Efficacy, Safety, and Tolerance of Gemtuzumab Ozogamicin Combined with FLAG/FLAG-Ida or Azacitidine in Relapsed/Refractory Acute Myeloblastic Leukemia

IG Budaeva, DV Zaitsev, AA Shatilova, EN Tochenaya, AV Petrov, RI Vabishchevich, DV Motorin, RSh Badaev, DB Zammoeva, VV Ivanov, SV Efremova, KV Bogdanov, YuV Mirolyubova, TS Nikulina, YuA Alekseeva, AYu Zaritskey, LL Girshova

VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Irina Garmaevna Budaeva, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(931)351-07-06; e-mail: irina2005179@mail.ru

For citation: Budaeva IG, Zaitsev DV, Shatilova AA, et al. Efficacy, Safety, and Tolerance of Gemtuzumab Ozogamicin Combined with FLAG/FLAG-Ida or Azacitidine in Relapsed/Refractory Acute Myeloblastic Leukemia. Clinical oncohematology. 2021;14(3):299–307. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-299-307


ABSTRACT

Aim. To assess the efficacy, safety, and tolerance of gemtuzumab ozogamicin (GO) combined with FLAG/FLAG-Ida chemotherapy or azacitidine in patients with relapsed/refractory acute myeloblastic leukemia (AML) in clinical practice.

Materials & Methods. The study included 32 patients (16 men and 16 women). The median age was 44 years (range 23–83 years). Among them there were 15 (46.8 %) patients with refractory and 17 (53.2 %) patients with relapsed AML. GO combined with FLAG/FLAG-Ida was administered to 15 (46.8 %) patients, whereas 17 (53.2 %) patients were treated with GO and azacitidine combination. Therapy safety was assessed according to CTCAE v. 5.0.

Results. Overall response rate including complete remission (CR), CR MRD–, CR with incomplete hematologic recovery, and morphologic leukemia-free status was 59.4 % (19/32). Refractoriness was observed in 31.25 % (10/32) of patients. Early mortality was 9.4 % (3/32). Overall response was 64.7 % (11/17) in the azacitidine and 53.3 % (8/15) in the FLAG/FLAG-Ida groups. In 4 (80 %) out of 5 patients with prior to FLAG treatment refractoriness, the response was achieved after GO + azacitidine therapy. In 58.9 % (10/17) of patients who received GO + azacitidine therapy, allogeneic hematopoietic stem cell transplantation (allo-HSCT) could be performed. The incidence of GO infusion complications in the tested groups did not significantly differ (= 0.72) and was 46.7 % (7/15) (40 % with grade 1/2 and 6.7 % with grade 3) in the GO + FLAG/FLAG-Ida group and 35.3 % (6/17) (29.4 % with grade 1/2 and 5.9 % with grade 4) in the GO + azacitidine group. In the GO + FLAG/FLAG-Ida group 5 (33.3 %) patients experienced serious adverse events (SAE) of sepsis. In the GO + azacitidine group SAEs were reported in 6 (35.3 %) patients: 4 (66.6 %) with sepsis, 1 (16.7 %) with acute cardiovascular failure, and 1 (16.7 %) with acute respiratory failure. The median (range) duration was 23 (10–39) days for neutropenia grade 4, 24 (11–38) days for neutropenia grade 3, 21 (11–41) days for thrombocytopenia grade 4, 26 (16–45) days for thrombocytopenia grade 3, and 25 (22–45) days for thrombocytopenia grade 1/2. Thrombocytopenia duration was longer in patients with GO + FLAG/FLAG-Ida therapy, however, no significant differences were identified. No cases of veno-occlusive liver disease were reported. Median overall survival (OS) for both groups (n = 32) was 31.4 months, median disease-free survival (n = 21) was 13.3 months. In the group of patients with effective treatment, the median OS was not reached. In non-responders, it was 18 months (= 0.0442).

Conclusion. GO combined with FLAG/FLAG-Ida chemotherapy or azacitidine proved effective in relapsed/refractory AML patients. Remission did not appear to be associated with ELN risk, gender, age, CD33 expression, number of prior therapy lines, or number of relapses. GO + azacitidine combination showed efficacy, safety, and good tolerance in patients with prior high-dose chemotherapy refractoriness as well as low ECOG performance status. That allowed for the subsequent allo-HSCT administration to these patients. There was no significant difference between the groups of patients in the incidence of hematologic, non-hematologic toxicity, and time to hematologic recovery. Thrombocytopenia duration was longer in patients with GO + FLAG/FLAG-Ida therapy which is consistent with literature data. GO-based effective treatment in relapsed/refractory AML considerably improves OS: during 36 months of follow-up the median was not reached.

Keywords: acute myeloblastic leukemia, relapse, refractoriness, gemtuzumab ozogamicin, FLAG/FLAG-Ida regimens, azacitidine, efficacy, safety, toxicity.

Received: February 5, 2021

Accepted: May 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Wang ES, Aplenc R, Chirnomas D, et al. Safety of gemtuzumab ozogamicin as monotherapy or combination therapy in an expanded-access protocol for patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma. 2020;61(12):1965–2973. doi: 10.1080/10428194.2020.1742897.
  2. Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. Blood. 2016;127(1):53–61. doi: 10.1182/blood-2015-08-604520.
  3. Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441. doi: 10.1038/bcj.2016.50.
  4. Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19(13):3244–54. doi: 10.1200/JCO.2001.19.13.3244.
  5. Zein N, Poncin M, Nilakantan R, et al. Calicheamicin gamma 1I and DNA: molecular recognition process responsible for site-specificity. Science. 1989;244(4905):697–9. doi: 10.1126/science.2717946.
  6. Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia. 2005;19(2):176–82. doi: 10.1038/sj.leu.2403598.
  7. Sievers EL, Appelbaum FR, Spielberger RT, et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: A phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood. 1999;93(11):3678–84. doi: 10.1182/blood.v93.11.3678.411k24_3678_3684.
  8. Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.
  9. Deangelo DJ, Liu D, Stone R, et al. Preliminary report of a phase 2 study of gemtuzumab ozogamicin in combination with cytarabine and daunorubicin in patients < 60 years of age with de novo acute myeloid leukemia. Proceed Am Soc Clin Oncol. 2003: Abstract 2325.
  10. Petersdorf SH, Kopecky KJ, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60. doi: 10.1182/blood-2013-01-466706.
  11. Caron PC, Jurcic JG, Scott AM, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood. 1994;83(7):1760–8. doi: 10.1182/blood.v83.7.1760.bloodjournal8371760.
  12. Castaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–16. doi: 10.1016/S0140-6736(12)60485-1.
  13. Lambert J, Pautas С. Terre Ch, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica. 2019;104(1):113–9. doi: 10.3324/haematol.2018.188888.
  14. Amadori S, Suciu S, Selleslag D, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9. doi: 10.1200/jco.2015.64.0060.
  15. Taksin AL, Legrand O, Raffoux E, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21(1):66–71. doi: 10.1038/sj.leu.2404434.
  16. Debureaux P-E, Labopin М, Mamez A-C, et al. Fractionated gemtuzumab ozogamicin in association with high dose chemotherapy: a bridge to allogeneic stem cell transplantation in refractory and relapsed acute myeloid leukemia. Bone Marrow Transplant. 2019;55(2):452–60. doi: 10.1038/s41409-019-0690-2.
  17. Chevallier P, Delaunay J, Turlure P, et al. Long-term disease-free survival after gemtuzumab, intermediate-dose cytarabine, and mitoxantrone in patients with CD33(+) primary resistant or relapsed acute myeloid leukemia. J Clin Oncol. 2008;26(32):5192–7. doi: 10.1200/jco.2007.15.9764.
  18. Medeiros BC, Tanaka TN, Balaian L, et al. A Phase I/II Trial of the Combination Azacitidine and Gemtuzumab Ozogamicin for Treatment of Relapsed Acute Myeloid Leukemia. Clin Lymphoma Myel Leuk. 2018;18(5):346–352.e5. doi: 10.1016/j.clml.2018.02.017.
  19. Walter RB, Medeiros BC, Gardner KM, et al. Gemtuzumab ozogamicin in combination with vorinostat and azacitidine in older patients with relapsed or refractory acute myeloid leukemia: a phase I/II study. Haematologica. 2013;99(1):54–9. doi: 10.3324/haematol.2013.096545.
  20. Arain S, Christian S, Patel PR. Safety and efficacy of gemtuzumab ozogamicin and venetoclax in patients with relapsed or refractory CD33+ acute myeloid leukemia: A phase Ib study. J Clin Oncol. 2020;38(15_suppl):TPS7566. doi: 10.1200/JCO.2020.38.15_suppl.TPS7566.
  21. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  22. Dohner H, Elihu H, Estey EH, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-235358.
  23. Зайцев Д.В., Гиршова Л.Л., Иванов В.В. и др. Гемтузумаб озогамицин в лечении пациентов с рефрактерным течением острого миелоидного лейкоза, находящихся в критическом состоянии (описание 3 клинических наблюдений). Клиническая онкогематология. 2020;13(1):67–74. doi: 10.21320/2500-2139-2020-13-1-67-74.
    [Zaitsev DV, Girshova LL, Ivanov VV, et al. Gemtuzumab Ozogamicin in the Treatment of Critical Patients with Refractory Acute Myeloid Leukemia (3 Case Reports). Clinical oncohematology. 2020;13(1):67–74. doi: 10.21320/2500-2139-2020-13-1-67-74. (In Russ)]
  24. Stone RM, Moser B, Sanford B, et al. High dose cytarabine plus gemtuzumab ozogamicin for patients with relapsed or refractory acute myeloid leukaemia: Cancer and Leukaemia Group B study 19902. Leuk Res. 2011;35(3):329–33. doi: 10.1016/j.leukres.2010.07.017.
  25. Hosono N, Ookura M, Araie H, et al. Clinical outcomes of gemtuzumab ozogamicin for relapsed acute myeloid leukemia: single-institution experience. Int J Hematol. 2020;113(3):362–9. doi: 10.1007/s12185-020-03023-4.
  26. Будаева И.Г., Гиршова Л.Л., Овсянникова Е.Г. и др. Прогнозирование эффективности режима FLAG ± Ida у пациентов с рецидивами и рефрактерным течением острых миелоидных лейкозов. Клиническая онкогематология. 2019;12(3):289–96. doi: 10.21320/2500-2139-2019-12-3-289-296.
    [Budaeva IG, Girshova LL, Ovsyannikova EG, et al. Prediction of FLAG ± Ida Regimen Efficacy in Patients with Relapsed/Refractory Acute Myeloid Leukemia. Clinical oncohematology. 2019;12(3):289–96. doi: 10.21320/2500-2139-2019-12-3-289-296. (In Russ)]
  27. Chantepie SP, Reboursiere E, Mear JB, et al. Gemtuzumab ozogamicin in combination with intensive chemotherapy in relapsed or refractory acute myeloid leukemia. Leuk Lymphoma. 2015;56(8):2326–30. doi: 3109/10428194.2014.986478.
  28. Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30(32):3924–31. doi: 10.1200/jco.2012.42.2964.

 

 

Aureobasidium pullulans-Associated Invasive Mycosis in a Child with Acute Myeloblastic Leukemia: A Case Report

NS Bagirova1, AV Popa1, ТS Bogomolova2, NA Batmanova1, NV Dmitrieva1, IN Petukhova1, EN Sokolova1

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 II Mechnikov North-Western State Medical University, 41 Kirochnaya str., Saint Petersburg, Russian Federation, 191015

For correspondence: Nataliya Sergeevna Bagirova, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: 8(499)324-18-60; e-mail: nbagirova@mail.ru

For citation: Bagirova NS, Popa AV, Bogomolova ТS, et al. Aureobasidium pullulans-Associated Invasive Mycosis in a Child with Acute Myeloblastic Leukemia: A Case Report. Clinical oncohematology. 2018;11(3):259–64.

DOI: 10.21320/2500-2139-2018-11-3-259-264


ABSTRACT

Severe mycotic infection occurring mainly in immunocompromised patients often exacerbates the progression of the primary oncohematological disease. It is the first attempt in Russian literature to present clinical and microbiological characteristics of invasive mycosis caused by Aureobasidium pullulans in a child with acute myeloblastic leukemia after receiving cytoreductive and antifungal treatment with favourable outcome.

Keywords: Aureobasidium pullulans, acute myeloblastic leukemia, invasive mycosis.

Received: January 15, 2018

Accepted: April 8, 2018

Read in PDF 


REFERENCES

  1. Revankar SG, Sutton DA. Melanized Fungi in Human Disease. Clin Microbiol Rev. 2010;23(4):884–928. doi: 10.1128/CMR.00019-10.
  2. Hussain N, Revankar SG. Black Mold Infections: What We Know and What We Need to Know. Curr Clin Microbiol Rpt. 2017;4(2):106–11. doi: 10.1007/s40588-017-0062-x.
  3. Salkin IF, Martinez JA, Kemna ME. Opportunistic infection of the spleen caused by Aureobasidium pullulans. J Clin Microbiol. 1986;23(5):828–31.
  4. Najafzadeh MJ, Sutton DA, Keisari MS, et al. In Vitro Activities of Eight Antifungal Drugs against 104 Environmental and Clinical Isolates of Aureobasidium pullulans. Agents Chemother. 2014;58(9):5629–31. doi: 10.1128/AAC.03095-14.

Prognostic Value and Correlation Between WT1 Overexpression and NPM1 Mutation in Patients with Acute Myeloblastic Leukemia

LL Girshova, IG Budaeva, EG Ovsyannikova, SO Kuzin, DV Motorin, RSh Badaev, DB Zammoeva, VV Ivanov, KV Bogdanov, OS Pisotskaya, YuV Mirolyubova, TS Nikulina, YuA Alekseeva, AYu Zaritskii

VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Irina Garmaevna Budaeva, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(931)351-07-06; e-mail: irina2005179@mail.ru

For citation: Girshova LL, Budaeva IG, Ovsyannikova EG, et al. Prognostic Value and Correlation Between WT1 Overexpression and NPM1 Mutation in Patients with Acute Myeloblastic Leukemia. Clinical oncohematology. 2017;10(4):485–93 (In Russ).

DOI: 10.21320/2500-2139-2017-10-4-485-493


ABSTRACT

Background. Acute myeloblastic leukemia (AML) with NPM1 mutation amounts to 30 % of all AML and is characterized by good prognosis with the exception of cases with FLT3-ITD mutation. Despite the good prognosis, the likelihood of relapses in patients with NPM1 mutation may significantly differ. Thus, the estimation of the minimal residual disease (MRD) after chemotherapy and during follow-up is becoming increasingly important. This approach will make it possible to predict the sensitivity of a tumoral clone to chemotherapy.

Aim. To evaluate the prognostic value of highly specific marker (NPM1 mutation) and non-specific marker (WT1 overexpression) of MRD, as well as to identify the correlation between the levels of NPM1 and WT1 at different stages of therapy and in the follow-up period.

Materials & Methods. The research included 14 patients with AML. All patients had the NPM1 mutation and WT1 overexpression: 50 % of patients had additional molecular markers (BAALC overexpression, FLT3-ITD, DNMT3A, and MLL mutations). Real-time PCR was used for long-term monitoring of WT1 expression levels and NPM1 mutation.

Results. The median decrease of NPM1 levels after the induction therapy was 3 log. All patients had relapses, NPM1 mutation, and lower rates of OS/RFS, which significantly correlated with prognostically negative molecular markers. There were no statistically significant differences in RFS in groups with the decrease of WT1 expression level < 2 log and > 2 log on day 28 of treatment. At the same time, the decrease of WT1 expression by > 2 log was associated with significant differences in early relapses, which correlated with the decrease of NPM1 levels (> and < than 3 log) is revealed. RFS rates were higher in patients with WT1 expression level of < 100 per 104 copies ABL on day 28 and WT1 of < 250 per 104 copies ABL on day 14 of treatment. WT1 expression was significantly lower on days 14 and 28 in patients with NPM1 decrease of > 3 log on day 28. The decrease in WT1 expression of < 100 per 104 copies ABL on day 28 was more common in patients with isolated NPM1 mutation, compared to patients with additional negative molecular markers.

Conclusion. The decrease in NPM1 levels after the induction therapy may serve as reliable prognostic marker of RFS and OS rates. New correlation between the degree of NPM1 reduction and the presence of additional molecular markers was established. Highly specific (NPM1 mutation) was shown to be more specific compared to non-specific markers (WT1 overexpression). The research showed the predictive value of a lower limit level of WT1 on day 28 of treatment (100 per 104 copies ABL), and for the first time, the importance of the early assessment WT1 expression reduction on day 14 of induction therapy.

Keywords: acute myeloblastic leukemia, AML, NPM1, WT1, molecular monitoring.

Received: February 22, 2017

Accepted: May 26, 2017

Read in PDF


REFERENCES

  1. Dohner H, Estey E, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-235358.
  2. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47.  doi: 10.1182/blood-2016-08-733196.
  3. Yin C.C. Detection and molecular monitoring of Minimal residual diseases in acute myeloid leukemias. J Mol Biomark Diagn. 2012;3(2):1000e105–6. doi: 10.4172/2155-9929.1000e106.
  4. Hourigan CS, Karp JE. Minimal residual disease in acute myeloid leukaemia. Nat Rev Clin Oncol. 2013;10(8):460–71. doi: 10.1038/nrclinonc.2013.100.
  5. Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia–a Europe Against Cancer program. Leukemia. 2003;17(12):2318–57. doi: 10.1038/sj.leu.2403135.
  6. Cilloni D, Gottardi E, de Micheli D, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002;16(10):2115–21. doi: 10.1038/sj.leu.2402675.
  7. Cilloni D, Saglio G. Usefulness of quantitative assessment of Wilms tumor suppressor gene expression in chronic myeloid leukemia patients undergoing imatinib therapy. Semin Hematol. 2003;40:37–41. doi: 10.1053/shem.2003.50040.
  8. Ogawa H, Tamaki H, Ikegame K, et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogenic stem cell transplantation in acute type leukemia. Blood. 2003;101(5):1698–702. doi: 10.1182/blood-2002-06-1831.
  9. Cilloni D, Messa F, Rosso V, et al. Increase sensitivity to chemotherapeutical agents and cytoplasmatic interaction between NPM leukemic mutant and NF-kappaB in AML carrying NPM1 mutations. Leukemia. 2008;22(6):1234–40. doi: 10.1038/leu.2008.68.
  10. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: A European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–201. doi: 10.1200/jco.2009.22.4865.
  11. Pozzi S, Geroldi S, Tedone E, et al. Leukemia relapse after allogeneic transplants for acute myeloid leukaemia: predictive role of WT1 expression. Br J Haematol. 2013;160(4):503–9. doi: 10.1111/bjh.12181.
  12. Grazia CD, Pozzi S, Geroldi S, et al. Wilms Tumor 1 Expression and Pre-Emptive Immunotherapy in Patients with Acute Myeloid Leukemia Undergoing an Allogeneic Hemopoietic Stem Cell Transplant. Biol Blood Marrow Transplant. 2016;22(7):1242–6. doi: 10.1016/j.bbmt.2016.03.005.
  13. Nomdederu J, Hoyos M, Carricondo M, et al. Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML. Leukemia. 2013;27(11):2157–64. doi: 10.1038/leu.2013.111.
  14. Schnittger S, Kern W, Tschulik C, et al. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood. 2009;114(11):2220–31. doi: 10.1182/blood-2009-03-213389.
  15. Falini B, Nicoletti I, Martelli M, et al. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood. 2007;109(3):874–85. doi: 10.1182/blood-2006-07-012252.
  16. Chang JH, Olson MO. Structure of the gene for rat nucleolar protein B23. J Biol Chem. 1990;265(30):18227–33.
  17. Wang W, Budhu A, Forgues M, et al. Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Nat Cell Biol. 2005;7(8):823–30. doi: 10.1038/ncb1282.
  18. Ghandforoush NA, Chahardouli B, Rostami S,et. al. Evaluation of Minimal Residual Disease in Acute Myeloid Leukemia with NPM1 Marker. Int J Hematol Oncol Stem Cell Res. 2016;10(3):147–52.
  19. Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254–66. doi: 10.1056/NEJMoa041974.
  20. Nafea D, Rahman MA, Boris D, et al. Incidence and prognostic value of NPM1 and FLT3 gene mutations in AML with normal karyotype. Open Hematol J. 2011;5(1):14–20. doi: 10.2174/1874276901105010014.
  21. Schneider F, Hoster E, Unterhalt M, et al. NPM1 but not FLT3-ITD mutations predict early blast cell clearance and CR rate in patients with normal karyotype AML (NK-AML) or high-risk myelodysplastic syndrome (MDS). Blood. 2009;113(21):5250–3. doi: 10.1182/blood-2008-09-172668.
  22. Dohner K, Schlenk RF, Habdank M, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740–6. doi: 10.1182/blood-2005-05-2164.
  23. Schnittger S, Schoch C, Kern Q. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106(12):3733–9. doi: 10.1182/blood-2005-06-2248.
  24. Kronke J, Schlenk RF, Jensen KO, et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a Study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol. 2011;29(19):2709–16. doi: 10.1200/JCO.2011.35.0371.
  25. Gorin N-C, Labopin M, Meloni G, et al. Impact of FLT3 ITD/NPM1 mutation status in adult patients with acute myelocytic leukemia autografted in first remission. Haematologica. 2013;98(2):e12–4. doi: 10.3324/haematol.2012.064436.
  26. Patel JL, Schumacher JA, Frizzell K, et al. Coexisting and cooperating mutations in NPM1-mutated acute myeloid leukemia. Leukemia Research 2017;56:7–12. doi: 10.1016/j.leukres.2017.01.027.
  27. Yoon J, Kim H, Shin S, et al. Implication of higher BAALC expression in combination with other gene mutations in adult cytogenetically normal AML. Leuk Lymphoma. 2013;55(1):110–20. doi: 10.3109/10428194.2013.800869.
  28. Tiribellia M, Raspadorib D, Geromin A, et al. High CD200 expression is associated with poor prognosis in cytogenetically normal acute myeloid leukemia, even in FlT3-ITD/NPM1+ patients. Leuk Res. 2017;58:31–8. doi: 10.1016/j.leukres.2017.04.001.
  29. Damiani D, Tiribelli M, Raspadori D, et al. Clinical impact of CD200 expression in patients with acute myeloid leukemia and correlation with other molecular prognostic factors. Oncotarget. 2015;6(30):30212–21. doi: 10.18632/oncotarget.4901.
  30. Hubmann M, Kohnke T, Hoster E, et al. Molecular response assessment by quantitative real-time polymerase chain reaction after induction therapy in NPM1-mutated patients identifies those at high risk of relapse. Haematologica. 2014;99(8):1317–25. doi: 10.3324/haematol.2014.104133.
  31. Dohner K, Schlenk RF, Habdank M, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740–6. doi: 10.1182/blood-2005-05-2164.
  32. Rollig C, Bornhаuser M, Kramer M, et al. Allogeneic Stem-Cell Transplantation in Patients with NPM1-Mutated Acute Myeloid Leukemia: Results from a Prospective Donor Versus No-Donor Analysis of Patients After Upfront HLA Typing Within the SAL-AML 2003 Trial. J Clin Oncol. 2015;33(5):403–10. doi: 10.1200/JCO.2013.54.4973.
  33. Balsat M, Renneville A, Thomas X, et al. Postinduction Minimal Residual Disease Predicts Outcome and Benefit From Allogeneic Stem Cell Transplantation in Acute Myeloid Leukemia With NPM1 Mutation: A Study by the Acute Leukemia French Association Group. J Clin Oncol. 2016;35(2):185–93. doi: 10.1200/JCO.2016.67.1875.
  34. Kristensen T, Mоller MB, Friis L, et al. NPM1 mutation is a stable marker for minimal residual disease monitoring in acute myeloid leukaemia patients with increased sensitivity compared to WT1 expression. Eur J Haematol. 2011;87(5):400–8. doi: 10.1111/j.1600-0609.2011.01673.х.
  35. Barragan E, Pajuelo JC, Ballester S, et al. Minimal residual disease detection in acute myeloid leukemia by mutant nucleophosmin (NPM1): comparison with WT1 gene expression. Clin Chim Acta. 2008;395(1–2):120–3. doi: 10.1016/j.cca.2008.05.021.
  36. Gorello P, Cazzaniga G, Alberti F, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia. 2006;20(6):1103–8. doi: 10.1038/sj.leu.2404149.
  37. Paietta E. Minimal residual disease in acute myeloid leukemia: coming of age. Hematology Am Soc Hematol Educ Program. 2012;1:35–42. doi: 10.1182/asheducation-2012.1.35.
  38. Verhaak RGW, Goudswaard CS, van Putten W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106(12):3747–54. doi: 10.1182/blood-2005-05-2168.
  39. Dvorakova D, Racil Z, Jeziskova I, et al. Monitoring of minimal residual disease in acute myeloid leukemia with frequent and rare patient-specific NPM1 mutations. Am J Hematol. 2010;85(12):926–9. doi: 10.1002/ajh.21879.
  40. Chou WC, Tang JL, Wu SJ, et al. Clinical implications of minimal residual disease monitoring by quantitative polymerase chain reaction in acute myeloid leukemia patients bearing nucleophosmin (NPM1) mutations. Leukemia. 2007;21(5):998–1004. doi: 10.1038/sj.leu.2404637.
  41. Meloni G, Mancini M, Gianfelici V, et al. Late relapse of acute myeloid leukemia with mutated NPM1 after eight years: evidence of NPM1 mutation stability. Haematologica. 2009;94(2):298–300. doi: 10.3324/haematol.2008.000059.
  42. Papadaki C, Dufour A, Seibl M, et al. Monitoring minimal residual disease in acute myeloid leukaemia with NPM1 mutations by quantitative PCR: clonal evolution is a limiting factor. Br J Haematol. 2009;144(4):517–23. doi: 10.1111/j.1365-2141.2008.07488.х.
  43. Kayser S, Walter RB, Stock W, Schlenk RF. Minimal residual disease in acute myeloid leukemia-current status and future perspectives. Curr Hematol Malig Rep. 2015;10(2):132–44. doi: 10.1007/s11899-015-0260-7.
  44. Terre C, Rousselot P, Dombret H, et al. MRD assessed by WT1 and NPM1 transcript levels identifies distinct outcomes in AML patients and is influenced by gemtuzumab ozogamicin. Oncotarget. 2014;5(15):6280–8. doi: 10.18632/oncotarget.2196.
  45. Ommen HB, Schnittger S, Jovanovic JV, et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood. 2010;115(2):198–205. doi: 10.1182/blood-2009-04-212530.
  46. Гиршова Л.Л., Овсянникова Е.Г., Кузин С.О. и др. Молекулярный мониторинг уровня транскрипта RUNX1-RUNX1T1 при острых миелобластных лейкозах на фоне терапии. Клиническая онкогематология. 2016;9(4):456–64. doi: 10.21320/2500-2139-2016-9-4-456-464.[Girshova LL, Ovsyannikova EG, Kuzin SO, et al. Molecular Monitoring of RUNX1-RUNX1T1 Transcript Level in Acute Myeloblastic Leukemias on Treatment. Clinical oncohematology. 2016;9(4):456–64. doi: 10.21320/2500-2139-2016-9-4-456-464. (In Russ)]
  47. Balsat M, Renneville A, Thomas X, et al. Postinduction Minimal Residual Disease Predicts Outcome and Benefit From Allogeneic Stem Cell Transplantation in Acute Myeloid Leukemia With NPM1 Mutation: A Study by the Acute Leukemia French Association Group. J Clin Oncol. 2016;35(2):185–93. doi: 10.1200/JCO.2016.67.1875.
  48. Rossi G, et al. Comparison between multiparameter flow cytometry and WT1-RNA quantification in monitoring minimal residual disease in acute myeloid leukemia without specific molecular targets. Leuk Res. 2012;36(4):401–6. doi: 10.1016/j.leukres.2011.11.020.

Acute Myeloblastic Leukemia and Myelodysplastic Syndrome: Azacitidine for Prophylactic and Preventive Purposes after Allogeneic Hematopoietic Stem Cell Transplantation

VN Ovechkina1, SN Bondarenko1, EV Morozova1, IS Moiseev1, OA Slesarchuk1, AG Smirnova1, OS Uspenskaya2, YaV Gudozhnikova1, AA Osipova1, VS Sergeev1, NN Mamaev1, LS Zubarovskaya1, BV Afanas’ev1

1 RM Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician IP Pavlov First St. Petersburg State Medical University, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022

2 Leningrad District Clinical Hospital, 45–49 Lunacharskogo pr-t, Saint Petersburg, Russian Federation, 194291

For correspondence: Varvara Nikolaevna Ovechkina, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel. +7(812)338-62-72; e-mail: ovetchkina@gmail.com

For citation: Ovechkina VN, Bondarenko SN, Morozova EV, et al. Acute Myeloblastic Leukemia and Myelodysplastic Syndrome: Azacitidine for Prophylactic and Preventive Purposes after Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2017;10(1):45-51 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-45-51


ABSTRACT

Aim. To evaluate the effectiveness of preventive and prophylactic post-transplantation therapy using azacitidine (5-AZA) in patients at high risk of post-transplantation relapse.

Methods. 136 patients were included in the study performed by the pairwise comparison: 68 of them received 5-AZA after allo-HSCT and 68 patients were included in the historical control group. 5-AZA was prescribed for prophylactic or preventive purposes. The results were assessed according to the OS, RR, EFS, DUM, and relapse-free and GVHR-free survival.

Results. 1-year OS was 76 % in the 5-AZA group (95% CI 60–84 %) and 44 % in the reference group (95% CI 33–55 %) (= 0.001); 2-year OS was 63 % (95% CI 39–67 %) and 37 % (95% CI 26–48 %) (= 0.007), respectively. The relapse rate (RR) in the 5-AZA group was 34 % (95% CI 22–46 %) during 1 year and 51 % (95% CI 38–64 %) in the reference group (= 0.02). 1- and 2-year disease unrelated mortality (DUM) was similar: 5 % in the 5-AZA group (95% CI 0.1–14.0 %) and 25 % (95% CI 13–37 %) in the reference group (= 0.005). 1-year EFS was 76 % in the 5-AZA group (95% CI 61–85 %) and 44 % in the reference group (95% CI 33–55 %) (= 0.001); 2-year EFS was 63 % (95% CI 39–67 %) and 37 % (95% CI 26–48 %) (= 0.01), respectively. 1-year relapse-free and GVHR-free survival was 55 % in the 5-AZA group (95% CI 41–69 %) and 28 % in the reference group (95% CI 17–39 %) (= 0.001); 2-year relapse-free and GVHR-free survival was 47 % (95% CI 32–62 %) and 27 % (95% CI 17–37 %) (= 0.002), respectively.

Conclusion. The use of 5-AZA for prophylactic and preventive purposes after allo-HSCT does not increase the risk of GVHR and DUM, does not suppress the GVL effect and can be used in combination with the donor lymphocyte infusion (DLI). The therapy with 5-AZA is safe during the early period after allo-HSCT. The drug does not suppress the GVL effect and can be used in high risk patients to prevent early post-transplantation relapse. The use of 5-AZA in combination with DLI does not increase the incidence of severe GVHR.

Keywords: acute myeloblastic leukemia, myelodysplastic syndrome, allogeneic hematopoietic stem cell transplantation, hypomethylating therapy, azacitidine.

Received: July 18, 2016

Accepted: December 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. O’Donnell MR, Tallman MS, Abboud CN, et al. Clinical Practice Guidelines in Oncology. Acute Myeloid Leukemia, Version 2.2013. J Natl Compr Canc Netw. 2013;11:1047–55.
  2. Cornelissen JJ, Gratwohl A, Schlenk RF, et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach. Nat Rev Clin Oncol. 2012;9(10):579–90. doi: 10.1038/nrclinonc.2012.150.
  3. Бондаренко С.Н., Семенова Е.В., Афанасьев Б.В. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при остром миелобластном лейкозе в первой ремиссии. Терапевтический архив. 2013;84(7):18–25.
    [Bondarenko SN, Semenova EV, Afanas’ev BV, et al. Allogeneic hematopoietic stem cell transplantation in acute myeloblastic leukemia at the first remission. Terapevticheskii arkhiv. 2013;84(7):18–25. (In Russ)]
  4. Паровичникова Е.Н., Троицкая В.В., Савченко В.Г. и др. Лечение больных острыми миелоидными лейкозами по протоколу российского многоцентрового рандомизированного исследования ОМЛ-01.10: результаты координационного центра. Терапевтический архив. 2014;86(7):14–23.
    [Parovichnikova EN, Troitskaya VV, Savchenko VG, et al. Treatment of patients with acute myeloid leukemias according to the protocol of the OML-01.10 multi-center randomized trial: coordination center results. Terapevticheskii arkhiv. 2014;86(7):14–23. (In Russ)]
  5. Greenberg PL, Stone RM, Al-Kali A, et al. Clinical Practice Guidelines in Oncology. Myelodysplastic Syndromes, Version 2.2017. J Natl Compr Canc Netw. 2017;15:60–87.
  6. Pavletic SZ, Kumar S, Mohty M, et al. NCA First International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogenic Hematopoietic Stem Cell Transplantation: report from the Committee on the Epidemiology and Natural History of Relapse following Allogeneic Cell Transplantation. Biol Blood Marrow Transplant. 2010;16(7):871–90. doi: 10.1016/j.bbmt.2010.04.004.
  7. Mawad R, Lionberger JM, Pagel JM. Strategies to Reduce Relapse after Allogeneic Hematopoietic Cell Transplantation in Acute Myeloid Leukemia. Curr Hematol Malig Rep. 2013;8(2):132–40. doi: 10.1007/s11899-013-0153-6.
  8. de Lima M, Porter DL, Battiwalla M, et al. Proceedings from the National CANCER Institute’s Second International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation: part III, prevention and treatment of relapse after allogeneic transplantation. Biol Blood Marrow Transplant. 2014;20(1):4–13. doi: 10.1016/j.bbmt.2013.08.012.
  9. Porter DL, Aleya EP, Antin JH, et al. NCI First International Workshop NCA First International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogenic Hematopoietic Stem Cell Transplantation: report from the Committee on Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation, Biol Blood Marrow Transplant. 2010;16(11):1467–503. doi: 10.1016/j.bbmt.2010.08.001.
  10. Слесарчук О.А., Бабенко Е.В., Афанасьев Б.В. и др. Эффективность инфузии донорских лимфоцитов у пациентов после различных видов аллогенных трансплантаций гемопоэтических стволовых клеток. Терапевтический архив. 2013;84(7):26–33.
    [Slesarchuk OA, Babenko EV, Afanas’ev BV, et al. Effectiveness of donor lymphocyte infusion of patients after different types of allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2013;84(7):26–33. (In Russ)]
  11. Schmid C, Labopin M, Nagler A, et al. Acute Leukaemia Working Party of the European Group for B. Marrow Transplantation. Treatment, risk factors, and outcome of adult with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation. Blood. 2012;119(6):1599–606. doi: 10.1182/blood-2011-08-375840.
  12. Christopeit M, Kuss O, Finke J, et al. Second allograft for hematologic relapse of acute leukemia after first allogeneic stem-cell transplantation from related and unrelated donors: the role of donor change. J Clin Oncol. 2013;31(26):3259–71. doi: 10.1200/jco.2012.44.7961.
  13. Craddock C, Nagra S, Peniket A, et al. Factors predicting long-term survival after T-cell depleted reduced intensity allogeneic stem cell transplantation for acute myeloid leukemia. Haematologica. 2010;95(6):989–95. doi: 10.3324/haematol.2009.013920.
  14. Kroger N, Stubig T, Atanackovic D. Immune-Modulating Drugs and Hypomethylating Agents to Prevent or Treat Relapse after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2014;20(2):168–72. doi: 10.1016/j.bbmt.2013.09.009.
  15. Thomas X. DNA methyltransferase inhibitors in acute myeloid leukemia: discovery, design and first therapeutic experiences. Expert Opin Drug Discov. 2012;7(11):1039–51. doi: 10.1517/17460441.2012.722618.
  16. Choi J, Ritchey J, Prior LJ, et al. In vivo administration of hypomethylating agents mitigate graft-versus-host-disease without sacrificing graft-versus-leukemia. Blood. 2010;116(1):129–39. doi: 10.1182/blood-2009-12-257253.
  17. Goodyear CO, Dennis M, Jilani N, et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia. Blood. 2012;119(14):3361–9. doi: 10.1182/blood-2011-09-377044.
  18. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with myelodisplastic syndrome: a study of leukemia and cancer group B. J Clin Oncol. 2002;20(10):2429–40. doi: 10.1200/jco.2002.04.117.
  19. de Lima M, Giralt S, Thall PF, et al. Maintenance Therapy With Low-Dose Azacitidine After Allogeneic Hematopoietic Stem Cell Transplantation for Recurrent Acute Myelogenous Leukemia or Myelodysplastic Syndrome. Cancer. 2010;116(23):5420–31. doi: 10.1002/cncr.25500.
  20. Platzbecker U, Wermke M, Radke J, et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia. 2012;26(3):381–9. doi: 10.1038/leu.2011.234.
  21. Craddock Ch, Jilani N, Siddique Sh, et al. Tolerability and Clinical Activity of Post-Transplantation Azacitidine in Patients Allografted for Acute Myeloid Leukemia Treated on the RICAZA Trial. Biol Blood Marrow Transplant. 2016;22(2):385–90. doi: 10.1016/j.bbmt.2015.09.004.
  22. Antar A, Otrock ZK, Kharfan-Dabaja M, et al. Azacitidine in the treatment of extramedullary relapse of AML after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2013;48(7):994–5. doi: 10.1038/bmt.2012.256.
  23. Schroeder T, Rachlis E, Bug G, et al. Treatment of Acute Myeloid Leukemia or Myelodysplastic Syndrome Relapse after Allogeneic Stem Cell Transplantation with Azacitidine and Donor Lymphocyte Infusions – A Retrospective Multicenter Analysis from the German Cooperative Transplant Study Group. Biol Blood Marrow Transplant. 2015;21(4):653–60. doi: 10.1016/j.bbmt.2014.12.016.
  24. Craddock Ch, Labopin M, Houhou M, et al. Activity and Tolerability of Azacitidine in Patients Who Relapse after Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia and Myelodysplasia: a Survey from the European Society for Blood and Marrow Transplantation. Blood. 2014;124: Poster 2506.
  25. Schroeder T, Czibere A, Platzbecker U, et al. Azacitidine and donor lymphocyte infusions ad first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 2013;27(6):1–7. doi: 10.1038/leu.2013.7.
  26. Steinmann J, Bertz H, Wasch R, et al. 5-Azacitidine and DLI can induce long-term remissions an AML patients relapsed after allograft. Bone Marrow Transplant. 2015;50(5):690–5. doi: 10.1038/bmt.2015.10.
  27. Schroeder T, Frobel J, Cadedduu R-P, et al. Salvage therapy with azacitidine increases regulatory T cells in peripheral blood of patients with AML or MDS and early relapse after allogeneic blood stem cell transplantation. Leukemia. 2013;27(9):1910–3. doi: 10.1038/leu.2013.64.
  28. Czibere A, Bruns I, Kroger N, et al. 5-Azacytidine for the treatment of patients with acute myeloid leukemia or myelodysplastic syndrome who relapse after allo-SCT: a retrospective analysis. Bone Marrow Transplant. 2010;45(5):872–6. doi: 10.1038/bmt.2009.266.
  29. Tessoulin B, Delaunay J, Chevallier P, et al. Azacitidine salvage therapy for relapse of myeloid malignancies following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2014;49(4):567–71. doi: 10.1038/bmt.2013.233.

 

 

Molecular Monitoring of RUNX1-RUNX1T1 Transcript Level in Acute Myeloblastic Leukemias on Treatment

LL Girshova, EG Ovsyannikova, SO Kuzin, EN Goryunova, RI Vabishchevich, AV Petrov, DV Motorin, DV Babenetskaya, VV Ivanov, KV Bogdanov, IV Kholopova, TS Nikulina, YuV Mirolyubova, YuA Alekseeva, AYu Zaritskii

VA Almazov Federal North-West Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Ekaterina Gennad’evna Ovsyannikova, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel: +7(921)313-68-35; e-mail: katrin51297@mail.ru

For citation: Girshova LL, Ovsyannikova EG, Kuzin SO, et al. Molecular Monitoring of RUNX1-RUNX1T1 Transcript Level in Acute Myeloblastic Leukemias on Treatment. Clinical oncohematology. 2016;9(4):456–64 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-456-464


ABSTRACT

Background. The current approach to treatment of acute myeloblastic leukemia (AML) includes the achievement of maximum tumor reduction and, therefore, eradication of a leukemic clone. The goal of the therapy is to achieve undetectable levels of the target gene, except an isolated molecular rearrangement of RUNX1-RUNX1T1.

Aim. To estimate the dynamics of the RUNX1-RUNX1T1 level and relevant clinical manifestations during the monitoring of various stages of the program therapy and after its completion.

Methods. The article presents a description of 10 cases of AML with isolated RUNX1-RUNX1T1 expression (n = 4) and the expression in combination with different molecular and cytogenetic abnormalities (= 6). In addition, a long-term monitoring of the gene expression by quantitative determination of RUNX1-RUNX1T1 using a real-time PCR was presented.

Results. The incidence of relapses in a group with a decreased RUNX1-RUNX1T1 expression level of >2 log is 75 % as compared to patients with a less significant reduction of the transcript level (with the relapse incidence equal to 0 %) (= 0.05). The increase of the RUNX1-RUNX1T1 level against the background of bone marrow remission by more than 1 log coincided with a bone marrow relapse within 5–18 weeks. In addition, long-term persistence of a certain transcript level after the completion of a program therapy without relapse is possible.

Conclusion. The study analyzed possible molecular background of different clinical outcomes of long-term persistence of the RUNX1-RUNX1T1 transcript that might lead to an individualized approach to AML patients.


Keywords: acute myeloblastic leukemia, AML, RUNX1-RUNX1T1, molecular monitoring.

Received: April 5, 2016

Accepted: April 18, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Bitter MA, Le Beau MM, Rowley JD, et al. Association between morphology, karyotype, and clinical features in myeloid leukemias. Hum Pathol. 1987;18(3):211–25. doi: 10.1016/s0046-8177(87)80002-3.
  2. Mrozek K, Heinonen K, de la Chapelle A, Bloomfield CD. Clinical significance of cytogenetics in acute myeloid leukemia. Semin Oncol. 1997;24(1):17–31.
  3. Rowe D, Cotterill SJ, Ross FM, et al. Cytogenetically cryptic AML1-ETO and CBFbeta-MYH11 gene rearrangement: incidence in 412 cases of acute myeloid leukaemia. Br J Haematol. 2000;111(4):1051–6. doi: 10.1111/j.1365-2141.2000.02474.x.
  4. Downing JR. AML1/CBFbeta transcription complex: its role in normal hematopoiesis and leukemia. Leukemia. 2001;15(4):664–5. doi: 10.1038/sj.leu.2402035.
  5. Рулина А.В., Спирин П.В., Прасолов В.С. Активированные лейкозные онкогены AML1-ETO и C-KIT: роль в развитии острого миелоидного лейкоза и современные подходы к их ингибированию. Успехи биологической химии. 2010;50:349–86.
    [Rulina AV, Spirin PV, Prasolov VS. Activated leukemic AML1-ETO и C-KIT oncogenes: their role in the development of acute myeloid leukemia and modern approaches to their inhibition. Uspekhi biologicheskoi khimii. 2010;50:349–86. (In Russ)]
  6. Grimwade D, Walker H, Oliver F, et al. A on behalf of the Medical Research Council Adult and Children’s Leukaemia Working Parties. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. Blood. 1998;92(7):2322–33.
  7. Lowenberg B. Postremission treatment of acute myelogenous leukemia. N Eng J Med. 1995;332(4):260–2. doi: 10.1056/nejm199501263320411.
  8. Byrd JC, Dodge RK, Carroll A, et al. Patients with t(8;21) (q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol. 1999;17(12):3767–75.
  9. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–36. doi: 10.1182/blood-2002-03-0772.
  10. Byrd JC, Ruppert AS, Mrozek K, et al. Repetitive cycles of high-dose cytarabine benefit patients with acute myeloid leukemia and inv(16) (p13q22) or t(16;16): results from CALGB 8461. J Clin Oncol. 2004;22(6):1087–94. doi: 10.1200/jco.2004.07.012.
  11. Schlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol. 2004;22(18):3741–50. doi: 10.1200/jco.2004.03.012.
  12. Marcucci G, Mrozek K, Ruppert AS, et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B Study. J Clin Oncol. 2005;23(24):5705–17. doi: 10.1200/jco.2005.15.610.
  13. Yin JAL, O’Brien MA, Hills RK, et al. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: Results of the United Kingdom MRC AML-15 Trial. Blood. 2012;120(14):2826–35. doi: 10.1182/blood-2012-06-435669.
  14. Jourdan E, Boissel N, Chevret S, et al. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood. 2013;121(12):2213–23. doi: 10.1182/blood-2012-10-462879.
  15. Byrd JC, Weiss RB, Arthur DC, et al. Extramedullary leukemia adversely affects hematologic complete remission rate and overall survival in patients with t(8;21)(q22;q22): results from Cancer and Leukemia Group B 8461. J Clin Oncol. 1997;15(2):466–75.
  16. Nguyen S, Leblanc T, Fenaux P, et al. A white blood cell index as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 cases from the French AML Intergroup. Blood. 2002;99(10):3517–23. doi: 10.1182/blood.V99.10.3517.
  17. Baer MR, Stewart CC, Lawrence D, et al. Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood. 1997;90(4):1643–8.
  18. Schoch C, Haase D, Haferlach T, et al. Fifty-one patients with acute myeloid leukemia and translocation t(8;21)(q22;q22): an additional deletion in 9q is an adverse prognostic factor. Leukemia. 1996;10(8):1288–95.
  19. Paschka P, Marcucci G, Ruppert AS, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006;24(24):3904–11. doi: 10.1200/jco.2006.06.9500.
  20. Boissel N, Leroy H, Brethon B, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. 2006;20(6):965–70. doi: 10.1038/sj.leu.2404188.
  21. Hoyos M, Nomdedeu JF, Esteve J, et al. Core binding factor acute myeloid leukemia: the impact of age, leukocyte count, molecular findings, and minimal residual disease. Eur J Haematol. 2013;91(3):209–18. doi: 10.1111/ejh.12130.
  22. Демидова И.А. Использование молекулярно-биологических методов для определения генетических нарушений при миелоидных лейкозах и мониторирования минимальной остаточной болезни. Онкогематология. 2007;4:17–25.
    [Demidova IA. Application of molecular-biological methods for determining genetic disorders in myeloid leukemias and monitoring of minimal residual diseases. Onkogematologiya. 2007;4:17–25. (In Russ)]
  23. Estey EH. Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol. 2013;88(4):318–27. doi: 10.1002/ajh.23404.
  24. Buccisano F, Maurillo L, Del Principe MI, et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood. 2012;119(2):332–41. doi: 10.1182/blood-2011-08-363291.
  25. Tobal K, Newton J, Nige S, et al. Molecular quantitation of minimal residual disease in acute myeloid leukemia with с t(8;21) can identify patients in durable remission and predict clinical relapse. Blood. 2000;95(3):815–9.
  26. Yin JAL, O’Brien MA, Hills RK, et al. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: Results of the United Kingdom MRC AML-15 Trial. Blood. 2012;120(14):2826–30. doi: 10.1182/blood-2012-06-435669.
  27. Jourdan E, Boissel N, Chevret S, et al. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood. 2013;121(12):2213–23. doi: 10.1182/blood-2012-10-462879.
  28. Zhu H-H, Zhang X-H, Qin Y-Z, et al. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood. 2013;121(2):4056–62. doi: 10.1182/blood-2012-11-468348.
  29. Morschhauser F, Cayuela JM, Martini S, et al. Evaluation of minimal residual disease using reverse-transcription polymerase chain reaction in t(8;21) acute myeloid leukemia: a multicenter study of 51 patients. J Clin Oncol. 2000;18(4):778–94.
  30. Willekens C, Blanchet O, Renneville A, et al. Prospective long-term minimal residual disease monitoring using RQ-PCR in RUNX1-RUNX1T1-positive acute myeloid leukemia: results of the French CBF-2006 trial. Haematologica. 2016;101(3):328–35. doi: 10.3324/haematol.2015.131946.
  31. Schnittger S, Weisser M, Schoch C, et al. New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood. 2003;102(8):2746–55. doi: 10.1182/blood-2003-03-0880.
  32. Ommen HB, Schnittger S, Jovanovic JV, et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood. 2010;115(2):198–205. doi: 10.1182/blood-2009-04-212530.
  33. Krauter J, Gorlich K, Ottmann O, et al. Prognostic value of minimal residual disease quantification by real-time reverse transcriptase polymerase chain reaction in patients with core binding factor leukemias. J Clin Oncol. 2003;21(23):4413–22. doi: 10.1200/jco.2003.03.166.
  34. Marcucci G, Livak KJ, Bi W, et al. Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse ttranscriptase polymerase chain reaction assay. Leukemia. 1998;12(9):1482–9. doi: 10.1038/sj.leu.2401128.
  35. Lane S, Saal R, Molle P, et al. A ³ 1 log rise in RQ-PCR transcript levels defines molecular relapse in core binding factor acute myeloid leukemia and predicts subsequent morphologic relapse. Leuk Lymphoma. 2008;49(3):517–23. doi: 10.1080/10428190701817266.
  36. Perrea G, Lasa A, Aventi A, et al. Prognostic value of minimal residual disease in acute myeloid leukemia with favorable cytogenetics [t(8.21) and inv(16)]. Leukemia. 2006;20(1):87–94. doi: 10.1038/sj.leu.2404015.
  37. Jaso JM, Wang SA, Jorgensen JL, et al. Multicolor flow cytometric immunophenotyping for detection of minimal residual disease in AML: Past, present and future. Bone Marrow Transplant. 2014;49(9):1129–38. doi: 10.1038/bmt.2014.99.
  38. Bruggermann M, Raff T, Flohr T, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107(3):1116–23. doi: 10.1182/blood-2005-07-2708.
  39. Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship in other prognostic factors: a Children’s Oncology Group Study. Blood. 2008;111(12):5477–85. doi: 10.1182/blood-2008-01-132837.
  40. Muller MC, Cross NC, Erben P, et al. Harmonisation of molecular monitoring of CML therapy in Europe. Leukemia. 2009;23(11):1957–63. doi: 10.1038/leu.2009.168.
  41. Jurlander J, Caligiuri MA, Ruutu T, et al. Persistence of the AMLI/ETO Fusion Transcript in Patients Treated With Allogeneic Bone Marrow Transplantation for t(8;21) Leukemia. Blood. 1996;88(6):2183–219.
  42. Kayser S, Schlenk RF, Grimwade D, et al. Minimal residual disease–directed therapy in acute myeloid leukemia. Blood. 2015;125(15):2331–5. doi: 10.1182/blood-2014-11-578815.
  43. Evans PA, Short MA, Jack AS, et al. Detection and quantitation of the transcripts associated with the inv(16) in presentation and follow-up samples from patients with AML. Leukemia. 1997;11(3):364–9. doi: 10.1038/sj.leu.2400578.
  44. Laczika K, Novak M, Hilgarth B, et al. Competitive CBFbeta/MYH11 reverse transcriptase polymerase chain reaction for quantitative assessment of minimal residual disease during post remission therapy in acute myeloid leukemia with inversion 16: a pilot study. J Clin Oncol. 1998;16(4):1519–25.
  45. Krauter J, Hoellge W, Wattjies MP, et al. Detection and quantitation of CBFB/MYH11 fusion transcript in patients with inv(16) positive acute myeloblastic leukemia by real-time RT-PCR. Genes Chromos Cancer. 2001;30(4):342–8. doi: 10.1002/gcc.1100.
  46. Marcucci G, Caligiuri MA, Dohner H, et al. Quantification of CBFbeta/MYH11 fusion trancript byreal-time RT-PCR in patients with inv(16) acute myeloid leukemia. Leukemia. 2001;15(7):1072–80. doi: 10.1038/sj.leu.2402159.
  47. Duployez N, Willekens C, Marceau-Renaut A, et al. Prognosis and monitoring of core-binding factor acute myeloid leukemia: current and emerging factors. Exp Rev Hematol. 2014;8(1):43–56. doi: 10.1586/17474086.2014.976551.
  48. Shima T, Miyamoto T, Kikushige Y, et al. The ordered acquisition of Class II and Class I mutations directs formation of human t(8;21) acute myelogenous leukemia stem cell. Exp Hematol. 2014;42(11):955–65. doi: 10.1016/j.exphem.2014.07.267.
  49. Buonamici S, Ottaviani E, Visani G, et al. Patterns of AML-ETO1 transcript expression in patients with acute myeloid leukemia and t(8;21) in complete hematologic remission. Haematologica. 2004;89(1):103–5.
  50. Song J, Mercer D, Hu X, et al. Common Leukemia- and Lymphoma-Associated Genetic Aberrations in Healthy Individuals. J Mol Diagn. 2011;13(2);213–9. doi: 10.1016/j.jmoldx.2010.10.009.
  51. Miyamoto T, Weissman IL, Akashi K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Nat Acad Sci. 2000;97(13):7521–6. doi: 10.1073/pnas.97.13.7521.
  52. Yin JAL, Tobal K. Detection of minimal residual disease in acute myeloid leukemias: methodologies, clinical and biological significance. Br J Haematol. 1999;106(3):578–90. doi: 10.1046/j.1365-2141.1999.01522.x.
  53. Corces-Zimmerman MR, Hong W-J, Weissman IL, et al. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Nat Acad Sci. 2014;111(7):2548–53. doi: 10.1073/pnas.1324297111.
  54. Russler-Germain DA, Spencer DH, Young MA, et al. The R882H DNMT3A Mutation Associated with AML Dominantly Inhibits Wild-Type DNMT3A by Blocking Its Ability to Form Active Tetramers. Cancer Cell. 2014;25(4):442–54. doi: 10.1016/j.ccr.2014.02.010.
  55. Ommen HB, Schnittger S, Jovanovic JV, et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood. 2010;115(2):198–205. doi: 10.1182/blood-2009-04-212530.
  56. Wang Y, Wu D-P, Liu Q-F, et al. In adults with t(8;21) AML, posttransplant RUNX1/RUNX1T1-based MRD monitoring, rather than c-KIT mutations, allows further risk stratification. Blood. 2014;124(12):1880–6. doi: 10.1182/blood-2014-03-563403.