Kim J., Kim G.W., Choi C. Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species. Curr. Neurovasc. Res. 2009; 6(4): 213–22.
  12. Marklund S.L., Westman N.G., Lundgren E., Roos G. Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res. 1982; 42(5): 1955–61.
  13. Chung-man Ho J., Zheng S., Comhair S.A. et al. Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res. 2001; 61(23): 8578–85.
  14. Luczak M., Kazmierczak M., Handschuh L. et al. Comparative proteome analysis of acute myeloid leukemia with and without maturation. J. Proteomics 2012; 75(18): 5734–48.
  15. Zhong W., Yan T., Lim R., Oberley L.W. Expression of superoxide dismutases, catalase, and glutathione peroxidase in glioma cells. Free Radic. Biol. Med. 1999; 27: 1334–45.
  16. Smith P.S., Zhao W., Spitz D.R., Robbins M.E. Inhibiting catalase activity sensitizes 36 B10 rat glioma cells to oxidative stress. Free Radic. Biol. Med. 2007; 42(6): 787–97.
  17. Margoliash E., Novogrodsky A. A study of the inhibition of catalase by 3-amino-1:2:4: triazole. Biochem. J. 1958; 68(3): 468–75.
  18. Shevchuk I.N., Chekulayeva L.V., Chekulayev V.A. Active oxygen intermediates in the degradation of hematoporphyrin derivative in tumor cells subjected to photodynamic therapy. J. Photochem. Photobiol. 2008; 93(2): 94–107.
  19. Milton N.G. Inhibition of catalase activity with 3-amino-triazole enhances the cytotoxicity of the Alzheimer’s amyloid-beta peptide. Neurotoxicology 2001; 22(6): 767–74.
  20. Wagner B.A., Evig C.B., Reszka K.J. et al. Doxorubicin increases intracellular hydrogen peroxide in PC3 prostate cancer cells. Arch. Biochem. Biophys. 2005; 440(2): 181–90.
  21. Манзюк Л.В., Бредер В.В., Гершанович Л.М. и др. Результаты I-II фазы клинических испытаний каталитической системы «Терафтал + аскорбиновая кислота». РБЖ 2005; 1(4): 105–7. [Manzjuk L.V., Breder V.V., Gershanovich L.M. et al. Results of I-II phases of clinical trials of the catalytic system ‘teraphtal + ascorbic acid’. RBZh 2005; 1(4): 105–7. (In Russ.)].
  22. Петрова Е.Г., Борисенкова С.А., Калия О.Л. Окисление аскорбиновой кислоты в присутствии фталоцианиновых комплексов металлов и химические аспекты. Сообщение 2. Катализ октакарбоксифталоцианином кобальта. Продукты реакции. Известия АН (Серия химическая). 2004; 10: 2224–7. [Petrova E.G., Borisenkova S.A., Kaliya O.L. Oxidation of ascorbic acid in presence of phthalocyanine complexes of metals and chemical aspects. Report 2. Catalysis of cobalt with octacarboxy phthalocyanine. Reaction products. Izvestiya AN (Chemical series). 2004; 10: 2224–7. (In Russ.)].
  23. Bradford M.M. A rapid and sensitive for the quentitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 1976; 72: 248–54.
  24. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259): 680–5.
  25. Ardestani A., Yazdanparast R., Nejad A.S. 2-Deoxy-D-ribose-induced oxidative stress causes apoptosis in human monocytic cells: prevention by pyridoxal-5’-phosphate. Toxicol. In Vitro. 2008; 22(4): 968–79. 26. Cole S.P. Rapid chemosensitivity testing of human lung tumor cells using the MTT assay Cancer Chemother. Pharmacol. 1986; 17: 259–63.
  26. Gaspar T., Domok F., Lenti L. et al. Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures. Brain Res. 2009; 1270: 1–9.
  27. Chilumuri A., Odell M., Milton N. The neuroprotective role of catalase overexpression in SH-SY5Y cells against beta-amyloid and H2 O2 toxicity. Alzheimer’s Dementia. 2013; 9(4 Suppl.): 6.
  28. Bai J., Cederbaum A.I. Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents agents by accelerating the degradation of p53. J. Biol. Chem. 2003; 278: 4660–7.
  29. Smith P.S., Zhao W., Spitz D.R., Robbins M.E. Inhibititing catalase activity sensitizes 36B10 rat glioma cells to oxidative stress. Free Radic. Biol. Med. 2007; 42: 787–97.
  30. Glorieux C., Dejeans N., Sid B. et al. Catalase overexpression in mammary cancer-cells leads to a less aggressive phenotype and an altered response to chemotherapy. Biochem. Pharmacol. 2011; 82: 1384–90.
  31. Ho J.C., Zheng S., Comhair S.A. Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res. 2001; 61: 8578–85.
  32. Coursin D.B., Cihla H.P., Sempf J. et al. An immunohistochemical analysis of antioxidant and glutathione S-transferase enzyme levels in normal and neoplastic human lung. Histol. Histopathol. 1996; 11(4): 851–60.
  33. Oshino N., Oshino R., Chance B. The characteristics of the “peroxidatic” reaction of catalase in ethanol oxidation. Biochem. J. 1973; 131(3): 555–63.
  34. Margoliash E., Novogrodsky A. A study of catalase by 3-amino-1:2:4- triazole. Biochem. J. 1958; 68: 468–75.
  35. Margoliash E., Novogrodsky A., Schejter A. Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem. J. 1960; 74: 339–48.
  36. Kinnula V.L., Everitt J.I., Mangum J.B. et al. Antioxidant defense mechanisms in cultured pleural mesothelial cells. Am. J. Respir. Cell Mol. Biol. 1992; 7(1): 95–103.
  37. Switala J., Loewen C. Diversity of properties among catalases. Arch. Biochem. Biophys. 2002; 401: 145–54.
  38. Williams R.N., Delamere N.A., Paterson C.A. Inactivation of catalase with 3-amino-1,2,4-triazole: an indirect irreversible mechanism. Biochem. Pharmacol. 1985; 34(18): 3386–9.
  39. Nathan C.F., Arrick B.A., Murray H.W. et al. Tumor cell anti-oxidant defenses. Inhibition of the glutathione redox cycle enhances macrophagemediated cytolysis. J. Exp. Med. 1981; 153(4): 766–82.
  40. Кашкина Л.М., Матвеева В.А., Дьякова Н.А. и др. Приобретение НР-фенотипа и изменение активности каталазы в трансформированных клетках различного происхождения в динамике опухолевой прогрессии in vivo. ДАН 2003; 394: 830–4. [Kashkina L.M., Matveeva V.A., D’yakova N.A. et al. Acquisition of HPphenotype and changes in the activity of catalase in transformed cells of different origin in dynamics of tumor progression in vivo. DAN 2003; 394: 830–4. (In Russ.)].
  41. Deichman G.I., Kashkina L.M., Mizenina O.A. et al. Mechanisms of unusually high antioxidant activity of RSV-SR-transformed cells and of its suppression by activated p21ras. Int. J. Cancer. 1996; 66(6): 747–52.
  42. Szumiel I. L5178Y sublines: a look back from 40 years. Part 1: general characteristics. Int. J. Radiat. Biol. 2005; 81(5): 339–52.
  43. Wang W., Adachi M., Kawamura R. et al. Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apoptosis 2006; 11(12): 2225–35.
  44. Klingelhoeffer C., Kammerer U., Koospal M. et al. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress. BMC Complem. Alter. Med. 2012; 12: 61.
  45. Bouzyk E., Iwanenko T., Jarocewicz N. et al. Antioxidant defense system in differentially hydrogen peroxide sensitive L5178Y sublines. Free Radic. Biol. Med. 1997; 22(4): 697–704.
  46. Kinnula K., Linnainmaa K., Raivio K.O., Kinnula V.L. Endogenous antioxidant enzymes and glutathione S-transferase in protection of mesothelioma cells against hydrogen peroxide and epirubicin toxicity. Br. J. Cancer. 1998; 77(7): 1097–102.
  47. Hata Y., Kawabe T., Hiraishi H. et al. Antioxidant defenses of cultured colonic epithelial cells against reactive oxygen metabolites. Eur. J. Pharmacol. 1997; 321(1): 113–9.
  48. Hachiya M., Akashi M. Catalase regulates cell growth in HL60 human promyelocytic cells: evidence for growth regulation by H2 O2 . Radiat. Res. 2005; 163(3): 271–82.
  49. Myzak M.C., Carr A.C. Myeloperoxidase-dependent caspase-3 activation and apoptosis in HL-60 cells: protection by the antioxidants ascorbate and (dihydro)lipoic acid. Redox. Rep. 2002; 7(1): 47–53.
  50. Duthie S.J., Grant M.H. The role of reductive and oxidative metabolism in the toxicity of mitoxantrone, adriamycin and menadione in human liver derived Hep G2 hepatoma cells. Br. J. Cancer 1989; 60(4): 566–71.
  51. Heim W.G., Appleman D., Pyfrom H.T. Production of catalase changes in animals with 3-amino-1,2,4-triazole. Science 1955; 122(3172): 693–4. 53. Juul T., Malolepszy A., Dybkaer K. et al. The in vivo toxicity of hydroxyurea depends on its direct target catalase. J. Biol. Chem. 2010; 285(28): 21411–5.

Mechanism of Low Hemolytic Activity of Alkyl Type Nonphosphorous Cationic Glycerolipids: Study on Model Membranes

A.A. Markova1, S.A. Okorochenkov2, N.V. Plyavnik3, A.A. Shtil’1

1 N.N. Blokhin Russian Cancer Research Center of RAMS, Moscow, Russian Federation

2 Institute of Molecular and Translational Medicine, Palacky University, Czech Republiс

3 M.V. Lomonosov Moscow State University of Fine Chemical Technologies, Moscow, Russian Federation

For citation: Markova A.A., Okorochenkov S.A., Plyavnik N.V., Shtil’ A.A. Mechanism of Low Hemolytic Activity of Alkyl Type Nonphosphorous Cationic Glycerolipids: A Study on Model Membranes. Klin. onkogematol. 2014; 7(3): 278–81 (In Russ.).


ABSTRACT

Nonphosphorous alkyl cationic glycerolipids cause death of tumor cells with minimal damage of erythrocytes. In this article we demonstrate, that low hemolytic activity of these compounds can be explained by their weak ability to damage the integrity of liposomes whose composition models that of cell membranes. Poor hemolytic activity makes non-phosphorous alkyl cationic glycerolipids potentially advantageous over the hemolytic, phosphorus containing lipid drug edelfosine.


Keywords: non-phosphorous cationic alkyl glycerolipids, edelfosine, artificial liposomes, carboxyfluorescein, hemolysis.

Address correspondence to: alenmark25@gmail.com

Accepted: May 05, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Duclos R., Hwa Hwoy C., Abdelmageed O. et al. Syntheses of racemic and nearly optically pure ether lipids and evaluation of in vitro antineoplastic activities. J. Med. Chem. 1994; 37: 4147–54.
  2. Naseer A., Bok Hee B., Jongki H. et al. Additional bioactive lyso-PAF congeners from the sponge Spirastrella abata. J. Nat. Prod. 2001; 6: 533–5.
  3. Ahmad I., Filep J., Franklin J. et al. Enhanced therapeutic effects of liposome-associated 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine. Cancer Res. 1997; 57: 1915–21.
  4. Busto J., del Canto-Janes E., Goni F. et al. Combination of the anti-tumor cell ether lipid edelfosine with sterols abolishes haemolytic side effects of the drug. J. Chem. Biol. 2008; 1(1–4): 89–94.
  5. Mayhew E., Ahmad I., Bhatia S. et al. Stability of association of 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine with liposomes is composition dependent. Biochim. Biophys. Acta. 1997; 1329: 139–48.
  6. Perkins W.R., Dause R.B., Li X. et al. Combination of antitumor ether lipid with lipids of complementary molecular shape reduces its hemolytic activity. Biochim. Biophys. Acta. 1997; 1327: 61–8.
  7. Плявник Н.В., Крамарева Т.В., Серебренникова Г.А. Синтез катионных алкильных глицеролипидов с гетероциклическими азотистыми основаниями в качестве полярного домена. Биоорган. хим. 2011; 37(4): 552–8.  [Plyavnik N.V., Kramareva T.V., Serebrennikova G.A. Synthesis of cationic alkyl glycerolipids with heterocyclic nitrous bases as a polar domain. Bioorgan. khim. 2011; 37(4): 552–8. (In Russ.)].
  8. Маркова A.A., Плявник Н.В., Плетнева М.В., Серебренникова Г.А., Штиль А.А. Противоопухолевые бесфосфорные алкильные катионные глицеролипиды с гетероциклическими полярными доменами вызывают значительно меньший гемолиз, чем препарат-прототип эдельфозин. Клин. онкогематол. 2012; 5(2): 141–3.  [Markova A.A., Plyavnik N.V., Pletneva M.V., Serebrennikova G.A., Shtil’ A.A. Anti-tumor non-phosphorous alkyl cationic glycerolipids with heterocyclic polar domains cause significantly less hemolysis than the prototype drug edelfosine. Klin. onkogematol. 2012; 5(2): 141–3. (In Russ.)].
  9. Стоилова Т.Б., Дуцева Е.А., Пашковская А.А. и др. Различные типы ионных каналов, индуцированные в липидных мембранах производными грамицидина А, несущими на С-конце катионную последовательность. Биоорган. хим. 2007; 33(5): 511–9. [Stoilova T.B., Duceva E.A., Pashkovskaja A.A. et al. Different types of ion channels induced in lipid membranes by gramicidin A derivatives bearing a cationic sequence on their C-terminus. Bioorgan. him. 2007; 33(5): 511–9. (In Russ.)].

Determination of B-cell clonality in Hodgkin’s lymphoma

Yu.V. Sidorova, N.V. Ryzhikova, S.Yu. Smirnova, E.E. Nikulina, B.V. Biderman, A.M. Kovrigina, T.N. Moiseeva, N.N. Sharkunov, and A.B. Sudarikov

Hematology Research Center, Moscow, Russian Federation


ABSTRACT

B-cell origin of Hodgkin’s lymphoma was demonstrated using microdissection and single cell PCR of Reed-Sternberg and Hodgkin cells (R. Kuppers et al., 1994). We assessed B-cell clonality in the biopsy samples of 35 patients with Hodgkin’s lymphoma without microdissection. B-cell clonality was evaluated using PCR amplification by IGH (FR1, FR2, FR3) and IGK (Vk-Jk, Vk/intron-Kde) gene rearrangements with multiplex BIOMED-2 primer sets and subsequent fragment analysis using ABI PRISM 3130 Genetic Analyzer (Applied Biosystems). Clonality was found in 11 out of 35 (31,5 %) formalin fixed paraffin-embedded (FFPE) lymph node specimens from patients with Hodgkin’s lymphoma. In 11 cases when both FFPE and fresh frozen samples were available, we observed the similar results with the specimens of both types. No correlation was found between the presence of B-cell clones and age, histological type of Hodgkin lymphoma, type of tumor cell growth (syncytial or diffuse), number of eosinophils in tissues, or CD20/CD15 expression on the surface of tumor cells. The high incidence of B-cell clonality determined in Hodgkin’s lymphoma biopsy samples makes the B-cell clonality assay unsuitable for differential diagnosis between Hodgkin’s lymphoma and B-cell lymphomas.


Keywords: Hodgkin’s lymphoma, B-cell clonality, PCR, immunoglobulin gene rearrangements.

Read in PDF (RUS)pdficon


REFERENCES

  1. Ковригина А.М., Пробатова Н.А. Лимфома Ходжкина и крупноклеточная лимфома. М.: МИА, 2007. [Kovrigina A.M., Probatova N.A. Limfoma Khodzhkina i krupnokletochnye limfomy (Hodgkin’s lymphoma and large-cell lymphomas). M.: MIA, 2007: 212.]
  2. Harris N.L., Jaffe E.S., Stein H. et al. A Revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 1994; 84: 1361–92.
  3. Harris N.L., Jaffe E.S., Diebold J. et al. The World Health Organization Classification of Neoplastic Diseases of the Hematopoietic and Lymphoid Tissues. Ann. Oncol. 1999; 10: 1419–32.
  4. Kuppers R., Rajewsky K., Zhao M. et al. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc. Natl. Acad. Sci. U S A 1994; 91: 10962–6.
  5. Marafioti T., Hummel M., Foss H.-D. et al. Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal centre B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 2000; 95: 1443–50.
  6. Re D., Muschen M., Ahmadi T. et al. Oct-2 and Bob-1 deficiency in Hodgkin and Reed Sternberg cells. Cancer Res. 2001; 61: 2080–4.
  7. Jundt F., Kley K., Anagnostopoulos I. et al. Loss of PU.1 expression is associated with defective immunoglobulin transcription in Hodgkin and ReedSternberg cells of classical Hodgkin disease. Blood 2002; 99: 3060–2.
  8. Ushmorov A., Ritz O., Hummel M. et al. Epigenetic silencing of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression. Blood 2004; 104: 3326–34.
  9. Theil J., Laumen H., Marafioti T. et al. Defective octamer-dependent transcription is responsible for silenced immunoglobulin transcription in ReedSternberg cells. Blood 2001; 97: 3191–6.
  10. Kanzler H., Kuppers R., Hansmann M.L. et al. Hodgkin and ReedSternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J. Exp. Med. 1996; 184: 1495–505.
  11. Brauninger A., Schmitz R., Bechtel D. et al. Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int. J. Cancer 2006; 118: 1853–61.
  12. Angel C.A., Pringle J.H., Naylor J. et al. Analysis of antigen receptor genes in Hodgkin’s disease. J. Clin. Pathol. 1993; 46(4): 337–40.
  13. Kamel O.W., Chang P.P., Hsu F.J. et al. Clonal VDJ recombination of the immunoglobulin heavy chain gene by PCR in classical Hodgkin’s disease. Am. J. Clin. Pathol. 1995; 104: 419–23.
  14. Manzanal A., Santon A., Oliva H. et al. Evaluation of clonal immunoglobulin heavy chain rearrangements in Hodgkin’s disease using the polymerase chain reaction (PCR). Histopathology 1995; 27: 21–5.
  15. Chute D.J., Cousar J.B., Mahadevan M.S. et al. Detection of immunoglobulin heavy chain gene rearrangements in classic Hodgkin lymphoma using commercially available BIOMED-2 primers. Diagn. Mol. Pathol. 2008; 17(2): 65–72.
  16. Hebeda K.M., Van Altena M.C., Rombout P. et al. PCR clonality detection in Hodgkin lymphoma. J. Hemat. 2009; 2(1): 34–41.
  17. Burack W.R., Laughlin T.S., Friedberg J.W. et al. PCR assays detect B-lymphocyte clonality in formalin-fixed, paraffin-embedded specimens of classical Hodgkin lymphoma without microdissection. Am. J. Clin. Pathol. 2010; 134(1): 104–11.
  18. Wu L., Patten N., Yamashiro C.T., Chui B. Extraction and amplification of DNA from formalin-fixed, paraffin-embedded tissues. Appl. Immunohistochem. Mol. Morphol. 2002; 10: 269–74.
  19. Coombs N.J., Gough A.C., Primrose J.N. Optimisation of DNA and RNA extraction from archival formalin-fixed tissue. Nucl. Acids Res. 1999; 27: e12.
  20. Sidorova J.V., Biderman B.V., Nikulina E.E., Sudarikov A.B. A simple and efficient method for DNA extraction from skin and paraffin-embedded tissues applicable to T-cell clonality assays. Exp. Dermatol. 2012; 21(1): 57–60.
  21. Dongen J.J., Langerak A.W., Bruggemann M. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17(12): 2257–317.
  22. Jarrett R.F. Viruses and lymphoma/leukaemia. J. Pathol. 2006; 208(2): 176–86.
  23. Al Saati T., Galoin S., Gravel S. et al. IgH and TcR-gamma gene rearrangements identified in Hodgkin disease by PCR demonstrate lack of correlation between genotype, phenotype, and Epstein–Barr virus status. J. Pathol. 1997; 181(4): 387–93.
  24. Manzanal A.I., Santon A., Acevedo A. et al. Molecular analysis of the IgH gene in 212 cases of Hodgkin’s disease: correlation of IgH clonality with the histologic and the immunocytochemical features. Mod. Pathol. 1997; 10(7): 679–85.

Prolonged chemotherapy for angioimmunoblastic T-cell lymphoma

N.G. Chernova1, Yu.E. Vinogradova2, Yu.V. Sidorova1, I.B. Kaplanskaya1, E.A. Gilyazitdinova1, L.G. Gorenkova1, D.S. Marin1, A.M. Kremenetskaya1, A.I. Vorobyev1, and S.K. Kravchenko1

1 Hematology Research Center, RF MH, Moscow, Russian Federation

2 I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation


ABSTRACT

Introduction: Current СНОР-like therapy for angioimmunoblastic T-cell lymphoma demonstrates unsatisfactory results with respect to the achievement of complete remission. It indicates the need in the search for new approaches to therapy of angioimmunoblastic T-cell lymphoma.

Objective: To define the rational approaches to the diagnosis and treatment of angioimmunoblastic T-cell lymphoma (AITL).

Materials and methods: Within the period from 2002 to 2012, we followed-up 15 patients with angioimmunoblastic T-cell lymphoma, with median age of 61 years (range 29–77) and the male/female ratio of 11/4. All patients had stage IV disease; the bone marrow, lungs, spleen, and skin were involved in 14 (93 %), 9 (60 %), 12 (80 %), and 6 (40 %) patients, respectively.

Results: We used prolonged chemotherapy GMALL 2002 and ALL-2009 regimens for treatment of angioimmunoblastic T-cell lymphoma (11 patients). Complete remission was achieved in 55 % of cases with median follow up of 33 mouths.

Conclusion: The usage of short-term chemotherapy programs (CHOP-like) for treatment of angioimmunoblastic T-cell lymphoma doesn’t seem to give good results. Administration of prolonged chemotherapy is more appropriate and allows achieving remission of the disease.


Keywords: angioimmunoblastic T-cell lymphoma, prolonged chemotherapy.

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow S.H., Campo E., Harris N.L. et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008.
  2. Виноградова Ю.Е., Зингерман Б.В. Нозологические формы и вы- живаемость пациентов с Т- и NK-клеточными лимфатическими опухолями, наблюдавшихся в ГНЦ в течение 10 лет. Клин. онкогематол. 2011; 4(3): 201–27. [Vinogradova Yu.Ye., Zingerman B.V. Nosological forms and survival of patients with T- and NK-cell lymphatic tumors, followed-up at HRC for 10 years. Klin. onkogematol. 2011; 4(3): 201–27. (In Russ.)].
  3. Frizzera G., Moran E.M., Rappaport H. Angio-immunoblastic lymphadenopathy: diagnosis and clinical course. Am. J. Med. 1975; 59: 803–18.
  4. Dogan A., Attygalle A.D., Kyriakou C. Angioimunoblastic T-cell lymphoma. Br. J. Haematol. 2003; 121: 681–91.
  5. Weiss L.M., Jaffe E.S., Liu X.F. et al. Detection and localization of Epstein-Barr viral genomes in angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy-like lymphoma. Blood 1992; 79: 1789–95.
  6. Dupuis J., Boye K., Martin N. et al. Expression of CXCL13 by neoplastic cells in angioimmunoblastic T-cell lymphoma (AITL). A new diagnostic marker providing evidence that AITL derives from follicular helper T-cells. Am. J. Surg. Pathol. 2006; 30: 490–4.
  7. Attygalle A., Al Jehani R., Diss T.C. et al. Neoplastic T cells in angioimmunoblastic T-cell lymphoma express CD10. Blood 2002; 99: 627–33.
  8. de Leval L., Rickman D.S., Thielen C. et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T cells (TFH). Blood 2007; 109: 4952–63.
  9. Yu H., Shahsafaei A., Dorfman D. Germinal-center T-helper cell markers PD-1 and CXCL13 are both expressed by neoplastic cells in angioimmunoblastic T-cell lymphoma. Am. J. Clin. Pathol. 2009; 131: 33–41.
  10. Miyoshi H., Sato K., Niino D. et al. Clinicopathologic analysis of peripheral T-cell lymphoma, follicular variant, and comparison with angioimmunoblastic T-cell lymphoma: Bcl-6 expression might affect progression between these disorders. Am. J. Clin. Pathol. 2012; 137(6): 879–89.
  11. Стефанов Д.Н., Ковригина А.М., Поддубная А.М. Новая концепция происхождения ангиоиммунобластной Т-клеточной лимфомы: от молеку- лярной биологии к терапии. Бюл. СО РАМН 2011; 31(2): 14–9. [Stefanov D.N., Kovrigina A.M., Poddubnaya A.M. New concept of origin of angioimmunoblastic T-cell lymphoma: from molecular biology to therapy. Byul. SO RAMN 2011; 31(2): 14–9. (In Russ.)].
  12. Wang S.H., Wang Q.S., Sun L. et al. Clinical analysis of 12 patients with angioimmunoblastic T cell lymphoma. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2010; 18(5): 1208–10.
  13. Lin H.N., Liu C.Y., Hong Y.C. et al. Clinical features and prognostic factors of angioimmunoblastic T-cell lymphoma in Taiwan: a single-institution experience. Leuk. Lymphoma 2010; 51(12): 2208–14.
  14. Mourand N., Mounier N., Briere J. et al. Clinical, biologic and pathologic features in 157 patients with angioimmunoblastic T-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte (GELA) trials. Blood 2008; 111: 4463–70.
  15. Siegert W., Agthe A., Griesser H. et al. Treatment of angioimmunoblastic lymphadenopathy (AILD)-type T-cell lymphoma using prednisone with or without the COP-BLAM/IMVP-16 regimen. A multicenter study. Kiel Lymphoma Study Group. Ann. Intern. Med. 1992; 117(5): 364–70.
  16. Nickelsen M., Ziepert M., Zeynalova S. et al. High-dose CHOP plus etoposide (MegaCHOEP) in T-cell lymphoma: a comparative analysis of patients treated within trials of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Ann. Oncol. 2009; 20(12): 1977–84.
  17. Karakas T., Bergmann L., Stutte H.J. et al. Peripheral T-cell lymphomas respond well to vincristine, adriamycin, cyclophosphamide, prednisone and etoposide (VACPE) and have a similar outcome as high-grade B-cell lymphomas. Leuk. Lymphoma 1996; 24(1–2): 121–9.
  18. Kyriakou C., Canals C., Goldstone A. et al. High-dose therapy and autologous stem-cell transplantation in angioimmunoblastic lymphoma: complete remission at transplantation is the major determinant of Outcome-Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J. Clin. Oncol. 2008; 26(2): 218–24.
  19. Delfau-Larue M.-H., de Leval L., Joly B. et al. Targeting intratumoral B cells with rituximab in addition to CHOP in angioimmunoblastic T-cell lymphoma. A clinicobiological study of the GELA. Haematologica 2012; 97(10): 1594–602.
  20. Hoelzer D., Gokbuget N., Digel W. et al. Outcome of adult patients with Tlymphoblastic lymphoma treated according to protocols for acute lymphoblastic leukemia. Blood 2002; 99(12): 4379–85.
  21. Паровичникова Е.Н., Клясова Г.А., Исаев В.Г. и др. Первые итоги терапии Ph’-негативных острых лимфобластных лейкозов взрослых по протоколу научно-исследовательской группы гематологических центров России ОЛЛ-2009. Тер. арх. 2008; 83(7): 11–7. [Parovichnikova Ye.N., Klyasova G.A., Isayev V.G. et al. Initial outcomes of therapy for Ph-negative acute lymphoblastic leukemias in adults in accordance to protocol of OLL-2009 investigator group from hematological centers in Russia. Ter. arkh. 2008; 83(7): 11–7. (In Russ.)].
  22. Gottardi M., Danesin C., Canal F. et al. Complete remission induced by thalidomide in a case of angioimmunoblastic T-cell lymphoma refractory to autologous stem cell transplantation. Leuk. Lymphoma 2008; 49(9): 1836–8.
  23. Чернова Н.Г., Виноградова Ю.Е., Гилязитдинова Е.А. и др. Проблемы диагностики и лечения ангиоиммунобластной Т-клеточной лимфомы. Гематол. и трансфузиол. 2012; 3: 87. [Chernova N.G., Vinogradova Yu.Ye., Gilyazitdinova Ye.A. et al. Problems of diagnosis and treatment of angioimmunoblastic T-cell lymphoma. Gematol. i transfuziol. 2012; 3: 87. (In Russ.)].