Current State of Diagnosis and Treatment of Acute Myeloid Leukemias in Adult Patients in the Republic of Kazakhstan

AA Klodzinskii1, IA Pivovarova1, LG Turgunova2, AZh Anafina2, AV Zinchenko1

1 Center for Hematology, branch of Karaganda Center for Hematology, 41/43 Erubaeva str., Karaganda, Republic of Kazakhstan, 100012

2 Medical University of Karaganda, 40 Gogolya str., Karaganda, Republic of Kazakhstan, 100008

For correspondence: Aimzhan Zharkynovna Anafina, 40 Gogolya str., Karaganda, Republic of Kazakhstan, 100008; Tel.: +7(701)493-54-16; e-mail: aimzhan_31_08@mail.ru

For citation: Klodzinskii AA, Pivovarova IA, Turgunova LG, et al. Current State of Diagnosis and Treatment of Acute Myeloid Leukemias in Adult Patients in the Republic of Kazakhstan. Clinical oncohematology. 2022;15(1):69–75. (In Russ).

DOI: 10.21320/2500-2139-2022-15-1-69-75


ABSTRACT

Background. In recent years, the incidence of acute myeloid leukemias (AML) globally has continued to increase. Current approaches to AML treatment remain a challenge for the healthcare in many countries. There are only single studies on the analysis of AML state in adult patients in Kazakhstan. Over the last 10 years in Kazakhstan, no results of AML monitoring in adult patients have been available.

Aim. To study the characteristics of clinical course and treatment outcomes in AML in the Central Kazakhstan and in the city of Ust-Kamenogorsk, East Kazakhstan Region.

Materials & Methods. The study enrolled 86 AML patients (46 men and 40 women), the median age was 60.5 years (range 19–86 years); 64 (74.4 %) patients were from Karaganda Region, 15 (17.4 %) patients were from Ust-Kamenogorsk, and 7 (8.1 %) patients were from other regions of Kazakhstan. The analysis covered the structure and treatment outcomes in newly diagnosed AML patients within the period from 2018 to June, 2021. Statistical analysis of data was made using SPSS Statistics 23.0.

Results. The analysis of diagnostic techniques showed that myelogram and immunophenotyping were used in 98.8 %, cytogenetic assay was made in 18 %, and molecular analysis was performed in 59.3 % of patients. The “7+3” remission induction was administered in 54.6 % of patients, 20.9 % of patients were treated with hypomethylating agents and low doses of cytarabine, and 24.4 % of patients were on palliative and supportive therapy. Out of 47 patients treated with the “7+3” remission induction, complete clinical hematological remission was reached in 29 (61.7 %) patients. Primary resistance was reported in 21.3 % of patients. Early mortality (death within 30 days from the start of induction) rate was 17 %. High-dose cytarabine consolidation (1.5–3 g/m2 twice every other day, 2–3 courses) was administered to 75.8 % of patients. All the allogeneic bone marrow transplantations (n = 7) were performed at the National Research Center for Oncology and Transplantology in Nur-Sultan. The median overall survival in the group of standard “7+3” chemotherapy recipients was 11 months (range 1–83 months), and the median disease-free survival was 9 months (range 2–79 months).

Conclusion. The study presents the characteristics and short-term outcomes of treatment of adult AML patients in Kazakhstan. The study limitations were a short follow-up period and enrollment of patients only from two regions of Kazakhstan. It is necessary to continue improving the current standards of AML diagnosis and treatment of adult patients.

Keywords: Kazakhstan, acute myeloid leukemias, diagnosis, treatment.

Received: September 7, 2021

Accepted: December 10, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Miranda-Filho A, Pineros M, Ferlay J, et al. Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol. 2018;5(1):e14–e24. doi: 10.1016/S2352-3026(17)30232-6.
  2. The global burden of haematological diseases. Lancet Haematol. 2020;7(12):e851. doi: 10.1016/S2352-3026(20)30370-7.
  3. Igissinov N, Kulmirzayeva D, Moore MA, et al. Epidemiological Assessment of Leukemia in Kazakhstan, 2003–2012. Asian Pac J Cancer Prev. 2014;15(16):6969–72. doi: 10.7314/apjcp.2014.15.16.6969.
  4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. doi: 10.3322/caac.21387.
  5. Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018;392(10147):593–606. doi: 10.1016/S0140-6736(18)31041-9.
  6. Dong Y, Shi O, Zeng Q, et al. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp Hematol Oncol. 2020;9:14. doi: 10.1186/s40164-020-00170-6.
  7. Meillon-Garcia LA, Demichelis-Gomez R. Access to Therapy for Acute Myeloid Leukemia in the Developing World: Barriers and Solutions. Curr Oncol Rep. 2020;22(12):125. doi: 10.1007/s11912-020-00987-8.
  8. Колеснев А.В., Клодзинский А.А., Гайнутдинова О.В. и др. Острый миелобластный лейкоз у взрослых: первые результаты лечения по протоколу AML 2012/203KZ/VII. Международный симпозиум, посвященный памяти Раисы Максимовны Горбачевой «Трансплантация гемопоэтических стволовых клеток у детей и взрослых», 19–21 сентября 2013 г. Астана, Республика Казахстан.
    [Kolesnev AV, Klodzinskii AA, Gainutdinova OV, et al. Acute myeloblastic leukemia in adults: first outcomes of treatment according to AML 2012/203KZ/VII regimen. International symposium in memory of Raisa Maksimovna Gorbacheva “Hematopoietic Stem Cell Transplantation in Children and Adults”. Astana; September 19–21, 2013. (In Russ)]
  9. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-733196.
  10. Тургунова Л.Г., Шилова В.Н., Недова О.И. и др. Результаты лечения острых лейкозов у взрослых. Астана медициналык журналы. 2005;3:94–6.
    [Turgunova LG, Shilova VN, Nedova OI, et al. Outcomes of acute leukemia treatment in adults. Astana meditsinalyk zhurnaly. 2005;3:94–6. (In Russ)]
  11. Jacob S, Jacob SE, Suryanarayana BS, et al. Clinical Profile and Short Term Outcome of Adult Patients with Acute Myeloid Leukemia. Indian J Hematol Blood Transfus. 2019;5(3):431–6. doi: 10.1007/s12288-018-1051-9.
  12. Noone AM, Howlader N, Krapcho M, et al. SEER cancer statistics review, 1975–2015. Bethesda: National Cancer Institute; 2018.
  13. Colunga-Pedraza PR, Gomez-Cruz GB, Colunga-Pedraza JE, Ruiz-Arguelles GJ. Geographic hematology: some observations in Mexico. Acta Haematol. 2018;140(2):114–20. doi: 10.1159/000491989.
  14. Gomez-Almaguer D, Marcos-Ramirez ER, Montano-Figueroa EH, et al. Acute leukaemia characteristics are different around the world: the Mexican perspective. Clin Lymphoma Myeloma Leuk. 2017;17(1):46–51. doi: 10.1016/j.clml.2016.09.003.
  15. Rao AV. Fitness in the elderly: how to make decisions regarding acute myeloid leukemia induction. Hematology Am Soc Hematol Educ Program. 2016;2016(1):339–47. doi: 10.1182/asheducation-2016.1.339.
  16. Kayal S, Sengar M, Jain H, et al. Induction Related Mortality in Acute Myeloid Leukemia: Multivariate Model of Predictive Score from the Indian Acute Leukemia Research Database (INwARD) of the Hematology Cancer Consortium (HCC). Blood. 2019;134(Suppl_1):2615. doi: 10.1182/blood-2019-127623.
  17. Othus M, Kantarjian H, Petersdorf S, et al. Declining rates of treatment-related mortality in patients with newly diagnosed AML given ‘intense’ induction regimens: a report from SWOG and MD Anderson. Leukemia. 2014;28(2):289–92. doi: 10.1038/leu.2013.176.
  18. Ho G, Jonas BA, Li Q, et al. Early mortality and complications in hospitalized adult Californians with acute myeloid leukaemia. Br J Haematol. 2017;177(5):791–9. doi: 10.1111/bjh.14631.
  19. Demichelis R, Zapata N, Leyto F, et al. Survival analysis of adult patients with acute myeloid leukemia (AML) treated with intensive chemotherapy: results of a Mexican national AML registry. Clin Lymphoma Myeloma Leuk. 2019;19(1):S209–S2010. doi: 10.1016/j.clml.2019.07.074.
  20. Benicio MTL, Ribeiro AFT, Americo AD, et al. Evaluation of the European LeukemiaNet recommendations for predicting outcomes of patients with acute myeloid leukemia treated in low- and middle-income countries (LMIC): a Brazilian experience. Leuk Res. 2017;60:109–14. doi: 10.1016/j.leukres.2017.07.005.
  21. Malkan UY, Gunes G, Eliacik E. The factors affecting early death after the initial therapy of acute myeloid leukemia. Int J Clin Exp Med. 2015;8(12):22564–9.
  22. Reville PK, Gonzalez GMN, Ravandi F, et al. Predictors of Early Mortality, Response, and Survival in Newly Diagnosed Acute Myeloid Leukemia (AML) Using a Contemporary Academic Cohort. Blood. 2020;136(Suppl 1):44–5. doi: 10.1182/blood-2020-141837.
  23. Master S, Mansour R, Devarakondaet SS, et al. Predictors of Survival in Acute Myeloid Leukemia by Treatment Modality. Anticancer Res. 2016;36(4):1719–27.
  24. Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131(12):1275–91. doi: 10.1182/blood-2017-09-801498.
  25. Philip C, George B, Ganapule A, et al. Acute myeloid leukaemia: challenges and real world data from India. Br J Haematol. 2015;170(1):110–7. doi: 10.1111/bjh.13406.
  26. Loke J, Malladi R, Moss P, et al. The role of allogeneic stem cell transplantation in the management of acute myeloid leukaemia: a triumph of hope and experience. Br J Haematol. 2020;188(1):129–46. doi: 10.1111/bjh.16355.

Systemic Т-Cell Lymphoproliferative Disease Associated with Epstein-Barr Virus: A Literature Review and a Case Report

EA Shalamova, AM Kovrigina, IA Shupletsova, EE Nikulina, VD Latyshev, NV Tsvetaeva

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Alla Mikhailovna Kovrigina, PhD in Biology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: kovrigina.alla@gmail.com

For citation: Shalamova EA, Kovrigina AM, Shupletsova IA, et al. Systemic Т-Cell Lymphoproliferative Disease Associated with Epstein-Barr Virus: A Literature Review and a Case Report. Clinical oncohematology. 2021;14(4):477–87. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-477-487


ABSTRACT

Epstein-Barr virus (EBV) is ubiquitous, being identified in 90–95 % of adults. Its reactivation in immunodeficiency conditions often leads to clonal transformation of В-lymphocytes and development of В-cell lymphoproliferative diseases (LPD) and В-cell lymphomas. At the same time, in the countries of North-East and East Asia, as well as Latin America, non-immunocompromised patients sometimes demonstrate the development of EBV-associated Т-cell lymphoproliferative diseases. The present paper reports a rare case of EBV-associated systemic T-LPD with lymphadenopathy, splenomegaly as well as acute autoimmune hemolytic anemia in a man of Caucasian race. Complex analysis of anamnestic, pathomorphological, and laboratory data allowed to distinguish this disease from Т-cell lymphoma and choose the appropriate patient management strategy.

Keywords: lymphoproliferative disease, Epstein-Barr virus, EBV+ T-LPD, diagnosis, pathomorphology.

Received: May 30, 2021

Accepted: September 2, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Smatti MK, Al-Sadeq DW, Ali NH, et al. Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene Among Healthy Population: An Update. Front Oncol. 2018;8:211. doi: 10.3389/fonc.2018.00211.
  2. Kuri A, Jacobs BM, Vickaryous N, et al. Epidemiology of Epstein-Barr virus infection and infectious mononucleosis in the United Kingdom. BMC Public Health. 2020;20(1):912. doi: 10.1186/s12889-020-09049-x.
  3. Rostgaard K, Balfour HH Jr, Jarrett R, et al. Primary Epstein-Barr virus infection with and without infectious mononucleosis. PLoS One. 2019;14(12):e0226436. doi: 10.1371/journal.pone.0226436.
  4. Montes-Mojarro IA, Kim WY, Fend F, Quintanilla-Martinez L. Epstein-Barr virus positive T and NK-cell lymphoproliferations: Morphological features and differential diagnosis. Semin Diagn Pathol. 2020;37(1):32–46. doi: 10.1053/j.semdp.2019.12.004.
  5. Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors. Front Oncol. 2019;9:713. doi: 10.3389/fonc.2019.00713.
  6. Pei Y, Lewis AE, Robertson ES. Current Progress in EBV-Associated B-Cell Lymphomas. Adv Exp Med Biol. 2017;1018:57–74. doi: 10.1007/978-981-10-5765-6_5.
  7. Martinez OM, Krams SM. The Immune Response to Epstein Barr Virus and Implications for Posttransplant Lymphoproliferative Disorder. 2017;101(9):2009–16. doi: 10.1097/TP.0000000000001767.
  8. Compagno F, Basso S, Panigari A, et al. Management of PTLD After Hematopoietic Stem Cell Transplantation: Immunological Perspectives. Front Immunol. 2020;11:567020. doi: 10.3389/fimmu.2020.567020.
  9. Ковригина А.М. ВЭБ-позитивные лимфопролиферативные заболевания: новая концепция, дифференциальная диагностика (обзор литературы и собственные наблюдения). Клиническая онкогематология. 2018;11(4):326–37. doi: 10.21320/2500-2139-2018-11-4-326-337.
    [Kovrigina AM. EBV-Positive Lymphoproliferative Diseases: A New Concept and Differential Diagnosis (Literature Review and Case Reports). Clinical oncohematology. 2018;11(4):326–37. doi: 10.21320/2500-2139-2018-11-4-326-337. (In Russ)]
  10. Kimura H, Fujiwara S. Overview of EBV-Associated T/NK-Cell Lymphoproliferative Diseases. Front Pediatr. 2019;6:417. doi: 10.3389/fped.2018.00417.
  11. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017. pp. 358–60.
  12. Coffey AM, Lewis A, Marcogliese AN, et al. A clinicopathologic study of the spectrum of systemic forms of EBV‐associated T‐cell lymphoproliferative disorders of childhood: A single tertiary care pediatric institution experience in North America. Pediatr Blood Cancer. 2019;66(8):e27798. doi: 10.1002/pbc.27798.
  13. Ohshima K, Kimura H, Yoshino T, et al. Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD. Pathol Int. 2008;58(4):209–17. doi: 10.1111/j.1440-1827.2008.02213.x.
  14. Kawamoto K, Miyoshi H, Suzuki T, et al. A distinct subtype of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorder: adult patients with chronic active Epstein-Barr virus infection-like features. 2018;103(6):1018–28. doi: 10.3324/haematol.2017.174177.
  15. Fujiwara S, Kimura H, Imadome K, et al. Current research on chronic active Epstein-Barr virus infection in Japan. Pediatr Int. 2014;56(2):159–66. doi: 10.1111/ped.12314.
  16. van Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317. doi: 10.1038/sj.leu.2403202.
  17. Чернова Н.Г., Сидорова Ю.В., Смирнова С.Ю. и др. Молекулярная диагностика ангиоиммунобластной Т-клеточной лимфомы. Терапевтический архив. 2019;91(7):63–9. doi: 10.26442/00403660.2019.07.000330.
    [Chernova NG, Sidorova YuV, Smirnova SYu, et al. Molecular diagnosis angioimmunoblastic T-cell lymphoma. Terapevticheskii arkhiv. 2019;91(7):63–9. doi: 10.26442/00403660.2019.07.000330. (In Russ)]
  18. Cohen JI, Jaffe ES, Dale JK, et al. Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. 2011;117(22):5835–49. doi: 10.1182/blood-2010-11-316745.
  19. Arai A. Advances in the Study of Chronic Active Epstein-Barr Virus Infection: Clinical Features Under the 2016 WHO Classification and Mechanisms of Development. Front Pediatr. 2019;7:14. doi: 10.3389/fped.2019.00014.
  20. Fournier B, Boutboul D, Bruneau J, et al. Rapid identification and characterization of infected cells in blood during chronic active Epstein-Barr virus infection. J Exp Med. 2020;217(11):e20192262. doi: 10.1084/jem.20192262.
  21. Kawabe S, Ito Y, Gotoh K, et al. Application of flow cytometric in situ hybridization assay to Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases. Cancer Sci. 2012;103(8):1481–8. doi: 10.1111/j.1349-7006.2012.02305.x.
  22. Paik JH, Choe JY, Kim H, et al. Clinicopathological categorization of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disease: an analysis of 42 cases with an emphasis on prognostic implications. Leuk Lymphoma. 2017;58(1):53–63. doi: 10.1080/10428194.2016.1179297.
  23. Kimura H. EBV in T-/NK-Cell Tumorigenesis. Adv Exp Med Biol. 2018;1045:459–75. doi: 10.1007/978-981-10-7230-7_21.
  24. Takada H, Imadome KI, Shibayama H, et al. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells. PLoS One. 2017;12(3):e0174136. doi: 10.1371/journal.pone.0174136.
  25. Okuno Y, Murata T, Sato Y, et al. Defective Epstein-Barr virus in chronic active infection and haematological malignancy. Nat Microbiol. 2019;4(3):404–13. doi: 10.1038/s41564-018-0334-0.
  26. Katano H, Ali MA, Patera AC, et al. Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. 2004;103(4):1244–52. doi: 10.1182/blood-2003-06-2171.
  27. Beer T, Dorion P. Angioimmunoblastic T-Cell Lymphoma Presenting with an Acute Serologic Epstein-Barr Virus Profile. Hematol Rep. 2015;7(2):5893. doi: 10.4081/hr.2015.5893.
  28. Steciuk MR, Massengill S, Banks PM. In immunocompromised patients, Epstein-Barr virus lymphadenitis can mimic angioimmunoblastic T-cell lymphoma morphologically, immunophenotypically, and genetically: a case report and review of the literature. Hum Pathol. 2012;43(1):127–33. doi: 10.1016/j.humpath.2011.02.024.
  29. Chiba S, Sakata-Yanagimoto M. Advances in understanding of angioimmunoblastic T-cell lymphoma. 2020;34(10):2592–606. doi: 10.1038/s41375-020-0990-y.
  30. Yabe M, Dogan A, Horwitz SM, Moskowitz AJ. Angioimmunoblastic T-Cell Lymphoma. In: Querfeld C, Zain J, Rosen S, eds. T-Cell and NK-Cell Lymphomas. Cancer Treatment and Research. Springer; Vol. 176. pp. 99–126. doi: 10.1007/978-3-319-99716-2_5.
  31. Kato S, Takahashi E, Asano N, et al. Nodal cytotoxic molecule (CM)-positive Epstein-Barr virus (EBV)-associated peripheral T cell lymphoma (PTCL): a clinicopathological study of 26 cases. 2012;61(2):186–99. doi: 10.1111/j.1365-2559.2012.04199.x.
  32. Jeon YK, Kim J-H, Sung J-Y, et al.; Hematopathology Study Group of the Korean Society of P. Epstein-Barr virus-positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features. Hum Pathol. 2015;46(7):981–90. doi: 10.1016/j.humpath.2015.03.002.
  33. Takahashi E, Asano N, Li C, et al. Nodal T/NK-cell lymphoma of nasal type: a clinicopathological study of six cases. 2008;52(5):585–96. doi: 10.1111/j.1365-2559.2008.02997.x.
  34. Ng SB, Chung TH, Kato S, et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. 2018;103(2):278–87. doi: 10.3324/haematol.2017.180430.
  35. Edwards ESJ, Bier J, Cole TS, et al. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. J Allergy Clin Immunol. 2019;143(1):276–291.e6. doi: 10.1016/j.jaci.2018.04.030.
  36. Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev. 2019;291(1):174–89. doi: 10.1111/imr.12791.
  37. Files JK, Boppana S, Perez MD, et al. Sustained cellular immune dysregulation in individuals recovering from SARS-CoV-2 infection. J Clin Invest. 2021;131(1):e140491. doi: 10.1172/JCI140491.
  38. Liu J, Yang X, Wang H, et al. The analysis of the long-term impact of SARS-CoV-2 on the cellular immune system in individuals recovering from COVID-19 reveals a profound NK/T cell impairment. mBio. 2021 (Preprint). doi: 10.1101/2020.08.21.20179358.
  39. Kovoor JG, Scott NA, Tivey DR, et al. Proposed delay for safe surgery after COVID-19. ANZ J Surg. 2021;91(4):495–506. doi: 10.1111/ans.16682.
  40. Dematapitiya C, Perera C, Chinthaka W, et al. Cold type autoimmune hemolytic anemia – a rare manifestation of infectious mononucleosis; serum ferritin as an important biomarker. BMC Infect Dis. 2019;19(1):68. doi: 10.1186/s12879-019-3722-z.
  41. Teijido J, Tillotson K, Liu JM. A Rare Presentation of Epstein-Barr Virus Infection. J Emerg Med. 2020;58(2):e71-e73. doi: 10.1016/j.jemermed.2019.11.043.
  42. Whitelaw F, Brook MG, Kennedy N, Weir WR. Haemolytic anaemia complicating Epstein-Barr virus infection. Br J Clin Pract. 1995;49(4):212–3.
  43. Aveiro M, Ferreira G, Matias C, et al. Hard-To-Treat Idiopathic Refractory Autoimmune Haemolytic Anaemia with Reticulocytopenia. Eur J Case Rep Intern Med. 2020;7(12):002112. doi: 10.12890/2020_002112.
  44. Fattizzo B, Giannotta JA, Serpenti F, Barcellini W. Difficult Cases of Autoimmune Hemolytic Anemia: A Challenge for the Internal Medicine Specialist. J Clin Med. 2020;9(12):3858. doi: 10.3390/jcm9123858.
  45. Barcellini W, Fattizzo B, Zaninoni A, et al. Clinical heterogeneity and predictors of outcome in primary autoimmune hemolytic anemia: a GIMEMA study of 308 patients. 2014;124(19):2930–6. doi: 10.1182/blood-2014-06-583021.
  46. Barcellini W, Fattizzo B. Clinical Applications of Hemolytic Markers in the Differential Diagnosis and Management of Hemolytic Anemia. Dis Markers. 2015;2015:635670. doi: 10.1155/2015/635670.
  47. Fink S, Tsai MH, Schnitzler P, et al. The Epstein–Barr virus DNA load in the peripheral blood of transplant recipients does not accurately reflect the burden of infected cells. Transpl Int. 2017;30(1):57–67. doi: 10.1111/tri.12871.
  48. Andrei G, Trompet E, Snoeck R. Novel Therapeutics for Epstein-Barr Virus. 2019;24(5):997. doi: 10.3390/molecules24050997.

Clinical and Immunomorphological Characteristics of Lymphomatoid Papulosis Type E (Literature Review and Case Report)

TT Valiev1, AM Kovrigina2, TS Belysheva1

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Timur Teimurazovich Valiev, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; e-mail: timurvaliev@mail.ru

For citation: Valiev TT, Kovrigina AM, Belysheva TS. Clinical and Immunomorphological Characteristics of Lymphomatoid Papulosis Type E (Literature Review and Case Report). Clinical oncohematology. 2020;13(4):389–94. (In Russ).

DOI: 10.21320/2500-2139-2020-13-4-389-394


ABSTRACT

Lymphomatoid papulosis (LP) is a rare variant of benign lymphoproliferative disease with skin involvement. Based on clinical, morphological, and immunobiological characteristics, WHO hematopoietic and lymphoid tissue tumor classification (2016) differentiates between several LP types: А, В, С, D, Е, and with 6p25.3 rearrangement. The present article reviews the literature on clinical course, pathomorphological, immunological, and biomolecular characteristics of LP in adults and children. For the first time in the domestic literature, it provides a case report of LP, type E, in a 2-year-old child. Differential diagnosis and optimal disease management of LP are also described in detail.

Keywords: lymphomatoid papulosis, clinical features, diagnosis, treatment.

Received: June 9, 2020

Accepted: September 15, 2020

Read in PDF


REFERENCES

  1. Gross TG, Termuhlen AM. Pediatric non-Hodgkin lymphoma. Curr Hematol Malig Rep. 2008;3(3):167–73. doi: 10.1007/s11899-008-0024-8.

  2. Macaulay Lymphomatoid papulosis: A continuing self-healing eruption, clinically benign—histologically malignant. Arch Dermatol. 1968;97(1):23–30. doi: 10.1001/archderm.97.1.23.

  3. Liu HL, Hoppe RT, Kohler S, et al. CD30+ cutaneous lymphoproliferative disorders: the Stanford experience in lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma. J Am Acad Dermatol. 2003;49(6):1049–58. doi: 10.1016/s0190-9622(03)02484-8.

  4. Wieser I, Oh CW, Talpur R, et al. Lymphomatoid papulosis: treatment response and associated lymphomas in a study of 180 patients. J Am Acad Dermatol. 2016;74(1):59–67. doi: 10.1016/j.jaad.2015.09.013.

  5. Martorell-Calatayud А, Hernandez-Martin А, Colmenero I, et al. Lymphomatoid Papulosis in Children: Report of 9 Cases and Review of the Literature. Actas Dermosifiliogr. 2010;101(8):693–701.

  6. Sauder MB, O’Malley JT, LeBoeuf NR. CD30+ lymphoproliferative disorders of the skin. Hematol Oncol Clin North Am. 2017;31(2):317–34. doi: 10.1016/j.hoc.2016.11.006.

  7. Duvic M. CD30+ neoplasms of the skin. Curr Hematol Malig Rep. 2011;6(4):245–50. doi: 10.1007/s11899-011-0096-8.

  8. Валиев Т.Т., Виноградова Е.Ю., Гилязитдинова Е.А. и др. Случай саркомной трансформации лимфоматоидного папулеза. Гематология и трансфузиология. 2006;5:44–6. [Valiev TT, Vinogradova EYu, Gilyazitdinova EA, et al. A case of sarcomatous transformation of lymphomatoid papulosis. Gematologiya i transfuziologiya. 2006;5:44–6. (In Russ)]

  9. Nijsten T, Curiel-Lewandrowski C, Kadin ME. Lymphomatoid papulosis in children: a retrospective cohort study of 35 cases. Arch Dermatol. 2004;140(3):306–12. doi: 10.1001/archderm.140.3.306.

  10. LeBoit Lymphomatoid papulosis and cutaneous CD30+ lymphoma. Am J Dermatopathol. 1996;18(3):221–35. doi: 10.1097/00000372-199606000-00001.

  11. El Shabrawi-Caelen L, Kerl H, Cerroni L. Lymphomatoid papulosis: reappraisal of clinicopathologic presentation and classification into subtypes A, B, and C. Arch Dermatol. 2004;140(4):441–7. doi: 10.1001/archderm.140.4.441.

  12. Kempf W, Kazakov DV, Scharer L, et al. Angioinvasive lymphomatoid papulosis: a new variant simulating aggressive lymphomas. Am J Surg Pathol. 2013;37(1):1–13. doi: 10.1097/PAS.0b013e3182648596.

  13. Sharaf MA, Romanelli P, Kirsner R, Miteva M. Angioinvasive lymphomatoid papulosis: another case of a newly described variant. Am J Dermatopathol. 2014;36(3):75–7. doi: 10.1097/DAD.0b013e3182943394.

  14. Scarisbrick JJ, Evans AV, Woolford AJ, et al. Regional lymphomatoid papulosis: a report of four cases. Br J Dermatol. 1999;141(6):1125–8. doi: 10.1046/j.1365-2133.1999.03218.x.

  15. Ba W, Yin G, Yang J, et al. Lymphomatoid papulosis type E with a CD56+ immunophenotype presented with purpura-like lesions. J Cutan Pathol. 2019;46(7):542–5. doi: 10.1111/cup.13472.

  16. Kiavash K, Abner SM, Malone JC. New variant lymphomatoid papulosis type E preceding and coexisting with mycosis fungoides – a case report and review of the literature. J Cutan Pathol. 2015;42(12):1018–23. doi: 10.1111/cup.12606.

  17. Fujimura T, Lyu C, Tsuchiyama K, Aiba S. CD30-Positive Angioinvasive Lymphomatoid Papulosis (Type E) Developing from Parapsoriasis en Plaque. Case Rep Oncol. 2018;11(3):850–4. doi: 10.1159/000495689.

  18. Kempf W, Pfaltz K, Vermeer MH, et al. EORTC, ISCL, and USCLC consensus recommendations for the treatment of primary cutaneous CD30-positive lymphoproliferative disorders: lymphomatoid papulosis and primary cutaneous anaplastic large-cell lymphoma. 2011;118(15):4024–35. doi: 10.1182/blood-2011-05-351346.

  19. Kakizaki A, Fujimura T, Kambayashi Y, et al. Comparison of CD163+ Macrophages and CD206+ Cells in Lesional Skin of CD30+ Lymphoproliferative Disorders of Lymphomatoid Papulosis and Primary Cutaneous Anaplastic Large-cell Lymphoma. Acta Derm Venereol. 2015;95(5):600–2. doi: 10.2340/00015555-2016.

Primary Bone Lymphomas: 18F-FDG PET and PET-CT as Methods of Diagnosis and Efficacy Estimation of Antitumor Treatment

AK Smol’yaninova1, ER Moskalets2, GA Yatsyk1, IE Kostina1, AS Bogolyubskaya3, NG Gabeeva1, EG Gemdzhian1, SA Tatarnikova1, DS Badmadzhapova1, EE Zvonkov1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 European Medical Center, 35 Shchepkina str., Moscow, Russian Federation, 129090

3 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Anna Konstantinovna Smol’yaninova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(926)912-31-16; e-mail: annmo8@mail.ru

For citation: Smol’yaninova AK, Moskalets ER, Yatsyk GA, et al. Primary Bone Lymphomas: 18F-FDG PET and PET-CT as Methods of Diagnosis and Efficacy Estimation of Antitumor Treatment. Clinical oncohematology. 2020;13(1):33–49 (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-33-49


ABSTRACT

Background. Primary bone lymphoma (PBL) is a rare malignant tumor. Initial examination aimed at detecting all primary lesions is an indispensable prerequisite for the choice of optimal antitumor treatment. Standard methods of diagnosis (X-ray, CT, and MRI) are not always adequate to measure the real tumor mass. Another well-known characteristic feature of PBL is a challenge in evaluating the effect of its treatment because of residual changes in the bones of most patients. However, the data on using 18F-FDG PET, another method of metabolic imaging, in PBL are rather rare in accessible literature.

Aim. To study the specific use of PET with 18F-FDG at initial examination and efficacy estimation of PBL treatment.

Materials & Methods. The trial included 21 PBL patients who received PET with 18F-FDG at initial examination and a month after the end of treatment. The results of 18F-FDG PET imaging were compared with the data obtained by means of structural diagnostic methods (CT and MRI) and the analysis of biopsy samples with pathologic lesions.

Results. Intensive uptake of 18F-FDG (SUVmax 8.6–40.1, mean SUVmax 23.5), according to PET data, was reported in all patients in those tumor lesions which were identified by the structural diagnostic methods and confirmed by biopsies. Besides, each of 21 cases showed pathologic infiltration of adjacent soft tissues with high metabolic activity. In PET-CT with 18F-FDG 13 further tumor localizations were revealed in 8 (38 %) patients. On completing the therapy, according to CT and MRI data, residual changes were observed in all (n = 21, 100 %) patients. The residual metabolic activity in the involved bones was identified in 13 (62 %) patients (SUVmax 2.91–8.7, mean SUVmax 4.2). In 4 of them the residual lesions were subjected to biopsy. None of 4 cases was reported to show tumors. Only in 1 out of 13 patients with residual metabolic changes a tumor relapse was detected. Overall 10-year survival in the groups of patients with and without FDG+ residual changes was 91 % and 100 %, respectively, with insignificant differences (= 0.39).

Conclusion. PET-CT with 18F-FDG is a highly sensitive technique for evaluating the primary lesion volumes in PBL patients. In 100 % of bone and soft tissue lesions an intensive uptake of 18F-FDG was observed. At the same time our study showed persistent metabolic activity on completing antitumor treatment in more than a half of patients, and in most of them it was not caused by tumor. Therefore, in our view, ongoing residual metabolic activity in PBL cannot always be regarded as an indication for continued treatment or consolidation radiotherapy.

Keywords: primary bone lymphoma, survival, positron emission tomography, diagnosis, efficacy estimation of antitumor treatment.

Received: August 2, 2019

Accepted: December 5, 2019

Read in PDF


REFERENCES

  1. Matikas A, Briasoulis A, Tzannou I, et al. Primary bone lymphoma: a retrospective analysis of 22 patients treated in a single tertiary center. Acta Haematol. 2013;130(4):291–6. doi: 10.1159/000351051.

  2. Bacci G, Jaffe N, Emiliani E, et al. Therapy for primary non-Hodgkin’s lymphoma of bone and a comparison of results with Ewing’s sarcoma. Ten year’s experience at the Istituto Ortopedico Rizzoli. Cancer. 1986;57(8):1468–72. doi: 10.1002/1097-0142(19860415)57:8<1468::aid-cncr2820570806>3.0.co;2-0.

  3. Fidias P, Spiro I, Scobczak ML, et al. Long-term results of combined modality therapy in primary bone lymphomas. Int J Radiat Oncol Biol Phys. 1999;45(5):1213–38. doi: 10.1016/s0360-3016(99)00305-3.

  4. Messina C, Ferreri AJ, Govi S, et al. Clinical features, management and prognosis of multifocal primary bone lymphoma: a retrospective study of the international Extranodal Lymphoma Study Group (the IELSG 14 study). Br J Haematol. 2014;164(6):834–40. doi: 10.1111/bjh.12714.

  5. Морозова А.К., Звонков Е.Е., Мамонов В.Е. и др. Первичные лимфатические опухоли костей и мягких тканей: сравнительная оценка результатов лечения. Терапевтический архив. 2012;84(7):42–9.

    [Morozova AK, Zvonkov EE, Mamonov VE, et al. Primary lymphomas of bones and soft tissues: comparative assessment of treatment results. Terapevticheskii arkhiv. 2012;84(7):42–9. (In Russ)]

  6. Gabeeva NG, Zvonkov EE, Morozova AK, et al. Long-term follow-up of primary bone diffuse large B-cell lymphoma treated with m NHL-BFM-90. Blood. 2016;128(22):3025.

  7. Смольянинова А.К., Габеева Н.Г., Мамонов В.Е. и др. Первичная лимфома костей: 10-летние результаты проспективного исследования в одной клинике. Гематология и трансфузиология. 2018;63(S1):181.

    [Smol’yaninova AK, Gabeeva NG, Mamonov VE, et al. Primary bone lymphoma: 10-year results of a prospective single-center trial. Gematologiya i transfuziologiya. 2018;63(S1):181. (In Russ)]

  8. Lewis VO, Primus G, Anastasi J, et al. Oncologic outcomes of primary lymphomas of bone in adults. Clin Orthop Rel Res. 2003;415:90–7. doi: 10.1097/01.blo.0000093901.12372.ad.

  9. Ostrowski ML, Unni KK, Banks PM, et al. Malignant Lymphoma of Bone. Cancer. 1986;58(12):2646–55. doi: 10.1002/1097-0142(19861215)58:12<2646::aid-cncr2820581217>3.0.co;2-u.

  10. Смольянинова А.К., Габеева Н.Г., Мамонов В.Е. и др. Первичные лимфомы костей: долгосрочные результаты проспективного одноцентрового исследования. Клиническая онкогематология. 2019;12(3):247–62. doi: 10.21320/2500-2139-2019-12-3-247-262.

    [Smol’yaninova AK, Gabeeva NG, Mamonov VE, et al. Primary Bone Lymphomas: Long-Term Results of a Prospective Single-Center Trial. Clinical oncohematology. 2019;12(3):247–62. doi: 10.21320/2500-2139-2019-12-3-247-262. (In Russ)]

  11. Ueda T, Aozasa K, Ohsawa M, et al. Malignant lymphomas of bone in Japan. Cancer. 1989;64(11):2387–92. doi: 10.1002/1097-0142(19891201)64:11<2387::aid-cncr2820641132>3.0.co;2-1

  12. Meignan M, Barrington S, Itti E, et al. Report on the 4th international workshop on positron emission tomography in lymphoma held in Menton, France, 3–5 October 2012. Leuk Lymphoma. 2013;55(1):31–7. doi: 10.3109/10428194.2013.802784.

  13. Егорова Е.К., Габеева Н.Г., Мамонов В.Е. и др. Первичные лимфатические опухоли костей: описание двух случаев и обзор литературы. Онкогематология. 2008;3(4):5–10.

    [Egorova EK, Gabeeva NG, Mamonov VE, et al. Primary lymphatic tumors of bones: two case reports and a review of l Onkogematologiya. 2008;3(4):5–10. (In Russ)]

  14. Christie DR, Dear K, Le T, et al. Limited chemotherapy and shrinking field radiotherapy for osteolymphoma (primary bone lymphoma): results from the trans-Tasman Radiation Oncology Group 99.04 and Australasian Leukaemia and Lymphoma Group LY02 prospective trial. Int J Radiat Oncol Biol Phys. 2011;80(4):1164–70. doi: 10.1016/j.ijrobp.2010.03.036.

  15. Iwaya Y, Tekenaka K, Akamatsu T. Primary Gastric Diffuse Large B-cell Lymphoma with Orbital Involvement: Diagnostic Usefulness of 18-fluorodeoxyglucose Positron Emission Tomography. Intern Med. 2011;50(18):1953–6. doi: 10.2169/internalmedicine.50.5524.

  16. Demircay E, Hornicek J, Mankin HJ, at al. Malignant Lymphoma of Bone: A Review of 119 Patients. Clin Orthop Relat Res. 2013;471(8):2684–90. doi: 10.1007/s11999-013-2991-x.

  17. Fletcher CDM, Unni KK, Mertens F. (eds) Pathology and genetics of tumours of soft tissue and bone. World Health Organization Classification of Tumours. 3rd Edition. Lyon: IARC Press; 2002.

  18. Fletcher CDM. The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology. 2006;48(1):3–12. doi: 10.1111/j.1365-2559.2005.02284.x.

  19. Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F. World health organization classification of tumours of soft tissue and bone. 4th edition. Lyon: IARC Press; 2013. 468 p.

  20. Krishnan А, Shirkhoda А, Tehranzadeh Т, et al. Primary Bone Lymphoma: Radiographic–MR Imaging Correlation. RadioGraph. 2003;23(6):1371–87. doi: 10.1148/rg.236025056.

  21. Mulligani ME, Kransdorf MJ. Sequestra in Primary Lymphoma of Bone: Prevalence and Radiologic Features. Am J Roentgenol. 1993;160(6):1245–8. doi: 10.2214/ajr.160.6.8498226.

  22. Canete AN, Bloem HL, Kroon HM. Primary bone tumors of the spine. Radiologia. 2016;58(Suppl 1):68–80. doi: 10.1016/j.rx.2016.01.001.

  23. Mikhaeel NG. Primary bone lymphoma. Clin Oncol. 2012;24(5):366–70. doi: 10.1016/j.clon.2012.02.006.

  24. Hicks DC, Gokan T, O’Keefe RJ, et al. Primary lymphoma of bone: correlation of magnetic resonance imaging features with cytokine production by tumor cells. Cancer. 1995;75(4):973–80. doi: 10.1002/1097-0142(19950215)75:4<973::aid-cncr2820750412>3.0.co;2-8.

  25. Messina C, Christie D, Zucca E, et al. Primary and secondary bone lymphomas. Cancer Treat Rev. 2015;41(3):235–46. doi: 10.1016/j.ctrv.2015.02.001.

  26. Remier RR, Bruce AC, Yong RC, et al. Lymphoma Presenting in Bone. Results of Histopathology, Staging, and Therapy. Ann Inter Med. 1977;87(1):50–5. doi: 10.7326/0003-4819-87-1-50.

  27. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–67. doi: 10.1200/JCO.2013.54.8800.

  28. Jawad MU, Schneiderbauer MM, Min ES, et al. Primary Lymphoma of Bone in Adult Patients. Cancer. 2010;116(4):871–9. doi: 10.1002/cncr.24828.

  29. Schaefer NG, Strobel K, Taverna C, et al. Bone involvement in patients with lymphoma: the role of FDG-PET/CT. Eur J Nucl Med Mol Imag. 2007;34(1):60–7. doi: 10.1007/s00259-006-0238-8.

  30. Ramadan KM, Shenkier T, Sehn LH, et al. 131 patients with primary bone lymphoma: a population-based study of successively treated cohorts from the British Columbia Cancer Agency. Ann Oncol. 2007;18(1):129–35. doi: 10.1093/annonc/mdl329.

  31. Park YH, Kim S, Choi SJ, et al. Clinical impact of whole-body FDG-PET for evaluation of response and therapeutic decision-making of primary lymphoma of bone. Ann Oncol. 2005;16(8):1401–2. doi: 10.1093/annonc/mdi234.

  32. Park YH, Choi SJ, Ryoo BY, et al. PET imaging with F-18 fluorodeoxyglucose for primary lymphoma of bone. Clin Nucl Med. 2005;30(2):131–4. doi: 10.1097/00003072-200502000-00020.

  33. Singh Т, Satheesh С, Lakshmaiah С, et al. Primary bone lymphoma: A report of two cases and review of the literature. J Cancer Res Ther. 2010;6(3):296–8. doi: 10.4103/0973-1482.73366.

  34. Wang LJ, Wu HB, Wang M, et al. Utility of F-18 FDG PET/CT on the evaluation of primary bone lymphoma. Eur J Radiol. 2015;84(11):2275–9. doi: 10.1016/j.ejrad.2015.09.011.

  35. Baar J, Burkes RL, Gospodarowicz M. Primary non-Hodgkin’s lymphoma of bone. Semin Oncol. 1999;26(3):270–5.

  36. Liu Y. The role of 18F-FDG PET/CT in staging and restaging primary bone lymphoma. Nucl Med Commun. 2017;38(4):319–24. doi: 10.1097/MNM.0000000000000652.

  37. Kim SY, Shin DY, Lee SS. Clinical characteristics and outcomes of primary bone lymphoma in Korea. Korean J Hematol. 2012;47(3):213–8. doi: 10.5045/kjh.2012.47.3.213.

  38. Milks KS, McLean TW, Anthony EY. Imaging of primary pediatric lymphoma of bone. Pediatr Radiol. 2016;46(8):1150–7. doi: 10.1007/s00247-016-3597-8.

  39. Zinzani PL, Carrillo G, Ascani S, et al. Primary bone lymphoma: experience with 52 patients. Haematologica. 2003;88(3):280–5.

  40. Baar J, Burkes R, Bell R. Primary Non-Hodgkin’s Lymphoma of Bone. A clinicopathologic study. Cancer. 1994;73(4):1194–9. doi: 10.1002/1097-0142(19940215)73:4<1194::aid-cncr2820730412>3.0.co;2-r.

  41. Choi J, Raghavan M. Diagnostic imaging and Image-Guided Therapy of Skeletal Metastases. Cancer Control. 2012;19(2):102–12. doi: 10.1177/107327481201900204.

  42. Hwang S. Imaging of lymphoma of musculoskeletal system. Magn Reson Imag Clin N Am. 2010;18(1):75–93. doi: 10.1016/j.mric.2009.09.006.

  43. Rapoport AP, Constine LS, Packman CH, et al. Treatment of Multifocal Lymphoma of Bone With Intensified Promace-Cytabom Chemotherapy and Involved Field Radiotherapy. Am J Hematol. 1998;58(1):1–7. doi: 10.1002/(SICI)1096-8652(199805)58:1<1::AID-AJH1>3.0.CO;2-X.

  44. Seymour JF. Extra-nodal lymphoma in rare localisations: bone, breast and testes. Hematol Oncol. 2013;31(Suppl 1):60–3. doi: 10.1002/hon.2081.

  45. Ng AP, Wirth A, Seymour JF, et al. Early therapeutic response assessment by (18)FDG-positron emission tomography during chemotherapy in patients with diffuse large B-cell lymphoma: Isolated residual positivity involving bone is not usually a predictor of subsequent treatment failure. Leuk Lymphoma. 2007;48(3):596–600. doi: 10.1080/10428190601099965.

  46. Rigacci L, Kovalchuk S, Berti V, et al. The use of Deauville 5-point score could reduce the risk of false-positive fluorodeoxyglucose-positron emission tomography in the posttherapy evaluation of patients with primary bone lymphomas. World J Nucl Med. 2018;17(3):157–65. doi: 10.4103/wjnm.WJNM_42_17.

  47. Juweid ME, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23(21):4652–61. doi: 10.1200/JCO.2005.01.891.

  48. Cheson BD, Pfistner B, Juweid ME, et al. International Harmonization Project for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/JCO.2006.09.2403.

  49. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8. doi: 10.1200/JCO.2006.08.2305.

  50. Albano D, Agnello F, Patti C, et al. Whole-body magnetic resonance imaging and FDG-PET/CT for lymphoma staging: Assessment of patient experience. Egypt J Radiol Nucl Med. 2017;48(4):1043–7. doi: 1016/j.ejrnm.2017.06.002.

  51. Wang D, Huo Y, Chen S et al. Whole-body MRI versus 18F-FDG PET/CT for pretherapeutic assessment and staging of lymphoma: a meta-analysis. OncoTarg Ther. 2018;11:3597–608. doi: 10.2147/OTT.S148189.

  52. Galia M, Albano D, Tarella C, et al. Whole body magnetic resonance in indolent lymphomas under watchful waiting: the time is now. Eur Radiol. 2017;28(3):1187–93. doi: 10.1007/s00330-017-5071-x.

  53. Toledano-Massiah S, Luciani A, Itti E, et al. Whole-Body Diffusion-weighted Imaging in Hodgkin Lymphoma and Diffuse Large B-Cell Lymphoma. RadioGraph. 2015;35(3):747–64. doi: 10.1148/rg.2015140145.

  54. Koh D, Collins DJ. Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. Am J Roentgenol. 2007;188(6):1622–35. doi: 10.2214/AJR.06.1403.

EBV-Positive Lymphoproliferative Diseases: A New Concept and Differential Diagnosis (Literature Review and Case Reports)

АM Kovrigina

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Professor Alla Mikhailovna Kovrigina, PhD in Biology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM. EBV-Positive Lymphoproliferative Diseases: A New Concept and Differential Diagnosis (Literature Review and Case Reports). Clinical oncohematology. 2018;11(4):326–37.

DOI: 10.21320/2500-2139-2018-11-4-326-337


ABSTRACT

In recent years increasing attention focuses on the concept of EBV-positive lymphoproliferative diseases related to primary or secondary immunodeficiency resulting from immunosuppressive therapy and persistent infections. Due to the progress of treatment methods in oncohematology and oncology this pathology also occurs as a delayed event when new surgical and therapeutic approaches are applied. The paper presents proof for the pathogenetic significance of Epstein-Barr virus (EBV) in the pathology under consideration with its various clinical manifestations and describes the evolution of knowledge on posttransplant lymphoproliferative disorders with their morphological classification underlying EBV+ lymphoproliferative diseases. The WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues revised in 2017 includes new forms of EBV+ lymphoproliferative diseases (mucocutaneous ulcer, T- and NK-cell childhood lymphoproliferative disorders including cutaneous and systemic forms of chronic active EBV infection) and EBV+ large B-cell lymphomas (unspecified and fibrin-associated diffuse large B-cell lymphomas). The paper summarizes major characteristics of these diseases and exemplifies them by the author’s own experience.

Keywords: B-, T-, NK-cell lymphoproliferative diseases, Epstein-Barr virus (EBV), immunodeficiency, immune imbalance, immunosuppression, morphology, diagnosis.

Received: July 20, 2018

Accepted: September 25, 2018

Read in PDF 


REFERENCES

  1. Ibrahim HA, Naresh KN. Posttransplant lymphoproliferative disorders. Adv Hematol. 2012;2012:230173. doi: 10.1155/2012/230173.

  2. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. 4th edition. Lyon: IARC Press; 2008.

  3. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edition. Lyon: IARC Press; 2017.

  4. Gratzinger D, Jaffe ES, Chadburn A. Primary/Congenital Immunodeficiency: 2015 SH/EAHP Workshop Report—Part 5. Am J Clin Pathol. 2017;147(2):204–16. doi: 10.1093/AJCP/AQW215.

  5. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702–3.

  6. Гурцевич В.Э. Роль вируса Эпштейна—Барр в онкогематологических заболеваниях человека. Клиническая онкогематология. 2010;3(3):222–32.

    [Gurtsevich VE. Role of Epstein-Barr virus in human hematological malignancies. Klinicheskaya onkogematologiya. 2010;3(3):222–32. (In Russ)]

  7. Tse E, Kwong Y-L. Epstein Barr virus-associated lymphoproliferative diseases: the virus as a therapeutic target. Exp Mol Med. 2015;47(1):e136. doi: 10.1038/emm.2014.102.

  8. Roschewski M, Wilson WH. EBV-associated lymphomas in adults. Best Pract Res Clin Haematol. 2012;25(1):75–89. doi: 10.1016/j.beha.2012.01.005.

  9. Shannon-Lowe C, Rickinson AB, Bell AI. Epstein–Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732):20160271. doi: 10.1098/rstb.2016.0271.

  10. Natkunam Y, Goodlad JR, Chadburn A, et al. EBV-Positive B-Cell Proliferations of Varied Malignant Potential: 2015 SH/EAHP Workshop Report—Part 1. Am J Clin Pathol. 2017;147(2):129–52. doi: 10.1093/AJCP/AQW214.

  11. Гаврилина О.А., Троицкая В.В., Звонков Е.Е. и др. Лимфопролиферативное EBV-позитивное заболевание с поражением центральной нервной системы, ассоциированное с иммуносупрессией после органной трансплантации: длительная ремиссия без химиотерапевтического лечения. Терапевтический архив. 2017;89(7):69–75. doi: 10.17116/terarkh201789769-75.

    [Gavrilina OA, Troitskaya VV, Zvonkov EE, et al. EBV-positive central nervous system lymphoproliferative disease associated with immunosuppression after organ transplantation: long-term remission without chemotherapy. Terapevticheskii arkhiv. 2017;89(7):69–75. doi: 10.17116/terarkh201789769-75. (In Russ)]

  12. Boyer DF, McKelvie PA, de Leval L, et al. Fibrin-associated EBV-positive large B-cell lymphoma: an indolent neoplasm with features distinct from diffuse large B-cell lymphoma associated with chronic inflammation. Am J Surg Pathol. 2017;41(3):299–312. doi: 10.1097/PAS.0000000000000775.

  13. Cohen M, De Matteo E, Narbaitz M, et al. Epstein-Barr virus presence in pediatric diffuse large B-cell lymphoma reveals a particular association and latency patterns: Analysis of viral role in tumor microenvironment. Int J Cancer. 2013;132(7):1572–80. doi: 10.1002/ijc.27845.

  14. Uccini S, Al-Jadiry MF, Scarpino S, et al. Epstein-Barr virus-positive diffuse large B-cell lymphoma in children: A disease reminiscent of Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly. Hum Pathol. 2015;46(5):716–24. doi: 10.1016/j.humpath.2015.01.011.

  15. Nicolae A, Pittaluga S, Abdullah S, et al. EBV-positive large B-cell lymphomas in young patients: A nodal lymphoma with evidence for a tolerogenic immune environment. Blood. 2015;126(7):863–72. doi: 10.1182/blood-2015-02-630632.

  16. Kunitomi A, Hasegawa Y, Asano N, et al. EBV-positive reactive hyperplasia progressed into EBV-positive diffuse large B-cell lymphoma of the elderly over a 6-year period. Intern Med. 2018;57(9):1287–90. doi: 10.2169/internalmedicine.9112-17.

  17. de la Hera Magallanes AI, Montes-Moreno S, Hernandez SG, et al. Early phase of Epstein-Barr virus (EBV)-positive diffuse large B cell lymphoma of the elderly mimicking EBV-positive reactive follicular hyperplasia. Histopathology. 2011;59(3):571–5. doi: 10.1111/j.1365-2559.2011.03950.x.

  18. Roberts TK, Chen X, Liao JJ. Diagnostic and therapeutic challenges of EBV-positive mucocutaneous ulcer: a case report and systematic review of the literature. Exp Hematol Oncol. 2016;5(1):13. doi: 10.1186/s40164-016-0042-5.

  19. Dojcinov SD, Venkataraman G, Raffeld M, et al. EBV positive mucocutaneous ulcer–a study of 26 cases associated with various sources of immunosuppression. Am J Surg Pathol. 2010;34(3):405–17. doi: 10.1097/PAS.0b013e3181cf8622.

  20. Docinov SD, Venkataraman G, Pittaluga S, et al. Age-related EBV-associated lymphoproliferative disorders in the Western population: a spectrum of reactive lymphoid hyperplasia and lymphoma. Blood. 2011;117(8):4726–35. doi: 10.1182/blood-2010-12-323238.

  21. Gratzinger D, Jong D, Jaffe ES, et al. T- and NK-Cell Lymphomas and Systemic Lymphoproliferative Disorders and the Immunodeficiency Setting: 2015 SH/EAHP Workshop Report—Part 4. Am J Clin Pathol. 2017;147(2):188–203. doi: 10.1093/AJCP/AQW213.

A Case Report of Myeloid Sarcoma in a Child

TT Valiev1, AM Kovrigina2, TR Panferova1, TL Ushakova1, IN Serebryakova3, NN Tupitsyn3, LYu Grivtsova3, II Matveeva3, EV Mikhailova1, AV Popa1, GL Menkevich1

1 Institute of Pediatric Oncology and Hematology, NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

3 Institute of Clinical Oncology, NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Timur Teimurazovich Valiev, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-42-87; е-mail: timurvaliev@mail.ru

For citation: Valiev TT, Kovrigina AM, Panferova TR, et al. A Case Report of Myeloid Sarcoma in a Child. Clinical oncohematology. 2017;10(2):218–26 (In Russ).

DOI: 10.21320/2500-2139-2017-10-2-218-226


ABSTRACT

The diagnosis of myeloid tumors is based on a complex approach and causes significant difficulties especially in young children. Morphologic, immunologic, cytogenetic, molecular and biologic data on myeloid sarcoma are presented based on the literature data and own clinical case. Treatment results of myeloid sarcoma (especially in the high risk group) are unsatisfactory and should be improved.

Keywords: myeloid sarcoma, diagnosis, children.

Received: November 14, 2016

Accepted: February 9, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Кассирский И.А., Алексеев Г.А. Клиническая гематология, 4-е изд. М.: Медицина, 1970. 799 с.
    [Kassirskii IA, Alekseev GA. Klinicheskaya gematologiya. (Clinical hematology.) 4th edition. Moscow: Meditsina Publ.; 1970. 799 p. (In Russ)]
  2. Махонова Л.А., Дроздова Т.С., Протасова А.К. и др. Миелобластная саркома у детей. Гематология и трансфузиология. 1988;33(8): 34–7.
    [Makhonova LA, Drozdova TS, Protasova AK, et al. Myeloblastic sarcoma in children. Gematologiya i transfuziologiya. 1988;33(8):34–7. (In Russ)]
  3. Fonseca A, Scheinemann K, Jansen J, et al. Testicular myeloid sarcoma. J Pediatr Hematol Oncol. 2014;36(3):e155–7. doi: 10.1097/MPH.0000000000000097.
  4. Byrd JC, Weiss RB, Arthur DC, et al. Extramedullary leukemia adversely affects hematologic complete remission rate and overall survival in patients with t(8;21) (q22;q22): results from Cancer and Leukemia Group B 8461. J Clin Oncol. 1997;15(2):466–75. doi: 10.1200/jco.1997.15.2.466.
  5. Bain EE, Rothman I, Lin L. De novo myeloid sarcoma in a 4-month-old infant: a case report and review of the literature. J Cutan Pathol. 2013;40(3):321–5. doi: 10.1111/cup.12027.
  6. Delhi Kumar CG, Thilagavathy V, Arun Babu T. Granulocytic sarcoma of bladder in an 18-mo-old child with acute myeloid leukemia. Indian J Pediatr. 2014;81(10):1118–9. doi: 10.1007/s12098-014-1371-1.
  7. Vennepureddy A, Valecha G, Murukutla S, et al. Bronchial myeloid sarcoma with concurrent Aspergillus fumigatus infection in a patient presenting with hemoptysis. Expert Rev Hematol. 2015;8(4):433–7. doi: 10.1586/17474086.2015.1044747.
  8. Chen YI, Paci P, Michel RP, et al. Myeloid sarcoma of the duodenum: a rare cause of bowel obstruction and gastrointestinal bleeding. Endoscopy. 2015;47(Suppl 1):E181–2. doi: 10.1055/s-0034-1391502.
  9. Nalwa A, Nath D, Suri V, et al. Myeloid sarcoma of the breast in an aleukemic patient: a rare entity in an uncommon location. Malays J Pathol. 2015;37(1):63–6.
  10. Aboutalebi A, Korman JB, Sohani AR, et al. Aleukemic cutaneous myeloid sarcoma. J Cutan Pathol. 2013;40(12):996–1005. doi: 10.1111/cup.12231.
  11. Kobayashi R, Yamato K. Tanaka F, et al. Retrospective analysis of non-anaplastic peripheral T-cell lymphoma in pediatric patients in Japan. Pediatr Blood Cancer. 2010;54(2):212–5. doi: 10.1002/pbc.22329.
  12. Momota H, Kato S, Fujii M, et al. Primary peripheral T-cell lymphoma, not otherwise specified, of the central nervous system in a child. Brain Tumor Pathol. 2015;32(4):281–5. doi: 10.1007/s10014-015-0229-1.
  13. Al Mahmoud R, Weitzman S, Schechter T, et al. Peripheral T-cell lymphoma in children and adolescents: a single-institution experience. J Pediatr Hematol Oncol. 2012;34(8):611–6. doi: 10.1097/MPH.0b013e3182707592.

 

 

Role of Superficial CD200 Marker in Differential Diagnosis of Malignant B-Cell Lymphoproliferative Diseases

YuV Mirolyubova, EA Stadnik, TS Nikulina, VV Strugov, TO Andreeva, YuV Virts, RV Grozov, AYu Zaritskey

Federal Almazov North-West Medical Research Centre, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Yuliya Vladimirovna Mirolyubova, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; e-mail: juli9702@yandex.ru

For citation: Mirolyubova YuV, Stadnik EA, Nikulina TS, et al. Role of Superficial CD200 Marker in Differential Diagnosis of Malignant B-Cell Lymphoproliferative Diseases. Clinical oncohematology. 2017;10(2):169–75 (In Russ).

DOI: 10.21320/2500-2139-2017-10-2-169-175


ABSTRACT

Background & Aims. Flow cytometry is successfully used for diagnosis of malignant lymphoproliferative disorders. However, there are atypical cases that are difficult to interpret; thus, new markers relevant for the differential diagnosis are to be searched for. The aim is to analyze CD200 expression in patients with B-cell lymphoproliferative disorders.

Materials & Methods. 187 patients with chronic lymphocytic leukemia (CLL), 14 patients with mantle cell lymphoma (MCL), 9 patients with marginal zone lymphoma (MZL), and 5 patients with hairy cell leukemia (HCL) were enrolled in the study. Neoplasm was not confirmed in 12 subjects. The patients underwent the following tests: CBC, immunophenotyping of peripheral blood or bone marrow lymphocytes, and a cytogenetic test. In some cases, an additional immunohistochemical test of bone marrow trepanobiopsy or lymph node biopsy samples was required.

Results. In all cases of CLL and HCL, the CD200 expression was positive; mean fluorescence intensity was higher in these cases as compared to other groups. Negative expression of CD200 prevailed in MCL patients; however, at the same time 2 cases of intermediate and positive expression were reported, both showing moderate fluorescence intensity values. CD200 expression was heterogeneous in MZL patients.

Conclusion. The CD200 negative expression excludes typical HCL and CLL. Additional cytogenetic and immunnohistoсhemical tests should be performed in such cases to verify the diagnosis, first of all, MCL or MZL.

Keywords: CD200, flow cytometry, diagnosis, chronic lymphocytic leukemia, mantle cell lymphoma, marginal zone lymphoma, hairy cell leukemia.

Received: September 7, 2016

Accepted: January 3, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Купрышина Н.А., Тупицын Н.Н. Проточная цитометрия в онкогематологии. Часть II. Основы и нововведения в диагностике хронического лимфолейкоза. Клиническая онкогематология. 2012;5(4):349–54.
    [Kupryshina NA, Tupitsyn NN. Flow cytometry in hematology malignancies. Part II: ABC and news in diagnostics of chronic lymphocytic leukaemia. Klinicheskaya onkogematologiya. 2012;5(4):349–54. (In Russ)]
  2. Стадник Е.А., Стругов В.В., Вирц Ю.В., Зарицкий А.Ю. Хронический лимфолейкоз. Рекомендации по диагностике и лечению. Трансляционная медицина. 2012;17:104–15.
    [Stadnik EA, Strugov VV, Virts YuV, Zaritskey AYu. Chronic lymphocytic leukemia. Guidelines for diagnosis and treatment. Translyatsionnaya meditsina. 2012;17:104–15. (In Russ)]
  3. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  4. Kohnke T, Wittmann VK, Sauter D, et al. Proposal For a Novel Scoring System For The Diagnosis оf CLL. Blood. 2013;122(21):47–5599 (Plenary Abstracts).
  5. Morice WG, Kurtin PJ, Hodnefield JM, et al. Predictive Value of Blood and Bone Marrow Flow Cytometry in B-Cell Lymphoma Classification: Comparative Analysis of Flow Cytometry and Tissue Biopsy in 252 Patients. Mayo Clin Proc. 2008;83(7):776–85. doi: 10.4065/83.7.776.
  6. Луговская С.А., Кисиличина Д.Г., Почтарь М.Е. и др. Новые маркеры (CD160, CD200, LAIR-1) в диагностике В-клеточных лимфопролиферативных заболеваний. Клиническая онкогематология. 2013;6(1):45–52.
    [Lugovskaya SA, Kisilichina DG, Pochtar’ ME, et al. New markers (CD160, CD200, and LAIR-1) in diagnosis of B-cell lymphoproliferative disorders. Klinicheskaya onkogematologiya. 2013;6(1):45–52. (In Russ)]
  7. Brunetti L, Di Noto R, Abate G, et al. CD200/OX2, a cell surface molecule with immuno-regulatory function is consistently expressed on hairy cell leukaemia neoplastic cells. Br J Haematol. 2009;145(5):665–78. doi: 10.1111/j.1365-2141.2009.07644.x.
  8. Palumbo GA, Parrinello N, Fargione G, et al. CD200 expression may help in differential diagnosis between mantle cell lymphoma and B-cell chronic lymphocytic leukemia. Leuk Res. 2009;33(9):1212–6. doi: 10.1016/j.leukres.2009.01.017.
  9. Dorfman DM, Shahsafaei A. CD200 (OX-2 Membrane Glycoprotein) Expression in B Cell–Derived Neoplasms. Am J Clin Pathol. 2010;134(5):726–33. doi: 10.1309/ajcp38xrrugsqovc.
  10. Sander B. Mantle cell lymphoma: recent insights into pathogenesis, clinical variability, and new diagnostic markers. Semin Diagn Pathol. 2011;28(3):245–55. doi: 10.1053/j.semdp.2011.02.010.
  11. Alapat D, Coviello-Malle J, Owens R, et al. Diagnostic Usefulness and Prognostic Impact of CD200 Expression in Lymphoid Malignancies and Plasma Cell Myeloma. Am J Clin Pathol. 2012;137(1):93–100. doi: 10.1309/ajcp59uorcyzevqo.
  12. El Desoukey NA, Afify RA, Amin DG, et al. CD200 expression in B-cell chronic lymphoproliferative disorders. J Investig Med. 2012;60(1):56–61. doi: 10.2310/jim.0b013e31823908f9.
  13. Pillai V, Pozdnyakova O, Charest K, et al. CD200 flow cytometric assessment and semiquantitative immunohistochemical staining distinguishes hairy cell leukemia from hairy cell leukemia-variant and other B-cell lymphoproliferative disorders. Am J Clin Pathol. 2013;140(4):536–43. doi: 10.1309/ajcpebk31vqqnddr.
  14. Challagundla P, Medeiros LJ, Kanagal-Shamanna R, et al. Differential Expression of CD200 in B-Cell Neoplasms by Flow Cytometry Can Assist in Diagnosis, Subclassification, and Bone Marrow Staging. Am J Clin Pathol. 2014;142(6):837–44. doi: 10.1309/ajcpbv9elxc0ecvl.
  15. Sandes AF, de Lourdes Chauffaille M, Regina C, et al. CD200 Has an Important Role in the Differential Diagnosis of Mature B-Cell Neoplasms by Multiparameter Flow. Cytometry. 2013;86(2):98–105. doi: 10.1002/cyto.b.21128.
  16. McCaughan GW, Clark MJ, Barclay AN. Characterization of the human homolog of the rat MRC OX-2 membrane glycoprotein. Immunogenetics. 1987;25(5):329–35. doi: 10.1007/bf00404426.
  17. Wright GJ, Jones M, Puklavec MJ, et al. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology. 2001;102(2):173–9. doi: 10.1046/j.1365-2567.2001.01163.x.
  18. Kretz-Rommel A, Qin F, Dakappagari N, et al. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol. 2007;178(9):5595–605. doi: 10.4049/jimmunol.178.9.5595.
  19. Moreaux J, Hose D, Reme T, et al. CD200 is a new prognostic factor in multiple myeloma. Blood. 2006;108(13):4194–7. doi: 10.1182/blood-2006-06-029355.
  20. Tonks A, Hills R, White P, et al. CD200 as a prognostic factor in acute myeloid leukemia. Leukemia. 2007;21(3):566–8. doi: 10.1038/sj.leu.2404559.
  21. Moreaux J, Veyrune JL, Reme T, et al. CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun. 2008;366(1):117–22. doi: 10.1016/j.bbrc.2007.11.103.
  22. Kretz-Rommel A, Bowdish KS. Rationale for anti-CD200 immunotherapy in B-CLL and other hematologic malignancies: new concepts in blocking immune suppression. Expert Opin Biol Ther. 2008;8(1):5–15. doi: 10.1517/14712598.8.1.5.

Stevens-Johnson Syndrome after Treatment of Female Patient with Small Lymphocytic B-Cell Lymphoma, Autoimmune Hemolytic Anemia and Antiphospholipid Antibody Syndrome with Rituximab

AL Melikyan, IN Subortseva, AM Kovrigina, TI Kolosheinova, EK Egorova, EI Pustovaya

Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Irina Nikolaevna Subortseva, PhD, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-44-71; e-mail: soubortseva@yandex.ru

For citation: Melikyan AL, Subortseva IN, Kovrigina AM, et al. Stevens-Johnson Syndrome after Treatment of Female Patient with Small Lymphocytic B-Cell Lymphoma, Autoimmune Hemolytic Anemia and Antiphospholipid Antibody Syndrome with Rituximab Clinical oncohematology. 2017;10(1): 120–7 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-120-127


ABSTRACT

Stevens-Johnson syndrome is a severe delayed type systemic allergic reaction which affects the skin and mucous membranes. In adults, Stevens-Johnson syndrome is usually caused by the administration of drugs or a malignant process. The paper presents a case of Stevens-Johnson syndrome after the treatment of a female patient with small lymphocytic B-cell lymphoma, autoimmune hemolytic anemia and antiphospholipid antibody syndrome with rituximab. A rare combination of Stevens-Johnson syndrome and small lymphocytic B-cell lymphoma of small lymphocytes, as well as the development of severe delayed type systemic allergic reaction to introduction of rituximab are of special interest. A detailed medical history and the clinical manifestations of the disease allowed to diagnose Stevens-Johnson syndrome at early stages and prescribe an adequate therapy. As a result of the treatment, the patient’s condition has improved considerably. Symptoms of general toxicity were arrested completely; there was a complete epithelization of erosive defects. Therefore, the presented clinical observation shows that timely diagnosis, complex drug therapy, and comprehensive care can cure the diseases as soon as possible and prevent complications.

Keywords: Stevens-Johnson syndrome, pathogenesis, clinical manifestations, diagnosis, treatment, rituximab.

Received: July 28, 2016

Accepted: December 6, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Mockenhaupt M. The current understanding of Stevens-Johnson syndrome and toxic epidermal necrolysis. Expert Rev Clin Immunol. 2011;7(6):803–13. doi: 10.1586/eci.11.66.
  2. Gerull R, Nelle M, Schaible T. Toxic epidermal necrolysis and Stevens-Johnson syndrome: A review. Crit Care Med. 2011;39(6):1521–32. doi: 10.1097/CCM.0b013e31821201ed.
  3. Yamane Y, Matsukura S, Watanabe Y, et al. Retrospective analysis of Stevens-Johnson syndrome and toxic epidermal necrolysis in 87 Japanese patients—Treatment and outcome. Allergol Int. 2016;65(1):74–81. doi: 10.1016/j.alit.2015.09.001.
  4. Teh LK, Selvaraj M, Bannur Z, et al. Coupling Genotyping and Computational Modeling in Prediction of Anti-epileptic Drugs that cause Stevens Johnson Syndrome and Toxic Epidermal Necrolysis for Carrier of HLA-B*15:02. J Pharm Pharm Sci. 2016;19(1):147–60. doi: 10.18433/J38G7X.
  5. Chung W-H, Hung S-I. Genetic Markers and Danger Signals in Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Allergol Int. 2010;59(4):325–332 doi: 10.2332/allergolint.10-rai-0261.
  6. Chantaphakul H, Sanon T, Klaewsongkram J. Clinical characteristics and treatment outcome of Stevens-Johnson syndrome and toxic epidermal necrolysis. Exp Ther Med. 2015;10(2):519–24. doi: 10.3892/etm.2015.2549.
  7. Rzany B, Mockenhaupt M, Baur S, et al. Epidemiology of erythema exsudativum multiforme majus, Stevens-Johnson syndrome and toxic epidermal necrolysis in Germany (1990–1992): Structure and results of a population-based registry. J Clin Epidemiol. 1996;49(7):769–73. doi: 10.1016/0895-4356(96)00035-2.
  8. Schneck J, Fagot JP, Sekula P, et al. Effects of treatments on the mortality of Stevens-Johnson syndrome and toxic epidermal necrolysis: A retrospective study on patients included in the prospective EuroSCAR study. J Am Acad Dermatol. 2008;58(1):33–40. doi: 10.1016/j.jaad.2007.08.039.
  9. Bastuji-Garin S, Fouchard N, Bertocchi M, et al. SCORTEN: A severity-of-illness score for toxic epidermal necrolysis. J Invest Dermatol. 2000;115(2):149–53. doi: 10.1046/j.1523-1747.2000.00061.x.
  10. Creamer D, Walsh SA, Dziewulski P, et al. UK guidelines for the management of Stevens-Johnson syndrome/toxic epidermal necrolysis in adults 2016. J Plast Reconstr Aesthet Surg. 2016;69(6):736–41. doi: 10.1016/j.bjps.2016.04.018.
  11. Tripathi A, Ditto AM, Grammer LC, et al. Corticosteroid therapy in an additional 13 cases of Stevens–Johnson syndrome: a total series of 67 cases. Allergy Asthma Proc. 2000;21(2):101–5. doi: 10.2500/108854100778250914.
  12. Kardaun SH, Jonkman MF. Dexamethasone pulse therapy for Stevens–Johnson syndrome/toxic epidermal necrolysis. Acta Derm Venereol. 2007;87(2):144–8. doi: 10.2340/00015555-0214.
  13. Viard I, Wehrli P, Bullani R, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282(5388):490–3. doi: 10.1126/science.282.5388.490.
  14. French LE, Trent JT, Kerdel FA. Use of intravenous immunoglobulin in toxic epidermal necrolysis and Stevens–Johnson syndrome: our current understanding. Int Immunopharmacol. 2006;6(4):543–9. doi: 10.1016/j.intimp.2005.11.012.
  15. Prins C, Kerdel FA, Padilla RS, et al. TEN-IVIG Study Group. Treatment of toxic epidermal necrolysis with high-dose intravenous immunoglobulins: multicenter retrospective analysis of 48 consecutive cases. Arch Dermatol. 2003;139(1):26–32. doi: 10.1001/archderm.139.1.26.
  16. Kim KJ, Lee DP, Suh HS, et al. Toxic epidermal necrolysis: analysis of clinical course and SCORTEN-based comparison of mortality rate and treatment modalities in Korean patients. Acta Derm Venereol. 2005;85:497–502.
  17. Bamichas G, Natse T, Christidou F, et al. Plasma exchange in patients with toxic epidermal necrolysis. Ther Apher. 2002;6(3):225–8. doi: 10.1046/j.1526-0968.2002.00409.x.
  18. Egan CA, Grant WJ, Morris SE, et al. Plasmapheresis as an adjunct treatment in toxic epidermal necrolysis. J Am Acad Dermatol. 1999;40(3):458–61. doi: 10.1016/S0190-9622(99)70497-4.
  19. Kamanabroo D, Schmitz-Landgraf W, Czarnetzki BM. Plasmapheresis in severe drug-induced toxic epidermal necrolysis. Arch Dermatol. 1985;121(12):1548–9. doi: 10.1001/archderm.1985.01660120074023.
  20. Kasi PM, Tawbi HA, Oddis CV, Kulkarni HS. Clinical review: Serious adverse events associated with the use of rituximab – a critical care perspective. Crit Care. 2012;16(4):231. doi: 10.1186/cc11304.
  21. Lowndes S, Darby A, Mead G, Lister A. Stevens-Johnson syndrome after treatment with rituximab. Ann Oncol. 2002;13(12):1948–50. doi: 10.1093/annonc/mdf350.
  22. Johnson PW, Glennie MJ. Rituximab: mechanisms and applications. Br J Cancer. 2001;85(11):1619–23. doi: 10.1054/bjoc.2001.2127.
  23. Суборцева И.Н. Клинико-биологические особенности первичной экстранодальной диффузной В-крупноклеточной лимфомы: Дис. ¼ канд. мед. наук. М., 2013. 138 с.
    [Subortseva IN. Kliniko-biologicheskie osobennosti pervichnoi ekstranodal’noi diffuznoi B-krupnokletochnoi limfomy. (Clinical and biological features of the primary extranodal diffuse large B-cell lymphoma.) [dissertation] Moscow; 2013. 138 р. (In Russ)]
  24. Foran JM, Gupta RK, Cunningham D, et al. A UK multicentre phase II study of rituximab in patients with follicular lymphoma, with PCR monitoring of molecular response. Br J Haematol. 2000;109(1):81–8. doi: 10.1046/j.1365-2141.2000.01965.x.
  25. Davis TA, White CA, Grillo-Lopez AJ, et al. Single agent monoclonal antibody efficacy in bulky non-Hodgkin’s lymphoma. J Clin Oncol. 1999;17(6):1851–7.
  26. Maloney DG, Grillo-Lopez AJ, White CA, et al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90(6):2188–95.
  27. Piro LD, White CA, Grillo-Lopez AJ, et al. Extended rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1999;10:655–61.
  28. Byrd JC, Murphy T, Howard RS, et al. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukaemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J Clin Oncol. 2001;19(8):2153–64.
  29. Suzan F, Ammor M, Ribrag V. Fatal reactivation of cytomegalovirus infection after use of rituximab for a post-transplantation lymphoproliferative disorder. N Engl J Med. 2001;345(13):1000. doi: 10.1056/NEJM200109273451315.
  30. Walewski J, Kraszewska E, Mioduszewska O, et al. Rituximab (MabtheraTM, RituxanTM) in patients with recurrent indolent lymphoma. Med Oncol. 2001;18(2):141–8. doi: 10.1385/mo:18:2:141.
  31. Palmieri TL, Greenhalgh DG, Saffle JR, et al. A multicenter review of toxic epidermal necrolysis treated in U.S. Burn centers at the end of the twentieth century. J Burn Care Rehabil. 2002;23(2):87–96. doi: 10.1097/00004630-200203000-00004.
  32. Cummins DL, Mimouni D, Tzu J, et al. Lichenoid paraneoplastic pemphigus in the absence of detectable antibodies. J Am Acad Dermatol. 2007;56(1):153–9. doi: 10.1016/j.jaad.2006.06.007.

 

Primary Mediastinal (Thymic) Large B-Cell Lymphoma

GS Tumyan, IZ Zavodnova, MYu Kichigina, EG Medvedovskaya

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Gayane Sergeevna Tumyan, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-98-29; e-mail: gaytum@mail.ru

For citation: Tumyan GS, Zavodnova IZ, Kichigina MYu, Medvedovskaya EG. Primary Mediastinal (Thymic) Large B-Cell Lymphoma. Clinical oncohematology. 2017;10(1):13–24 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-13-24


ABSTRACT

Primary mediastinal (thymic) large B-cell lymphoma (PMBCL) is one of the primary extranodal tumors and originates from thymic medulla B cells. The disease is more common in young women and declares itself by mainly locally advanced growth within the anterior upper mediastinum with frequent involvement of chest organs. PMBCL has specific morphological, immunological, and genetic characteristics that permit to differentiate it from other similar diseases: diffuse large В-cell lymphoma, nodular sclerosis Hodgkin’s lymphoma, and mediastinal gray zone lymphoma. Immunochemotherapy with subsequent irradiation of the residual mediastinal tumor is the standard treatment of PMBCL. No benefits of one drug therapy over another have been demonstrated to date in controlled studies. Application of new imaging techniques (PET/CT) may result in withdrawal of the radiotherapy in some PMBCL patients without impairment of delayed survival rates.

Keywords: primary mediastinal (thymic) large B-cell lymphoma, primary extranodal lymphomas, diagnosis, pathogenesis, morphological, immunological/genetic characteristics, treatment.

Received: August 22, 2016

Accepted: December 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Benjamin SP, McCormack LJ, Effler DB, et al. Primary lymphatic tumors of the mediastinum. Cancer. 1972;30(3):708–12. doi: 10.1002/1097-0142(197209)30:3<708::AID-CNCR2820300318>3.0.CO;2–5.
  2. Lichtenstein AK, Levine A, Taylor CR, et al. Primary mediastinal lymphoma in adults. Am J Med. 1980;68(4):509–14. doi: 10.1016/0002-343(80)90294-6.
  3. National Cancer Institute sponsored study of classifications of non-Hodgkin’s lymphomas: summary and description of a working formulation for clinical usage. The Non-Hodgkin’s Lymphoma Pathologic Classification Project. Cancer. 1982;49(10):2112–35. doi: 10.1002/1097-0142(19820515)49:10<2112::AID-CNCR2820491024>3.0.CO;2–2.
  4. Stansfeld AG, Diebold J, Noel H, et al. Updated Kiel classification for lymphomas. Lancet. 1988;1(8580):292–3. doi: 10.1016/S0140-6736(88)90367-4.
  5. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84(5):1361–92. doi: 10.1016/S0968-6053(00)80051-4.
  6. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. doi: 10.1002/9781118853771.ch51.
  7. Cazals-Hatem D, Lepage E, Brice P, et al. Primary mediastinal large B-cell lymphoma. A clinicopathologic study of 141 cases compared with 916 nonmediastinal large B-cell lymphomas, a GELA (“Groupe d’Etude des Lymphomes de l’Adulte”) study. Am J Surg Pathol. 1996;20(7):877–88. doi: 10.1097/00000478-199607000-00012.
  8. Harris NL. Shades of gray between large B-cell lymphomas and Hodgkin lymphomas: differential diagnosis and biological implications. Mod Pathol. 2013;26(Suppl 1):S57–70. doi: 10.1038/modpathol.2012.182.
  9. Kanavaros P, Gaulard P, Charlotte F, et al. Discordant expression of immunoglobulin and its associated molecule mb-1/CD79a is frequently found in mediastinal large B cell lymphomas. Am J Pathol. 1995;146(3):735–41.
  10. Pileri SA, Zinzani PL, Gaidano G, et al. Pathobiology of primary mediastinal B-cell lymphoma. Leuk Lymphoma. 2003;44(Suppl 3):S21–6. doi: 10.1080/10428190310001623810.
  11. Loddenkemper C, Anagnostopoulos I, Hummel M, et al. Differential Emu enhancer activity and expression of BOB.1/OBF.1, Oct2, PU.1, and immunoglobulin in reactive B-cell populations, B-cell non-Hodgkin lymphomas, and Hodgkin lymphomas. J Pathol. 2004;202(1):60–9. doi: 10.1002/path.1485.
  12. De Leval L, Ferry JA, Falini B, et al. Expression of bcl-6 and CD10 in primary Mediastinal large B-cell lymphoma: evidence for derivation from germinal center B cells? Am J Surg Pathol. 2001;25(10):1277–82. doi: 10.1097/00000478-200110000-00008.
  13. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 2003;198(6):851–62. doi: 10.1084/jem.20031074.
  14. CopieBergman C, Plonquet A, Alonso MA, et al. MAL expression in lymphoid cells: further evidence for MAL as a distinct molecular marker of primary mediastinal large B-cell lymphomas. Mod Pathol. 2002;15:1172–80. doi: 10.1097/01.MP.0000032534.81894.B3.
  15. Joos S, Otano-Joos MI, Ziegler S, et al. Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood. 1996;87(4):1571–8.
  16. Feuerhake F, Kutok JL, Monti S, et al. NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood. 2005;106(4):1392–9. doi: 10.1182/blood-2004-12-4901.
  17. Zhang B, Wang Z, Li T, et al. NF-kappaB2 mutation targets TRAF1 to induce lymphomagenesis. Blood. 2007;110(2):743–51. doi: 10.1182/blood-2006-11-058446.
  18. Meier C, Hoeller S, Bourgau C, et al. Recurrent numerical aberrations of JAK2 and deregulation of the JAK2-STAT cascade in lymphomas. Mod Pathol. 2009;22(3):476–87. doi: 10.1038/modpathol.2008.207.
  19. Rossi D, Cerri M, Capello D, et al. Aberrant somatic hypermutation in primary mediastinal large B-cell lymphoma. Leukemia. 2005;19(12):2363–6. doi: 10.1038/sj.leu.2403982.
  20. Steidl C, Gascoyne RD. The molecular pathogenesis of primary mediastial large B-cell lymphoma. Blood. 2011;118(10):2659–69. doi: 10.1182/blood-2011-05-326538.
  21. Martelli M, Di Rocco A, Russo E, et al. Primary mediastinal lymphoma: diagnosis and treatment options. Expert Rev Hematol. 2014;8(2):173–86. doi: 10.1586/17474086.2015.994604.
  22. Eberle FC, Salaverria I, Steidl C, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97. doi: 10.1038/modpathol.2011.116.
  23. Eberle FC, Rodriguez-Canales J, Wei L, et al. Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical Hodgkin’s lymphoma and primary mediastinal large B-cell lymphoma. Haematologica. 2011;96(4):558–66. doi: 10.3324/haematol.2010.033167.
  24. Moller P, Lammler B, Herrmann B, et al. The primary mediastinal clear cell lymphoma of B-cell type has variable defects in MHC antigen expression. Immunology. 1986;59(3):411–7. doi: 10.1007/bf00705408.
  25. Hamlin PA, Portlock CS, Straus DJ, et al. Primary mediastinal large B-cell lymphoma: optimal therapy and prognostic factor analysis in 141 consecutive patients treated at Memorial Sloan Kettering from 1980 to 1999. Br J Haematol. 2005;130(5):691–9. doi: 10.1111/j.1365-2141.2005.05661.x.
  26. Jacobson JO, Aisenberg AC, Lamarre L, et al. Mediastinal large cell lymphoma. An uncommon subset of adult lymphoma curable with combined modality therapy. Cancer. 1988;62(9):1893–8. doi: 10.1002/1097-0142(19881101)62:9<1893::AID-CNCR2820620904>3.0.CO;2-X.
  27. Zinzani PL, Martelli M, Magagnoli M, et al. Treatment and clinical management of primary mediastinal large B-cell lymphoma with sclerosis: MACOP-B regimen and mediastinal radiotherapy monitored by (67)Gallium scan in 50 patients. Blood. 1999;94(10):3289–93.
  28. Bishop PC, Wilson WH, Pearson D, et al. CNS involvement in primary mediastinal large B-cell lymphoma. J Clin Oncol. 1999;17(8):2479–85.
  29. Savage K, Al-Rajhi N, Voss N, et al. Favorable outcome of primary mediastinal large B-cell lymphoma in a single institution: the British Columbia experience. Ann Oncol. 2006;17:123–30. doi: 10.1016/s0360-3016(00)80463-0.
  30. Zinzani PL, Martelli M, Bertini M, et al. Induction chemotherapy strategies for primary mediastinal large B-cell lymphoma with sclerosis: a retrospective multinational study on 426 previously untreated patients. Haematologica. 2002;87(12):1258–6. doi: 10.3816/clm.2009.n.074.
  31. Fisher RI, Gaynor ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N Engl J Med. 1993;328(14):1002–6. doi: 10.1056/NEJM199304083281404.
  32. Levitt LJ, Aisenberg AC, Harris NL, et al. Primary non-Hodgkin’s lymphoma of the mediastinum. Cancer. 1982;50(11):2486–92. doi: 10.1002/1097-0142(19821201)50:11<2486::AID-CNCR2820501138>3.0.CO;2-G.
  33. Todeschini G, Ambrosetti A, Meneghini V, et al. Mediastinal large-B-cell lymphoma with sclerosis: a clinical study of 21 patients. J Clin Oncol. 1990;8(5):804–8.
  34. Bertini M, Orsucci L, Vitolo U, et al. Stage II large B-cell lymphoma with sclerosis treated with MACOP-B. Ann Oncol. 1991;2(10):733–7.
  35. Falini B, Venturi S, Martelli M, et al. Mediastinal large B-cell lymphoma: clinical and immunohistological findings in 18 patients treated with different third-generation regimens. Br J Haematol. 1995;89(4):780–9. doi: 10.1111/j.1365-2141.1995.tb08415.x.
  36. van Besien K, Kelta M, Bahaguna P. Primary mediastinal B-cell lymphoma: a review of pathology and management. J Clin Oncol. 2001;19(6):1855–64.
  37. Zinzani PL, Martelli M, Bendandi M, et al. Primary mediastinal large B-cell lymphoma with sclerosis: a clinical study of 89 patients treated with MACOP-B chemotherapy and radiation therapy. Haematologica. 2001;86(2):187–91.
  38. Zinzani PL, Stefoni V, Finolezzi E, et al. Rituximab combined with MACOP-B or VACOP-B and radiation therapy in primary mediastinal large B-cell lymphoma: a retrospective study. Clin Lymph Myel. 2009;9(5):381–5. doi: 10.3816/CLM.2009.n.074.
  39. Dunleavy K, Pittaluga S, Maeda LS, et al. Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med. 2013;368(15):1408–16. doi: 10.1056/NEJMoa1214561.
  40. Moskowitz CH, Schoder H, Teruya-Feldstein J, et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in Advanced-stage diffuse large B-Cell lymphoma. J Clin Oncol. 2010;28(11):1896–903. doi: 10.1200/JCO.2009.26.5942.
  41. Savage KJ, Yenson PR, Shenkier T, et al. The outcome of primary mediastinal large B-cell lymphoma (PMBCL) in the R-CHOP treatment era. Blood. 2012;120(Suppl 1–2): Abstract 303.
  42. Martelli M, Ceriani L, Zucca E, et al. [18F]fluorodeoxyglucose positron emission tomography predicts survival after chemoimmunotherapy for primary mediastinal large B-cell lymphoma: results of the International Extranodal Lymphoma Study Group IELSG-26 Study. J Clin Oncol. 2014;32(17):1769–75. doi: 10.1200/JCO.2013.51.7524.
  43. Pinnix CC, Dabaja B, Ahmed MAet al. Single-institution experience in the treatment of primary mediastinal B cell lymphoma treated with immunochemotherapy in the setting of response assessment by 18fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys. 2015;92(1):113–21. doi: 10.1016/j.ijrobp.2015.02.006.
  44. Sehn LH, Antin JH, Shulman LN, et al. Primary diffuse large B-cell lymphoma of the mediastinum: outcome following high-dose chemotherapy and autologous hematopoietic cell transplantation. Blood. 1998;91(2):717–23.
  45. Kuruvilla J, Pintilie M, Tsang R, et al. Salvage chemotherapy and autologous stem cell transplantation are inferior for relapsed or refractory primary mediastinal large B-cell lymphoma compared with diffuse large B-cell lymphoma. Leuk Lymphoma. 2008;49(7):1329–36. doi: 10.1080/10428190802108870.
  46. Hao Y, Chapuy B, Monti S, Sun HH. Selective JAK2 inhibition specifically decreases Hodgkin lymphoma and mediastinal large B-cell lymphoma growth in vitro and in vivo. Clin Cancer Res. 2014;20(10):2674–83. doi: 10.1158/1078-0432.CCR-13-3007.
  47. Dunleavy K, Wilson W. Primary mediastinal B-cell lymphoma and mediastinal gray zone lymphoma: do they require a unique therapeutic approach? Blood. 2015;125(1):33–9. doi: 10.1182/blood-2014-05-575092.
  48. Berger R, Rotem-Yehudar R, Slama G, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51. doi: 10.1158/1078-0432.CCR-07-4079.

Modern Aspects of Diagnosis and Treatment of Anaplastic Large Cell Lymphoma in Children (Literature Review)

AS Levashov1, TT Valiev1, AM Kovrigina2, AV Popa1, GL Mentkevich1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Andrei Sergeevich Levashov, scientific worker, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(916)233-05-75; e-mail: andreyslevashov@mail.ru

For citation: Levashov AS, Valiev TT, Kovrigina AM, et al. Modern Aspects of Diagnosis and Treatment of Anaplastic Large Cell Lymphoma in Children (Literature Review). Clinical oncohematology. 2016;9(2):199–207 (In Russ).

DOI: 10.21320/2500-2139-2016-9-2-199-207


ABSTRACT

Anaplastic large cell lymphoma (ALCL) includes different types of the disease that are heterogeneous according to clinical, morphological, immunological, cytogenetic and molecular biological features. The review demonstrates not only main clinical and morphoimmunological characteristics of ALCL, but also presents data about expression and prognostic significance of STAT3, pSTAT3tyr705, and survivin (transcription factor). It demonstrates the value of defining the minimal disseminated disease (the minimal disseminated disease is evaluated using the PCR test before initiation of the treatment, and the minimal residual disease is evaluated during the treatment and after its completion), and clinical and molecular biological prognostic factors are also identified. There is still no a standard therapeutic regimen for pediatric ALCL patients. However, the following therapeutic protocols are considered most effective: NHL-BFM 90/95, CCG5941, SFOP-LM 89/91, UKCCSG, ALCL99-Vinblastine, POG АРО 9315, AIEOP LNH-92/97. Treatment outcomes are presented in this paper. Particular attention is paid to different molecular biological markers that allow further improvement of patients’ stratification in risk groups and possible use of target medications (multikinase inhibitors and monoclonal antibodies) improving the therapy outcomes.


Keywords: anaplastic large cell lymphoma, diagnosis, treatment, children.

Received: February 3, 2016

Accepted: February 10, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Reiter A. Diagnosis and Treatment of Childhood Non-Hodgkin Lymphoma. 2007;2007(1):285–96. doi: 10.1182/asheducation-2007.1.285.
  2. Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. 1985;66(4):848–58.
  3. Piccaluga PP, Gazzola A, Mannu C, et al. Pathobiology of Anaplastic Large Cell Lymphoma. Adv Hematol. 2010:345053. doi:10.1155/2010/345053.
  4. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  5. Ковригина А.М., Пробатова Н.А. Лимфома Ходжкина и крупноклеточные лимфомы. М.: МИА, 2007. С. 212.[Kovrigina AM, Probatova NA. Limfoma Khodzhkina i krupnokletochnye limfomy. (Hodgkin’s lymphoma and large cell lymphomas.) Moscow: MIA Publ.; 2007. pp. 212. (In Russ)]
  6. Валиев Т.Т., Морозова О.В., Ковригина А.М. и др. Диагностика и лечение анапластических крупноклеточных лимфом у детей. Гематология и трансфузиология. 2012;51(1):3–9. [Valiev TT, Morozova OV, Kovrigina AM, et al. Diagnosis and treatment of anaplastic large-cell lymphomas in children. Gematologiya i transfuziologiya. 2012;51(1):3–9. (In Russ)]
  7. Lamant L, McCarthy K, d’Amore E, et al. Prognostic Impact of Morphologic and Phenotypic Features of Childhood ALK-Positive Anaplastic Large-Cell. Lymphoma: Results of the ALCL99 Study. J Clin Oncol. 2011;29(35):4669–76. doi: 10.1200/JCO.2011.36.5411.
  8. Calzado-Villarreal L, Polo-Rodriguez I, Ortiz-Romerob PL, et al. Primary Cutaneous CD30+ Lymphoproliferative Disorders. Actas Dermosifiliogr. 2010;101(2):119–28. doi: 10.1016/s1578-2190(10)70598-9.
  9. Brugieres L, Deley MC, Pacquement H, et al. CD30 Anaplastic Large-Cell Lymphoma in Children: Analysis of 82 Patients Enrolled in Two Consecutive Studies of the French Society of Pediatric Oncology. 1998;92(10):3591–8.
  10. Williams DM, Hobson R, Imeson J, et al. Anaplastic large cell lymphoma in childhood: analysis of 72 patients treated on The United Kingdom Children’s Cancer Study Group chemotherapy regimens. Br J Haematol. 2002;117(4):812–20. doi: 10.1046/j.1365-2141.2002.03482.x.
  11. Seidemann K, Tiemann M, Schrappe M, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. 2001;97(12):3699–706. doi: 10.1182/blood.v97.12.3699.
  12. Burkhardt В., Oschlies I, Klapper W, et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. 2011;25(1):153–60. doi: 10.1038/leu.2010.245.
  13. Deley MC, Reiter A, Williams D, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. 2008;111(3):1560–6. doi: 10.1182/blood-2007-07-100958.
  14. Rosolen A, Pillon M, Garaventa A, et al. Anaplastic Large Cell Lymphoma Treated with a Leukemia-Like Therapy: Report of the Italian Association of Pediatric Hematology and Oncology (AIEOP) LNH-92 Protocol. 2005;104(10):2133–40. doi: 10.1002/cncr.21438.
  15. Lowe EJ, Sposto R, Perkins SL, et al. Intensive Chemotherapy for Systemic Anaplastic Large Cell Lymphoma in Children and Adolescents: Final Results of Children’s Cancer Group Study 5941. Pediatr Blood Cancer. 2009;52(3):335–9. doi: 10.1002/pbc.21817.
  16. Laver JH, Kraveka JM, Hutchison RE, et al. Advanced-Stage Large-Cell Lymphoma in Children and Adolescents: Results of a Randomized Trial Incorporating intermediate-Dose Methotrexate and High-Dose Cytarabine in the Maintenance Phase of the APO Regimen: A Pediatric Oncology Group Phase III Trial. J Clin Oncol. 2005;23(3):541–7. doi: 10.1200/jco.2005.11.075.
  17. Pillon M, Gregucci F, Lombardi A, et al. Results of AIEOP LNH-97 Protocol for the Treatment of Anaplastic Large Cell Lymphoma of Childhood. Pediatr Blood Cancer. 2012;59(5):828–33. doi: 10.1002/pbc.24125.
  18. Jacobsen E. Anaplastic Large-Cell Lymphoma, T-/Null-Cell Type. The Oncologist. 2006;11(7):831–40. doi: 10.1634/theoncologist.11-7-831.
  19. Delsoll G, Brugieres L, Gaulard P, et al. Anaplastic large cell lymphoma, ALK-positive and anaplastic large cell lymphoma ALK-negative. Hematol Meet Rep. 2009;3(1):51–7.
  20. Zamo A, Chiarle R, Piva R, et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. 2002;21(7):1038–47. doi: 10.1038/sj.onc.1205152.
  21. Weinberg OK, Seo K, Arber DA. Prevalence of bone marrow involvement in systemic anaplastic large cell lymphoma: are immunohistochemical studies necessary? Hum Pathol. 2008;39(9):1331–40. doi: 10.1016/j.humpath.2008.01.005.
  22. Khoury JD, Medeiros LJ, Rassidakis GZ, et al. Differential expression and clinical significance of tyrosine-phosphorylated STAT3 in ALK+ and ALK- Anaplastic Large Cell Lymphoma. Clin Cancer Res. 2003;9:3692–9.
  23. Dourlat J, Liu W-Q, Florence S, et al. A novel non-phosphorylated potential antitumoral peptide inhibits STAT3 biological activity. 2009;91(8):996–1002. doi: 10.1016/j.biochi.2009.05.006.
  24. Schlette EJ, Medeiros LJ, Goy A, et al. Survivin Expression Predicts Poorer Prognosis in Anaplastic Large-Cell Lymphoma. J Clin Oncol. 2004;22(9):1682–8. doi: 10.1200/JCO.2004.10.172.
  25. Nasr MR, Laver JH, Chang M. Expression of Anaplastic Lymphoma Kinase, Tyrosine-Phosphorylated STAT3, and Associated Factors in Pediatric Anaplastic Large Cell Lymphoma. Am J Clin Pathol. 2007;127(5):770–8. doi: 10.1309/fny8y4h6pk1v2mge.
  26. Zhang J, Wang P, Wu F, et al. Aberrant expression of the transcriptional factor twist 1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma. Cell Signalling. 2012;24(4):852–8. doi: 10.1016/j.cellsig.2011.11.020.
  27. Huang W, Li X, Yao X, et al. Expression of ALK protein, mRNA and fusion transcripts in anaplastic large cell lymphoma. Exper Mol Pathol. 2009;86(2):121–6. doi:10.1016/j.yexmp.2008.11.012.
  28. Damm-Welk C, Klapper W, Oschlies I, et al. Distribution of NPM1-ALK and X-ALK fusion transcripts in paediatric anaplastic large cell lymphoma: a molecular-histological correlation. Br J Haematol. 2009;146(3):306–9. doi: 10.1111/j.1365-2141.2009.07754.x.
  29. Ait-Tahar K, Damm-Welk C, Burkhardt B, et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. 2010;115(16):3314–9. doi: 10.1182/blood-2009-11-251892.
  30. Damm-Welk C, Busch K, Burkhardt B, et al. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK–positive anaplastic large-cell lymphoma. 2007;110(2):670–7. doi: 10.1182/blood-2007-02-066852.
  31. Damm-Welk C, Mussolin L, Zimmermann M, et al. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. 2014;123(3):334–7. doi: 10.1182/blood-2013-09-526202.
  32. Jaffe ES. What’s new on the horizon in T-cell lymphoma. [Internet] Available from: http://www.ercongressi.it/t-cell-slide/April%2027,%202015/01.%20T-cell%20world/1%20-%20Jaffe.pdf. (accessed 18.04.2016).
  33. Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. 2014;124(9):1473–80. doi: 10.1182/blood-2014-04-571091.
  34. Wrobel G, Mauguen A, Rosolen A, et al. Safety Assessment of Intensive Induction Therapy in Childhood Anaplastic Large Cell Lymphoma: Report of the ALCL99 Randomised Trial. Pediatr Blood Cancer. 2011;56(7):1071– doi: 10.1002/pbc.22940.
  35. Woessmann W, Seidemann K, Mann G, et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM group study NHL-BFM95. 2005;105(3):948–58. doi: 10.1182/blood-2004-03-0973.
  36. Le Deley MC, Rosolen A, Williams DM, et al. Vinblastine in Children and Adolescents With High-Risk Anaplastic Large-Cell Lymphoma: Results of the Randomized ALCL99-Vinblastine Trial. J Clin Oncol. 2010;28(25):3987–93. doi: 10.1200/JCO.2010.28.5999.
  37. Alexander S, Kraveka JM, Weitzman S, et al. Advanced stage anaplastic large cell lymphoma in children and adolescents: results of ANHL0131, a randomized Phase III Trial of APO versus a modified regimen with vinblastine: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2014;61(12):2236–42. doi: 10.1002/pbc.25187.
  38. Gross TG, Hale GA, He W, et al. Hematopoietic stem cell transplantation for refractory or recurrent non-Hodgkin lymphoma in children and adolescents. Biol Blood Marrow Transplant. 2010;16(2):223–30. doi: 10.1016/j.bbmt.2009.09.021.
  39. Brugieres L, Pacquement H, Le Deley MC, et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J Clin Oncol. 2009;27(30):5056–61. doi: 10.1200/JCO.2008.20.1764.
  40. Mori T, Takimoto T, Katano N, et al. Recurrent childhood anaplastic large cell lymphoma: a retrospective analysis of registered cases in Japan. Br J Haematol. 2005;132(5):594–7. doi: 10.1111/j.1365-2141.2005.05910.x.
  41. Woessmann W, Zimmermann M, Lenhard M, et al. Relapsed or Refractory Anaplastic Large-Cell Lymphoma in Children and Adolescents After Berlin-Frankfurt-Muenster (BFM)-Type First-Line Therapy: A BFM-Group Study. J Clin Oncol. 2011;29(22):3065–71. doi: 10.1200/JCO.2011.34.8417.
  42. Forero-Torres A, Leonard JP, Younes A, et al. A phase II study of SGN30 (anti-CD30 mab) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol. 2009;146(2):171–9. doi: 10.1111/j.1365-2141.2009.07740.x.
  43. Ansell SM, Horwitz SM, Engert A, et al. Phase I/II Study of an Anti-CD30 Monoclonal Antibody (MDX-060) in Hodgkin’s Lymphoma and Anaplastic Large-Cell Lymphoma. J Clin Oncol. 2007;25(19):2764–9. doi 10.1200/jco.2006.07.8972.
  44. Pro B., Advani R, Brice P, et al. Brentuximab Vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6. doi: 10.1200/JCO.2011.38.0402.
  45. Younes A, Bartlett NL, Leonard JP, et al. Brentuximab Vedotin (SGN-35) for Relapsed CD30-Positive Lymphomas. N Engl J Med. 2010;363(19):1812–21. doi: 10.1056/NEJMoa1002965.
  46. Mosse YP. Safety and activity of crizotinib for pediatric patients with refractory solid tumors or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–80. doi: 10.1016/s1470-2045(13)70095-0.
  47. Passerini CG, Farina F, Stasia A, et al. Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst. 2014;106(2):djt37 doi: 10.1093/jnci/djt378.
  48. National Cancer Insitute. A Randomized Phase II study of Brentuximab Vedotin (NSC# 749710) and Crizotinib (NSC# 749005) in Patients with Newly Diagnosed Anaplastic Large Cell Lymphoma (ALCL) IND #117117. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 [cited 2016 April 18]. Available from: https://clinicaltrials.gov/ct2/show/NCT01979536?term=NCT01979536&rank=1. NLM Identifier: NCT01979536.
  49. Greengard Е, Mosse Y, Liu X, et al. Safety and tolerability of crizotinib in combination with chemotherapy for relapsed or refractory solid tumors or anaplastic large cell lymphoma: a Children’s Oncology Group phase I consortium study. J Clin Oncol. 2015;33(Suppl): Abstract 10058.
  50. Geoerger B. Phase I study of ceritinib (Zycadia) in pediatric patients (Pts) with malignancies harboring a genetic alteration in ALK (ALK+): Safety, pharmacokinetic (PK), and efficacy J Clin Oncol. 2015;33(Suppl): Abstract 10005.
  51. Friboulet L, Li N, Katayama R, et al. The ALK Inhibitor Ceritinib Overcomes Crizotinib Resistance in Non–Small Cell Lung cancer. Cancer Discovery. 2014;4(6):662–73. doi: 10.1158/2159-8290.CD-13-0846.