Loss of CD20 Expression in Follicular Lymphoma after Program Anti-Tumor Therapy Including Rituximab: Literature Data and Case Report

OM Volodina, NA Kupryshina, NA Falaleeva, VA Doronin, AV Mozhenkova, MA Frenkel’, EN Sorokin, NV Kokosadze, NN Tupitsyn, GS Tumyan, EA Osmanov

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Ol’ga Mikhailovna Volodina, post-graduate student, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-28-54; e-mail: volodi.olga2012@yandex.ru.

For citation: Volodina OM, Kupryshina NA, Falaleeva NA, et al. Loss of CD20 Expression in Follicular Lymphoma after Program Anti-Tumor Therapy Including Rituximab: Literature Data and Case Report. Clinical oncohematology. 2017;10(2):176–81 (In Russ).

DOI: 10.21320/2500-2139-2017-10-2-176-181


ABSTRACT

It is the first description of a case of follicular lymphoma with a loss of CD20 antigen expression during the anti-tumor treatment including rituximab in the NN Blokhin Russian Cancer Research Center. The article discusses the tactics of further management of such patients and the effect of the CD20-negative status of follicular lymphoma tumor cells acquired during immunochemotherapy.

Keywords: follicular lymphoma, CD20-negative, rituximab.

Received: November 18, 2016

Accepted: February 2, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Singh V, Gupta D, Almasan A. Development of Novel Anti-Cd20 Monoclonal Antibodies and Modulation in Cd20 Levels on Cell Surface: Looking to Improve Immunotherapy Response. J Cancer Sci Ther. 2015;7(11):347–58. doi: 10.4172/1948-5956.1000373.
  2. Alduaij W, Illidge TM. The future of anti-CD20 monoclonal antibodies: are we making progress? Blood. 2011;117(11):2993–3001. doi: 10.1182/blood-2010-07-298356.
  3. Pfreundschuh M, Trumper L, Osterborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7(5):379–91. doi: 10.1016/S1470-2045(06)70664-7.
  4. Salles G, Mounier N, de Guibert S, et al. Rituximab combined with chemotherapy and interferon in follicular lymphoma patients: results of the GELA-GOELAMS FL2000 study. Blood. 2008;112(13):4824–31. doi: 10.1182/blood-2008-04-153189.
  5. Hiddemann W, Kneba M, Dreyling M, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2005;106(12):3725–32. doi: 10.1182/blood-2005-01-0016.
  6. Herold M, Haas A, Srock S, et al. Rituximab added to first-line mitoxantrone, chlorambucil, and prednisolone chemotherapy followed by interferon maintenance prolongs survival in patients with advanced follicular lymphoma: an East German Study Group Hematology and Oncology Study. J Clin Oncol. 2007;25(15):1986–92. doi: 10.1200/JCO.2006.06.4618.
  7. Marcus R, Imrie K, Solal-Celigny P, et al. Phase III study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma. J Clin Oncol. 2008;26(28):4579–86. doi: 10.1200/JCO.2007.13.5376.
  8. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fc gamma gene. Blood. 2002;99(3):754–8. doi: 10.1182/blood.V99.3.754.
  9. Van Meerten T, Van Rijn RS, Hol S, et al. Complement-induced cell death by rituximab depends on D20 expression level and acts complementary to antibody-dependent cellular cytotoxicity. Clin Cancer Res. 2006;12(13):4027–35. doi: 10.1158/1078-0432.CCR-06-0066.
  10. Dayde D, Ternant D, Ohresser M, et al. Tumor burden influences exposure and response to rituximab: pharmacokinetic-pharmacodynamic modeling using a syngeneic bioluminescent murine model expressing human CD20. Blood. 2009;113(16):3765–72. doi: 10.1182/blood-2008-08-175125.
  11. Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003;22(47):7359–68. doi: 10.1038/sj.onc.1206939.
  12. Ferreri AJ, Dognini GP, Verona C, et al. Re-occurrence of the CD20 molecule expression subsequent to CD20-negative relapse in diffuse large B-cell lymphoma. Haematologica. 2007;92(1):e1–2. doi: 10.3324/haematol.10255.
  13. Clarke LE, Bayerl MG, Ehmann WC, Helm KF. Cutaneous B-cell lymphoma with loss of CD20 immunoreactivity after rituximab therapy. J Cutan Pathol. 2003;30(7):459–62. doi: 10.1034/j.1600-0560.2003.00078.x.
  14. Hiraga J, Tomita A, Sugimoto T, et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood. 2009;113(20):4885–93. doi: 10.1182/blood-2008-08-175208.
  15. Davis TA, Czerwinski DK, Levy R. Therapy of B-cell lymphoma with anti-CD20 antibodies can result in the loss of CD20 antigen expression. Clin Cancer Res. 1999;5(3):611–5.
  16. Alvaro-Naranjo T, Jaen-Martinez J, Guma-Padro J, et al. CD20-negative DLBCL transformation after rituximab treatment in follicular lymphoma: a new case report and review of the literature. Ann Hematol. 2003;82(9):585–8. doi: 10.1007/s00277-003-0694-1.
  17. Matsuda I, Hirota S. Bone marrow infiltration of CD20-negative follicular lymphoma after rituximab therapy: a histological mimicker of hematogones and B-cell acute lymphoblastic leukemia/lymphoma. Int J Clin Exp Pathol. 2015;8(8):9737–41.
  18. Kennedy GA, Tey SK, Cobcroft R, et al. Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin’s lymphoma: a retrospective review. Br J Haematol. 2002;119(2):412–6. doi: 10.1046/j.1365-2141.2002.03843.x.

Role of Superficial CD200 Marker in Differential Diagnosis of Malignant B-Cell Lymphoproliferative Diseases

YuV Mirolyubova, EA Stadnik, TS Nikulina, VV Strugov, TO Andreeva, YuV Virts, RV Grozov, AYu Zaritskey

Federal Almazov North-West Medical Research Centre, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Yuliya Vladimirovna Mirolyubova, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; e-mail: juli9702@yandex.ru

For citation: Mirolyubova YuV, Stadnik EA, Nikulina TS, et al. Role of Superficial CD200 Marker in Differential Diagnosis of Malignant B-Cell Lymphoproliferative Diseases. Clinical oncohematology. 2017;10(2):169–75 (In Russ).

DOI: 10.21320/2500-2139-2017-10-2-169-175


ABSTRACT

Background & Aims. Flow cytometry is successfully used for diagnosis of malignant lymphoproliferative disorders. However, there are atypical cases that are difficult to interpret; thus, new markers relevant for the differential diagnosis are to be searched for. The aim is to analyze CD200 expression in patients with B-cell lymphoproliferative disorders.

Materials & Methods. 187 patients with chronic lymphocytic leukemia (CLL), 14 patients with mantle cell lymphoma (MCL), 9 patients with marginal zone lymphoma (MZL), and 5 patients with hairy cell leukemia (HCL) were enrolled in the study. Neoplasm was not confirmed in 12 subjects. The patients underwent the following tests: CBC, immunophenotyping of peripheral blood or bone marrow lymphocytes, and a cytogenetic test. In some cases, an additional immunohistochemical test of bone marrow trepanobiopsy or lymph node biopsy samples was required.

Results. In all cases of CLL and HCL, the CD200 expression was positive; mean fluorescence intensity was higher in these cases as compared to other groups. Negative expression of CD200 prevailed in MCL patients; however, at the same time 2 cases of intermediate and positive expression were reported, both showing moderate fluorescence intensity values. CD200 expression was heterogeneous in MZL patients.

Conclusion. The CD200 negative expression excludes typical HCL and CLL. Additional cytogenetic and immunnohistoсhemical tests should be performed in such cases to verify the diagnosis, first of all, MCL or MZL.

Keywords: CD200, flow cytometry, diagnosis, chronic lymphocytic leukemia, mantle cell lymphoma, marginal zone lymphoma, hairy cell leukemia.

Received: September 7, 2016

Accepted: January 3, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Купрышина Н.А., Тупицын Н.Н. Проточная цитометрия в онкогематологии. Часть II. Основы и нововведения в диагностике хронического лимфолейкоза. Клиническая онкогематология. 2012;5(4):349–54.
    [Kupryshina NA, Tupitsyn NN. Flow cytometry in hematology malignancies. Part II: ABC and news in diagnostics of chronic lymphocytic leukaemia. Klinicheskaya onkogematologiya. 2012;5(4):349–54. (In Russ)]
  2. Стадник Е.А., Стругов В.В., Вирц Ю.В., Зарицкий А.Ю. Хронический лимфолейкоз. Рекомендации по диагностике и лечению. Трансляционная медицина. 2012;17:104–15.
    [Stadnik EA, Strugov VV, Virts YuV, Zaritskey AYu. Chronic lymphocytic leukemia. Guidelines for diagnosis and treatment. Translyatsionnaya meditsina. 2012;17:104–15. (In Russ)]
  3. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  4. Kohnke T, Wittmann VK, Sauter D, et al. Proposal For a Novel Scoring System For The Diagnosis оf CLL. Blood. 2013;122(21):47–5599 (Plenary Abstracts).
  5. Morice WG, Kurtin PJ, Hodnefield JM, et al. Predictive Value of Blood and Bone Marrow Flow Cytometry in B-Cell Lymphoma Classification: Comparative Analysis of Flow Cytometry and Tissue Biopsy in 252 Patients. Mayo Clin Proc. 2008;83(7):776–85. doi: 10.4065/83.7.776.
  6. Луговская С.А., Кисиличина Д.Г., Почтарь М.Е. и др. Новые маркеры (CD160, CD200, LAIR-1) в диагностике В-клеточных лимфопролиферативных заболеваний. Клиническая онкогематология. 2013;6(1):45–52.
    [Lugovskaya SA, Kisilichina DG, Pochtar’ ME, et al. New markers (CD160, CD200, and LAIR-1) in diagnosis of B-cell lymphoproliferative disorders. Klinicheskaya onkogematologiya. 2013;6(1):45–52. (In Russ)]
  7. Brunetti L, Di Noto R, Abate G, et al. CD200/OX2, a cell surface molecule with immuno-regulatory function is consistently expressed on hairy cell leukaemia neoplastic cells. Br J Haematol. 2009;145(5):665–78. doi: 10.1111/j.1365-2141.2009.07644.x.
  8. Palumbo GA, Parrinello N, Fargione G, et al. CD200 expression may help in differential diagnosis between mantle cell lymphoma and B-cell chronic lymphocytic leukemia. Leuk Res. 2009;33(9):1212–6. doi: 10.1016/j.leukres.2009.01.017.
  9. Dorfman DM, Shahsafaei A. CD200 (OX-2 Membrane Glycoprotein) Expression in B Cell–Derived Neoplasms. Am J Clin Pathol. 2010;134(5):726–33. doi: 10.1309/ajcp38xrrugsqovc.
  10. Sander B. Mantle cell lymphoma: recent insights into pathogenesis, clinical variability, and new diagnostic markers. Semin Diagn Pathol. 2011;28(3):245–55. doi: 10.1053/j.semdp.2011.02.010.
  11. Alapat D, Coviello-Malle J, Owens R, et al. Diagnostic Usefulness and Prognostic Impact of CD200 Expression in Lymphoid Malignancies and Plasma Cell Myeloma. Am J Clin Pathol. 2012;137(1):93–100. doi: 10.1309/ajcp59uorcyzevqo.
  12. El Desoukey NA, Afify RA, Amin DG, et al. CD200 expression in B-cell chronic lymphoproliferative disorders. J Investig Med. 2012;60(1):56–61. doi: 10.2310/jim.0b013e31823908f9.
  13. Pillai V, Pozdnyakova O, Charest K, et al. CD200 flow cytometric assessment and semiquantitative immunohistochemical staining distinguishes hairy cell leukemia from hairy cell leukemia-variant and other B-cell lymphoproliferative disorders. Am J Clin Pathol. 2013;140(4):536–43. doi: 10.1309/ajcpebk31vqqnddr.
  14. Challagundla P, Medeiros LJ, Kanagal-Shamanna R, et al. Differential Expression of CD200 in B-Cell Neoplasms by Flow Cytometry Can Assist in Diagnosis, Subclassification, and Bone Marrow Staging. Am J Clin Pathol. 2014;142(6):837–44. doi: 10.1309/ajcpbv9elxc0ecvl.
  15. Sandes AF, de Lourdes Chauffaille M, Regina C, et al. CD200 Has an Important Role in the Differential Diagnosis of Mature B-Cell Neoplasms by Multiparameter Flow. Cytometry. 2013;86(2):98–105. doi: 10.1002/cyto.b.21128.
  16. McCaughan GW, Clark MJ, Barclay AN. Characterization of the human homolog of the rat MRC OX-2 membrane glycoprotein. Immunogenetics. 1987;25(5):329–35. doi: 10.1007/bf00404426.
  17. Wright GJ, Jones M, Puklavec MJ, et al. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology. 2001;102(2):173–9. doi: 10.1046/j.1365-2567.2001.01163.x.
  18. Kretz-Rommel A, Qin F, Dakappagari N, et al. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol. 2007;178(9):5595–605. doi: 10.4049/jimmunol.178.9.5595.
  19. Moreaux J, Hose D, Reme T, et al. CD200 is a new prognostic factor in multiple myeloma. Blood. 2006;108(13):4194–7. doi: 10.1182/blood-2006-06-029355.
  20. Tonks A, Hills R, White P, et al. CD200 as a prognostic factor in acute myeloid leukemia. Leukemia. 2007;21(3):566–8. doi: 10.1038/sj.leu.2404559.
  21. Moreaux J, Veyrune JL, Reme T, et al. CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun. 2008;366(1):117–22. doi: 10.1016/j.bbrc.2007.11.103.
  22. Kretz-Rommel A, Bowdish KS. Rationale for anti-CD200 immunotherapy in B-CLL and other hematologic malignancies: new concepts in blocking immune suppression. Expert Opin Biol Ther. 2008;8(1):5–15. doi: 10.1517/14712598.8.1.5.

Evaluation of Minimal Residual Disease in B-Lineage Acute Lymphoblastic Leukemia Using EuroFlow Approaches

OA Beznos, LYu Grivtsova, AV Popa, MA Shervashidze, IN Serebryakova, OYu Baranova, EA Osmanov, NN Tupitsyn

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Ol’ga Alekseevna Beznos, junior researcher, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: 8(916)480-03-35; e-mail: beznos.olga@gmail.com

For citation: Beznos OA, Grivtsova LYu, Popa AV, et al. Evaluation of Minimal Residual Disease in B-Lineage Acute Lymphoblastic Leukemia Using EuroFlow Approaches. Clinical oncohematology. 2017;10(2):158–68 (In Russ).

DOI: 10.21320/2500-2139-2017-10-2-158-168


ABSTRACT

Background & Aims. Evaluation of the minimal residual disease (MRD) at different stages of chemotherapy is one of key prognostic factors and a factor of stratification of patients into risk groups in acute lymphoblastic leukemia (ALL). The MRD detection on Day 15 and at later stages is based on identifying blast cells with a leukemia-associated immune phenotype. The aim is to assess the potential of 8-color standardized EuroFlow panels and to detect individual criteria for MRD monitoring during primary diagnosis.

Materials & Methods. The analysis included data on the primary immune phenotype and MRD assessment during chemotherapy in 10 adults and 35 children with a confirmed diagnosis of B-cell precursors ALL.

Results. The ALL phenotype characteristics at the stage of primary diagnosis permit to make the most complete description of the of 8-color standardized EuroFlow panels. This gives an opportunity to select the most informative antigen combinations for further MRD monitoring. Combinations with CD58/CD38, CD81/СD9 antigen expression, as well as assessment of pan-myeloid CD13, CD33 antigen co-expression may be recommended as the most frequent aberrant immune phenotypes of blast cells in ALL. As for B-lineage progenitor cells in children on Day 15 of the induction therapy, a detection of TdT+ сyCD22+ cell population is necessary in addition to the quantification of CD10+ and/or CD34+ В-lineage progenitor cells.

Conclusion. Therefore, the 8-color standardized EuroFlow panels permit not only to characterize the primary ALL immune phenotype in details, but may also be widely used for MRD evaluation at all stages of chemotherapy.

Keywords: B-lineage acute lymphoblastic leukemia, multicolor flow cytometry, minimal residual disease.

Received: January 14, 2017

Accepted: January 29, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in children acute lymphoblastic leukemia and its relationship to the prognostic factors: a Children’s Oncology Group study. Blood. 2008;111(12):5477–85. doi: 10.1182/blood-2008-01-132837.
  2. Dworzak MN, Froschl G, Printz D, et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood. 2002;99(6):1952–8. doi: 10.1182/blood.V99.6.1952.
  3. Basso G, Veltroni M, Valsecchi MG, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–74. doi: 10.1200/jco.2008.20.8934.
  4. Coustan-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood. 2002;100(1);52–8. doi: 10.1182/blood-2002-01-0006.
  5. Coustan-Smith E, Ribeiro RC, Stow P, et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood. 2006;108(1):97–102. doi: 10.1182/blood-2006-01-0066.
  6. Schrappe M, Reiter A, Ludwig WD, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of antracyclines and cranial radiotherapy: results of trial ALL-BFM 90. Blood. 2000;95(11):3310–22.
  7. Гривцова Л.Ю., Попа А.В., Купрышина Н.А. и др. Оценка минимальной резидуальной болезни при острых лимфобластных лейкозах из В-линейных предшественников у детей методом трехцветной проточной цитометрии. Иммунология гемопоэза. 2008;5(2):8–33.
    [Grivtsova LYu, Popa AV, Kupryshina NA, et al. Detection of minimal residual disease in children with B-cell precursor acute lymphoblastic leukemia with simplified protocols. Immunologiya gemopoeza. 2008;5(2):8–33. (In Russ)]
  8. Гривцова Л.Ю., Попа А.В., Серебрякова И.Н., Тупицын Н.Н. К дальнейшей стандартизации определения остаточных бластных клеток в костном мозге детей с В-линейными острыми лимфобластными лейкозами на 15-й день индукционной терапии. Иммунология гемопоэза. 2011;8(1):35–54.
    [Grivtsova LYu, Popa AV, Serebryakova IN, Tupitsyn NN. To further standardization in detection of residual blasts in bone marrow of children with B-cell acute lymphoblastic leukemia on Day 15 of induction therapy. Immunologiya gemopoeza. 2011;8(1):35–54. (In Russ)]
  9. van Dongen JJM, van der Velden VHJ, Bruggemann M, et al. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996–4009. doi: 10.1182/blood-2015-03-580027.
  10. van Dongen JJM, Lhermitte L, Bottcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908–75. doi: 10.1038/leu.2012.120.
  11. Локен М.Р., Уэлс Д.А. Определение клеток предшественников. Иммунология гемопоэза. 2010;7(1):8–22.
    [Loken MR, Wells DA. Enumeration of progenitor cells. Immunologiya gemopoeza. 2010;7(1):8–22 (In Russ)]
  12. Гривцова Л.Ю., Тупицын Н.Н. Иммунологическая оценка гемодилюции костного мозга при лабораторных исследованиях (на основании теста М. Локен). Медицинский алфавит. 2015;4(18):67–70.
    [Grivtsova LYu, Tupitsyn NN. Immunological evaluation of bone marrow hemodilution in laboratory test (based on M. Loken’s test). Meditsinskii alfavit. 2015;4(18):67–70. (In Russ)]
  13. Тупицын Н.Н., Гривцова Л.Ю., Купрышина Н.А. Иммунодиагностика опухолей крови на основании многоцветных (8-цветных панелей) Европейского консорциума по проточной цитометрии (Euroflow). Иммунология гемопоэза. 2015;13(1):31–62.
    [Tupitsyn NN, Grivtsova LYu, Kupryshina NA. Haematopoietic malignancies immune diagnostics based on Euroflow Consortium proposals: 8-color flow cytometry. Immunologiya gemopoeza. 2015;13(1):31–62. (In Russ)]
  14. Veltroni M, de Zen L, Sanzari MC, et al.; I-BFM-ALL-FCM-MRD-Study Group. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. J Hematol. 2003;88(11):1245–52.
  15. Romero-Ramırez H, Morales-Guadarrama MT, Pelayo R, et al. CD38 expression in early B-cell precursors contributes to extracellular signal-regulated kinase-mediated apoptosis. Immunology. 2014;144(2):271–81. doi: 10.1111/imm.12370.
  16. Tajima F, Deguchi T, Laver JH, et al. Reciprocal expression of CD38 and CD34 by adult murine hematopoietic stem cells. Blood. 2001;97(9):2618–24. doi: 10.1182/blood.V97.9.2618.
  17. Higuchi Y, Zeng H, Ogawa M. CD38 expression by hematopoietic stem cells of newborn and juvenile mice. Leukemia. 2003;17(1):171–4. doi: 10.1038/sj.leu.2402785.
  18. Carsetti R, Rosado MM, Wardmann H. Peripheral development of B cells in mouse and man. Immunol Rev. 2004;197(1):179–91. doi: 10.1111/j.0105-2896.2004.0109.x.
  19. Lamkin T, Brooks J, Annett G, et al. Immunophenotypic differences between putative hematopoietic stem cells and childhood B cell precursor acute lymphoblastic leukemia cells. Leukemia. 1994;8(11):1871–8.
  20. Chen JS, Coustan-Smith E, Suzuki T, et al. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood. 2001;97(7):2115–20. doi: 10.1182/blood.V97.7.2115.
  21. De Waele M, Renmans W, Jochmans K, et al. Different expression of adhesion molecules on CD34+ cells in AML and B-lineage ALL and their normal bone marrow counterparts. Eur J Haematol. 1999;63(3):192–201. doi: 10.1111/j.1600-0609.1999.tb01767.x.
  22. Dworzak MN, Fritsch G, Froschl G, et al. Four-Color Flow Cytometric Investigation of Terminal Deoxynucleotidyl Transferase–Positive Lymphoid Precursors in Pediatric Bone Marrow: CD79a Expression Precedes CD19 in Early B-Cell Ontogeny. Blood. 1998;92(9):3203–9.
  23. Coustan-Smith E, Song G, Clark C, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2011;117(23):6267–76. doi: 10.1182/blood-2010-12-324004.
  24. Barrena S, Almeida J, Yunta M, et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia. 2005;19(8):1376–83. doi: 10.1038/sj.leu.2403822.
  25. Тупицын Н.Н., Гривцова Л.Ю., Купрышина Н.А. Проточная цитометрия в онкогематологии. Часть I. Основы и нововведения в диагностике острых лейкозов. Клиническая онкогематология. 2012;5(1):42–7.
    [Tupitsyn NN, Grivtsova LYu, Kupryshina NA. Flow cytometry in hematology malignancies. Part I. ABC and news in acute leukemia diagnostics. Klinicheskaya onkogematologiya. 2012;5(1):42–7. (In Russ)]
  26. Shoham T, Rajapaksa R, Boucheix C, et al. The Tetraspanin CD81 Regulates the Expression of CD19 During B Cell Development in a Postendoplasmic Reticulum Compartment. J Immunol. 2003;171(8):4062–72. doi: 10.4049/jimmunol.171.8.4062.

Relevance of Positron-Emission Therapy for Optimization of Treatment of Advanced Hodgkin’s Lymphoma Using Intensive ЕАСОРР-14 Program

EA Demina1, AA Leont’eva1, GS Tumyan1, YuE Ryabukhina1, EG Medvedovskaya1, OP Trofimova1, VM Sotnikov2, VB Larionova1, EV Paramonova1, LV Manzyuk1, NV Kokosadze1, OV Mukhortova3, IP Aslanidi3, AYu Zaitseva4, LA Radkevich4, MS Rudas5, VA Manukova5, EA Osmanov1

1 NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Russian Scientific Center of Roentgenoradiology under the Ministry of Health of the Russian Federation, 86 bld. 5 Profsoyuznaya str., Moscow, Russian Federation, 117997

3 AN Bakulev Scientific Center for Cardiovascular Surgery, 8 bld. 7 Leninskii pr-t, Moscow, Russian Federation, 117931

4 Clinical Hospital No. 1 under the Administration of Presidential Affairs of the Russian Federation, 45 Losinoostrovskaya str., Moscow, Russian Federation, 107150

5 Central Clinical Hospital under the Administration of Presidential Affairs of the Russian Federation, 15 Marshala Timoshenko str., Moscow, Russian Federation, 121359

For correspondence: Elena Andreevna Demina, DSci, Professor, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-90-89; e-mail: drdemina@yandex.ru

For citation: Demina EA, Leont’eva AA, Tumyan GS, et al. Relevance of Positron-Emission Therapy for Optimization of Treatment of Advanced Hodgkin’s Lymphoma Using Intensive ЕАСОРР-14 Program. Clinical oncohematology. 2017;10(2):150–7 (In Russ).

DOI: 10.21320/2500-2139-2017-10-2-150-157


ABSTRACT

Aim. To evaluate the relevance of the positron-emission therapy (PET) for optimization of the therapy of advanced Hodgkin’s lymphoma (HL) using the intensive EACOPP-14 program.

Materials & Methods. 91 patients with advanced HL (IIX–IIE, III–IV) received the treatment according to the “ЛХМосква1-3” protocol over the period from November 2009 to February 2015, and then the treatment was analyzed. The median age was 29 years (range: 17–50); there were 42 men (46.3 %) and 49 (53.7 %) women. The treatment included 6 cycles of polychemotherapy according to the regimen ЕА(50)СОРР-14 ± radiation therapy. The radiation therapy was performed in 66 patients (72.5 %) after the completion of the chemotherapy. The cumulative focal dose was 30 Gy onto the areas of residual lesions and/or initially large tumor masses.

Results. PET performed during the initial HL diagnosing permited to identify new areas of neoplastic lesions without changes in staging and treatment scheme, as well as specify areas and field size of planned radiation consolidation. The paper confirms the prognostic value of the intermediate PET in patients with advanced HL during the intensive first-line chemotherapy. The intensive therapy at the beginning of the treatment program is associated with higher chances for survival for patients with extremely unfavorable prognosis. After completion of the drug therapy, negative PET findings had a higher prognostic value, than the positive ones. The analysis of the relevance of residual tumor dimensions in the PET negative group demonstrated that the relapses were more common, if the residual tumor was more than 4.5 cm (according to CT findings).

Conclusion. This study confirmed that it reasonable to discuss the discontinuation of the radiation therapy in patients with advanced HL, negative PET findings and small (< 2.5 cm) residual tumor after the intensive ЕАСОРР-14 program. This tactics permits avoiding a number of delayed complications.

Keywords: Hodgkin’s lymphoma, advanced disease, intensive first-line therapy, PET.

Received: January 2, 2017

Accepted: January 14, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Diehl V, Franklin J, Pfreundschuh M, et al. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348(24):2386–95. doi: 10.1056/nejmoa022473.
  2. Engert A, Diehl V, Franklin J, et al. Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin’s lymphoma: 10 years of follow-up of the GHSG HD9 study. J Clin Oncol. 2009;27(27):4548–54. doi: 10.1200/jco.2008.19.8820.
  3. Skoetz N, Trelle S, Rancea M, et al. Effect of initial treatment strategy on survival of patients with advanced-stage Hodgkin’s lymphoma: a systematic review and network meta-analysis. Lancet Oncol. 2013;14(10):943–52. doi: 10.1016/s1470-2045(13)70341-3.
  4. Hoppe RT. Hodgkin’s disease: Second cancer after treatment Hodgkin’s disease: Complications of therapy and excess mortality. Ann Oncol. 1997;8(1):S115–8. doi: 10.1093/annonc/8.suppl_1.s115.
  5. Шахтарина С.В., Даниленко А.А., Павлов В.В. Злокачественные новообразования у больных лимфомой Ходжкина после лучевой терапии по радикальной программе и комбинированной химиолучевой терапии. Клиническая онкогемотология. 2008;3(1):246–51.
    [Shakhtarina SV, Danilenko AA, Pavlov VV. Secondary malignancies in Hodgkin’s disease patients after radiotherapy and combined chemo-radiotherapy. Klinicheskaya onkogematologiya. 2008;3(1):246–51. (In Russ)]
  6. Ильин Н.В., Виноградова Ю.Н. Поздние осложнения терапии больных лимфомой Ходжкина. Практическая онкология. 2007;8(2):96–101.
    [Il’in NV, Vinogradova YuN. Delayed complications of therapy of patients with Hodgkin’s lymphoma. Prakticheskaya onkologiya. 2007;8(2):96–101. (In Russ)]
  7. Aleman BM, Raemaekers JM, Tirelli U, et al. Involved-field radiotherapy for advanced Hodgkin’s lymphoma. N Engl J Med. 2003;348(24):2396–406. doi: 10.1056/nejmoa022628.
  8. Ferme C, Mounier N, Casasnovas O, et al. Long-term results and competing risk analysis of the H89 trial in patients with advanced-stage Hodgkin lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood. 2006;107(12):4636–42. doi: 10.1182/blood-2005-11-4429.
  9. Johnson PWM, Sydes MR, Hancock BW, et al. Consolidation Radiotherapy in Patients With Advanced Hodgkin’s Lymphoma: Survival Data From the UKLG LY09 Randomized Controlled Trial (ISRCTN97144519). J Clin Oncol. 2010;28(20):3352–9. doi: 10.1200/jco.2009.26.0323.
  10. de Wit M, Bohuslavizki KH, Buchert R, et al. 18FDG-PET following treatment as valid predictor for disease-free survival in Hodgkin’s lymphoma. Ann Oncol. 2001;12(1):29–37. doi: 10.1023/a:1008357126404.
  11. Spaepen K, Stroobants S, Dont P, et al. Can positron emission tomography with [(18F)]-fluorodeoxyglucose after first-line treatment distinguish Hodgkin’s disease patients who need additional therapy from others in whom additional therapy would mean avoidable toxicity? Br J Haematol. 2001;115(2):272–8. doi 10.1046/j.1365-2141.2001.03169.x.
  12. Weihrauch MR, Re D, Scheidhauer K, et al. Thoracic positron emission tomography using 18F-fluorodeoxyglucose for the evaluation of residual mediastinal Hodgkin disease. Blood. 2001;98(10):2930–4. doi: 10.1182/blood.v98.10.2930.
  13. Kobe C, Dietlein M, Franklin J, et al. Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first-line chemotherapy in advanced-stage Hodgkin lymphoma. Blood. 2008;112(10):3989–94. doi: 10.1182/blood-2008-06-155820.
  14. Markova J, Kahraman D, Kobe, et al. Role of [18F]-fluoro-2-deoxy-D-glucose positron emission tomography in early and late therapy assessment of patients with advanced Hodgkin lymphoma treated with bleomycin, etoposide, adriamycin, cyclophosphamide, vincristine, procarbazine and prednisone. Leuk Lymphoma. 2011;53(1):64–70. doi: 10.3109/10428194.2011.603444.
  15. Gallamini A, Hutchings M, Rigacci I, et al. Early interim FDG-PET overshadows the prognostic role of IPS in advanced-stage Hodgkin’s lymphoma treated by conventional ABVD therapy. Haematologica. 2007;32(Suppl 5): Abstract C022.
  16. Radford J, Barrington S, Counsell N, et al. Involved field radiotherapy versus no further treatment in patients with clinical stages IA and IIA Hodgkin lymphoma and a ‘negative’ PET scan after 3 cycles ABVD. Results of the UK NCRI RAPID trial. ASH Annual Meeting Abstracts. 2012;120:547.
  17. Raemaekers JM, Andre MP, Federico M, et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014;32(12):1188–94. doi: 10.1200/jco.2013.51.9298.
  18. Picardi M, De Renzo A, Pane F, et al. Randomized comparison of consolidation radiation versus observation in bulky Hodgkin’s lymphoma with post-chemotherapy negative positron emission tomography scans. Leuk Lymphoma. 2007;48(9):1721–7. doi: 10.1080/10428190701559140.
  19. Engert A, Haverkamp H, Kobe C, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. The Lancet. 2012;379(9828):1791–9. doi: 10.1016/s0140-6736(11)61940-5.
  20. Magagnoli M, Marzo K, Balzarotti M, et al. Dimension of residual CT scan mass in Hodgkin’s lymphoma (HL) is a negative prognostic factor in patients with PET negative after chemo+/– radiotherapy. Blood. 2011;118: Abstract 93.
  21. Kobe C, Kuhnert G, Kahraman D, et al. Assessment of Tumor Size Reduction Improves Outcome Prediction of Positron Emission Tomography/Computed Tomograph After Chemotherapy in Advanced-Stage Hodgkin Lymphoma. J Clin Oncol. 2014;32(17):1776–81. doi: 10.1200/jco.2013.53.2507.
  22. Hutchings M. PET Imaging in Lymphoma. Expert Rev Hematol. 2009;2(3):261–76. doi: 10.1586/ehm.09.21.
  23. Gallamini A, Patti C, Viviani S, et al. Early chemotherapy intensification with BEACOPP in advanced stage Hodgkin lymphoma patients with a interim-PET positive after two ABVD courses. Br J Haematol. 2011;152(5):551–60. doi: 10.1111/j.1365-2141.2010.08485.x.
  24. Straus DJ, Pitcher B, Kostakoglu L, et al. Initial Results of US Intergroup Trial of Response-Adapted Chemotherapy or Chemotherapy/Radiation Therapy Based on PET for Non-Bulky Stage I and II Hodgkin Lymphoma (HL) (CALGB/Alliance 50604). Blood. 2015;126(23):578 [Oral and Poster Abstracts].
  25. Press OW, LeBlanc M, Rimsza LM, et al. A phase II trial of response-adapted therapy of stage III-IV Hodgkin lymphoma using early interim FDG-PET imaging: US Intergroup S0816. Hematol Oncol. 2013;31(Suppl 1):137, abstr. 124.
  26. Borchmann P, Haverkamp H, Lohri A, et al. Addition of rituximab to BEACOPPescalated to improve the outcome of early interim PET positive advanced stage Hodgkin lymphoma patients: Second planned interim analysis of the HD18 Study. Blood. 2014;124: Abstract 500.
  27. Cheson BD, Fisher RI, Barrington Sally F, et al. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J Clin Oncol. 2014;32(27):3059–67. doi: 10.1200/jco.2013.54.8800.
  28. Meyer RM, Gospodarowicz MK, Connors JM, et al. ABVD Alone versus Radiation-Based Therapy in Limited-Stage Hodgkin’s Lymphoma. N Engl J Med. 2012;366(5):399–408. doi: 10.1056/nejmoa1111961.
  29. Cheson BD. Role of functional imaging in the management of lymphoma. J Clin Oncol. 2011;29(14):1844–54. doi: 10.1200/jco.2010.32.5225.
  30. Hutchings M. FDG-PET response-adapted therapy: is 18F-fluorodeoxyglucose positron emission tomography a safe predictor for a change of therapy? Hematol Oncol Clin North Am. 2014;28(1):87–103. doi: 10.1016/j.hoc.2013.10.008.
  31. Barrington SF, Mikhaeel NG. When should FDG-PET be used in the modern management of lymphoma? Br J Haematol. 2013;164(3):315–28. doi: 10.1111/bjh.12601.
  32. Ansell SM, Armitage JO. Positron Emission Tomographic Scans in Lymphoma: Convention and Controversy. Mayo Clin Proc. 2012;87(6):571–80. doi: 10.1016/j.mayocp.2012.03.006.
  33. Gallamini A, Kostakoglu L. Positron emission tomography/computed tomography surveillance in patients with lymphoma: a fox hunt? Haematologica. 2012;97(6):797–9. doi: 10.3324/haematol.2012.063909.

Effect of IGHV Gene Mutation Status and BCR Structure Stereotypy on Effectiveness of BR Regimen in First-Line Therapy of Chronic Lymphocytic Leukemia

VV Strugov1, EA Stadnik1,2, AM Rumyantsev1, TO Andreeva1, YuV Virts1, YuV Mirolyubova1, PA Butylin1, AYu Zaritskey1,2

1 Federal Almazov North-West Medical Research Centre, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Internal medicine clinic, Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Vladimir Vladimirovich Strugov, staff scientist, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel: +7(812)702-37-49; e-mail: strugov@almazovcentre.ru

For citation: Strugov VV, Stadnik EA, Rumyantsev AM, et al. Effect of IGHV Gene Mutation Status and BCR Structure Stereotypy on Effectiveness of BR Regimen in First-Line Therapy of Chronic Lymphocytic Leukemia. Clinical oncohematology. 2017;10(2):141–9 (In Russ).

DOI: 10.21320/2500-2139-2017-10-2-141-149


ABSTRACT

Background & Aims. The IGHV gene mutation status is a constant biological feature of tumor cells in chronic lymphocytic leukemia (CLL). This parameter is an important predictor of the efficacy of immunochemotherapy. It was included into the CLL international prognostic index CLL-IPI developed recently. The aim is to evaluate the prognostic significance of the BR regimen in patients with different variants of the B-cell receptor (BCR) structure.

Methods. The study examined immediate and delayed treatment outcomes for 183 CLL patients included in a Russian, prospective, observational BEN-001 trial (NCT02110394). The median age was 61 years (range: 35–79); 53/179 (29.6 %) patients were older than 65; and 14/179 (7.8 %) patients were older than 75. Prevalence of males (110/179, 61.5 %) in the male/female ratio (1.6:1.0) was observed. Most patients had advanced disease: Binet B 116/173 (67 %) or Binet C 38/173 (22 %). The patients received the first-line therapy according to the BR regimen at standard doses in 36 hematological institutions in the Russian Federation over the period from 2012 until 2015. The genome DNA isolated from mononuclear leukocytes in the peripheral blood was used to assess the mutation status of the IGHV-genes.

Results. The study demonstrated that unmutated CLL (≥ 98 % of homology to germline gene) is associated with worsening of the event-free and overall survival rates most of all; at that, the complete remission rate and the MRD-free survival rate were the same.

Conclusion. It is reasonable to analyze the IGHV mutation status in all patients prescribed with the BR regimen as the first-line therapy.

Keywords: chronic lymphocytic leukemia, CLL, bendamustine, rituximab, BR, IGHV, mutation status, stereotypy.

Received: January 8, 2017

Accepted: January 26, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Duhren-von Minden M, Ubelhart R, et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signaling. Nature. 2012;489(7415):309–12. doi: 10.1038/nature11309.
  2. Kikushige Y, Ishikawa F, Miyamoto T, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011;20(2):246–59. doi: 10.1016/j.ccr.2011.06.029.
  3. Damm F, Mylonas E, Cosson A, et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 2014;4(9):1088–101. doi: 10.1158/2159-8290.cd-14-0104.
  4. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. doi: 10.1038/nature12477.
  5. The International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–90. doi: 10.1016/S1470-2045(16)30029-8.
  6. Baliakas P, Hadzidimitriou A, Sutton LA, et al. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematol. 2014;1(2):e74–84. doi: 10.1016/S2352-3026(14)00005-2.
  7. Eichhorst B, Fink AM, Bahlo J, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17(7):928–42. doi: 10.1016/S1470-2045(16)30051-1.
  8. Fischer K, Cramer P, Busch R, et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012;30(26):3209–16. doi: 10.1200/JCO.2011.39.2688.
  9. Agathangelidis A, Darzentas N, Hadzidimitriou A, et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 2012;119(19):4467–75. doi: 10.1182/blood-2011-11-393694.
  10. Rawstron AC, Villamor N, Ritgen M, et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007;21(5):956–64. doi: 10.1038/sj.leu.2404584.
  11. Damle RN, Wasil T, Fais F, et al. IgV gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840–7.
  12. Hamblin TJ, Davis Z, Gardiner A, et al. Unmutated IgV(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848–54.
  13. Bomben R, Dal Bo M, Zucchetto A, et al. Mutational status of IgV(H) genes in B-cell chronic lymphocytic leukemia and prognosis: percent mutations or antigen-driven selection? Leukemia. 2005;19(8):1490–2. doi: 10.1038/sj.leu.2403830.
  14. Hamblin TJ, Davis ZA, Oscier DG. Determination of how many immunoglobulin variable region heavy chain mutations are allowable in unmutated chronic lymphocytic leukaemia – long-term follow up of patients with different percentages of mutations. Br J Haematol. 2008;140(3):320–3. doi: 10.1111/j.1365-2141.2007.06928.x.
  15. Davis Z, Forconi F, Parker A, et al. The outcome of Chronic lymphocytic leukaemia patients with 97% IGHV gene identity to germline is distinct from cases with <97% identity and similar to those with 98% identity. Br J Haematol. 2016;173(1):127–36. doi: 10.1111/bjh.13940.
  16. Kryachok I, Abramenko I, Bilous N, et al. IGHV gene rearrangements as outcome predictors for CLL patients: experience of Ukrainian group. Med Oncol. 2012;29(2):1093–101. doi: 10.1007/s12032-011-9872-5.
  17. Ghia P, Stamatopoulos K, Belessi C, et al. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood. 2005;105(4):1678–85. doi: 10.1182/blood-2004-07-2606.
  18. Ghia EM, Jain S, Widhopf GF 2nd, et al. Use of IGHV3-21 in chronic lymphocytic leukemia is associated with high-risk disease and reflects antigen-driven, post-germinal center leukemogenic selection. Blood. 2008;111(10):5101–8. doi: 10.1182/blood-2007-12-130229.
  19. Marinelli M, Ilari C, Xia Y, et al. Immunoglobulin gene rearrangements in Chinese and Italian patients with chronic lymphocytic leukemia. Oncotarget. 2016;7(15):20520–31. doi: 10.18632/oncotarget.7819.
  20. Jackson L, Cady CT, Cambier JC. TLR4-mediated signaling induces MMP9-dependent cleavage of B cell surface CD23. J Immunol. 2009;183(4):2585–92. doi: 10.4049/jimmunol.0803660.
  21. Dinkel A, Aicher WK, Haas C, et al. Transcription factor Egr-1 activity down-regulates Fas and CD23 expression in B cells. J Immunol. 1997;159(6):2678–84.
  22. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N Engl J Med. 2015;373(25):2425–37. doi: 10.1056/NEJMoa1509388.
  23. Stamatopoulos K, Agathangelidis A, Rosenquist R, Ghia P. Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia. 2016;31(2):282–91. doi: 10.1038/leu.2016.322.

 

V(D)J Recombination Excision Circles of B- and T-cells as Prognostic Marker in B-Cell Chronic Lymphocytic Leukemia

IV Obraztsov1,2, MA Gordukova 3, NA Severina4, BV Biderman4, SYu Smirnova4, AB Sudarikov4, EA Nikitin5, AG Rumyantsev1

1 Dmitrii Rogachev Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology under the Ministry of Health of the Russian Federation, 1 Samory Mashela str., Moscow, Russian Federation, 117198

2 AN Ryzhikh State Scientific Center for Coloproctology under the Ministry of Health of the Russian Federation, 2 Salyama Adilya str., Moscow, Russian Federation, 123423

3 GN Speranskii Municipal Children’s Hospital No. 9, 29 Shmitovskii pr-d, Moscow, Russian Federation, 123317

4 Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

5 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

For correspondence: Igor’ Vladimirovich Obraztsov, junior researcher, 1 Samory Mashela str., Moscow, Russian Federation, 117997; е-mail: igor_obraztsov@yahoo.com

For citation: Obraztsov IV, Gordukova MA, Severina NA, et al. V(D)J Recombination Excision Circles of B- and T-cells as Prognostic Marker in B-Cell Chronic Lymphocytic Leukemia. Clinical oncohematology. 2017;10(2):131–40 (In Russ).

DOI: 10.21320/2500-2139-2017-10-2-131-140


ABSTRACT

Background & Aims. T-cell receptor excision circles (TREC) and κ-deleting recombination excision circles (KREC) are extrachromosomal DNA segments generated during V(D)J re combination process that characterize the diversity of the antigen repertoire of T- and B-cells. The aim of our study is to identify the prognostic value of the excision circles in the chronic lymphocytic leukemia (CLL) setting.

Methods. The excision circles’ levels were assessed by means of real time PCR in 109 patients with high-risk CLL and 16 matched healthy individuals.

Results. KREC levels were signifi cantly (p < 0.001) lower in CLL patients vs. the reference group. TREC levels were lower in groups with unmutated status of immunoglobulin heavy chain variable region genes (p < 0.05) and 11q deletions (p < 0.1). Moreover, the KREC levels were higher in NOTCH1 mutation carriers than in noncarriers (p < 0.05). The comparison of treatment outcomes demonstrated a correlation between a high TREC level and achievement of complete remission. The prognostic value of the biomarker was confirmed by ROC-analysis: AUCTREC = 0.713 (p = 0.001)

Conclusion. Association between excision circles’ levels and clinical/laboratory CLL prognostic factors, as well as complete remission achievement, makes possible the implementation of the test for early prediction of the treatment outcome.

Key words: CLL, TREC, KREC, naive T-cells, naive B-cells, biomarkers, outcome predictors.

Received: November 10, 2016

Accepted: January 13, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Rai KR, Jain P. Chronic lymphocytic leukemia (CLL)-Then and now. Am J Hematol. 2016;91(3):330–40. doi: 10.1002/ajh.24282.
  2. Nicholas NS, Apollonio B, Ramsay AG. Tumor microenvironment (TME)-driven immune suppression in B cell malignancy. Biochim Biophys Acta. 2016;1863(3):471–82. doi: 10.1016/j.bbamcr.2015.11.003.
  3. Ohshima K. Molecular Pathology of Adult T-Cell Leukemia/Lymphoma. Oncology. 2015;89(Suppl 1):7–15. doi: 10.1159/000431058.
  4. Best OG, Crassini K, Freeman JA, Mulligan SP; CLL Australian Research Consortium. The clinical significance of hypogammaglobulinaemia and serum immunoglobulin G subclass deficiency in patients with chronic lymphocytic leukaemia (CLL). Scand J Infect Dis. 2013;45(9):729. doi: 10.3109/00365548.2013.809477.
  5. Riches JC, Gribben JG. Understanding the immunodeficiency in chronic lymphocytic leukemia: potential clinical implications. Hematol Oncol Clin North Am. 2013;27(2):207–35. doi: 10.1016/j.hoc.2013.01.003.
  6. Davis JE, Ritchie DS. The passive-aggressive relationship between CLL-B cells and T cell immunity. Leuk Res. 2014;38(10):1160–1. doi: 10.1016/j.leukres.2014.08.005.
  7. Toubert A, Glauzy S, Douay C, et al. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens. 2012;79(2):83–9. doi: 10.1111/j.1399-0039.2011.01820.x.
  8. Pai S-Y. The Immune Response. In: Nathan and Oski’s Hematology of Infancy and Childhood. Philadelphia: Elsevier; 2009. рр. 1221–53.
  9. Mensen A, Ochs C, Stroux A, et al. Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation. J Transl Med. 2013;11(1):188. doi: 10.1186/1479-5876-11-188.
  10. Ravkov E, Slev P, Heikal N. Thymic output: Assessment of CD4+ Recent Thymic Emigrants and T-Cell Receptor Excision Circles in Infants. Cytometry B Clin Cytom. 2015. doi: 10.1002/cyto.b.21341. [Epub ahead of print]
  11. de Felipe B, Olbrich P, Lucenas JM, et al. Prospective neonatal screening for severe T- and B-lymphocyte deficiencies in Seville. Pediatr Allergy Immunol. 2016;27(1):70–7. doi: 10.1111/pai.12501.
  12. Politikos I, Kim HT, Nikiforow S, et al. IL-7 and SCF Levels Inversely Correlate with T Cell Reconstitution and Clinical Outcomes after Cord Blood Transplantation in Adults. PLoS One. 2015;10(7):e0132564. doi: 10.1371/journal.pone.0132564.
  13. Drylewicz J, Vrisekoop N, Mugwagwa T, et al. Reconciling Longitudinal Naive T-Cell and TREC Dynamics during HIV-1 Infection. PLoS One. 2016;11(3):e0152513. doi: 10.1371/journal.pone.0152513.
  14. Гордукова М.А., Оскорбин И.П., Мишукова О.В. и др. Разработка набора реагентов для количественного определения молекул ДНК TREC и KREC в цельной крови и сухих пятнах крови методом мультиплексной ПЦР в режиме реального времени. Медицинская иммунология. 2015;17(5):467–78. doi: 10.15789/1563-0625-2015-5-467-478.
    [Gordukova MA, Oskorbin IP, Mishukova OV, et al. Development of real-time multiplex PCR for the quantitative determination of TREC’s and KREC’s in whole blood and in dried blood spots. Medical Immunology (Russia). 2015;17(5):467–78. doi: 10.15789/1563-0625-2015-5-467-478. (In Russ)].
  15. Motta M, Chiarini M, Ghidini C, et al. Quantification of newly produced B and T lymphocytes in untreated chronic lymphocytic leukemia patients. J Transl Med. 2010;8(1):111. doi: 10.1186/1479-5876-8-111.
  16. Holler C, Zaborsky N, Pinon-Hofbauer J, et al. Diversity of T-Cell Repertoire Predicts Disease Progression in Chronic Lymphocytic Leukaemia. Clin Lymph Myel Leuk. 2011;11(Suppl 2):S212. doi: 10.1016/j.clml.2011.09.111.
  17. Никитин Е.А. Особенности пациентов с хроническим лимфолейкозом в России — данные Российского регистра больных онкогематологическими заболеваниями. Материалы XII Российской конференции с международным участием «Злокачественные лимфомы». М., 2015. С. 20.
    [Nikitin EA. Characteristics of patients with chronic lymphocytic leukemia in Russia: data from the Russian register for patients with oncohematological diseases. Proceedings of 12th Russian Conference with International Participation ‘Malignant lymphomas’. Moscow; 2015. pр. 20. (In Russ)]
  18. Zubakov D, Liu F, van Zelm MC, et al. Estimating human age from T-cell DNA rearrangements. Curr Biol. 2010;20(22):R970–1. doi: 10.1016/j.cub.2010.10.022.

Features of Imaging of Different Types of Hodgkin’s Lymphoma Using Combined Positron Emission and Computed Tomography

AS Subbotin1, NG Afanas’eva2

1 Chelyabinsk District Clinical Oncological Dispensary, 42 Blyukhera str., Chelyabinsk, Russian Federation, 454087

2 South Ural State Medical University, 64 Vorovskogo str., Chelyabinsk, Russian Federation, 454092

For correspondence: Aleksei Sergeevich Subbotin, 42 Blyukhera str., Chelyabinsk, Russian Federation, 454087; e-mail: acsubbotin@yandex.ru

For citation: Subbotin AS, Afanas’eva NG. Features of Imaging of Different Types of Hodgkin’s Lymphoma Using Combined Positron Emission and Computed Tomography. Clinical oncohematology. 2017;10(1):61–4(In Russ).

DOI: 10.21320/2500-2139-2017-10-1-61-64


ABSTRACT

Background & Aims. At present, PET-CT has an important clinical significance in Hodgkin’s lymphoma (HL) and is used both for initial tumor staging and restaging and for the evaluation of treatment efficacy. Published data indicate the possible lack of radiotracer accumulation in the tumor tissue in HL before primary treatment. A low metabolic activity of the tumor tissue prior to treatment makes it difficult to assess the treatment dynamics during the anti-tumor therapy. The aim of this work is to determine the incidence of the low metabolic activity of tumor tissue in HL.

Methods. Findings of 131 18F-fluorodeoxyglucose (FDG) whole body PET-CT scans of patients with histologically verified HL (over the period from 2011 to 2015) were studied retrospectively. Patterns of FDG accumulation in different histological types of HL, as well as the levels of metabolic activity in patients with tumor-related toxicity symptoms (B-symptoms) were studied.

Results. The low metabolic activity was detected in 4 % of patients with de novo HL. The highest levels of metabolic activity were detected in nodular sclerosis and the lowest ones in nodular lymphocyte-predominant HL. Higher levels of radiotracer metabolic activity were observed in patients with general symptoms.

Conclusion. In general, a high metabolic activity of the neoplasm is typical for HL. Primary staging before the treatment should be performed for a more accurate evaluation of dynamics of HL treatment outcomes, because in a number of cases a baseline low FDG accumulation in the neoplasm may imitate the absence of a viable tumor tissue in the affected lymph nodes at assessment of treatment results.

Keywords: Hodgkin’s lymphoma, histological types, PET-CT, 18F-fluorodeoxyglucose.

Received: August 25, 2016

Accepted: December 19, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Ильин Н.В., Виноградова Ю.Н. Отдаленные последствия лучевой и комбинированной терапии больных лимфомой Ходжкина. Клиническая онкогематология. 2008;1(2):131–5.
    [Ilyin NV, Vinogradova YuN. Late side effects after radio- and combined therapy in patients with Hodgkin’s lymphoma. Klinicheskaya onkogematologiya. 2008;1(2):131–5. (In Russ)]
  2. Курпешев О.К., Павлов В.В., Шкляев С.С. Эффективность локальной гипертермии при химиотерапевтическом и/или лучевом лечении рецидивов лимфомы Ходжкина. Сибирский онкологический журнал. 2013;4(58):28–30.
    [Kupreshev OK, Pavlov VV, Shklyaev SS. Efficacy of local hyperthermia in chemotherapy and/or radiation therapy for recurrences of Hodgkin’s lymphoma. Sibirskii onkologicheskii zhurnal. 2013;4(58):28–30. (In Russ)]
  3. Гранов А.М., Ильин Н.В. (ред.) Лимфомы. СПб.: РНЦРХТ, 2010. С. 222–40.
    [Granov AM, Il’in NV, eds. Limphomy. (Lymphomas.) Saint Petersburg: RNCRHT Publ.; 2010. pp. 222–40. (In Russ)]
  4. Biggi A, Gallamini A, Chauvie S, et al. International validation study for interim PET in ABVD-treated, advanced-stage Hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med. 2013;54(5):683–90. doi: 10.2967/jnumed.112.110890.
  5. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58. doi: 10.1200/jco.2013.53.5229.
  6. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68. doi: 10.1200/jco.2013.54.8800.
  7. Труфанов Г.Е., Рязанов В.В., Дергунова Н.И. и др. Совмещенная позитронно-эмиссионная и компьютерная томография (ПЭТ-КТ) в онкологии. СПб.: ЭЛБИ-СПб, 2005. 124 c.
    [Trufanov GE, Ryazanov VV, Dergunova NI, et al. Sovmeschennaya pozitronno-emissionnaya i kompyuternaya tomographiya (PET-KT) v onkologii. (Combined positron emission and computed tomography (PET-CT) in oncology.) Saint-Petersburg: ELBI-SPb.; 2005. 124 p. (In Russ)]
  8. Weiler-Sagie M, Bushelev O, Epelbaum R, et al. 18F-FDG Avidity in Lymphoma Readdressed: A Study of 766 Patients. J Nucl Med. 2010;51(1):25–30. doi: 10.2967/jnumed.109.067892.
  9. Tsukamoto N, Kojima M, Hasegawa M, et al. The usefulness of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and a comparison of 18F-FDG-PET with 67gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer. 2007;110(3):652–9. doi: 10.1002/cncr.22807.
  10. Elstrom R, Guan L, Baker G, et al. Utility of FDG-PET scanning in lymphoma by WHO classification. Blood. 2003;101(10):3875–6. doi: 10.1182/blood-2002-09-2778.

 

Diagnosis of Pediatric-Type Follicular Lymphoma in Young Adults (Own Data)

AM Kovrigina, LV Plastinina, SK Kravchenko, ES Nesterova, TN Obukhova

Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Alla Mikhailovna Kovrigina, DSci, Professor, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel: +7(495)612-62-12; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM, Plastinina LV, Kravchenko SK, et al. Diagnosis of Pediatric-Type Follicular Lymphoma in Young Adults (Own Data). Clinical oncohematology. 2017;10(1):52–60 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-52-60


ABSTRACT

Aim. Pathomorphological, immunophenotypical and clinical characteristics of a new clinico-morphological form of pediatric-type follicular lymphoma (FL) in young adults discovered in 2008 (WHO classification).

Background. FL is a heterogeneous disease according to its morphological, immunophenotypical and molecular-genetic characteristics. FL de novo includes transformed FL, FL without t(14;18), FL with diffuse growth associated with del(1p.36) and TNFRSF14 mutation. Pediatric-type FL in young adults is poorly studied; and it is especially interesting because of its clinical diversity and molecular-genetic heterogeneity of FL, in general.

Methods. Biopsy materials taken from 5 patients (aged 18–25 years; median age: 22 years; the female/male ratio 3:2) were included in the study; all patients were examined, diagnosed and treated in the Hematology Research Center over the period from 2012 to 2016. Clinical stage I with isolated involvement a palatine tonsil or an inguinal lymph node was diagnosed in 4/5 patients; clinical stage II with involvement of a palatine tonsil and cervical lymph node was diagnosed in 1/5 patients. Morphological, immunophenotypical and FISH tests were performed with paraffin blocks.

Results. The morphological pattern was typical for FL 3B (n = 2) and FL 3 with blastoid nucleus morphology (n = 3). Immunophenotypical features demonstrated an intermediate position between FL 3 de novo and transformed FL 3. No BCL-2 rearrangement was detected in any observation.

Conclusion. The comparison of our data on characteristics of pediatric-type FL with those published in the literature demonstrated that lack or weak expression (< 30 % of tumor substrate cells) of MUM1 was the key feature of the experimental group of young adults with pediatric-type FL. This, in turn, indicates the absence of IRF4 rearrangements and possible presence of other genetic abnormalities. The clinical, morphological, and immunophenotypical characteristics broaden the FL heterogeneity spectrum in young adults.

Keywords: pediatric-type follicular lymphoma, follicular lymphoma, young adults, pathomorphology, immunohictochemistry, MUM1.

Received: August 14, 2016

Accepted: November 27, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Lennert K, Stein H, Mohri N, et al. Malignant Lymphomas Other than Hodgkin’s Disease: Histology, Cytology, Ultrastructure, Immunology. Berlin, Heidelberg: Springer-Verlag; 1978. 833 p. doi: 10.1016/0092-8674(79)90172-7.
  2. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  3. Anderson JR, Armitage JO, Weisenburger DD. Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s Lymphoma Classification. Project Ann Oncol. 1998;9(7):717–20.
  4. Gallagher CJ, Gregory WM, Jones AE, et al. Follicular lymphoma: Prognostic factors for response and survival. J Clin Oncol. 1986;4(10):1470–80.
  5. Bastion Y, Sebban C, Berger F, et al. Incidence, predictive factors, and outcome of lymphoma transformation in follicular lymphoma patients. J Clin Oncol. 1997;15(4):1587–94.
  6. Montoto S, Davies AJ, Matthews J, et al. Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J Clin Oncol. 2007;25(17):2426–33. doi: 10.1200/jco.2006.09.3260.
  7. Montoto, S., Fitzgibbon J. Transformation of indolent B-cell lymphomas. J Clin Oncol. 2011;29(4):1827–34. doi: 10.1200/JCO.2010.32.7577.
  8. Hirt C, Weitmann K, Schuler F, et al. Circulating t(14;18)-positive cells in healthy individuals: association with age and sex but not with smoking. Leuk Lymphoma. 2013;54(12):2678–84. doi: 10.3109/10428194.2013.788177.
  9. Weigert O, Kopp N, Lane AA, et al. Molecular ontogeny of donor derived follicular lymphomas occurring after hematopoietic cell transplantation. Cancer Discov. 2012;2(1):47–55. doi: 10.1158/2159-8290.cd-11-0208.
  10. Leich E, Salaverria I, Bea S, et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood. 2009;114(4):826–34. doi: 10.1182/blood-2009-01-198580.
  11. Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. J Clin Invest. 2012;122(10):3424–31. doi: 10.1172/jci63186.
  12. Katzenberger T, Kalla J, Leich E, et al. A distinctive subtype of t(14;18)-negative nodal follicular non- Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113(5):1053–61. doi: 10.1182/blood-2008-07-168682.
  13. Pasqualucci L, Khiabanian H, Fangazio M, et al. Genetics of Follicular Lymphoma Transformation. Cell Reports. 2014;6(1):130–40. doi: 10.1016/j.celrep.2013.12.027.
  14. Bouska A, McKeithan TW, Deffenbacher KE, et al. Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood. 2014;123(11):1681–90. doi: 10.1182/blood-2013-05-500595.
  15. Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99(6):1959–64. doi: 10.1182/blood.v99.6.1959.
  16. Swerdlow SH. Pediatric follicular lymphomas, marginal zone lymphomas, and marginal zone hyperplasia. Am J Clin Pathol. 2004;122(Suppl 1):S98–S109. doi: 10.1309/4bknake4d7ct3c1b.
  17. Oschlies I, Salaverria I, Mahn F, et al. Pediatric follicular lymphoma—a clinico-pathological study of a population-based series of patients treated within the Non-Hodgkin’s Lymphoma—Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica. 2010;95(2):253–9. doi: 10.3324/haematol.2009.013177.
  18. Liu Q, Salaverria I, Pittaluga S, et al. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol. 2013;37(3):333–43. doi: 10.1097/pas.0b013e31826b9b57.
  19. Louissaint A, Ackerman A, Dias-Santagata D, et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood. 2012;120(12):2395–404. doi: 10.1182/blood-2012-05-429514.
  20. Guo Y, Karube K, Kawano R, et al. Low-grade follicular lymphoma with t(14;18) presents a homogeneous disease entity otherwise the rest comprises minor groups of heterogeneous disease entities with Bcl2 amplification, Bcl6 translocation or other gene aberrances. Leukemia. 2005;19(6):1058–63. doi: 10.1038/sj.leu.2403738.
  21. Katzenberger T, Ott G, Klein T, et al. Cytogenetic alterations affecting BCL6 are predominantly found in follicular lymphomas grade 3B with a diffuse large B-cell component. Am J Pathol. 2004;165(2):481–90. doi: 10.1016/s0002-9440(10)63313-5.
  22. Salaverria I, Siebert R. Follicular lymphoma grade 3B. Best Pract Res Clin Haematol. 2011;24(2):111–9. doi: 10.1016/j.beha.2011.02.002.
  23. Ngan BY, Chen-Levy Z, Weiss LM, et al. Expression in non- Hodgkin lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med. 1988;318(25):1638–44. doi: 10.1056/nejm198806233182502.
  24. Adam P, Baumann R, Schmidt J, et al. The BCL2 E17 and SP66 antibodies discriminate 2 immunophenotypically and genetically distinct subgroups of conventionally BCL2-“negative” grade 1/2 follicular lymphomas. Hum Pathol. 2014;44(9):1817–26. doi: 10.1016/j.humpath.2013.02.004.
  25. Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99(6):1959–64. doi: 10.1182/blood.v99.6.1959.
  26. Willis SN, Good-Jacobson KL, Curtis J, et al. Transcription Factor IRF4 Regulates Germinal Center Cell Formation through a B Cell–Intrinsic Mechanism. J Immunol. 2014;192(7):3200–6. doi: 10.4049/jimmunol.1303216.
  27. Karube K, Guo Y, Suzumiya J, et al. CD10- MUM1+ follicular lymphoma lacks BCL2 gene translocation and shows characteristic biologic and clinical features. Blood. 2007;109(7):3076–9. doi: 10.1182/blood-2006-09-045989.
  28. Sweetenham JW, Goldman B, LeBlanc ML, et al. Prognostic value of regulatory T cells, lymphoma-associated macrophages, and MUM-1 expression in follicular lymphoma treated before and after the introduction of monoclonal antibody therapy: a Southwest Oncology Group Study. Ann Oncol. 2010;21(6):1196–202. doi: 10.1093/annonc/mdp460.
  29. Xerri L, Bachy E, Fabiani B, et al; LYSA study. Identification of MUM1 as a prognostic immunohistochemical marker in follicular lymphoma using computerized image analysis. Hum Pathol. 2014;45(10):2085–93. doi: 10.1016/j.humpath.2014.06.019.
  30. Salaverria I, Philipp C, Oschlies I, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118(1):139–47. doi: 10.1182/blood-2011-01-330795.
  31. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.
  32. Quintanilla-Martinez L, Sander B, Chan JK, et al. Indolent lymphomas in the pediatric population: follicular lymphoma, IRF4/MUM1+ lymphoma, nodal marginal zone lymphoma and chronic lymphocytic leukemia. Virchows Arch. 2016;468(2):141–57. doi: 10.1007/s00428-015-1855-z.
  33. Jaffe ES. Follicular lymphomas: a tapestry of common and contrasting threads. Haematologica. 2013;98(8):1163–5. doi: 10.3324/haematol.2013.086678.
  34. Martin-Guerrero I, Salaverria I, Burkhardt B, et al. Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas. Haematologica 2013;98(8):1237–41. doi: 10.3324/haematol.2012.073916.
  35. Launay E, Pangault C, Bertrand P, et al. High rate of TNFRSF14 gene alterations related to 1p36 region in de novo follicular lymphoma and impact on prognosis. Leukemia. 2012;26(3):559–62. doi: 10.1038/leu.2011.266.

 

Elotuzumab for Treatment of Multiple Myeloma (Literature Review)

OM Votyakova

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Ol’ga Mikhailovna Votyakova, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-92-09; e-mail: omvtk@yandex.ru

For citation: Votyakova OM. Elotuzumab for Treatment of Multiple Myeloma (Literature Review). Clinical oncohematology. 2016;9(4):438–45 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-438-445


ABSTRACT

Chemotherapy has been the main treatment option for multiple myeloma for several decades. However, a considerable increase in the life expectancy was observed in multiple myeloma patients when thalidomide, bortezomib and lenalidomide had been introduced into clinical practice. Nevertheless, the disease remains incurable and there is an unmet need in fundamentally new treatment methods. Elotuzumab is a humanized IgG1 monoclonal antibody that specifically targets SLAMF7, an antigen belonging to the signaling lymphocytic activation molecule family, with its high expression detected on myeloma cells. This review presents the mechanism of action of elotuzumab, preclinical data and the main clinical studies of this monoclonal antibody.


Keywords: monoclonal antibodies, elotuzumab, clinical studies, multiple myeloma.

Received: May 25, 2016

Accepted: June 15, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403. doi: 10.1016/j.ejca.2012.12.027.
  2. Статистика злокачественных новообразований в России и странах СНГ в 2012 г. Под ред. М.И. Давыдова, Е.М. Аксель. М.: Издательская группа РОНЦ им. Н.Н. Блохина, 2014. 226 с.
    [Davydova MI, Aksel’ EM, eds. Statistika zlokachestvennykh novoobrazovanii v Rossii i stranakh SNG v 2012 g. (Statistics of malignancies in Russia and CIS in) Moscow: Izdatel’skaya gruppa RONTs im. N.N. Blokhina Publ.; 2014. 226 p. (In Russ)]
  3. EER Stat Fact Sheets: Myeloma, 2004–2010. [Internet] Available from: http://seer.cancer.gov/statfacts/html/mulmy.html. (accessed 25.08.2014).
  4. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20. doi: 10.1182/blood-2007-10-116129.
  5. Madan S, Lacy M, Dispenzieri A, et al. Efficacy of retreatment with immunomodulatory compounds in patients receiving initial therapy for newly diagnosed multiple myeloma. Blood. 2010;116(21): Abstract 1964.
  6. Knopf KB, Duh MS, Lafeuille M-H, et al. Meta-Analysis of the Efficacy and Safety of Bortezomib Re-treatment in Patients with Multiple Myeloma. Clin Lymph Myel 14(5):380–8. doi: 10.1016/j.clml.2014.03.005.
  7. Kumar SK, Therneau TM, Gertz MA, et al. Clinical course of patients with relapsed multiple myeloma. Mayo Clin Proc. 2004;79(7):867–74. doi: 10.4065/79.7.867.
  8. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26(1):149–57. doi: 10.1038/leu.2011.196.
  9. San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, Phase III trial. Lancet Oncol. 2013;14(11):1055–66. doi: 10.1016/S1470-2045(13)70380-2.
  10. Siegel DS, Martin T, Wang M, et al. A Phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapse and refractory multiple myeloma. Blood. 2012;120(14):2817–25. doi: 10.1182/blood-2012-05-425934.
  11. Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget. 2013;4(12):2186–207. doi: 10.18632/oncotarget.1497.
  12. Palumbo A, Sonneveld P. Preclinical and clinical evaluation of elotuzumab, a SLAMF7-targeted humanized monoclonal antibody in development for multiple myeloma. Exp Rev Hematol. 2015;8(4):481–91. doi: 10.1586/17474086.2015.1053866.
  13. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79. doi: 10.1111/j.1365-2141.2007.06705.x.
  14. Kellner J, Liu B, Kang Y, Li Z. Fact or fiction–identifying the elusive multiple myeloma stem cell. J Hematol Oncol. 2013;7(6):91. doi: 10.1186/1756-8722-6-91.
  15. Stewart AK, Rajkumar SV, Dimopoulos MA, et al.; ASPIRE Investigators. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52. doi: 10.1056/NEJMoa1411321.
  16. Mentlik JA, Cohen AD, Campbell KS. Combination immune therapies to enhance anti-tumor responses by NK cells. Front Immunol. 2013;23(4):481. doi: 10.3389/fimmu.2013.00481.
  17. Rossi M, Botta C, Correale P, et al. Immunologic microenvironment and personalized treatment in multiple myeloma. Expert Opin Biol Ther. 2013;13(Suppl 1):S83–93. doi: 10.1517/14712598.2013.799130.
  18. Palumbo A, Cavallo F. Have drug combinations supplanted stem cell transplantation in myeloma? Blood. 2012;120(24):4692–8. doi: 10.1182/blood-2012-05-423202.
  19. Teh BW, Harrison SJ, Pellegrini M, et al. Changing treatment paradigms for patients with plasma cell myeloma: impact upon immune determinants of infection. Blood Rev. 2014;28(2):75–86. doi: 10.1016/j.blre.2014.01.004.
  20. Feyler S, Selby PJ, Cook G. Regulating the regulators in cancer-immunosuppression in multiple myeloma (MM). Blood Rev. 2013;27(3):155–64. doi: 10.1016/j.blre.2013.04.004.
  21. Yi Q. Novel immunotherapies. Cancer J. 2009;15(6):502–10. doi: 10.1097/PPO.0b013e3181c51f0d.
  22. Lonial S, Kaufman J, Laubach J, Richardson P. Elotuzumab: a novel anti-CS1 monoclonal antibody for the treatment of multiple myeloma. Expert Opin Biol Ther. 2013;13(12):1731–40. doi: 10.1517/14712598.2013.847919.
  23. Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775–84. doi: 10.1158/1078-0432.CCR-07-4246.
  24. Veillette A. SLAM-family receptors: immune regulators with or without SAP-family adaptors. Cold Spring Harb Perspect Biol. 2010;2(3):a002469. doi: 10.1101/cshperspect.a002469.
  25. Bouchon A, Cella M, Grierson HL, et al. Cutting edge: activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J Immunol. 2001;167(10):5517–21. doi: 10.4049/jimmunol.167.10.5517.
  26. Cruz-Munoz ME, Dong Z, Shi X, et al. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat Immunol. 2009;10(3):297–305. doi: 10.1038/ni.1693.
  27. Collins SM, Bakan CE, Swartzel GD, et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother. 2013;62(12):1841–9. doi: 10.1007/s00262-013-1493-8.
  28. Tai YT, Dillon M, Song W, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329–37. doi: 10.1182/blood-2007-08-107292.
  29. Veillette A, Guo H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit Rev Oncol Hematol. 2013;88(1):168–77. doi: 10.1016/j.critrevonc.2013.04.003.
  30. Moreau Ph, Touzeau K. Elotuzubab for the treatment multiple myeloma. Fut Oncol. 2014;10(6):949–56. doi: 10.2217/fon.14.56.
  31. Benson DM. Jr, Byrd JC. CS1-directed monoclonal antibody therapy for multiple myeloma. J Clin Oncol. 2012;30(16):2013–5. doi: 10.1200/jco.2011.40.4061.
  32. Balasa B, Yun R, Belmar NA, et al. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-a Cancer Immunol Immunother. 2015;64(1):61–73. doi: 10.1007/s00262-014-1610-3.
  33. van Rhee F, Szmania SM, Dillon M, et al. Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther. 2009;8(9):2616–24. doi: 10.1158/1535-7163.MCT-09-0483.
  34. Zonder JA, Mohrbacher AF, Singhal S, et al. A Phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552–9. doi: 10.1182/blood-2011-06-360552.
  35. Jakubowiak AJ, Benson DM, Bensinger W, et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol. 2012;30(16):1960–5. doi: 10.1200/jco.2011.37.7069.
  36. Lonial S, Vij R, Harousseau JL, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953–9. doi: 10.1200/jco.2011.37.2649.
  37. Eleutherakis-Papaiakovou V, Bamias A, Gika D, et al. Renal failure in multiple myeloma: incidence, correlations, and prognostic significance. Leuk Lymphoma. 2007;48(2):337–41. doi: 10.1080/10428190601126602.
  38. Berdeja J, Jagannath S, Zonder J, et al. Pharmacokinetics and Safety of Elotuzumab Combined With Lenalidomide and Dexamethasone in Patients With Multiple Myeloma and Various Levels of Renal Impairment: Results of a Phase Ib Study. Clin Lymph Myel Leuk. 2016;16(3):129–38. doi: 1016/j.clml.2015.12.007.
  39. Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, Refractory myeloma. N Engl J Med. 2003;348(26):2609–17. doi: 1056/nejmoa030288.
  40. Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352(24):2487–98. doi: 10.1056/nejmoa043445.
  41. Dimopoulos MA, Chen C, Spencer A, et al. Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. 2009;23(11):2147–52. doi: 10.1038/leu.2009.147.
  42. Jakubowiak A, Offidani M, Pegourie B, et al. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. 2016;127(23):2833–40. doi: 10.1182/blood-2016-01-694604.
  43. Richardson PG, Jagannath S, Moreau P, et al. Final results for the 1703 phase 1b/2 study of elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed/refractory multiple myeloma. 2014;124(21): Abstract 302.
  44. Phase III Study of Lenalidomide and Dexamethasone With or Without Elotuzumab to Treat Newly Diagnosed, Previously Untreated Multiple Myeloma (ELOQUENT-1). [Internet] Available from: clinicaltrials.gow/ct2/show/NCT01335399. (accessed 21.05.2016).
  45. Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015;373(7):621–31. doi: 10.1056/NEJMoa1505654.
  46. Lonial S, Dimopoulos M, Palumbo A, et al. ELOQUENT-2: A phase III, randomized, open-label study of lenalidomide (Len)/dexamethasone (dex) with/without elotuzumab (Elo) in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J Clin Oncol. 2015;33(Suppl): Abstract 8508.
  47. Genzen JR, Kawaguchi KR, Furman RR. Detection of a monoclonal antibody therapy (ofatumumab) by serum protein and immunofixation electrophoresis. Br J Haematol. 2011;155(1):123–5. doi: 10.1111/j.1365-2141.2011.08644.x.
  48. McCudden CR, Voorhees PM, Hainsworth SA, et al. Interference of monoclonal antibody therapies with serum protein electrophoresis tests. Clin Chem. 2010;56(12):1897–9. doi: 10.1373/clinchem.2010.152116.
  49. Axel AE, McCudden CR, Xie H, et al. Development of clinical assay to mitigate daratumumab, an IgG1K monoclonal antibody, interference with serum immunofixation (IFE) and clinical assessment of M-protein response in multiple myeloma. Cancer Res. 2014;74(19):2563. doi: 10.1158/1538-7445.am2014-2563.
  50. US Food and Drug Administration. Elotuzumab [media release]. [Internet] Available from: http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm474719.htm. (accessed 22.05.2016).
  51. European commission Community register of medicinal products for human usе. [Internet] Available from: http://ec.europa.eu/health/documents/community-register/html/h1088.htm. (accessed 22.05.2016).
  52. NCCN Clinical Guidelines Version 3.2016. [Internet] Available from: https://www.nccn.org/store/login/login.aspx?ReturnURL=https://www.nccn.org/professionals/physician_gls/PDF/myeloma.pdf. (accessed 23.05.2016).

 

 

Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region

VI Bakhtina1,2, IV Demko2, AN Narkevich2, DS Gushchin3

1 Regional Clinical Hospital, 3а Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

2 Professor VF Voyno-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

3 Norilsk Inter-District Hospital No. 1, Solnechnyi pr-d, 7a Norilsk, Russian Federation, 663300

For correspondence: Varvara Ivanovna Bakhtina, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022; Tel: +7(923)357-57-77; е-mail: doctor.gem@mail.ru

For citation: Bakhtina VI, Demko IV, Narkevich AN, Gushchin DS. Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region. Clinical oncohematology. 2016;9(4):413–419 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-413-419


ABSTRACT

Background & Aims. B-cellular chronic lymphocytic leukemia (CLL) is a disease with heterogeneous clinical manifestations and biological characteristics. The age of 70 % of patients is more than 65 years by the date of the diagnosis; most of them have several comorbidities. The aim of the study is to identify factors affecting the survival, as well as to determine causes of mortality in CLL patients (according to data from hematological hospitals of Krasnoyarsk Region).

Methods. In order to identify the most significant factors affecting the course and the outcome of CLL, a retrospective analysis of data on patients who died in hematological hospitals was carried out. 45 cases with the lethal outcome were registered within six years. All patients were under hematologist’s supervision after diagnosing the disease, and they were followed throughout the treatment period up to the lethal outcome.

Results. Тhe overall and progression-free survival depended, first of all, on the type of the first line therapy and its efficacy. The progression of the underlying disease and infectious complications became the main reason of the lethal outcome in CLL patients.

Conclusion. Most patients received ineffective treatment as first line therapy. The analysis of the comorbidities showed that a more effective chemotherapy could be performed with achievement of longer complete remissions.


Keywords: chronic lymphocytic leukemia, oncohematological diseases, comorbidities, survival, treatment.

Received: May 16, 2016

Accepted: June 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Gribben JG. How I treat CLL up front. Blood. 2010;115(2):187– doi: 10.1182/blood-2009-08-207126.
  2. Lee JS, Dixon DO, Kantarjian H, et al. Prognosis of chronic lymphocytic leukemia: a multivariate regression analysis of 325 untreated patients. Blood. 1987;69(3):929–36.
  3. Molica S. Infections in chronic lymphocytic leukemia: risks factors and impact on survival and treatment. Leuk Lymphoma. 1994;13(3–4):203–14. doi: 10.3109/10428199409056283.
  4. Albertsen PC, Moore DF, Shih W, et al. Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol. 2011;29(10):1335–41. doi: 10.1200/jco.2010.31.2330.
  5. Etienne A, Esterni B, Charbonnier A, et al. Comorbidity is an independent predictor of complete remission in elderly patients receiving induction chemotherapy for acute myeloid leukemia. Cancer. 2007;109(7):1376– doi: 10.1002/cncr.22537.
  6. Kos FT, Yazici O, Civelek B, et al. Evaluation of the effect of comorbidity on survival in pancreatic cancer by using “Charlson Comorbidity Index” and “Cumulative Illness Rating Scale”. Wien Klin Wochenschr. 2014;126(1–2):36– doi: 10.1007/s00508-013-0453-9.
  7. Della Porta MG, Malcovati L. Clinical relevance of extra-hematologic comorbidity in the management of patients with myelodysplastic syndrome. Haematologica. 2009;94(5):602– doi: 10.3324/haematol.2009.005702.
  8. Wang S, Wong ML, Hamilton N, et al. Impact of age and comorbidity on non-small-cell lung cancer treatment in older veterans. J Clin Oncol. 2012;30(13):1447–55. doi: 11200/jco.2011.39.5269.
  9. Strati P, Chaffe K, Achenbach S, et al. Comorbidity and cause of death in patients with chronic lymphocytic leukemia (CLL). Cancer Res. 2015;75(15): Abstract 5267. doi: 10.1158/1538-7445.am2015-5267.
  10. Goede V, Paula Cramer P, Busch R, et al. Interactions between comorbidity and treatment of chronic lymphocytic leukemia: results of German Chronic Lymphocytic Leukemia Study Group trials. 2014;99(6):1095–100. doi: 10.3324/haematol.2013.096792.
  11. Thurmes P, Call T, Slager S, et al. Comorbid conditions and survival in unselected, newly diagnosed patients with chronic lymphocyticleukemia. Leuk Lymphoma. 2008;49(1):49–56. doi: 10.1080/10428190701724785.
  12. Linn BS, Linn MW, Gurel L. Cumulative illness rating scale. J Am Geriatr Soc. 1968;16(5):622–6. doi: 10.1111/j.1532-5415.1968.tbx.
  13. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. 2010;376(9747):1164–74. doi: 10.1016/S0140-6736.
  14. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 10.1016/0021-9681(87)90171-8.
  15. Anaissie EJ, Kontoyiannis DP, O’Brien S, et al. Infections in patients with chronic lymphocytic leukemia treated with fludarabine. Ann Intern Med. 1998;129(7):559– doi: 10.7326/0003-4819-129-7-199810010-00010.
  16. Badoux XC, Keating MJ, Wang X, et al. Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. 2011;117(11):3016–24. doi: 10.1182/blood-2010-08-304683.
  17. Catovsky D, Richards S, Matutes E, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet. 2007;370(9583):230–9. doi: 10.1016/s0140-6736(07)61125-8.
  18. Bouvet E, Borel C, Oberic L, et al. Impact of dose intensity on outcome of fludarabine, cyclophosphamide, and rituximab regimen given in the first-line therapy for chronic lymphocytic leukemia. 2013;98(1):65–70. doi: 10.3324/haematol.2012.070755.
  19. Miller MD, Paradis CF, Houck PR, et al. Rating chronic medical illness burden in geropsychiatric practice and research: application of the Cumulative Illness Rating Scale. Psychiatry Res. 1992;41(3):237–48. doi: 10.1016/0165-1781(92)90005-n.
  20. Parmlee PA, Thuras PD, Katz IR, et al. Validation of Cumulative Index Rating Scale in a geriatric residential population. J Am Geriatr Soc. 1995;43(2):130–7. doi: 10.1111/j.1532-5415.1995.tb06377.x.
  21. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 1016/0021-9681(87)90171-8.