Significance of the Expression of pAKT1 and pSyk Activation Proteins in Diffuse Large B-Cell Lymphoma

EV Vaneeva, VA Rosin, DA Dyakonov, SV Samarina, IV Paramonov

Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027

For correspondence: Elena Viktorovna Vaneeva, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027; Tel.: +7(922)975-23-34; e-mail: vaneeva.elena.vic@mail.ru

For citation: Vaneeva EV, Rosin VA, Dyakonov DA, et al. Significance of the Expression of pAKT1 and pSyk Activation Proteins in Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2022;15(2):140–7. (In Russ).

DOI: 10.21320/2500-2139-2022-15-2-140-147


ABSTRACT

Aim. To assess the prognostic value of pAKT1 and рSyk expression in DLBCL.

Materials & Methods. The study enrolled 100 patients with newly diagnosed DLBCL treated with R-CHOP first-line immunochemotherapy. The relative count of pAKT1- and pSyk-expressing tumor cells was determined by immunohistochemical and morphometric methods. The expression cut-off of these proteins was calculated by ROC analysis. The relationship of protein expression with clinical parameters of DLBCL was analyzed by Fisher’s exact two-tailed test. The 5-year overall (OS) and progression-free (PFS) survivals were estimated by Kaplan-Meier method (log-rank test).

Results. High pAKT1 expression was associated with advanced DLBCL stages, International Prognostic Index > 2, serum lactate dehydrogenase concentration above normal, failures of R-CHOP therapy, as well as worse OS and PFS. No correlation between рSyk expression and clinical lymphoma characteristics was found. The worst 5-year OS (27.6 %) was reported in cases of pAKT1 and pSyk co-overexpression (hazard ratio [HR] 5.2; 95% confidence interval [95% CI] 2.49–10.9; < 0.001). A similar trend was observed for PFS (HR = 3.3; 95% CI 1.54–7.30; = 0.002).

Conclusion. Overexpression of pAKT1 is an informative indicator of a poor DLBCL prognosis. Co-overexpression of pAKT1 and рSyk markers is associated with worse OS and PFS compared to their isolated expressions and other co-expression variants.

Keywords: diffuse large B-cell lymphoma, pAKT1 and pSyk expression, overall survival, progression-free survival.

Received: November 17, 2021

Accepted: March 2, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Bahar T, Chowdhury ZZ, Rahman S, et al. Clinicopathological Correlation with Outcome of Diffuse Large B Cell Lymphoma: Experience in a Specialized Cancer Care Centre in Bangladesh. J Medicine. 2021;22(1):3–6. doi: 3329/jom.v22i1.51383.
  2. Самарина С.В., Лучинин А.С., Минаева Н.В. и др. Иммуногистохимический подтип и параметры международного прогностического индекса в новой модели прогноза диффузной B-крупноклеточной лимфомы. Клиническая онкогематология. 2019;12(4):385–90. doi: 21320/2500-2139-2019-12-4-385-390.
    [Samarina SV, Luchinin AS, Minaeva NV, et al. Immunohistochemical Subtype and Parameters of International Prognostic Index in the New Prognostic Model of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(4):385–90. doi: 10.21320/2500-2139-2019-12-4-385-390. (In Russ)]
  3. Mondello P, Mian M, Frontline treatment of diffuse large B-cell lymphoma: Beyond R‐ Hematol Oncol. 2019;37(4):333–44. doi: 10.1002/hon.2613.
  4. Song JL, Wei XL, Zhang YK, et al. The prognostic value of the international prognostic index, the national comprehensive cancer network IPI and the age-adjusted IPI in diffuse large B cell lymphoma. Zhonghua Xue Ye Xue Za Zhi. 2018;39(9):739–44. doi: 10.3760/cma.j.issn.0253-2727.2018.09.007.
  5. Roschewski M, Staudt LM, Wilson WH. Diffuse large B-cell lymphoma treatment approaches in the molecular era. Nat Rev Clin Oncol. 2014;11(1):12–23. doi: 10.1038/nrclinonc.2013.197.
  6. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.
  7. Расторгуев С.М., Королева Д.А., Булыгина Е.С. и др. Клиническое и прогностическое значение молекулярных маркеров диффузной В-крупноклеточной лимфомы. Клиническая онкогематология. 2019;12(1):95–100. doi: 10.21320/2500-2139-2019-12-1-95-100.
    [Rastorguev SM, Koroleva DA, Boulygina ES, et al. Clinical and Prognostic Value of Molecular Markers of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(1):95–100. doi: 10.21320/2500-2139-2019-12-1-95-100. (In Russ)]
  8. Miao Yi, Medeiros LJ, Xu-Monette ZY, et al. Dysregulation of Cell Survival in Diffuse Large B Cell Lymphoma: Mechanisms and Therapeutic Targets. Front Oncol. 2019;9:107. doi: 3389/fonc.2019.00107.
  9. Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol. 2014;94(3):193–205. doi: 10.1111/ejh.12427.
  10. Никитин E.A. Передача сигнала через B-клеточный рецептор: механизмы и ингибиторы. Клиническая онкогематология. 2014;7(3):251–63.
    [Nikitin EA. B­Cell Receptor Signaling Pathway: Mechanisms and Inhibitors. Klinicheskaya onkogematologiya. 2014;7(3):251–63. (In Russ)]
  11. Wossning T, Herzog S, Kohler F, et al. Deregulated Syk inhibits differentiation and induces growth factor-independent proliferation of pre-B cells. J Exp Med. 2006;203(13):2829–40. doi: 10.1084/jem.20060967.
  12. Kumar А, Rajendran V, Sethumadhavan R, Purohit R. AKT Kinase Pathway: A Leading Target in Cancer Research. ScientificWorldJournal. 2013; 2013:756134. doi: 10.1155/2013/756134.
  13. Ванеева Е.В., Росин В.А., Дьяконов Д.А. и др. Значение экспрессии pAKT1 при диффузной В-крупноклеточной лимфоме. Бюллетень сибирской медицины. 2021;3:6–13.
    [Vaneeva EV, Rosin VA, D’yakonov DA, et al. Significance of pAKT1 expression in diffuse large B-cell lymphoma. Byulleten’ sibirskoi meditsiny. 2021;3:6–13. (In Russ)]
  14. Karmali R, Gordon LI. Molecular Subtyping in Diffuse Large B Cell Lymphoma: Closer to an Approach of Precision Therapy. Curr Treat Options Oncol. 2017;18(2):11. doi: 10.1007/s11864-017-0449-1.
  15. Wang X, Cao X, Sun R, et al. Clinical Significance of PTEN Deletion, Mutation, and Loss of PTEN Expression in De Novo Diffuse Large B-Cell Lymphoma. Neoplasia. 2018;20(6):574–93. doi: 10.1016/j.neo.2018.03.002.
  16. Wang J, Xu-Monette ZY, Jabbar KJ, et al. AKT Hyperactivation and the Potential of AKT-Targeted Therapy in Diffuse Large B-Cell Lymphoma. Am J Pathol. 2017;187(8):1700–16. doi: 10.1016/j.ajpath.2017.04.009.
  17. Hong JY, Hong ME, Choi MK, et al. The impact of activated p-AKT expression on clinical outcomes in diffuse large B-cell lymphoma: A clinicopathological study of 262 cases. Ann Oncol. 2014;25(1):182–8. doi: 10.1093/annonc/mdt530.

Treatment of Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma: A Systematic Review and Meta-Analysis

AS Luchinin

Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027

For correspondence: Aleksander Sergeevich Luchinin, MD, PhD, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027; Tel.: +7(919)506-87-86; e-mail: glivec@mail.ru

For citation: Luchinin AS. Treatment of Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma: A Systematic Review and Meta-Analysis. Clinical oncohematology. 2022;15(2):130–9. (In Russ).

DOI: 10.21320/2500-2139-2022-15-2-130-139


ABSTRACT

Background. Up to now, R-CHOP-21 therapy (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone) has been a standard option in the treatment of newly diagnosed diffuse large B-cell lymphoma (DLBCL). About 40–50 % of patients, however, show refractoriness to this therapy or develop early relapses.

Results. The outcomes of 22 clinical trials enrolling 9879 DLBCL patients were analyzed. The efficacies of different R-CHOP-21 therapy regimens were compared, and the progression-free-survivals were estimated. The network meta-analysis showed that, in the total cohort, the most effective first-line regimens were VenR-CHOP (hazard ratio [HR] 0.61; 95% confidence interval [95% CI] 0.37–1.00) and Pola-R-CHP (HR = 0.73; 95% CI 0.47–1.12). For non-GCB (ABC) subtype patients less than 60 years of age, R-ACVBP (HR = 0.31; 95% CI 0.12–0.79) and IR-CHOP (HR = 0.56; 95% CI 0.36–0.86) regimens appeared to be more effective than R-CHOP-21.

Conclusion. Today, the newly diagnosed DLBCL can be treated not only with R-CHOP-21, but also with alternative and more effective regimens. Their assignment, however, needs to be strictly personalized. IR-CHOP and R-ACVBP therapies can be administered in patients with non-GCB (ABC) subtype of DLBCL, if they are under 60 years of age. The list of these regimens can be further extended to include novel drugs, such as polatuzumab vedotin (its efficacy was confirmed by a randomized clinical trial) and venetoclax (its efficacy was confirmed by a non-randomized clinical trial).

Keywords: diffuse large B-cell lymphoma, meta-analysis.

Received: November 24, 2021

Accepted: March 7, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Liu Y, Barta SK. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am J Hematol. 2019;94(5):604–16. doi: 10.1002/ajh.25460.
  2. Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med. 2018;378(15):1396–407. doi: 10.1056/NEJMoa1801445.
  3. Morin RD, Arthur SE, Hodson DJ. Molecular profiling in diffuse large B-cell lymphoma: why so many types of subtypes? Br J Haematol. 2021. doi: 10.1111/bjh.17811.
  4. Mondello P, Ansell SM. PHOENIX rises: Genomic-based therapies for diffuse large B cell lymphoma. Cancer Cell. 2021;39(12):1570–2. doi: 10.1016/j.ccell.2021.10.007.
  5. Mondello P, Mian M. Frontline treatment of diffuse large B-cell lymphoma: Beyond R-CHOP. Hematol Oncol. 2019;37(4):333–44. doi: 10.1002/hon.2613.
  6. Gonzalez-Barca E, Boumendil A, Blaise D, et al. Outcome in patients with diffuse large B-cell lymphoma who relapse after autologous stem cell transplantation and receive active therapy. A retrospective analysis of the Lymphoma Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 2020;55(2):393–9. doi: 10.1038/s41409-019-0650-x.
  7. Lekakis LJ, Moskowitz CH. The Role of Autologous Stem Cell Transplantation in the Treatment of Diffuse Large B-cell Lymphoma in the Era of CAR-T Cell Therapy. HemaSphere. 2019;3(6):e295. doi: 10.1097/HS9.0000000000000295.
  8. Sermer D, Batlevi C, Palomba ML, et al. Outcomes in patients with DLBCL treated with commercial CAR T cells compared with alternate therapies. Blood Adv. 2020;4(19):4669–78. doi: 10.1182/bloodadvances.2020002118.
  9. Lim MS, Elenitoba-Johnson KSJ. Precision Medicine for Diffuse Large B-cell Lymphoma. Clin Cancer Res. 2016;22(12):2829–31. doi: 10.1158/1078-0432.CCR-16-0232.
  10. Vermaat JS, Pals ST, Younes A, et al. Precision medicine in diffuse large B-cell lymphoma: hitting the target. Haematologica. 2015;100(8):989–93. doi: 10.3324/haematol.2015.128371.
  11. Abramson J. Randomized Phase II/III Study of DA-EPOCH-R +/- Venetoclax in Previously Untreated Double Hit Lymphoma: Initial Results from Alliance A051701. ASH; 2021.
  12. Cortelazzo S, Tarella C, Gianni AM, et al. Randomized Trial Comparing R-CHOP Versus High-Dose Sequential Chemotherapy in High-Risk Patients With Diffuse Large B-Cell Lymphomas. J Clin Oncol. 2016;34(33):4015–22. doi: 10.1200/JCO.2016.67.2980.
  13. Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16. doi: 10.1186/1745-6215-8-16.
  14. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. doi: 10.1002/sim.1186.
  15. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. doi: 10.1136/bmj.327.7414.557.
  16. Cochrane Handbook for Systematic Reviews of Interventions. Available from: https://training.cochrane.org/handbook (accessed 13.02.2022).
  17. Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011;342:d549. doi: 10.1136/bmj.d549.
  18. Jansen JP, Fleurence R, Devine B, et al. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1. Value Health. 2011;14(4):417–28. doi: 10.1016/j.jval.2011.04.002.
  19. Rucker G. Network meta-analysis, electrical networks and graph theory. Res Synth Methods. 2012;3(4):312–24. doi: 10.1002/jrsm.1058.
  20. Higgins JPT, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
  21. Abou-Setta AM, Beaupre LA, Jones CA, et al. Newcastle-Ottawa Scale Assessment of Cohort Studies. Agency for Healthcare Research and Quality (US); 2011.
  22. Bartlett NL, Wilson WH, Jung S-H, et al. Dose-Adjusted EPOCH-R Compared With R-CHOP as Frontline Therapy for Diffuse Large B-Cell Lymphoma: Clinical Outcomes of the Phase III Intergroup Trial Alliance/CALGB 50303. J Clin Oncol. 2019;37(21):1790–9. doi: 10.1200/JCO.18.01994.
  23. Davies A, Cummin TE, Barrans S, et al. Gene-expression profiling of bortezomib added to standard chemoimmunotherapy for diffuse large B-cell lymphoma (REMoDL-B): an open-label, randomised, phase 3 trial. Lancet Oncol. 2019;20(5):649–62. doi: 10.1016/S1470-2045(18)30935-5.
  24. Hainsworth JD, Arrowsmith ER, McCleod M, et al. A randomized, phase 2 study of R-CHOP plus enzastaurin vs R-CHOP in patients with intermediate- or high-risk diffuse large B-cell lymphoma. Leuk Lymphoma. 2016;57(1):216–8. doi: 10.3109/10428194.2015.1045898.
  25. Hara T, Yoshikawa T, Goto H, et al. R-THP-COP versus R-CHOP in patients younger than 70 years with untreated diffuse large B cell lymphoma: A randomized, open-label, noninferiority phase 3 trial. Hematol Oncol. 2018;36(4):638–44. doi: 10.1002/hon.2524.
  26. Leonard JP, Kolibaba KS, Reeves JA, et al. Randomized Phase II Study of R-CHOP With or Without Bortezomib in Previously Untreated Patients With Non-Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma. J Clin Oncol. 2017;35(31):3538–46. doi: 10.1200/JCO.2017.73.2784.
  27. Li X, Huang H, Xu B, et al. Dose-Dense Rituximab-CHOP versus Standard Rituximab-CHOP in Newly Diagnosed Chinese Patients with Diffuse Large B-Cell Lymphoma: A Randomized, Multicenter, Open-Label Phase 3 Trial. Cancer Res Treat. 2019;51(3):919–32. doi: 10.4143/crt.2018.230.
  28. Lugtenburg PJ, de Nully Brown P, van der Holt B, et al. Rituximab-CHOP With Early Rituximab Intensification for Diffuse Large B-Cell Lymphoma: A Randomized Phase III Trial of the HOVON and the Nordic Lymphoma Group (HOVON-84). J Clin Oncol. 2020;38(29):3377–87. doi: 10.1200/JCO.19.03418.
  29. Mian M, Wasle I, Gamerith G, et al. R-CHOP versus R-COMP: are they really equally effective? Clin Oncol (R Coll Radiol). 2014;26(10):648–52. doi: 10.1016/j.clon.2014.05.012.
  30. Molina TJ, Canioni D, Copie-Bergman C, et al. Young patients with non-germinal center B-cell-like diffuse large B-cell lymphoma benefit from intensified chemotherapy with ACVBP plus rituximab compared with CHOP plus rituximab: analysis of data from the Groupe d’Etudes des Lymphomes de l’Adulte/lymphoma study association phase III trial LNH 03-2B. J Clin Oncol. 2014;32(35):3996–4003. doi: 10.1200/JCO.2013.54.9493.
  31. Morschhauser F, Feugier P, Flinn IW, et al. A phase 2 study of venetoclax plus R-CHOP as first-line treatment for patients with diffuse large B-cell lymphoma. Blood. 2021;137(5):600–9. doi: 10.1182/blood.2020006578.
  32. Nowakowski GS, Chiappella A, Gascoyne RD, et al. ROBUST: A Phase III Study of Lenalidomide Plus R-CHOP Versus Placebo Plus R-CHOP in Previously Untreated Patients With ABC-Type Diffuse Large B-Cell Lymphoma. J Clin Oncol. 2021;39(12):1317–28. doi: 10.1200/JCO.20.01366.
  33. Nowakowski GS, Hong F, Scott DW, et al. Addition of Lenalidomide to R-CHOP Improves Outcomes in Newly Diagnosed Diffuse Large B-Cell Lymphoma in a Randomized Phase II US Intergroup Study ECOG-ACRIN E1412. J Clin Oncol. 2021;39(12):1329–38. doi: 10.1200/JCO.20.01375.
  34. Oberic L, Peyrade F, Puyade M, et al. Subcutaneous Rituximab-MiniCHOP Compared With Subcutaneous Rituximab-MiniCHOP Plus Lenalidomide in Diffuse Large B-Cell Lymphoma for Patients Age 80 Years or Older. J Clin Oncol. 2021;39(11):1203–13. doi: 10.1200/JCO.20.02666.
  35. Offner F, Samoilova O, Osmanov E, et al. Frontline rituximab, cyclophosphamide, doxorubicin, and prednisone with bortezomib (VR-CAP) or vincristine (R-CHOP) for non-GCB DLBCL. Blood. 2015;126(16):1893–901. doi: 10.1182/blood-2015-03-632430.
  36. Ohmachi K, Kinoshita T, Tobinai K, et al. A randomized phase 2/3 study of R-CHOP vs CHOP combined with dose-dense rituximab for DLBCL: the JCOG0601 trial. Blood Adv. 2021;5(4):984–93. doi: 10.1182/bloodadvances.2020002567.
  37. Sehn LH, Martelli M, Trneny M, et al. A randomized, open-label, Phase III study of obinutuzumab or rituximab plus CHOP in patients with previously untreated diffuse large B-Cell lymphoma: final analysis of GOYA. J Hematol Oncol. 2020;13(1):71. doi: 10.1186/s13045-020-00900-7.
  38. Seymour JF, Pfreundschuh M, Trneny M, et al. R-CHOP with or without bevacizumab in patients with previously untreated diffuse large B-cell lymphoma: final MAIN study outcomes. Haematologica. 2014;99(8):1343–9. doi: 10.3324/haematol.2013.100818.
  39. Tilly H. The POLARIX Study: Polatuzumab Vedotin with Rituximab, Cyclophosphamide, Doxorubicin, and Prednisone (pola-R-CHP) Versus Rituximab, Cyclophosphamide, Doxorubicin, Vincristine and Prednisone (R-CHOP) Therapy in Patients with Previously Untreated Diffuse Large B-Cell Lymphoma. ASH; 2021.
  40. Younes A, Sehn LH, Johnson P, et al. Randomized Phase III Trial of Ibrutinib and Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Non-Germinal Center B-Cell Diffuse Large B-Cell Lymphoma. J Clin Oncol. 2019;37(15):1285–95. doi: 10.1200/JCO.18.02403.
  41. Zhang X-Y, Liang J-H, Wang L, et al. DA-EPOCH-R improves the outcome over that of R-CHOP regimen for DLBCL patients below 60 years, GCB phenotype, and those with high-risk IPI, but not for double expressor lymphoma. J Cancer Res Clin Oncol. 2019;145(1):117–27. doi: 10.1007/s00432-018-2771-9.
  42. Ichiki A, Carreras J, Miyaoka M, et al. Clinicopathological Analysis of 320 Cases of Diffuse Large B-cell Lymphoma Using the Hans Classifier. J Clin Exp Hematop. 2017;57(2):54–63. doi: 10.3960/jslrt.17029.
  43. Dubois S, Tesson B, Mareschal S, et al. Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles. EBioMedicine. 2019;48:58–69. doi: 10.1016/j.ebiom.2019.09.034.
  44. Hounsome L, Eyre TA, Ireland R, et al. Diffuse large B cell lymphoma (DLBCL) in patients older than 65 years: analysis of 3 year Real World data of practice patterns and outcomes in England. Br J Cancer. 2022;126(1):134–43. doi: 10.1038/s41416-021-01525-4.
  45. Cho M-C, Chung Y, Jang S, et al. Prognostic impact of germinal center B-cell-like and non-germinal center B-cell-like subtypes of bone marrow involvement in patients with diffuse large B-cell lymphoma treated with R-CHOP. Medicine. 2018;97(45):e13046. doi: 10.1097/MD.0000000000013046.
  46. Zhang M, Xu P, Wang L, et al. Genetic Subtype Guided Rituximab-Based Immunochemotherapy Improves Outcome in Newly Diagnosed Diffuse Large B-Cell Lymphoma: First Report of a Randomized Phase 2 Study. Hematol Oncol. 2021. doi: 10.1002/hon.26_2879.
  47. Tilly H, Flowers C, Friedberg JW, et al. POLARIX: A phase 3 study of polatuzumab vedotin (pola) plus R-CHP versus R-CHOP in patients (pts) with untreated DLBCL. J Clin Oncol. 2019;37(15_suppl):TPS7571. doi: 10.1200/JCO.2019.37.15_suppl.TPS7571.
  48. Tilly H, Morschhauser F, Sehn LH, et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N Engl J Med. 2022;386(4):351–63. doi: 10.1056/NEJMoa2115304.

Pharmacoeconomic Analysis of R-DA-EPOCH and R-mNHL-BFM-90 Combination Immunochemotherapy in Patients with Prognostically Unfavorable Diffuse Large B-Cell Lymphoma within Randomized Multi-Center Clinical Trial DLBCL-2015

MO Bagova1, AU Magomedova1, SK Kravchenko1, RI Yagudina2, VG Serpik2, SM Kulikov1, YuA Chabaeva1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 NA Semashko National Scientific Research Institute for Public Health, 12 bld. 1 Vorontsovo pole str., Moscow, Russian Federation, 105064

For correspondence: Madina Olegovna Bagova, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(938)913-43-83; e-mail: mbagova89@mail.ru

For citation: Bagova MO, Magomedova AU, Kravchenko SK, et al. Pharmacoeconomic Analysis of R-DA-EPOCH and R-mNHL-BFM-90 Combination Immunochemotherapy in Patients with Prognostically Unfavorable Diffuse Large B-Cell Lymphoma within Randomized Multi-Center Clinical Trial DLBCL-2015. Clinical oncohematology. 2021;14(3):321–32. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-321-332


ABSTRACT

Aim. Pharmacoeconomic analysis of R-DA-EPOCH and R-mNHL-BFM-90 combination immunochemotherapy in patients with prognostically unfavorable diffuse large B-cell lymphoma within randomized multi-center clinical trial DLBCL-2015.

Materials & Methods. The pharmacoeconomic analysis conducted between September 2018 and February 2020 was based on the treatment data of 22 patients enrolled in the DLBCL-2015 randomized multi-center clinical trial. This paper deals with the estimation of treatment outcomes in only one center, i.e., the National Research Center for Hematology. The R-DA-EPOCH induction therapy was administered to 14 out of 22 patients, 8 patients received the R-mNHL-BFM-90 block treatment. Within the R-DA-EPOCH group the second-line therapy was administered subsequently to 5 (36 %) out of 14 patients with partial remission or disease progression. The R-mNHL-BFM-90 treatment resulted in no need to assign second-line regimens. At the first stage, the efficacy of the compared induction therapy regimens was assessed. The next stage of the pharmacoeconomic study sought to analyze only the direct medical costs associated with the whole chemotherapy process. Further, the cost-effectiveness analysis was carried out, which allowed to estimate the financial resources necessary to achieve 1 case of complete remission (CR). A pharmacoeconomic decision-tree model was developed.

Results. CR was achieved in all 8 patients (100 %) who received the R-mNHL-BFM-90 block treatment. In the R-DA-EPOCH group CR was achieved only in 9 (64 %) out of 14 patients. The total mean cost of achieving 1 CR case per patient at all stages of diagnosis and chemotherapy with account for bed turnover (induction, second-line therapy, total supportive care) using R-mNHL-BFM-90 was 1,640,757 rubles, whereas in the R-DA-EPOCH group it was 1,469,878 rubles per patient. However, cumulative treatment costs of R-DA-EPOCH including chemotherapy of the second and further lines and supportive care were 2,896,519 rubles which exceeded those in the R-mNHL-BFM-90 group. Due to its higher efficacy the R-mNHL-BFM-90 immunochemotherapy precludes additional costs associated with both chemotherapy of the second and further lines and supportive care.

Conclusion. R-mNHL-BFM-90 as intensive induction block immunochemotherapy for DLBCL patients with poor prognosis is more effective than R-DA-EPOCH and allows to considerably reduce cumulative costs. It is possible due to complete preclusion of the costs of second-line chemotherapy and supportive care including blood component transfusions.

Keywords: diffuse large B-cell lymphoma, pharmacoeconomic analysis, cost-effectiveness analysis.

Received: March 26, 2021

Accepted: June 13, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Gascoyne RD, Campo E, Jaffe ES, et al. High-grade B-cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017. pp. 291–7.
  2. Магомедова А.У., Кравченко С.К., Кременецкая А.М. и др. Эффективность курса СНОР-21 в терапии диффузной В-крупноклеточной лимфосаркомы. Терапевтический архив. 2005;77(7):58–61.
    [Magomedova AU, Kravchenko SK, Kremenetskaya AM, et al. The efficacy of CHOP-21 in the treatment of diffuse large B-cell lymphosarcoma. Terapevticheskii arkhiv. 2005;77(7):58–61. (In Russ)]
  3. Wilson WH, Dunleavy K, Pittaluga S, et al. Phase II study of dose-adjusted EPOCH-rituximab in untreated diffuse large B-cell lymphoma with analysis of germinal center and post-germinal center biomarkers. J Clin Oncol. 2008;26(16):2717–24. doi: 10.1200/jco.2007.13.1391.
  4. Bartlett NL, Wilson WH, Jung SH, et al. Dose-adjusted EPOCH-R compared with R-CHOP as frontline therapy for diffuse large B-cell lymphoma: clinical outcomes of the phase III intergroup trial alliance/CALGB 50303. J Clin Oncol. 2019;37(21):1790–9. doi: 10.1200/jco.18.01994.
  5. Purroy N, Bergua J, Gallur L, et al. Long-term follow-up of dose-adjusted EPOCH plus rituximab (DA-EPOCH-R) in untreated patients with poor prognosis large B-cell lymphoma. A phase II study conducted by the Spanish PETHEMA Group. Br J Haematol. 2014;169(2):188–98. doi: 10.1111/bjh.13273.
  6. Pfreundschuh M, Trumper L, Osterborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7(5):379–91. doi: 10.1016/s1470-2045(06)70664-7.
  7. Qualls D, Abramson JS. Advances in risk assessment and prophylaxis for central nervous system relapse in diffuse large B-cell lymphoma. Haematol. 2019;104(1):25–34. doi: 3324/haematol.2018.195834.
  8. Gleeson M, Counsell N, Cunningham D, et al. Central nervous system relapse of diffuse large B-cell lymphoma in the rituximab era: results of the UK NCRI R-CHOP-14 versus 21 trial. J Ann Oncol. 2017;28(10):2511–6. doi: 10.1093/annonc/mdx353.
  9. Boehme V, Schmitz N, Zeynalova S, et al. CNS events in elderly patients with aggressive lymphoma treated with modern chemotherapy (CHOP-14) with or without rituximab: an analysis of patients treated in the RICOVER-60 trial of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Blood. 2009;113(17):3896–902. doi: 10.1182/blood-2008-10-182253.
  10. Cunningham D, Hawkes EA, Jack A, et al. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: a phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet. 2013;381(9880):1817–26. doi: 10.1016/s0140-6736(13)60313-x.
  11. Gisselbrecht C, Glass B, Mounier N, et al. R-ICE versus R-DHAP in relapsed patients with CD20 diffuse large B-cell lymphoma (DLBCL) followed by autologous stem cell transplantation: CORAL study. J Clin Oncol. 2009;27(15):8509. doi: 10.1200/jco.2009.27.15_suppl.8509.
  12. Магомедова А.У., Кравченко С.К., Кременецкая А.М. и др. Девятилетний опыт лечения больных диффузной В-крупноклеточной лимфосаркомой. Терапевтический архив. 2011;83(7):5–10.
    [Magomedova AU, Kravchenko SK, Kremenetskaya AM, et al. Nine-year experience in the treatment of patients with diffuse large B-cell lymphosarcoma. Terapevticheskii arkhiv. 2011;83(7):5–10. (In Russ)]
  13. Дорохина Е.И. Отдаленные результаты и токсичность высокодозной химиотерапии взрослых больных диффузной В-крупноклеточной лимфомой по модифицированной программе NHL-BFM-90: Дис.… канд. мед. наук. М., 2016. 90 c.
    [Dorokhina EI. Otdalennye rezul’taty i toksichnost’ vysokodoznoi khimioterapii vzroslykh bol’nykh diffuznoi В-krupnokletochnoi limfomoi po modifitsirovannoi programme NHL-BFM-90. (Long-term results and toxicity of high-dose chemotherapy in adult patients with diffuse large B-cell lymphoma according to the modified NHL-BFM-90 program.) [dissertation] Moscow; 2016. 90 p. (In Russ)]
  14. Крысанов И.С. Применение фармакоэкономических и фармакоэпидемиологических подходов к фармакотерапии неходжкинских лимфом. Биомедицина. 2006;4:40.
    [Krysanov IS. Pharmacoeconomic and pharmacoepidemiological approaches to pharmacotherapy of non-Hodgkin’s lymphomas. 2006;4:40. (In Russ)]
  15. Ягудина Р.И., Серпик В.Г., Сороковиков И.В. Методологические основы анализа «затраты-эффективность». Фармакоэкономика: теория и практика. 2014;2(2):23–7.
    [Yagudina RI, Serpik VG, Sorokovikov IV. Methodological foundations of cost-effectiveness analysis. Farmakoekonomika: teoriya i praktika. 2014;2(2):23–7. (In Russ)]
  16. Ягудина Р.И., Серпик В.Г. Методология анализа затрат. Фармакоэкономика: теория и практика. 2016;4(2):3–14.
    [Yagudina RI, Serpik VG. Cost analysis methodology. Farmakoekonomika: teoriya i praktika. 2016;4(2):3–14. (In Russ)]
  17. Крысанов И.С., Ягудина Р.И., Моисеева Т.Н. Оценка стоимости лечения заболевания (на примере диффузной В-крупноклеточной лимфосаркомы). Вестник Росздравнадзора. 2008;4:34–9.
    [Krysanov IS, Yagudina RI, Moiseeva TN. Cost of disease treatment: a case of diffuse large B-cell lymphosarcoma. Vestnik Roszdravnadzora. 2008;4:34–9. (In Russ)]
  18. Магомедова А.У., Мисюрина А.Е., Ковригина А.М. Протокол лечения взрослых больных диффузной В-клеточной крупноклеточной лимфомой. В кн.: Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2018. Т. 2. С. 557–82.
    [Magomedova AU, Misyurina AE, Kovrigina AM. Treatment protocol for adult patients with diffuse large B-cell lymphoma. In: Savchenko VG, ed. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika Publ.; 2018. 2. pр. 557–582. (In Russ)]
  19. Blay B, Gomez F, Sebban C, et al. The International Prognostic Index correlates to survival in patients with aggressive lymphoma in relapse: analysis of the PARMA trial. Parma Group. Blood. 1998;92(10):3562–8.
  20. Chau I, Webb A, Catovsky D, et al. An oxaliplatin-based chemotherapy in patients with relapsed or refractory intermediate and high-grade non-Hodgkin’s lymphoma. Br J Haematol. 2001;115(4):786–92. doi: 10.1046/j.1365-2141.2001.03181.x.
  21. Cortelazzo S, Rambaldi A, Rossi A, et al. Intensification of salvage treatment with high-dose sequential chemotherapy improves the outcome of patients with refractory or relapsed aggressive non-Hodgkin’s lymphoma. Br J Haematol. 2001;114(2):333–41. doi: 1046/j.1365-2141.2001.02955.x.
  22. Vitolo U, Trneny M, Belada D, et al. Obinutuzumab or rituximab plus CHOP in patients with previously untreated diffuse large B-cell lymphoma: final results from an open-label, randomized phase 3 study (GOYA). Blood. 2016;128(22):470. doi: 10.1182/blood.v128.22.470.470.
  23. Chiappella A, Martelli M, Angelucci E, et al. Rituximab-dose-dense chemotherapy with or without high-dose chemotherapy plus autologous stem-cell transplantation in high-risk diffuse large B-cell lymphoma (DLCL04): final results of a multicentre, open-label, randomised, controlled, phase 3 study. Lancet Oncol. 2017;18(8):1076–88. doi: 10.1016/S1470-2045(17)30444-8.
  24. Stiff PJ, Unger JM, Cook JR, et al. Autologous transplantation as consolidation for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 2013;369(18):1681–90. doi: 10.1056/nejmoa1301077.
  25. Wang HI, Smith A, Aas E, et al. Treatment cost and life expectancy of diffuse large B-cell lymphoma (DLBCL): a discrete event simulation model on a UK population-based observational cohort. Eur J Health Econ. 2017;18(2):255–67. doi: 10.1007/s10198-016-0775-4.
  26. Lee RC, Zou D, Demetrick DJ, et al. Costs Associated with Diffuse Large B-Cell Lymphoma Patient Treatment in a Canadian Integrated Cancer Care Center. Value Health. 2008;11(2):221–30. doi: 10.1111/j.1524-4733.2007.00227.x.

Value of PD-L1 Protein Expression in the Combined Prognostic Model of Diffuse Large B-Cell Lymphoma

SV Samarina1, NYu Semenova2, NV Minaeva1, DA Dyakonov1, VA Rosin1, EV Vaneeva1, SV Gritsaev2

1 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Valerevna Samarina, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; Tel.: +7(8332)25-46-88; e-mail: samarinasv2010@mail.ru

For citation: Samarina SV, Semenova NYu, Minaeva NV, et al. Value of PD-L1 Protein Expression in the Combined Prognostic Model of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2021;14(3):308–14. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-308-314


ABSTRACT

Aim. To study the value of PD-L1 protein expression in the combined model of diffuse large B-cell lymphoma (DLBCL) after administration of R-СHOP induction immunochemotherapy.

Materials & Methods. A retrospective analysis was based on the data of 85 DLBCL patients. The median age was 59 years (Q1–Q3: 29–83). Each patient received at least 2–6 courses of R-СHOP immunochemotherapy. The median follow-up period was 17 months. The optimal cut-off threshold for assessing the proportion of tumor cells expressing PD-L1 protein was determined by the САRT (Classification and Regression Tree) method.

Results. Patients were divided into three groups depending on IPI (International Prognostic Index) risk and immunohistochemical subtype (Hans algorithm) using CART. In group 1 with immunohistochemical GCB subtype and any IPI risk, except for the high one, low PD-L1 expression measured in terms of the DLBCL expressing tumor cell count, was identified in 21 (84 %) patients, 4 (16 %) patients showed overexpression. In case of low PD-L1 expression the 2-year progression-free survival (PFS) was 76 % (median not reached). In 4 patients with protein overexpression, the life duration after DLBCL diagnosed was 4, 16, 2, and 6 months, respectively. In group 2 with immunohistochemical non-GCB subtype and any IPI risk, except for the high one, 27 (67.5 %) patients showed low, and 13 (32.5 %) patients showed high PD-L1 expression. The analysis of the 2-year PFS resulted in no significant differences in groups with different relative counts of РD-L1 expressing tumor cells, i.e., 46 % and 49 %, respectively (= 0.803). In case of low (< 24.5 % tumor cells) PD-L1 expression, the 2-year overall survival (OS) was better than in patients with overexpression (≥ 24.5 % tumor cells), i.e., 87 % vs. 52 %, respectively (= 0.049). In group 3 with IPI high risk irrespective of immunohistochemical subtype, the proportion of PD-L1 expressing cells was higher than cut-off threshold (≥ 24.5 %) in 9 (45 %) patients, low protein expression was identified in 11 (55 %) patients. Deaths were reported in all patients of group 3 showing PD-L1 overexpression. In case of low protein expression the proportion of patients alive was 46 % (= 0.002). None of the patients with high PD-L1 expression lived longer than 2 years. In those with low PD-L1 expression the 2-year OS was 66 % (= 0.008).

Conclusion. Overexpression of PD-L1 by DLBCL tumor cells together with high IPI progression risk and non-GCB tumor subtype is associated with the worst OS and PFS. It can probably be accounted for by insufficient efficacy of R-СHOP induction immunochemotherapy in patients with high IPI risk. With this presumption, the PD-L1 expressing tumor cell count can be regarded as an important additional criterion for stratification of DLBCL patients into risk groups. Adding this new parameter to already established ones would probably contribute to differentiated approach to the choice of chemotherapy strategy at the onset of this aggressive lymphoma.

Keywords: diffuse large B-cell lymphoma, PD-L1 expression, overall survival, progression-free survival.

Received: January 29, 2021

Accepted: May 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. NCCN Clinical Practice Guidelines in Oncology. Non-Hodgkin’s lymphomas. Version 4. 2020. Available from: https://www.nccn.org/patients/guidelines/content/PDF/nhl-diffuse-patient.pdf (accessed 29.01.2021).
  2. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. (In Russ)]
  3. Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology Am Soc Hematol Educ Program. 2011;2011(1):498–505. doi: 10.1182/asheducation-2011.1.498.
  4. Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443–59. doi: 10.3322/caac.21357.
  5. Tilly H, Vitolo U, Walewski J, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii78–vii82. doi: 10.1093/annonc/mds273.
  6. Wight JC, Chong G, Grigg AP, et al. Prognostication of diffuse large B-cell lymphoma in the molecular era: moving beyond the IPI. Blood Rev. 2018;32(5):400–15. doi: 10.1016/j.blre.2018.03.005.
  7. Shipp MA, Harrington DP, Anderson JR, et al. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.
  8. Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematology Am Soc Hematol Educ Program. 2016;2016(1):366–78. doi: 10.1182/asheducation-2016.1.366.
  9. Vassilakopoulos TP, Chatzidimitriou C, Asimakopoulos JV, et al. Immunotherapy in Hodgkin Lymphoma: Present Status and Future Strategies. Cancers. 2019;11(8):1071. doi: 10.3390/cancers11081071.
  10. Vardhana S, Younes A. The immune microenvironment in Hodgkin lymphoma: T cells, B cells, and immune checkpoints. Haematologica. 2016;101(7):794–802. doi: 10.3324/haematol.2015.132761.
  11. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26(1):677–704. doi: 10.1146/annurev.immunol.26.021607.090331.
  12. Kiyasu J, Miyoshi H, Hirata A, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. 2015;126(19):2193–201. doi: 10.1182/blood-2015-02-629600.
  13. Kwon D, Kim S, Kim PJ, et al. Clinicopathological analysis of programmed cell death 1 and programmed cell death ligand 1 expression in the tumour microenvironments of diffuse large B cell lymphomas. Histopathology. 2016;68(7):1079–89. doi: 10.1111/his.12882.
  14. Wu C, Zhu Y, Jiang J, et al. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 2006;108(1):19–24. doi: 10.1016/j.acthis.2006.01.003.
  15. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv. doi: 10.1126/scitranslmed.aad7118.
  16. Hu L-Y, Xu X-L, Rao H-L, et al. Expression and clinical value of programmed cell death-ligand 1 (PD-L1) in diffuse large B cell lymphoma: a retrospective study. Chin J Cancer. 2017;36(1):94. doi: 10.1186/s40880-017-0262-z.
  17. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27(3):409–16. doi: 10.1093/annonc/mdv615.
  18. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия. 2017;4(1):49–55. doi: 10.15690/onco.v4i1684.
    [Klyuchagina YuI, Sokolova ZA, Baryshnikova MA. Role of PD-1 receptor and its ligands PD-L1 and PD-L2 in cancer immunotherapy. Onkopediatriya. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. (In Russ)]
  19. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi: 10.1038/nrc3239.
  20. Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–91. doi: 10.1093/annonc/mdv383.
  21. Thompson RH, Kuntz SM, Leibovich BC, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66(7):3381–5. doi: 10.1158/0008-5472.CAN-05-4303.
  22. Xie M, Huang X, Ye X, Qian W. Prognostic and clinicopathological significance of PD-1/PD-L1 expression in the tumor microenvironment and neoplastic cells for lymphoma. Intern Immunopharmacol. 2019;77:105999. doi: 10.1016/j.intimp.2019.105999.
  23. Самарина С.В., Лучинин А.С., Минаева Н.В. идр. Иммуногистохимический подтип и параметры международного прогностического индекса в новой модели прогноза диффузной B-крупноклеточной лимфомы. Клиническая онкогематология. 2019;12(4):385–90. doi: 10.21320/2500-2139-2019-12-4-385-390.
    [Samarina SV, Luchinin AS, Minaeva NV, et al. Immunohistochemical Subtype and Parameters of International Prognostic Index in the New Prognostic Model of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(4):385–90. doi: 10.21320/2500-2139-2019-12-4-385-390. (In Russ)]
  24. Xing W, Dresser K, Zhang R, et al. PD-L1 expression in EBV-negative diffuse large B-cell lymphoma: clinicopathologic features and prognostic implications. Oncotarget. 201613;7(37):59976–86. doi: 10.18632/oncotarget.11045.
  25. Younes A, Burke J, Cheson B, et al. Safety and efficacy of atezolizumab in combination with rituximab plus chop in previously untreated patients with diffuse large B-cell lymphoma (DLBCL): updated analysis of a phase I/II study. 2018;132(Suppl 1):2969. doi: 10.1182/blood-2018-99-116678.

Immunohistochemical Subtype and Parameters of International Prognostic Index in the New Prognostic Model of Diffuse Large B-Cell Lymphoma

SV Samarina1, AS Luchinin1, NV Minaeva1, IV Paramonov1, DA D’yakonov1, EV Vaneeva1, VA Rosin1, SV Gritsaev2

1 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Valer’evna Samarina, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; Tel.: +7(912)732-47-56; e-mail: samarinasv2010@mail.ru

For citation: Samarina SV, Luchinin AS, Minaeva NV, et al. Immunohistochemical Subtype and Parameters of International Prognostic Index in the New Prognostic Model of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(4):385–90 (In Russ).

DOI: 10.21320/2500-2139-2019-12-4-385-390


ABSTRACT

Aim. To develop an integrated prognostic model of diffuse large B-cell lymphoma (DLBCL) on the basis of immunohistochemical tumor subtype and parameters of International Prognostic Index (IPI).

Materials & Methods. Out of 104 DLBCL patients in the data base 81 (77.9 %) met the eligibility criteria. Median age was 58 years (range 23–83). All patients were treated with R-СНОР. The creation of overall survival (OS) prognostic model for DLBCL patients was based on machine learning with classification and regression trees. OS was analyzed using Kaplan-Meier method. Survival curves were compared by means of log rank test and hazard ratio (HR). Any test was considered significant if two-sided level of < 0.05 was reached.

Results. Following the developed model three groups of patients were identified: the 1st group of low risk (the combination of low, intermediate-low, and intermediate-high risks according to IPI and GCB subtype); the 2nd group of intermediate risk (the combination of low, intermediate-low, and intermediate-high risks according to IPI and non-GCB subtype); the 3d group of high risk (irrespective of subtype). In the group of low risk (n = 26) 2-year OS during the monitoring period was 100 %. In the group of intermediate risk (n = 34) median OS was not reached, 2-year OS was 74 %, and expected 5-year OS was 68 %. In the group of high risk (n = 21) median OS was 25 months, 2-year OS was 46 %, and expected 5-year OS was 37 % (log rank< 0.0001). HR calculated for the high-risk group compared with the low- and intermediate-risk groups was 5.1 (95% CI 2.1–12.1; p = 0.0003).

Conclusion. A new integrated system of DLBCL prognosis is suggested which includes IPI risk parameters and immunohistochemical subtype based on Hans algorithm. This prognostic system can be used in clinical practice for DLBCL patient stratification and risk-adapted therapy.

Keywords: diffuse large B-cell lymphoma, overall survival, prognosis, International Prognostic Index, machine learning.

Received: March 18, 2019

Accepted: August 27, 2019

Read in PDF


REFERENCES

  1. Martellia M, Ferrerib AJM, Agostinellic C, et al. Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 2013;87(2):146–71. doi: 10.1016/j.critrevonc.2012.12.009.

  2. Lynch RC, Gratzinger D, Advani RH. Clinical Impact of the 2016 Update to the WHO Lymphoma Classification. Curr Treat Options Oncol. 2017;18(7):45. doi: 10.1007/s11864-017-0483-z.

  3. Li X, Huang H, Xu B, et al. Dose-Dense Rituximab-CHOP versus Standard Rituximab-CHOP in Newly Diagnosed Chinese Patients with Diffuse Large B-Cell Lymphoma: A Randomized, Multicenter, Open-Label Phase 3 Trial. Cancer Res Treat. 2019;51(3):919–32. doi: 10.4143/crt.2018.230.

  4. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42. doi: 10.1056/NEJMoa011795.

  5. Castellino A, Chiappella A, LaPlant BR, et al. Lenalidomide plus R-CHOP21 in newly diagnosed diffuse large B-cell lymphoma (DLBCL): long-term follow-up results from a combined analysis from two phase 2 trials. Blood Cancer J. 2018;8(11):108. doi: 10.1038/s41408-018-0145-9.

  6. Sharman JP, Forero-Torres A, Costa LJ, et al. Obinutuzumab plus CHOP is effective and has a tolerable safety profile in previously untreated, advanced diffuse large B-cell lymphoma: the phase II GATHER study. Leuk Lymphoma. 2018;60(4):894–903. doi: 10.1080/10428194.2018.1515940.

  7. Kameoka Y, Akagi T, Murai K, et al. Safety and efficacy of high-dose ranimustine (MCNU) containing regimen followed by autologous stem cell transplantation for diffuse large B-cell lymphoma. Int J Hematol. 2018;108(5):510–5. doi: 10.1007/s12185-018-2508-1.

  8. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  9. Biccler J, Eloranta S, de Nully Brown P, et al. Simplicity at the cost of predictive accuracy in diffuse large B-cell lymphoma: a critical assessment of the R-IPI, IPI, and NCCN-IPI. Cancer Med. 2018;7(1):114–22. doi: 10.1002/cam4.1271.

  10. Shipp MA, Harrington DP, Anderson JR, et al. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.

  11. Li JM, Wang L, Shen Y, et al. Rituximab in combination with CHOP chemotherapy for the treatment of diffuse large B cell lymphoma in Chinese patients. Annals Hematol. 2007;86(9):639–45. doi: 10.1007/s00277-007-0320-8.

  12. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene-expression profiling. Nature. 2000;403(6769):503–51. doi: 10.1038/35000501.

  13. Wang KL, Chen C, Shi PF, et al. Prognostic Value of Morphology and Hans Classification in Diffuse Large B Cell Lymphoma. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018;26(4):1079–85. doi: 10.7534/j.issn.1009-2137.2018.04.023.

  14. Rashidi A, Oak E, Carson KR, et al. Outcomes with R-CEOP for R-CHOP-ineligible patients with diffuse large B-cell lymphoma are highly dependent on cell of origin defined by Hans criteria. Leuk Lymphoma. 2016;57(5):1191–3. doi: 10.3109/10428194.2015.1096356.

  1. Ye ZY, Cao YB, Lin TY, Lin HL. Subgrouping and outcome prediction of diffuse large B-cell lymphoma by immunohistochemistry. Zhonghua Bing Li Xue Za Zhi. 2007;36(10):654–9.

  1. Montalban C, Diaz-Lopez A, Martin A, et al. Differential prognostic impact of GELTAMO-IPI in cell of origin subtypes of Diffuse Large B Cell Lymphoma as defined by the Hans algorithm. Br J Haematol. 2018;182(4):534–41. doi: 10.1111/bjh.15446.

  2. Tibiletti MG, Martin V, Bernasconi B, et al. BCL2, BCL6, MYC, MALT 1, and BCL10 rearrangements in nodal diffuse large B-cell lymphomas: a multicenter evaluation of a new set of fluorescent in situ hybridization probes and correlation with clinical outcome. Hum Pathol. 2009;40(5):645–52. doi: 10.1016/j.humpath.2008.06.032.

  3. Jaglal MV, Peker D, Tao J, Cultrera JL. Double and Triple Hit Diffuse Large B Cell Lymphomas and First Line Therapy. Blood. 2012;120:4885 [abstract].

  4. Kim M, Suh C, Kim J, Hong JY. Difference of Clinical Parameters between GCB and Non-GCB Subtype DLBCL. Blood. 2017;130:5231 [abstract].

  5. Da Costa CBT. Machine Learning Provides an Accurate Classification of Diffuse Large B-Cell Lymphoma from Immunohistochemical Data. J Pathol Inform. 2018;9(1):21. doi: 10.4103/jpi.jpi_14_18.

  6. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2016.

    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders). Moscow: Buki Vedi Publ.; 2016. (In Russ)]

  7. Leval L, Harris NL. Variability in immunophenotype in diffuse large B-cell lymphoma and it‘s clinical relevance. Histopathol. 2003;43(6):509–28. doi: 10.1111/j.1365-2559.2003.01758.x.

  8. Skarbnik AP, Donato ML. Safety and Efficacy Data for Combined Checkpoint Inhibition with Ipilimumab (Ipi) and Nivolumab (Nivo) As Consolidation Following Autologous Stem Cell Transplantation (ASCT) for High-Risk Hematological Malignancies. Blood. 2018;132:256.

  9. Matsuki E, Younes A. Checkpoint Inhibitors and Other Immune Therapies for Hodgkin and Non-Hodgkin Lymphoma. Curr Treat Options Oncol. 2016;17(6):31. doi: 10.1007/s11864-016-0401-9.

  10. Kaneko H, Tsutsumi Y, Fujino T, et al. Favorable event free-survival of high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation for higher risk diffuse large B-cell lymphoma in first complete remission. Hematol Rep. 2015;7(2):5812 [abstract]. doi: 10.4081/hr.2015.5812.

Primary Bone Lymphomas: Long-Term Results of a Prospective Single-Center Trial

AK Smol’yaninova, NG Gabeeva, VE Mamonov, SA Tatarnikova, LG Gorenkova, DS Badmadzhapova, AM Kovrigina, EG Gemdzhian, EE Zvonkov

National Medical Hematology Research Center, 4a Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Anna Konstantinovna Smol’yaninova, MD, PhD, 4a Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-23-61, +7(926)912-31-16; e-mail: annmo8@mail.ru

For citation: Smol’yaninova AK, Gabeeva NG, Mamonov VE, et al. Primary Bone Lymphomas: Long-Term Results of a Prospective Single-Center Trial. Clinical oncohematology. 2019;12(3):247–62 (In Russ).

doi: 10.21320/2500-2139-2019-12-3-247-262


ABSTRACT

Background. Primary bone lymphomas (PBL) are rare extranodal lymphomas. In more than 90 % of cases they are reported as diffuse large B-cell lymphomas (DLBCL). At local (IE) stage of PBL the standard R-CHOP immunotherapy demonstrates efficacy over 90 %. If, however, such poor prognostic factors (PPF) as multiple bone lesions (IVЕ stage), increased lactate dehydrogenase (LDH) activity, B-symptoms, and large tumor mass are identified, R-CHOP efficacy tends to decrease. There is currently no optimal regimen for treatment of PBL patients with PPF. We suggest intensified multi-agent chemotherapy for this category of patients.

Aim. To assess long-term results of prospective single-center trial on the use of high-dose mNHL-BFM-90 program in patients with primary bone DLBCL and PPF.

Materials & Methods. The trial included 33 patients with primary bone DLBCL followed-up at the National Medical Hematology Research Center from 2006 to 2018. The median age of patients was 44 years (range 16–78 years). The spectrum of assessed data included main clinical, laboratory, X-ray and MRI tumor characteristics as well as survival rates and prognostic factors.

Results. PPF were identified in 29 (88 %) patients, out of them 20 (61 %) patients had an advanced stage (˃ IE), 20 (59 %) patients showed an increased LDH activity, B-symptoms were identified in 15 (45 %) patients, and large tumor mass was reported in 23 (71 %) patients. High-dose antitumor treatment (mNHL-BFM-90) was administered in 27 out of 33 patients. Overall and progression-free survival within the period of 5 years was 92 %. None of PPF significantly influenced survival rates.

Conclusion. The use of high-dose mNHL-BFM-90 program in PBL with poor prognosis achieves long-term remissions in 92 % patients. We recommend mNHL-BFM-90 as a therapy of choice for PBL patients with poor prognosis.

Keywords: primary bone lymphoma, diffuse large B-cell lymphoma, high-dose intensified multi-agent mNHL-BFM-90 program.

Received: January 25, 2019

Accepted: May 12, 2019

Read in PDF 


REFERENCES

  1. Matikas A, Briasoulis A, Tzannou I, et al. Primary bone lymphoma: a retrospective analysis of 22 patients treated in a single tertiary center. Acta Haematol. 2013;130(4):291–6. doi: 10.1159/000351051.

  2. Bacci G, Jaffe N, Emiliani E, et al. Therapy for primary non-Hodgkin’s lymphoma of bone and a comparison of results with Ewing’s sarcoma. Ten year’s experience at the Istituto Ortopedico Rizzoli. Cancer. 1986;57(8):1468–72. doi: 10.1002/1097-0142(19860415)57:8<1468::aid-cncr2820570806>3.0.co;2-0.

  3. Fidias P, Spiro I, Scobczak ML, et al. Long-term results of combined modality therapy in primary bone lymphomas. Int J Radiat Oncol Biol Phys. 1999;45(5):1213–8. doi: 10.1016/s0360-3016(99)00305-3.

  4. Lewis VO, Primus G, Anastasi J, et al. Oncologic outcomes of primary lymphomas of bone in adults. Clin Orthop Rel Res. 2003;415:90–7. doi: 10.1097/01.blo.0000093901.12372.ad.

  5. Ostrowski ML, Unni KK, Banks PM, et al. Malignant Lymphoma of Bone. Cancer. 1986;58(12):2646–55. doi: 10.1002/1097-0142(19861215)58:12<2646::aid-cncr2820581217>3.0.co;2-u.

  6. Ramadan KM, Shenkier T, Sehn LH, et al. A clinicopathological retrospective study of 131 patients with primary bone lymphoma: a population-based study of successively treated cohorts from the British Columbia Cancer Agency. Ann Oncol. 2006;18(1):129–35. doi: 10.1093/annonc/mdl329.

  7. Ueda T, Aozasa K, Ohsawa M, et al. Malignant lymphomas of bone in Japan. Cancer. 1989;64(11):2387–92. doi: 10.1002/1097-0142(19891201)64:11<2387::aid-cncr2820641132>3.0.co;2-1.

  8. Звонков Е.Е., Красильникова Б.Б., Махиня В.А. и др. Первый опыт применения модифицированной программы NHL-BFM-90 у взрослых больных первичной диффузной В-крупноклеточной лимфосаркомой желудка с неблагоприятным прогнозом. Терапевтический архив. 2006;78(7):38–46.

    [Zvonkov EE, Krasil’nikova BB, Makhinya VА, et al. Pilot experience with the modified program NHLBFM90 in adult patients with primary diffuse large В-cell gastric lymphosarcoma with unfavorable prognosis. Terapevticheskii arkhiv. 2006;78(7):38–46. (In Russ)]

  9. Кравченко С.К., Барях Е.А., Замятина В.И. и др. Высокодозная терапия лимфомы Беркитта у больных старше 40 лет. Терапевтический архив. 2008;80(7):9–18.

    [Kravchenko SK, Baryakh EA, Zamyatina VI, et al. Highdose therapy of Berkitt’s lymphoma in patients over 40 years of age. Terapevticheskii arkhiv. 2008;80(7):9–18. (In Russ)]

  10. Магомедова А.У., Кравченко С.К., Кременецкая А.М. и др. Модифицированная программа NHL-BFM-90 для лечения больных диффузной В-крупноклеточной лимфосаркомой. Терапевтический архив. 2006;78(10):44–7.

    [Magomedova AU, Kravchenko SK, Kremenetskaya AM, et al. The modified program NHL-BFM-90 in the treatment of patients with diffuse large B-cell lymphosarcoma. Terapevticheskii arkhiv. 2006;78(10):44–7. (In Russ)]

  11. Горенкова Л.Г., Кравченко С.К., Мисюрин А.В. и др. Клиническая и молекулярная оценки эффективности высокодозной химиотерапии при анаплазированной Т-крупноклеточной АЛК-позитивной лимфоме у взрослых. Гематология и трансфузиология. 2012;57(3):43.

    [Gorenkova LG, Kravchenko SK, Misyurin AV, et al. Clinical and molecular evaluation of the efficacy of high-dose chemotherapy in adult patients with anaplastic large T-cell ALK-positive lymphoma. Gematologiya i transfuziologiya. 2012;57(3):43. (In Russ)]

  12. Морозова А.К., Звонков Е.Е., Кременецкая А.М. и др. Первый опыт применения модифицированной программы NHL-BFM-90 при лечении первичной диффузной B-крупноклеточной лимфосаркомы костей и мягких тканей с факторами неблагоприятного прогноза. Терапевтический архив. 2009;81(7):61–5.

    [Morozova AK, Zvonkov EE, Kremenetskaya AM, et al. Initial experience with using modified NHL-BFM-90 program in management of primary diffuse large B-cell lymphosarcoma of bones and soft tissues with unfavorable prognostic factors. Terapevticheskii arkhiv. 2009;81(7):61–5. (In Russ)]

  13. Морозова А.К., Звонков Е.Е., Мамонов В.Е. и др. Первичные лимфатические опухоли костей и мягких тканей: сравнительная оценка результатов лечения. Терапевтический архив. 2012;84(7):42–9.

    [Morozova AK, Zvonkov EE, Mamonov VE, et al. Primary lymphomas of bones and soft tissues: comparative assessment of treatment results. Terapevticheskii arkhiv. 2012;84(7):42–9. (In Russ)]

  14. Gill P, Wenger D, Inwards D. Primary lymphomas of bone. Clin Lymph Myel. 2005;6(2):140–2. doi: 10.3816/CLM.2005.n.041.

  15. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244. doi: 10.1200/JCO.1999.17.4.1244.

  16. Juweid ME, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23(21):4652–61. doi: 10.1200/JCO.2005.01.891.

  17. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007; 25(5):579–86. doi: 10.1200/JCO.2006.09.2403.

  18. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8. doi: 10.1200/JCO.2006.08.2305.

  19. Common Terminology Criteria for Adverse Events, version 3.0 (CTCAE). Published August 9, 2006. Available at: http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf. (accessed 14.04.2019).

  20. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82. doi: 10.1182/blood-2003-05-1545.

  21. Messina C, Ferreri AJ, Govi S, et al. Clinical features, management and prognosis of multifocal primary bone lymphoma: a retrospective study of the international Extranodal Lymphoma Study Group (the IELSG 14 study). Br J Haematol. 2014;164(6):834–40. doi: 10.1111/bjh.12714.

  22. Reddy N, Greer JP. Primary bone lymphoma: a set of unique problems in management. Leuk 2009;51(1):1–2. doi: 10.3109/10428190903470877.

  23. Baar J, Burkes R, Bell R, et al. Primary Non-Hodgkin’s Lymphoma of Bone. A clinicopathologic study. Cancer. 1994;73(4):1194–9. doi: 10.1002/1097-0142(19940215)73:4<1194::aid-cncr2820730412>3.0.co;2-r.

  24. Bacci G, Ferraro A, Casadei R, et al. Primary lymphoma of bone: Long term results in patients treated with vincristine–adriamycin–cyclophosphamide and local radiation. J Chemother. 1991;3(3):189–93. doi: 10.1080/1120009x.1991.11739091.

  25. Jones D, Kraus MD, Dorfman DM. Lymphoma presenting as a solitary bone lesion. Am J Clin Pathol. 1999;111(2):171–8. doi: 10.1093/ajcp/111.2.171.

  26. Limb D, Dreghorn C, Murphy JK, Mannion R. Primary lymphoma of bone. Int Orthop. 1994;18(3):180–3. doi: 10.1007/bf00192476.

  27. Govi S, Christie D, Messina C, et al. The clinical features, management and prognostic effects of pathological fractures in a multicenter series of 373 patients with diffuse large B-cell lymphoma of the bone. Ann Oncol. 2013;25(1):176–81. doi: 10.1093/annonc/mdt482.

  28. Pilorge S, Harel S, Ribrag V, et al. Primary bone diffuse large B-cell lymphoma: a retrospective evaluation on 76 cases from French institutional and LYSA studies. Leuk Lymphoma. 2016;57(12):2820–6. doi: 10.1080/10428194.2016.1177180.

  29. Christie DR, Barton MB, Bryant G, et al. Osteolymphoma (primary bone lymphoma): An Australian review of 70 cases. Australasian Radiation Oncology Lymphoma Group (AROLG). Aust N Z J Med. 1999;29(2):214–9. doi: 10.1111/j.1445-5994.1999.tb00686.x.

  30. Santini D, Vincenzi B, Hannon RA, et al. Phase II trial evaluating the palliative benefit of second-line zoledronic acid in breast cancer patients with either a skeletal-related event or progressive bone metastases despite first-line bisphosphonate therapy. J Clin Oncol. 2006;24(30):4895–900. doi: 10.1200/JCO.2006.05.9212.

  31. Shoji H, Miller TR. Primary reticulum cell sarcoma of bone: Significance of clinical features upon the prognosis. Cancer. 1971;28(5):1234–44. doi: 10.1002/1097-0142(1971)28:5<1234::aid-cncr2820280522>3.0.co;2-l.

  32. Hayase E, Kurosawa M, Suzuki H, et al. Primary Bone Lymphoma: A Clinical Analysis of 17 Patients in a Single Institution. Acta Haematol. 2015;134(2):80–5. doi: 10.1159/000375437.

  33. Tao R, Allen PK, Rodriguez A, et al. Benefit of consolidative radiation therapy for primary bone diffuse large B-cell lymphoma. Int J Radiat Oncol Biol Phys. 2015;92(1):122–9. doi: 10.1016/j.ijrobp.2015.01.014.

  34. Ali SM, Demers LM, Leitzel K, et al. Baseline serum NTx levels are prognostic in metastatic breast cancer patients with bone-only metastasis. Ann Oncol. 2004;15(3):455–9. doi: 10.1093/annonc/mdh089.

  35. Doll C, Wulff B, Rossler J, et al. Primary B-cell lymphoma of bone in children. Eur J Pediatr. 2001;160(4):239–42. doi: 10.1007/s004310000711.

  36. Dosoretz DE, Murphy GF, Raymond AK, et al. Radiation Therapy for Primary Lymphoma of Bone. Cancer. 1983;51(1):44–6. doi: 10.1002/1097-0142(19830101)51:1<44::aid-cncr2820510111>3.0.co;2-d.

  37. Kransdorf MJ. Malignant soft-tissue tumors in a large referral population: distribution of diagnoses by age, sex, and location. Am J Roentgenol. 1995;164(1):129–34. doi: 10.2214/ajr.164.1.7998525.

  38. Wang CC. Treatment of primary reticulum-cell sarcoma of bone by radiation. N Engl J Med. 1968;278(24):1331–2. doi: 10.1056/NEJM196806132782407.

  39. Jacobs AJ, Michels R, Stein J, et al. Socioeconomic and demographic factors contributing to outcomes in patients with primary lymphoma of bone. J Bone Oncol. 2015;4(1):32–6. doi: 10.1016/j.jbo.2014.11.002.

  40. Dos Santos TM, Zumarraga JP, Reaes FM, et al. Primary bone lymphomas: retrospective analysis of 42 consecutive cases. Acta Ortop Bras. 2018;26(2):103–7. doi: 10.1590/1413-785220182602185549.

  41. Wu H, Zhang L, Shao M, Sokol L, et al. Prognostic Significance Of Soft Tissue Involvement, International Prognostic Index In Primary Bone Lymphoma: A Single Institutional Experience. Br J Haematol. 2014;166(1):60-8. doi: 10.1111/bjh.12841.

  42. Zhang HY, Zhu J, Song YQ, et al. Clinical characterization and outcome of primary bone lymphoma: a retrospective study of 61 Chinese patients. Sci Rep. 2016;6(1):28834. doi: 10.1038/srep28834.

  43. Alencar A, Pitcher D, Byrne G at al. Primary bone lymphoma – the University of Miami Experience. Leuk Lymphoma. 2009;51(1):39–49. doi. 10.3109/10428190903308007.

  44. Kim SY, Shin DY, Lee SS. Clinical characteristics and outcomes of primary bone lymphoma in Korea. Korean J Hematol. 2012;47(3): 213–8. doi: 10.5045/kjh.2012.47.3.213.

  45. Held G, Zeynalova S, Murawski N, et al. Impact of rituximab and radiotherapy on outcome of patients with aggressive B-cell lymphoma and skeletal involvement. J Clin Oncol. 2013;31(32):4115–22. doi: 10.1200/JCO.2012.48.0467.

  46. Zhu Y, Yue C, Wu B, et al. Clinical characteristics and outcomes of 31 patients with primary bone lymphoma. Nan Fang Yi Ke Da Xue Xue Bao. 2013;33(3):444–7.

  47. Barbieri E, Cammellin C, Mauro F et al. Primary Non-Hodgkin lymphoma of the bone: treatment and analysis of prognostic factors. Int J Radiat Oncol Biol Phys. 2004;59(3):760–4. doi: 10.1016/j.ijrobp.2003.11.020.

  48. Fairbanks RK, Bonner JA, Inwards CY, et al. Treatment stage 1E primary lymphoma of bone. Int J Radiat Oncol Biol Phys. 1994;28(2):363–72. doi. 10.1016/0360-3016(94)90059-0.

  49. Marshall DT, Amdur RJ, Scarborough MT, et al. Stage 1E primary non Hodgkin’s lymphoma of bone. Clin Orthop Rel Res. 2002;405:216–22. doi: 10.1097/00003086-200212000-00028.

  50. Remier RR, Chabner BA, Yong RC, et al. Lymphoma Presenting in Bone. Results of Histopathology, Staging, and Therapy. Ann Intern Med. 1977;87(1):50–5. doi: 10.7326/0003-4819-87-1-50.

  51. Singh Т, Satheesh С, Lakshmaiah С, et al. Primary bone lymphoma: A report of two cases and review of the literature. J Cancer Res Ther. 2010;6(3):296–8. doi: 10.4103/0973-1482.73366.

  52. Coley BL, Higinbotham NL, Groesbeck HP. Primary reliculum-cell sarcoma of bone. Radiology. 1950;55(5):641–58. doi: 10.1148/55.5.641.

  53. Francis KC, Higinbotham NL, Coley BL. Primary reticulum cell sarcoma of bone; report of 44 cases. Surg Gynecol Obstet. 1954;99(2):142–6.

  54. Badoo S, Sidhu GS. Primary Bone Lymphoma (PBL): Impact Of Novel Treatment On Need For Radiation Therapy (RT), a Population Based Study. Blood. 2013;122(21):3059.

  55. Гаврилина О.А., Звонков Е.Е., Паровичникова Е.Н. и др. Лечение больных диффузной В-крупноклеточной лимфомой с факторами неблагоприятного прогноза по протоколу R-DA-EPOCH/R-HMA: первые результаты российского пилотного многоцентрового исследования. Гематология и трансфузиология. 2016;61(1, прил. 1):38.

    [Gavrilina OA, Zvonkov EE, Parovichnikova EN, et al. Treatment of diffuse large B-cell lymphoma patients with poor prognosis factors using R-DA-EPOCH/R-HMA regimen: first results of the Russian pilot multi-center trial. Gematologiya i transfuziologiya. 2016;61(1, Suppl 1):38. (In Russ)]

  56. Meignan M, Barrington S, Itti E, et al. Report on the 4th international workshop on positron emission tomography in lymphoma held in Menton, France, 3–5 October 2012. Leuk 2014;55(1):31–7. doi: 10.3109/10428194.2013.802784.

  57. Rigacci L, Kovalchuk S, Berti V, et al. The use of Deauville 5-point score could reduce the risk of false-positive fluorodeoxyglucose-positron emission tomography in the posttherapy evaluation of patients with primary bone lymphomas. W J Nucl Med. 2018;17(3):157–65. doi: 10.4103/wjnm.WJNM_42_17.

  58. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J Clin Oncol. 2014;32(27):3059–67. doi: 1200/JCO.2013.54.8800.

  59. Reddy N, Greer JP. Primary bone lymphoma: a set of unique problems in management. Leuk 2009;51(1):1–2. doi: 10.3109/10428190903470877.

  60. Borst AJ, States LJ, Reilly AF, et al. Determining response and recurrence in pediatric B-cell lymphomas of the bone. Pediatr Blood Cancer. 2013;60(8):1281–6. doi: 10.1002/pbc.24523.

  61. Ferreri AJ, Reni M, Ceresoli GL, et al. Therapeutic management with adriamycin-containing chemotherapy and radiotherapy of monostotic and polyostotic primary non-Hodgkin’s lymphoma of bone in adults. Cancer Invest. 1998;16(8):554–61. doi: 10.3109/07357909809032885.

  62. Messina C, Christie D, Zucca E, et al. Primary and secondary bone lymphomas. Cancer Treat Rev. 2015;41(3):235–46. doi: 10.1016/j.ctrv.2015.02.001.

  63. Tomita N, Yokoyama M, Yamamoto W, et al. Central nervous system event in patients with diffuse large B-cell lymphoma in the rituximab era. Cancer Sci. 2012;103(2):245–51. doi: 10.1111/j.1349-7006.2011.02139.x.

  64. Seymour JF. Extra-nodal lymphoma in rare localisations: bone, breast and testes. Hematol Oncol. 2013;31(Suppl 1):60–3. doi: 10.1002/hon.2081.

  65. Guirguis HR, Cheung MC, Mahrous M, et al. Impact of central nervous system (CNS) prophylaxis on the incidence and risk factors for CNS relapse in patients with diffuse large B-cell lymphoma treated in the rituximab era: a single center experience and review of the literature. Br J Haematol. 2012;159(1):39–49. doi: 10.1111/j.1365-2141.2012.09247.x.

  66. Dosoretz DE, Raymond AK, Murphy GF, et al. Primary lymphoma of bone. The relationship of morphologic diversity to clinical behavior. Cancer. 1982;50(5):1009–14. doi: 10.1002/1097-0142(19820901)50:5<1009::aid-cncr2820500532>3.0.co;2-0.

  67. Rathmell AJ, Gospodarowicz MK, Sutcliffe SB, et al. Localised lymphoma of bone: prognostic factors and treatment recommendations. The Princess Margaret Hospital Lymphoma Group. Br J Cancer. 1992;66(3):603–6. doi: 10.1038/bjc.1992.322.

  68. Dubey P, Ha CS, Besa PC, et al. Localized primary malignant lymphoma of bone. Int J Radiat Oncol Biol Phys. 1997;37(5):1087–93. 10.1016/S0360-3016(97)00106-5.

  69. Gianelli U, Patriarca C, Moro A, et al. Lymphomas of the bone: a pathological and clinical study of 54 cases. Int J Surg Pathol 2002;10(4):257–66. doi: 1177/106689690201000403.

  70. Zinzani PL, Carrillo G, Ascani S, et al. Primary bone lymphoma: experience with 52 patients. Haematologica. 2003;88(3):280–5.

  71. Bayrakci K, Yildiz Y, Saglik Y, et al. Primary lymphoma of bones. Int Orthop. 2001;25(2):123–6. doi: 10.1007/s002640100224.

  72. Horsman JM, Thomas J, Hough R, Hancock BW. Primary bone lymphoma: a retrospective analysis. Int J Oncol. 2006;28(6):1571–5. doi: 10.3892/ijo.28.6.1571.

  73. Catlett JP, Williams SA, O’Connor SC, et al. Primary lymphoma of bone: an institutional experience. Leuk 2008;49(11):2125–32. doi: 10.1080/10428190802404030.

  74. Heyning FH, Hogenndoorn PC, Kramer MH, et al. Primary lymphoma of bone: extranodal lymphoma with favourable survival independent of germinal centre, post-germinal centre or indeterminate phenotype. J Clin Pathol. 2009;62(9):820–4. doi: 10.1136/jcp.2008.063156.

  75. Jawad MU, Schneiderbauer MM, Min ES, et al. Primary Lymphoma of Bone in Adult Patients. Cancer. 2010;116(4):871–9. doi: 10.1002/cncr.24828.

  76. Nasiri MR, Varshoee F, Mohtashami S, et al. Primary bone lymphoma: a clinicopathological retrospective study of 28 patients in a single institution. J Res Med Sci. 2011;16(6):814–20.

  77. Christie DR, Dear K, Le T, et al. Limited chemotherapy and shrinking field radiotherapy for Osteolymphoma (primary bone lymphoma): results from the trans-Tasman Radiation Oncology Group 99.04 and Australasian Leukaemia and Lymphoma Group LY02 prospective trial. Int J Radiat Oncol Biol Phys. 2011;80(4):1164–70. doi: 10.1016/j.ijrobp.2010.03.036.

  78. Cai L, Stauder MC, Zhang YJ, et al. Early-stage primary bone lymphoma: a retrospective, multicenter rare cancer network (RCN) study. Int J Radiat Oncol Biol Phys. 2012;83(1):284–91. doi: 10.1016/j.ijrobp.2011.06.1976.

  79. Ventre BM, Ferreri AJM, Gospodarowicz M, et al. Clinical features, management, and prognosis of an international series of 161 patients with limited-stage diffuse large B-cell lymphoma of the bone (the IELSG-14 study). Oncologist. 2014;19(3):291–8. doi: 10.1634/theoncologist.2013-0249.

  80. Jamshidi K, Jabalameli MD, Hoseini MG, et al. Stage IE Primary Bone Lymphoma: Limb Salvage for Local Recurrence. Arch Bone Jt Surg. 2015;3(1):39–44.

  81. Ayed BC, Laabidi S, Said N, et al. Primary bone lymphoma: tunisian multicentric retrospective study about 32 cases. Tunis Med. 2018;96(5):269–72.

Analysis Results of the Regional Registry of Patients with Diffuse Large B-cell Lymphoma: Risk Factors and Chemo-Immunotherapy Issues

KD Kaplanov1,2, NP Volkov1, TYu Klitochenko1, IV Matveeva1, AL Shipaeva1, MN Shirokova1, NV Davydova3, EG Gemdzhian4, DS Abramov5, DM Konovalov5, GL Snigur2, NA Red’kina1

1 Volgograd Regional Clinical Oncology Dispensary No. 1, 78 Zemlyachki str., Volgograd, Russian Federation, 400138

2 Volgograd Medical Scientific Center, 1G Rokossovskogo str., Volgograd, Russian Federation, 400081

3 Consultation and Diagnosis Polyclinic No. 2, 114A Angarskaya str., Volgograd, Russian Federation, 400081

4 National Medical Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

5 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117997

For correspondence: Kamil’ Daniyalovich Kaplanov, MD, PhD, 78 Zemlyachki str., Volgograd, Russian Federation, 400138; e-mail: kamilos@mail.ru

For citation: Kaplanov KD, Volkov NP, Klitochenko TYu, et al. Analysis Results of the Regional Registry of Patients with Diffuse Large B-cell Lymphoma: Risk Factors and Chemo-Immunotherapy Issues. Clinical oncohematology. 2019;12(2):154–64.

DOI: 10.21320/2500-2139-2019-12-2-154-164


ABSTRACT

Background & Aims. At least one third of patients with diffuse large B-cell lymphoma (DLBCL) are resistant to first-line therapy. R-CHOP chemo-immunotherapy does not yield acceptable results in high-risk patients. Effectiveness of options based either on increasing the dose intensity or on including auto-HSCT into the first-line therapy was not supported by the results of controlled studies. With this background the present study focuses on options, issues and failures of first-line on the basis of long-term follow-up of DLBCL patient population in the Volgograd Region.

Materials & Methods. From 2004 to 2017 the population-based registry of the Hematology Department in the Volgograd Regional Clinical Oncology Dispensary included all 492 primary DLBCL patients: 235 (48 %) men and 257 (52 %) women aged 18 to 88 years. Mean and median age was 59 and 61 years, respectively. CHOP therapy was administered to 206 (42 %) patients, and 223 (45 %) patients received R-CHOP. Other regimens including NHL-BFM-90 and R-DA-EPOCH were used only in 63 (13 %) patients. Second- and third-line therapies were administered to 145 (30 %) and 54 (11 %) patients, respectively. Value of the International Prognostic Index (IPI) and immunomorphologic characteristics was determined by multivariate Cox regression analysis. Pharmacoeconomic aspect of first-line therapy failures was analyzed using Markov model.

Results. Improvement of DLBCL therapy effects with the use of R-CHOP chemo-immunotherapy is particularly obvious in the groups with favorable and intermediate prognosis with 5-year overall survival (OS) of 90 % and 69 %, respectively. R-CHOP results are not considered to be satisfactory in the high-risk group: 5-year OS was 38 %. Pharmacoeconomic analysis proves the advantage of chemo-immunotherapy strategy in comparison with the period before rituximab era in terms of the life years gained (LYG) and the incremental cost-effectiveness ratio (ICER). With respect to immunotherapy effects the most significant immunomorphologic parameter is bcl-2 tumor cell expression. In the group of patients with bcl-2 > 50 % 5-year OS was 61 % with median of 88 months, event-free survival (EFS) was 52 % with median of 62 months. In the group without bcl-2 expression above the threshold 5-year OS and EFS were 88 % and 75 %, respectively, medians were not achieved. With c-myc and bcl-2 coexpression EFS and OS appeared to be even worse: 5-year EFS was 29 % with median of 6 months, and 5-year OS was 31 % with median of 15 months.

Conclusion. The analysis of actual practice demonstrates the need for new options of first-line therapy for DLBCL high-risk patients and also for introducing new discriminating prognostic factors which include the IPI-independent ones.

Keywords: diffuse large B-cell lymphoma, R-CHOP, chemoimmunotherapy, survival, pharmacoeconomics, Markov model, life years gained (LYG), incremental cost-effectiveness ratio (ICER).

Received: July 16, 2018

Accepted: January 10, 2019

Read in PDF 


REFERENCES

  1. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1998;16(8):2780–95. doi: 10.1200/JCO.1998.16.8.2780.

  2. Smith A, Howell D, Patmore R, et al. Incidence of haematological malignancy by sub-type: a report from the Haematological Malignancy Research Network. Br J Cancer. 2011;105(11):1684–92. doi: 10.1038/bjc.2011.450.

  3. Cunningham D, Hawkes EA, Jack A, et al. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: a phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet. 2013;381(9880):1817–26. doi: 10.1016/S0140-6736(13)60313-X.

  4. Ziepert, M, Hasenclever D, Kuhnt E, et al. Standard international prognostic index remains a valid predictor of outcome for patients with aggressive CD20+ B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(14):2373–80. doi: 10.1200/JCO.2009.26.2493.

  5. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.

  6. Sehn LH, Gascoyne RD. Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood. 2015;125(1):22–32. doi: 10.1182/blood-2014-05-577189.

  7. Tilly H, Gomes da Silva M, Vitolo U, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v116–25. doi: 10.1093/annonc/mdv304.

  8. Prochazka KT, Melchardt T, Posch F, et al. NCCN-IPI score-independent prognostic potential of pretreatment uric acid levels for clinical outcome of diffuse large B-cell lymphoma patients. Br J Cancer. 2016;115(10):1264–72. doi: 10.1038/bjc.2016.325.

  9. Montalban C, Diaz-Lopez A, Dlouhy I, et al. Validation of the NCCN-IPI for diffuse large B-cell lymphoma (DLBCL): the addition of beta2-microglobulin yields a more accurate GELTAMO-IPI. Br J Haematol. 2017;176(6):918–28. doi: 10.1111/bjh.14489.

  10. Wight J, Chong G, Grigg A, et al. Prognostication of diffuse large B-cell lymphoma in the molecular era: moving beyond the IPI. Blood. 2018;32(5):400–15. doi: 10.1016/j.blre.2018.03.005.

  11. Khor S, Beca J, Krahm M, et al. Real world costs and cost-effectiveness of Rituximab for diffuse large B-cell lymphoma patients: A population-based analysis. BMC Cancer. 2014;14(1):586. doi: 10.1186/1471-2407-14-586.

  12. Van Keep M, Gairy K, Seshagiri D, et al. Cost-effectiveness analysis of bortezomib in combination with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (VR-CAP) in patients with previously untreated mantle cell lymphoma. BMC Cancer. 2016;16(1):598. doi: 10.1186/s12885-016-2633-2.

  13. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Международный прогностический индекс при распространенных стадиях лимфомы Ходжкина в условиях современной терапии. Клиническая онкогематология. 2013;6(3):294–302.

    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. International prognostic score in advanced Hodgkin’s lymphoma. Klinicheskaya onkogematologiya. 2013;6(3):294–302. (In Russ)]

  14. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Эффективность программ химиотерапии первой линии при различных стадиях лимфомы Ходжкина. Клиническая онкогематология. 2012;5(1):22–9.

    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. Efficacy of first line chemotherapy programs for different stages of Hodgkin’s lymphomas. Klinicheskaya onkogematologiya. 2012;5(1):22–9. (In Russ)]

  15. Капланов К.Д., Волков Н.П., Клиточенко Т.Ю. и др. Первая линия терапии лимфомы из клеток зоны мантии: анализ эффективности и клинико-экономическая оценка. Клиническая онкогематология. 2018;11(2):150–9. doi: 10.21320/2500-2139-2018-11-2-150-159.

    [Kaplanov KD, Volkov NP, Klitochenko TYu, et al. First-Line Treatment of Mantle-Cell Lymphoma: Analysis of Effectiveness and Cost-Effectiveness. Clinical oncohematology. 2018;11(2):150–9. doi: 10.21320/2500-2139-2018-11-2-150-159. (In Russ)]

  16. Abner EL, Charnigo RJ, Kryscio RJ, et al. Markov chains and semi-Markov models in time-to-event analysis. J Biom Biostat. 2013;S1:e001. doi: 10.4172/2155-6180.S1-e001.

  17. Wyndham W, Jung sin-Ho, Brandelyn P, et al. Phase III Randomized Study of R-CHOP Versus DA-EPOCH-R and Molecular Analysis of Untreated Diffuse Large B-Cell Lymphoma: CALGB/Alliance 50303. Blood. 2016;128:469.

  18. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.

  19. Wang HI, Smith A, Aas E, et al. Treatment cost and life expectancy of diffuse large B-cell lymphoma (DLBCL): a discrete event simulation model on a UK population-based observational cohort. Eur J Health Econ. 2017;18(2):255–67. doi: 10.1007/s10198-016-0775-4.

  20. Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010; 28(27):4184–90. doi: 10.1200/JCO.2010.28.1618.

  21. Gisselbrecht C, Schmitz N, Mounier N, et al. Rituximab maintenance therapy after autologous stem-cell transplantation in patients with relapsed CD20(+) diffuse large B-cell lymphoma: final analysis of the collaborative trial in relapsed aggressive lymphoma. J Clin Oncol. 2012;30(36):4462–9. doi: 10.1200/JCO.2012.41.9416.

  22. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-11-817775.

  23. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  24. Gang AO, Pedersen M, d’Amore F, et al. A clinically based prognostic index for diffuse large B-cell lymphoma with a cut-off at 70 years of age significantly improves prognostic stratification: population-based analysis from the Danish Lymphoma Registry. Leuk Lymphoma. 2015;56(9):2556–62. doi: 10.3109/10428194.2015.1010078.

  25. Zhou Z, Sehn LH, Rademaker AW, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood 2014;123(6):837–42. doi: 10.1182/blood-2014-06-583476.

  26. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41. doi: 10.1002/sim.2331.

  27. Harrell FE. Regression modeling strategies. New York: Springer-Verlag; 2001. doi: 10.1007/978-1-4757-3462-1.

  28. Biccler J, Eloranta S, de Nully Brown P, et al. Simplicity at the cost of predictive accuracy in diffuse large B-cell lymphoma: a critical assessment of the R-IPI, IPI, and NCCN-IPI. Cancer Med. 2018;7(1):114–22. doi: 10.1002/cam4.1271.

  29. Johnson NA, Slack GW, Savage KJ, et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30(28):3452–9. doi: 10.1200/JCO.2011.41.0985.

  30. Schneider KMС, Banks PM, Collie AM, et al. Dual expression of MYC and BCL2 proteins predicts worse outcomes in diffuse large B-cell lymphoma. Leuk Lymphoma. 2016;57(7):1640–8. doi: 10.3109/10428194.2015.1101099.

  31. Barrans SL, Evans PA, O’Connor SJ, et al. The t(14;18) is associated with germinal center-derived diffuse large B-cell lymphoma and is a strong predictor of outcome. Clin Cancer Res. 2003;9(6):2133–9.

  32. Tsuyama N, Sakata S, Baba S, et al. BCL2 expression in DLBCL: reappraisal of immunohistochemistry with new criteria for therapeutic biomarker evaluation. Blood. 2017;130(4):489–500. doi: 10.1182/blood-2016-12-759621.

  33. Burton C, Barrans S, Ahmed S, et al. Cross-Platform validation of gene expression profiling (GEP) based cell of origin classification in a clinical laboratory setting. Hematol Oncol. 2017;35(S2):107. doi: 10.1002/hon.2437_96.

Clinical and Hematological Predictors of Response to First-Line Therapy in Patients with Diffuse Large B-Cell Lymphoma

SV Samarina1, EL Nazarova1, NV Minaeva1, EN Zotina1, IV Paramonov1, SV Gritsaev2

1 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Valer’evna Samarina, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; e-mail: samarinasv2010@mail.ru

For citation: Samarina SV, Nazarova EL, Minaeva NV, et al. Clinical and Hematological Predictors of Response to First-Line Therapy in Patients with Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(1):68–72.

DOI: 10.21320/2500-2139-2019-12-1-68-72


ABSTRACT

Aim. To assess the prognostic value of clinical and hematological parameters used by hematologists for risk stratification in diffuse large B-cell lymphoma (DLBCL), and to justify the need for discovering new prognostic factors.

Methods. The trial included 101 patients (48 men and 53 women) with newly diagnosed DLBCL at the age of 18–80 years (median age 58 years). The patients received R-CHOP as first-line therapy. Depending on their response all patients were stratified into 4 groups: with complete response (CR; n = 58), partial response (PR; n = 15), resistance to first-line therapy (n = 19), and early relapses (ER; n = 9). Median follow-up was 22 months (range 2–120 months).

Results. In terms of age influence on the efficacy of R-СНОР as first-line therapy no significant differences were established in regard to response in patients younger and older than 65 years. Statistically significant differences were observed while analyzing two parameters of International Prognostic Index (IPI; disease stage and extranodal lesions) and B-symptoms in the CR and therapy-resistant groups. With respect to the same parameters no significant differences were found in the CR and ER groups. Median 2-year disease-free survival was not achieved in patients with CR. In patients with PR it was 12 months. Median 2-year overall survival in patients with CR, PR, and ER was not achieved, and in patients with therapy-resistant DLBCL it was 10 months.

Conclusion. Results of the trial confirm prognostic value of factors applied for risk stratification in DLBCL. However, variability of clinical course of the disease, especially with a low IPI score, suggests the need for new prognostic parameters associated with the course of DLBCL.

Keywords: diffuse large B-cell lymphoma, prognosis, induction therapy, survival.

Received: June 5, 2018

Accepted: December 3, 2018

Read in PDF 


REFERENCES

  1. Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA: Cancer J Clin. 2016;66(6):443–59. doi: 10.3322/caac.21357.

  2. Tilly H, Vitolo U, Walewski J, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii78–82. doi: 10.1093/annonc/mds273.

  3. Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology. 2011;2011(1):498–505. doi: 10.1182/asheducation-2011.1.498.

  4. Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematology. 2016;2016(1):366–78. doi: 10.1182/asheducation-2016.1.366.

  5. Sant M, Minicozzi P, Mounier M, et al. Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: results of EUROCARE-5, a population-based study. Lancet Oncol. 2014;15(9):931–42. doi: 10.1016/S1470-2045(14)70282-7.

  6. Menard G, Dulong J, Nguyen TT, et al. Lenalidomide treatment restores in vivo T сell activity in relapsed/refractory FL and DLBCL. Blood. 2017;130(Suppl 1):729.

  7. Westin JR, Oki Y, Nastoupil L, et al. Lenalidomide and obinutuzumab with CHOP for newly diagnosed diffuse large B-cell lymphoma: final phase I/II results. Blood. 2017;130(Suppl 1):189.

  8. Петухов А.В., Маркова В.А., Моторин Д.В. и др. Получение CAR T-лимфоцитов, специфичных к CD19, и оценка их функциональной активности in vitro. Клиническая онкогематология. 2018;11(1):1–9. doi: 10.21320/2500-2139-2018-11-1-1-9.

    [Petukhov AV, Markova VA, Motorin DV, et al. Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro. Clinical oncohematology. 2018;11(1):1–9. doi: 10.21320/2500-2139-2018-11-1-1-9. (In Russ)]

  9. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  10. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/nejm199309303291402.

  11. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244. doi: 10.1200/jco.1999.17.4.1244.

  12. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/jco.2006.09.2403.

  13. Kurtz D, Scherer F, Jin M, et al. Development of a dynamic model for personalized risk assessment in large B-cell lymphoma. Blood. 2017;130(Suppl 1):826.

  14. Hamadani M, Hari PN, Zhang Y, et al. Early failure of frontline rituximab-containing chemoimmunotherapy in diffuse large B cell lymphoma does not predict futility of autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2014;20(11):1729–36.

  15. Crump M, Kuruvilla J, Couban S, et al. Randomized comparison of gemcitabine, dexamethasone, and cisplatin versus dexamethasone, cytarabine, and cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12. J Clin Oncol. 2014;32(31):3490–6. doi: 10.1200/jco.2013.53.9593.

  16. Van Den Neste E, Schmitz N, Mounier N, et al. Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the International CORAL study. Bone Marrow Transplant. 2016;51(1):51–7. doi: 10.1038/bmt.2015.213.

  17. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-03-769620.

  18. Fang X, Xiu B, Yang Z, et al. The expression and clinical relevance of PD-1, PD-L1, and TP63 in patients with diffuse large B-cell lymphoma. Medicine (Baltimore). 2017;96(15):e6398. doi: 10.1097/MD.0000000000006398.

  19. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684.

    [Klyuchagina YuI, Sokolova ZA, Baryshnikova MA. Role of PD-1 Receptor and Its Ligands PD-L1 and PD-L2 in Cancer Immunotherapy. Onkopediatria. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. (In Russ)]

  20. Hayano A, Komohara Y, Takashima Y, et al. Programmed cell death ligand 1 expression in primary central nervous system lymphomas: a clinicopathological study. Anticancer Res. 2017;37(10):5655–66. doi: 10.21873/anticanres.12001.

  21. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.

  22. Alizadeh AA, Gentles AJ, Alencar AJ, et al. Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood. 2011;118(5):1350–8. doi: 10.1182/blood-2011-03-345272.

  23. Amin AD, Peters TL, Li L, et al. Diffuse large B-cell lymphoma: can genomics improve treatment options for a curable cancer? Mol Case Stud. 2017;3(3):a001719. doi: 10.1101/mcs.a001719.

Non-Hodgkin’s Lymphomas in Children: 25-Year Clinical Experience

TT Valiev, AV Popa, AS Levashov, ES Belyaeva, NS Kulichkina, BV Kurdyukov, RS Ravshanova, GL Mentkevich

Scientific Research Institute of Pediatric Oncology and Hematology, NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Timur Teimurazovich Valiev, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-98-69; e-mail: timurvaliev@mail.ru

For citation: Valiev TT, Popa AV, Levashov AS, et al. Non-Hodgkin’s Lymphomas in Children: 25-Year Clinical Experience. Clinical oncohematology. 2016;9(4):420–37 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-420-437


ABSTRACT

Background & Aims. Current polychemotherapeutic protocols based on differentiated and risk-adopted approaches permitted to consider non-Hodgkin’s lymphomas (NHL) potentially curable diseases although they had been considered fatal previously. The aim of this study is to summarize and analyze outcomes of NHL therapy over a 25-year period.

Methods. 246 patients were enrolled in the study. They were treated in the department of chemotherapy of hemoblastoses in the Scientific Research Institute of Pediatric Oncology and Hematology under the NN Blokhin Russian Cancer Research Center over the period of 25 years: from April 1, 1991, till June 1, 2016. B-NHL-BFM 90/95 protocols and a modified B-NHL-BFM 95 protocol (with rituximab) were used for B-cell NHLs (n = 130). Patients with lymphocytic leukemia (n = 75) were treated using ALL-mBFM 90/95 and ALL IC-BFM 2002 protocols. 21 patients with anaplastic large cell lymphomas (ALCL) received treatment according to the B-NHL-BFM 90/95 protocol, and 20 patients received the НИИ ДОГ-АККЛ-2007 protocol.

Results. Taking into account clinical and immunological characteristics of ALCL, the authors invented an original НИИ ДОГ-АККЛ-2007 protocol. Special attention was paid to potential modification of standard treatment regimens for B-cell NHL by adding rituximab. The article demonstrates the evolution in prescription of rituximab for B-cell NHL and possibilities for reduction of the total number of polychemotherapy cycles for late-stage tumors without deterioration of treatment outcomes.

Conclusion. The obtained results permit to conclude that introduction of achievements of oncoimmunology, molecular biology, and cytogenetics will become the basis for further modification of existing treatment options for NHL.


Keywords: Burkitt lymphoma, diffuse large B-cell lymphoma, anaplastic large-cell lymphoma, primary mediastinal (thymic) large B-cell lymphoma, T- and B-cell lymphoblastic lymphomas, treatment, children.

Received: June 12, 2016

Accepted: June 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 439.
  2. Burkhardt B, Zimmermann M, Oschlies I, et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol. 2005;131(1):39–49. doi: 10.1111/j.1365-2005.05735.x.
  3. Hochberg J, Waxman IM, Kelly KM, et al. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science. Br J Haematol. 2009;144(1):24–40. doi: 10.1111/j.1365-2008.07393.x.
  4. Baccarani M, Corbelli G, Amadori S, et al. Adolescent and adult lymphoblastic leukemia: prognostic features outcome of therapy. А study of 293 patients. Blood. 1982;60(3):677–84.
  5. Gill PS, Meyer PR, Pavlova Z, et al. B-cell acute lymphoblastic leukemia in adults: clinical, morphologic and immunologic findings. J Clin Oncol. 1986;4(5):737–43.
  6. Bernstein JI, Coleman CN, Strickler JG, et al. Combined modality therapy for adult with small noncleaved cell lymphoma (Burkitt and Burkitt-like type). J Clin Oncol. 1986;4(6):847–58.
  7. Reiter A, Schrappe M, Tiemann M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM-90. Blood. 1999;94(10):3294–306.
  8. Patte C, J. Michon, Frappaz D, et al. Therapy of Burkitt and other B-cell acute lymphoblastic leukaemia and lymphoma: experience with the LMB protocols of the SFOP (French Paediatric Oncology Society) in children and adults. Bail Clin Haematol. 1994;7(2):339–48. doi: 10.1016/s0950-3536(05)80206-
  9. Patte C, Philip T, Rodary C, et al. High survival rate in advanced-stage B-cell lymphomas and leukemias without CNS involvement with a short intensive polychemotherapy: results from the French Pediatric Oncology Society of a randomized trial of 216 children. J Clin Oncol. 1991;9(1):123–32.
  10. Sun XF, Su YS, Liu DG, et al. Comparing CHOP, CHOP+HD-MTX, and BFM-90 regimens in the survival rate of children and adolescents with B cell non-Hodgkin’s lymphoma. Ai Zheng. 2004;23(8):933–8.
  11. Muller J, Csoka M, Jakab Z, et al. Hungarian experience with non-Hodgkin’s lymphoma in childhood. Magy Onkol. 2006;50(3):253–9.
  12. Cairo MS, Sposto R, Gerrard M, et al. Advanced stage, increased lactate dehydrogenase, and primary site, but not adolescent age (³ 15 years), are associated with an increased risk of treatment failure in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB LMB 96 study. J Clin Oncol. 2012;30(4):387–93. doi: 10.1200/jco.2010.33.3369.
  13. Schwenn M, Blattner S, Lynch E, et al. HiC-COM: a 2-month intensive chemotherapy regimen for children with stage III and IV Burkitt’s lymphoma and B-cell acute lymphoblastic leukemia. J Clin Oncol. 1991;9(1):133–8.
  14. Bowman WP, Shuster JJ, Cook B, et al. Improved survival for children with B-cell acute lymphoblastic leukemia and stage IV small noncleaved-cell lymphoma: a pediatric oncology group study. J Clin Oncol. 1996;14(4):1252–61.
  15. Magrath I, Adde M, Shad A, et al. Adults and children with small non-cleaved-cell lymphoma have similar excellent outcome when treated with the same chemotherapy regimen. J Clin Oncol. 1996;14(3):925–34.
  16. Atra A, Gerrard M, Hobson R, et al. Improved cure rate in children with B-cell acute lymphoblastic leukemia and IV stage B-cell non-Hodgkin lymphoma – results of the UKCCSG 9003 protocol. Br J Cancer. 1998;77(12):2281–5. doi: 10.1038/bjc.1998.379.
  17. Burkhardt B, Oschlies I, Klapper W, et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. Leukemia. 2011;25(1):153–60. doi: 10.1038/leu.2010.245.
  18. Patte C, Auperin A, Michon J, et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–9. doi: 10.1182/blood.v97.11.3370.
  19. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80. doi: 10.1182/blood-2006-07-
  20. Laver JH, Kraveka JM, Hutchison RE, et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. J Clin Oncol. 2005;23(3):541–7. doi: 10.1200/jco.2005.11.075.
  21. Woessmann W, Seidemann K, Mann G.et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948–58. doi: 10.1182/blood-2004-03-
  22. Gerrard M, Cairo MS, Weston C, et al. Excellent survival following two courses of COPAD chemotherapy. Br J Haematol. 2008;141(6):840–87. doi: 10.1111/j.1365-2008.07144.x.
  23. Seidemann K, Tiemann M, Lauterbach I, et al. Primary mediastinal large B-cell lymphoma with sclerosis in pediatric and adolescent patients: treatment and results from three therapeutic studies of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 2003;21(9):1782–19. doi: 10.1200/jco.2003.08.151.
  24. Akbayram S, Dogan M, Akgun C, et al. Use of rituximab in three children with relapsed/refractory Burkitt lymphoma. Target Oncol. 2010;5(4):291–4. doi: 10.1007/s11523-010-0161-
  25. Okur VF, Oguz A, Karadeniz C, et al. Refractoriness to rituximab monotherapy in a child with relapsed/refractory Burkitt non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2006;23(1):25–31. doi: 10.1080/08880010500313298.
  26. Holmberg LA, Maloney D, Bensinger W. Immunotherapy with rituximab/interleukin-2 after autologous stem cell transplantation as treatment for CD20+ non-Hodgkin’s lymphoma. Clin Lymph Myel. 2006;7(2):135–9. doi: 10.3816/clm.2006.n.051.
  27. Cooney-Qualter E, Krailo M, Angiolillo A.et al. A Phase I Study of 90Yttrium-Ibritumomab-Tiuxetan in Children and Adolescents with Relapsed/Refractory CD20-Positive Non-Hodgkin’s Lymphoma: A Children’s Oncology Group study. Clin Cancer Res. 2007;13(Suppl 18):5652–60. doi: 10.1158/1078-ccr-07-1060.
  28. Richard H, Termuhlen A, Smith L, et al. Autologous peripheral blood stem cell transplantation in children with refractory or relapsed lymphoma: results of Children’s Oncology Group Study A5962. Biol Blood Marrow Transplant. 2011;17(2):249–58. doi: 10.1016/j.bbmt.2010.07.002.
  29. Pinkel D, Johnson W, Aur RJ. Non-Hodgkin’s lymphoma in children. Br J Cancer. 1975;2:298–23.
  30. Wollner N, Exelby PR, Lieberman PH. Non-Hodgkin’s lymphoma in children: a progress report on the original patients treated with the LSA2-L2 protocol. Cancer. 1979;44(6):1990–9. doi: 10.1002/1097-0142(197912)44:6<1990::aid-cncr2820440605>3.0.co;2-
  31. Asselin BL, Devidas M, Wang C, et al. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood. 2011;118(4):874–83. doi: 10.1182/blood-2010-06-
  32. Wiernik P, Goldman J, Dutcher J. Neoplastic disease of the blood. Cambridge; 1216 p.
  33. Tubergen D, Krailo M, Meadows A, et al. Comparison of treatment regimens for pediatric lymphoblastic non-Hodgkin’s lymphoma: a Children’s Cancer Group study. J Clin Oncol Leuk. 1999;13(3):335–42.
  34. Amylon MD, Shuster J, Pullen J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma; Pediatr Oncol Group study. Leukemia. 1999;13(3):335–42. doi: 1038/sj.leu.2401310.
  35. Patte C, Philip T, Rodary C, et al. Improved survival rate in children with stage III-IV B-cell non-Hodgkin lymphoma and leukemia using multiagent chemotherapy: results of a study of 114 children from the French Pediatric Oncology Society. J Clin Oncol. 1986;4(8):1219–26.
  36. Reiter A, Schrappe M, Ludwig WD, et al. Favorable outcome of B-cell acute lymphoblastic leukemia in childhood: a report of three consecutive studies of the BFM group. Blood. 1992;80(10):2471–8.
  37. Reiter A, Schrappe M, Parwaresch R, et al. Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage – a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 1995;13(2):359–72.
  38. Nachman J, Sather HN, Cherlow JM, et al. Response of children with high-risk acute lymphoblastic leukemia treated with and without cranial irradiation: a report from the Children’s Cancer Group. J Clin Oncol. 1998;16(3):920–30.
  39. Tang JY, Xue HL, Chen J, et al. Multi-center trial based on SCMC-ALL-2005 for children’s acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi. 2013;51(7):495–501.
  40. Tallen G, Ratei R, Mann G, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol. 2010;28(14):2339–47. doi: 10.1200/jco.2009.25.1983.
  41. Dunsmore KP, Devidas M, Linda SB, et al. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(22):2753–9. doi: 10.1200/jco.2011.40.8724.
  42. Lambe CU, Averett DR, Paff MT, et al. 2-Amino-6-methoxypurine arabinoside: an agent for T-cell malignancies. Cancer Res. 1995;55(15):3352–6.
  43. Cooper TM, Razzouk BI, Gerbing R, et al. Phase I/II trial of clofarabine and cytarabine in children with relapsed/refractory acute lymphoblastic leukemia (AAML0523): a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2013;60(7):1141–7. doi: 10.1002/pbc.24398.
  44. Schroeder H, Garwicz S, Kristinsson J, et al. Outcome after first relapse in children with acute lymphoblastic leukemia: a population-based study of 315 patients from the Nordic Society of Pediatric Hematology and Oncology (NOPHO). Med Pediatr Oncol. 1995;25(5):372–8. doi: 10.1002/mpo.2950250503.
  45. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favourable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.
  46. Borgmann A, von Stackelberg A, Hartmann R, et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. 2003;101(10):3835–9. doi: 10.1182/blood.v101.10.3835.
  47. Wheeler K, Richards S, Bailey C, et al. Comparison of bone marrow transplant and chemotherapy for relapsed childhood acute lymphoblastic leukaemia: the MRC UKALL X experience. Medical Research Council Working Party on Childhood Leukaemia. Br J Haematol. 1998;101(1):94–103. doi: 10.1046/j.1365-2141.1998.00676.x.
  48. Stein H, Mason DY, Gerdes J, et al. The expression of Hodgkin’s disease associated antigen Ki-1 in reactive and neoplasic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from avtivated lymphoid cells. Blood. 1985;66(4):848–58.
  49. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-negative. Crit Rev Oncol Hematol. 2013;85(2):206–15. doi: 10.1016/j.critrevonc.2012.06.004.
  50. Sibon D, Fournier M, Briere J, et al. Prognostic Factors and Long Term Outcome of 138 Adults with Systemic Anaplastic Large-Cell Lymphoma: a Retrospective Study by the Groupe d’Etude Des Lymphomes De l’Adulte (GELA). Blood. 2010;116: Abstract 322.
  51. Park SJ, Kim S, Lee DH, et al. Primary Systemic Anaplastic Large Cell Lymphoma in Korean Adults: 11 Years’ Experience at Asan Medical Center. Yonsei Med J. 2008;49(4):601–9. doi: 10.3349/ymj.2008.49.4.601.
  52. Wang YF, Yang YL, Gao ZF, et al. Clinical and laboratory characteristics of systemic anaplastic large cell lymphoma in Chinese patients. J Hematol Oncol. 2012;5(1):38. doi: 10.1186/1756-8722-5-38.
  53. Amin HM, Lai R. Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood. 2007;110(7):2259–67. doi: 10.1182/blood-2007-04-060715.
  54. Moreno L, Garzon L, Bautista FJ, et al. Diagnosis of paediatric anaplastic large-cell lymphoma: a historical perspective from a single institution. Clin Transl Oncol. 2009;11(5):318–21. doi: 10.1007/s12094-009-0360-
  55. Le Deley MC, Reiter A, Williams D, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008;111(3):1560–6. doi: 10.1182/blood-2007-07-
  56. Pillon M, Gregucci F, Lombardi A, et al. Results of AIEOP LNH-97 protocol for the treatment of anaplastic large cell lymphoma of childhood. Pediatr Blood Cancer. 2012;59(5):828–33. doi: 10.1002/pbc.24125.
  57. Gascoyne RD, Aoun P, Wu D, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–21.
  58. Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral Tcell Lymphoma Project. Blood. 2008;111(12):5496–504. doi: 10.1182/blood-2008-01-
  59. Abramov D, Oschlies I, Zimmermann M, et al. Expression of CD8 is associated with non-common type morphology and outcome in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2013;98(10):1547–53. doi: 10.3324/haematol.2013.085837.
  60. Damm-Welk C, Mussolin L, Zimmermann M, et al. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2014;123(3):334–7. doi: 10.1182/blood-2013-09-
  61. Bonvini P, Gastaldi T, Falini B, et al. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK+ CD30+ lymphoma cells by Hsp90 antagonist 17-allylamino, 17-demethoxygeldanamycin. Cancer Res. 2002;62(5):1559–66.
  62. Ergin M, Denning MF, Izban KF, et al. Inhibition of tyrosine kinase activity induces caspase-dependent apoptosis in anaplastic large cell lymphoma with NPM-ALK (p80) fusion protein. Exp Hematol. 2001;29(9):1082–90. doi: 10.1016/s0301-472x(01)00688-
  63. Han Y, Amin HM, Franko B, et al. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteasome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood. 2006;108(8):2796–803. doi: 10.1182/blood-2006-04-
  64. Ogura M, Tobinai K, Hatake K, et al. Phase I/II study of brentuximab vedotin in Japanese patients with relapsed or refractory CD30-positive Hodgkin’s lymphoma or systemic anaplastic large-cell lymphoma. Cancer Sci. 2014;105(7):840–6. doi: 10.1111/cas.12435.
  65. Mosse YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–80. doi: 10.1016/s1470-2045(13)70095-
  66. Brugieres L, Le Deley MC, Rosolen A, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: a results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27(6):897–903. doi: 10.1200/jco.2008.18.1487.
  67. Seidemann K, Tiemann M, Schrappe M, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–706. doi: 10.1182/blood.v97.12.3699.
  68. Woessmann W, Zimmermann M, Lenhard M, et al. Relapsed or refractory anaplastic large-cell lymphoma in children and adolescents after Berlin-Frankfurt-Muenster (BFM)-type first-line therapy: a BFM-group study. J Clin Oncol. 2011;29(22):3065–71. doi: 10.1200/jco.2011.34.8417.
  69. Goldberg JD, Casulo C, Horwitz The role of hematopoietic stem cell transplantation in peripheral T-cell lymphomas. In: Non-Hodgkin Lymphoma Cancer Drug Discovery and Development. Springer; 2013. pp. 279–93. doi: 10.1007/978-1-4614-5851-7_16.
  70. Giulino-Roth L, Ricafort R, Kernan NA, et al. Ten-year follow-up of pediatric patients with non-Hodgkin lymphoma treated with allogeneic or autologous stem cell transplantation. Pediatr Blood Cancer. 2013;60(12):2018–24. doi: 10.1002/pbc.24722.
  71. Woessmann W, Peters C, Lenhard M. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents – a Berlin-Frankfurt-Munster group report. Br J Haematol. 2006;133(2):176–82. doi: 10.1111/j.1365-2141.2006.06004.x.
  72. Mori T, Takimoto T, Katano N, et al. Recurrent childhood anaplastic large cell lymphoma: a retrospective analysis of registered cases in Japan. Br J Haematol. 2006;132(5):594–7. doi: 10.1111/j.1365-2005.05910.x.
  73. Луговская С.А., Почтарь М.Е., Тупицын Н.Н. Иммунофенотипирование в диагностике гемобластозов. М.: Триада, 2005. 165 с.
    [Lugovskaya SA, Pochtar’ ME, Tupitsyn NN. Immunofenotipirovanie v diagnostike gemoblastozov. (Immunophenotyping in diagnosis of hemoblastoses.) Moscow: Triada Publ.; 2005. 165 p. (In Russ)]
  74. Курильников А.Я. Мабтера — первые моноклональные антитела в терапии неходжкинских лимфом. Современная онкология. 2002;4(1):25–8.
    [Kuril’nikov AYa. Mabtera: first monoclonal antibodies in therapy of non-Hodgkin’s lymphomas. Sovremennaya onkologiya. 2002;4(1):25–8. (In Russ)]
  75. Reff M, Carner C, Chambers K, et al. Depletion of B-cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–45.
  76. Okur FV, Oguz A, Karadeniz C, et al. Refractoriness to rituximab monotherapy in a child with relapsed/refractory Burkitt non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2006;23(1):25–31. doi: 10.1080/08880010500313298.
  77. Marcus R, Hagenbeek A. The therapeutic use of rituximab in non-Hodgkin’s lymphoma. Eur J Haematol. 2007;78(s67):5–14. doi: 10.1111/j.1600-0609.2006.00789.x.
  78. Plosker GL, Figgitt DP. Rituximab. Drugs. 2003;63(8):803–43. doi: 10.2165/00003495-200363080-
  79. Михайлова Н.Б. Роль ритуксимаба в лечении неходжкинских лимфом (реферативный обзор рандомизированных клинических исследований). Современная онкология. 2009;11(3):28–31.
    [Mikhailova NB. Role of rituximab in treatment of non-Hodgkin’s lymphomas (abstract review of randomized clinical trials). Sovremennaya onkologiya. 2009;11(3):28–31. (In Russ)]
  80. Li X, Liu Z, Cao J, et al. Rituximab in combination with CHOP chemotherapy for the treatment of diffuse large B cell lymphoma in China: a 10-year retrospective follow-up analysis of 437 cases from Shanghai Lymphoma Research Group. Ann Hematol. 2012;91(6):837–45. doi: 10.1007/s00277-011-1375-
  81. Thomas DA, Faderl S, O’Brien S, et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. 2006;106(7):1569–80. doi: 10.1002/cncr.21776.
  82. Fayad L, Thomas D, Romaguera J. Update of the M. D. Anderson Cancer Center experience with hyper-CVAD and rituximab for the treatment of mantle cell and Burkitt-type lymphomas. Clin Lymph Myel. 2007;8(2):57–62. doi: 10.3816/clm.2007.s.034.
  83. Meinhardt A, Burkhardt B, Zimmermann M, et al. Phase II Window Study on Rituximab in Newly Diagnosed Pediatric Mature B-Cell Non-Hodgkin’s Lymphoma and Burkitt Leukemia. J Clin Oncol. 2010;28(19):3115–21. doi: 10.1200/jco.2009.26.6791.
  84. Bilic E, Femenic R, Conja J, et al. CD20-positive childhood B-non-Hodgkin lymphoma: morphology, immunophenotype and a novel treatment approach: a single center experience. Coll Antropol. 2010;34(1):171–5.
  85. Смирнова Н.В., Мякова Н.В., Белогурова М.Б. и др. Лечение зрелоклеточных В-клеточных неходжкинских лимфом с использованием комбинированной иммунохимиотерапии: возможности оптимизации терапевтической стратегии. Онкогематология. 2015;10(4):15–24. doi: 10.17650/1818-8346-2015-10-4-15-24.
    [Smirnova NV, Myakova NV, Belogurova MB, et al. Treatment of B-cells non-Hodgkin lymphomas with combined immunochemotherapy: ability to treatment optimization. Oncohematology. 2015;10(4):15–24. doi: 10.17650/1818-8346-2015-10-4-15-24. (In Russ)]
  86. Miyamoto KI, Kobayashi Y, Maeshima AM, et al. Clinicopathological prognostic factors of 24 patients with B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. Int J Hematol. 2016;103(6):693–702. doi: 1007/s12185-016-1989-z.
  87. Gerrard M, Cairo MS, Weston C, et al. Excellent survival following two courses of COPAD chemotherapy. Br J Haematol. 2008;141(6):840–7. doi: 10.1111/j.1365-2008.07144.x.
  88. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80. doi: 10.1182/blood-2006-07-
  89. Stary J, Zimmermann M, Campbell M, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol. 2014;32(3):174–84. doi: 10.1200/jco.2013.48.6522.

Non-Hodgkin’s Lymphomas in Children: 25-Year Clinical Experience

TT Valiev, AV Popa, AS Levashov, ES Belyaeva, NS Kulichkina, BV Kurdyukov, RS Ravshanova, GL Mentkevich

Scientific Research Institute of Pediatric Oncology and Hematology, NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Timur Teimurazovich Valiev, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-98-69; e-mail: timurvaliev@mail.ru

For citation: Valiev TT, Popa AV, Levashov AS, et al. Non-Hodgkin’s Lymphomas in Children: 25-Year Clinical Experience. Clinical oncohematology. 2016;9(4):420–37 (In Russ).

DOI: http://dx.doi.org/10.21320/2500-2139-2016-9-4-420-437


ABSTRACT

Background & Aims. Current polychemotherapeutic protocols based on differentiated and risk-adopted approaches permitted to consider non-Hodgkin’s lymphomas (NHL) potentially curable diseases although they had been considered fatal previously. The aim of this study is to summarize and analyze outcomes of NHL therapy over a 25-year period.

Methods. 246 patients were enrolled in the study. They were treated in the department of chemotherapy of hemoblastoses in the Scientific Research Institute of Pediatric Oncology and Hematology under the NN Blokhin Russian Cancer Research Center over the period of 25 years: from April 1, 1991, till June 1, 2016. B-NHL-BFM 90/95 protocols and a modified B-NHL-BFM 95 protocol (with rituximab) were used for B-cell NHLs (n = 130). Patients with lymphocytic leukemia (n = 75) were treated using ALL-mBFM 90/95 and ALL IC-BFM 2002 protocols. 21 patients with anaplastic large cell lymphomas (ALCL) received treatment according to the B-NHL-BFM 90/95 protocol, and 20 patients received the НИИ ДОГ-АККЛ-2007 protocol.

Results. Taking into account clinical and immunological characteristics of ALCL, the authors invented an original НИИ ДОГ-АККЛ-2007 protocol. Special attention was paid to potential modification of standard treatment regimens for B-cell NHL by adding rituximab. The article demonstrates the evolution in prescription of rituximab for B-cell NHL and possibilities for reduction of the total number of polychemotherapy cycles for late-stage tumors without deterioration of treatment outcomes.

Conclusion. The obtained results permit to conclude that introduction of achievements of oncoimmunology, molecular biology, and cytogenetics will become the basis for further modification of existing treatment options for NHL.

Keywords: Burkitt lymphoma, diffuse large B-cell lymphoma, anaplastic large-cell lymphoma, primary mediastinal (thymic) large B-cell lymphoma, T- and B-cell lymphoblastic lymphomas, treatment, children.

Received: June 12, 2016

Accepted: June 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 439.
  2. Burkhardt B, Zimmermann M, Oschlies I, et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol. 2005;131(1):39–49. doi: 10.1111/j.1365-2005.05735.x.
  3. Hochberg J, Waxman IM, Kelly KM, et al. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science. Br J Haematol. 2009;144(1):24–40. doi: 10.1111/j.1365-2008.07393.x.
  4. Baccarani M, Corbelli G, Amadori S, et al. Adolescent and adult lymphoblastic leukemia: prognostic features outcome of therapy. А study of 293 patients. Blood. 1982;60(3):677–84.
  5. Gill PS, Meyer PR, Pavlova Z, et al. B-cell acute lymphoblastic leukemia in adults: clinical, morphologic and immunologic findings. J Clin Oncol. 1986;4(5):737–43.
  6. Bernstein JI, Coleman CN, Strickler JG, et al. Combined modality therapy for adult with small noncleaved cell lymphoma (Burkitt and Burkitt-like type). J Clin Oncol. 1986;4(6):847–58.
  7. Reiter A, Schrappe M, Tiemann M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM-90. Blood. 1999;94(10):3294–306.
  8. Patte C, J. Michon, Frappaz D, et al. Therapy of Burkitt and other B-cell acute lymphoblastic leukaemia and lymphoma: experience with the LMB protocols of the SFOP (French Paediatric Oncology Society) in children and adults. Bail Clin Haematol. 1994;7(2):339–48. doi: 10.1016/s0950-3536(05)80206-
  9. Patte C, Philip T, Rodary C, et al. High survival rate in advanced-stage B-cell lymphomas and leukemias without CNS involvement with a short intensive polychemotherapy: results from the French Pediatric Oncology Society of a randomized trial of 216 children. J Clin Oncol. 1991;9(1):123–32.
  10. Sun XF, Su YS, Liu DG, et al. Comparing CHOP, CHOP+HD-MTX, and BFM-90 regimens in the survival rate of children and adolescents with B cell non-Hodgkin’s lymphoma. Ai Zheng. 2004;23(8):933–8.
  11. Muller J, Csoka M, Jakab Z, et al. Hungarian experience with non-Hodgkin’s lymphoma in childhood. Magy Onkol. 2006;50(3):253–9.
  12. Cairo MS, Sposto R, Gerrard M, et al. Advanced stage, increased lactate dehydrogenase, and primary site, but not adolescent age (³ 15 years), are associated with an increased risk of treatment failure in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB LMB 96 study. J Clin Oncol. 2012;30(4):387–93. doi: 10.1200/jco.2010.33.3369.
  13. Schwenn M, Blattner S, Lynch E, et al. HiC-COM: a 2-month intensive chemotherapy regimen for children with stage III and IV Burkitt’s lymphoma and B-cell acute lymphoblastic leukemia. J Clin Oncol. 1991;9(1):133–8.
  14. Bowman WP, Shuster JJ, Cook B, et al. Improved survival for children with B-cell acute lymphoblastic leukemia and stage IV small noncleaved-cell lymphoma: a pediatric oncology group study. J Clin Oncol. 1996;14(4):1252–61.
  15. Magrath I, Adde M, Shad A, et al. Adults and children with small non-cleaved-cell lymphoma have similar excellent outcome when treated with the same chemotherapy regimen. J Clin Oncol. 1996;14(3):925–34.
  16. Atra A, Gerrard M, Hobson R, et al. Improved cure rate in children with B-cell acute lymphoblastic leukemia and IV stage B-cell non-Hodgkin lymphoma – results of the UKCCSG 9003 protocol. Br J Cancer. 1998;77(12):2281–5. doi: 10.1038/bjc.1998.379.
  17. Burkhardt B, Oschlies I, Klapper W, et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. Leukemia. 2011;25(1):153–60. doi: 10.1038/leu.2010.245.
  18. Patte C, Auperin A, Michon J, et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–9. doi: 10.1182/blood.v97.11.3370.
  19. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80. doi: 10.1182/blood-2006-07-
  20. Laver JH, Kraveka JM, Hutchison RE, et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. J Clin Oncol. 2005;23(3):541–7. doi: 10.1200/jco.2005.11.075.
  21. Woessmann W, Seidemann K, Mann G.et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948–58. doi: 10.1182/blood-2004-03-
  22. Gerrard M, Cairo MS, Weston C, et al. Excellent survival following two courses of COPAD chemotherapy. Br J Haematol. 2008;141(6):840–87. doi: 10.1111/j.1365-2008.07144.x.
  23. Seidemann K, Tiemann M, Lauterbach I, et al. Primary mediastinal large B-cell lymphoma with sclerosis in pediatric and adolescent patients: treatment and results from three therapeutic studies of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 2003;21(9):1782–19. doi: 10.1200/jco.2003.08.151.
  24. Akbayram S, Dogan M, Akgun C, et al. Use of rituximab in three children with relapsed/refractory Burkitt lymphoma. Target Oncol. 2010;5(4):291–4. doi: 10.1007/s11523-010-0161-
  25. Okur VF, Oguz A, Karadeniz C, et al. Refractoriness to rituximab monotherapy in a child with relapsed/refractory Burkitt non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2006;23(1):25–31. doi: 10.1080/08880010500313298.
  26. Holmberg LA, Maloney D, Bensinger W. Immunotherapy with rituximab/interleukin-2 after autologous stem cell transplantation as treatment for CD20+ non-Hodgkin’s lymphoma. Clin Lymph Myel. 2006;7(2):135–9. doi: 10.3816/clm.2006.n.051.
  27. Cooney-Qualter E, Krailo M, Angiolillo A.et al. A Phase I Study of 90Yttrium-Ibritumomab-Tiuxetan in Children and Adolescents with Relapsed/Refractory CD20-Positive Non-Hodgkin’s Lymphoma: A Children’s Oncology Group study. Clin Cancer Res. 2007;13(Suppl 18):5652–60. doi: 10.1158/1078-ccr-07-1060.
  28. Richard H, Termuhlen A, Smith L, et al. Autologous peripheral blood stem cell transplantation in children with refractory or relapsed lymphoma: results of Children’s Oncology Group Study A5962. Biol Blood Marrow Transplant. 2011;17(2):249–58. doi: 10.1016/j.bbmt.2010.07.002.
  29. Pinkel D, Johnson W, Aur RJ. Non-Hodgkin’s lymphoma in children. Br J Cancer. 1975;2:298–23.
  30. Wollner N, Exelby PR, Lieberman PH. Non-Hodgkin’s lymphoma in children: a progress report on the original patients treated with the LSA2-L2 protocol. Cancer. 1979;44(6):1990–9. doi: 10.1002/1097-0142(197912)44:6<1990::aid-cncr2820440605>3.0.co;2-
  31. Asselin BL, Devidas M, Wang C, et al. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood. 2011;118(4):874–83. doi: 10.1182/blood-2010-06-
  32. Wiernik P, Goldman J, Dutcher J. Neoplastic disease of the blood. Cambridge; 1216 p.
  33. Tubergen D, Krailo M, Meadows A, et al. Comparison of treatment regimens for pediatric lymphoblastic non-Hodgkin’s lymphoma: a Children’s Cancer Group study. J Clin Oncol Leuk. 1999;13(3):335–42.
  34. Amylon MD, Shuster J, Pullen J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma; Pediatr Oncol Group study. Leukemia. 1999;13(3):335–42. doi: 1038/sj.leu.2401310.
  35. Patte C, Philip T, Rodary C, et al. Improved survival rate in children with stage III-IV B-cell non-Hodgkin lymphoma and leukemia using multiagent chemotherapy: results of a study of 114 children from the French Pediatric Oncology Society. J Clin Oncol. 1986;4(8):1219–26.
  36. Reiter A, Schrappe M, Ludwig WD, et al. Favorable outcome of B-cell acute lymphoblastic leukemia in childhood: a report of three consecutive studies of the BFM group. Blood. 1992;80(10):2471–8.
  37. Reiter A, Schrappe M, Parwaresch R, et al. Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage – a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 1995;13(2):359–72.
  38. Nachman J, Sather HN, Cherlow JM, et al. Response of children with high-risk acute lymphoblastic leukemia treated with and without cranial irradiation: a report from the Children’s Cancer Group. J Clin Oncol. 1998;16(3):920–30.
  39. Tang JY, Xue HL, Chen J, et al. Multi-center trial based on SCMC-ALL-2005 for children’s acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi. 2013;51(7):495–501.
  40. Tallen G, Ratei R, Mann G, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol. 2010;28(14):2339–47. doi: 10.1200/jco.2009.25.1983.
  41. Dunsmore KP, Devidas M, Linda SB, et al. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(22):2753–9. doi: 10.1200/jco.2011.40.8724.
  42. Lambe CU, Averett DR, Paff MT, et al. 2-Amino-6-methoxypurine arabinoside: an agent for T-cell malignancies. Cancer Res. 1995;55(15):3352–6.
  43. Cooper TM, Razzouk BI, Gerbing R, et al. Phase I/II trial of clofarabine and cytarabine in children with relapsed/refractory acute lymphoblastic leukemia (AAML0523): a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2013;60(7):1141–7. doi: 10.1002/pbc.24398.
  44. Schroeder H, Garwicz S, Kristinsson J, et al. Outcome after first relapse in children with acute lymphoblastic leukemia: a population-based study of 315 patients from the Nordic Society of Pediatric Hematology and Oncology (NOPHO). Med Pediatr Oncol. 1995;25(5):372–8. doi: 10.1002/mpo.2950250503.
  45. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favourable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.
  46. Borgmann A, von Stackelberg A, Hartmann R, et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. 2003;101(10):3835–9. doi: 10.1182/blood.v101.10.3835.
  47. Wheeler K, Richards S, Bailey C, et al. Comparison of bone marrow transplant and chemotherapy for relapsed childhood acute lymphoblastic leukaemia: the MRC UKALL X experience. Medical Research Council Working Party on Childhood Leukaemia. Br J Haematol. 1998;101(1):94–103. doi: 10.1046/j.1365-2141.1998.00676.x.
  48. Stein H, Mason DY, Gerdes J, et al. The expression of Hodgkin’s disease associated antigen Ki-1 in reactive and neoplasic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from avtivated lymphoid cells. Blood. 1985;66(4):848–58.
  49. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-negative. Crit Rev Oncol Hematol. 2013;85(2):206–15. doi: 10.1016/j.critrevonc.2012.06.004.
  50. Sibon D, Fournier M, Briere J, et al. Prognostic Factors and Long Term Outcome of 138 Adults with Systemic Anaplastic Large-Cell Lymphoma: a Retrospective Study by the Groupe d’Etude Des Lymphomes De l’Adulte (GELA). Blood. 2010;116: Abstract 322.
  51. Park SJ, Kim S, Lee DH, et al. Primary Systemic Anaplastic Large Cell Lymphoma in Korean Adults: 11 Years’ Experience at Asan Medical Center. Yonsei Med J. 2008;49(4):601–9. doi: 10.3349/ymj.2008.49.4.601.
  52. Wang YF, Yang YL, Gao ZF, et al. Clinical and laboratory characteristics of systemic anaplastic large cell lymphoma in Chinese patients. J Hematol Oncol. 2012;5(1):38. doi: 10.1186/1756-8722-5-38.
  53. Amin HM, Lai R. Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood. 2007;110(7):2259–67. doi: 10.1182/blood-2007-04-060715.
  54. Moreno L, Garzon L, Bautista FJ, et al. Diagnosis of paediatric anaplastic large-cell lymphoma: a historical perspective from a single institution. Clin Transl Oncol. 2009;11(5):318–21. doi: 10.1007/s12094-009-0360-
  55. Le Deley MC, Reiter A, Williams D, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008;111(3):1560–6. doi: 10.1182/blood-2007-07-
  56. Pillon M, Gregucci F, Lombardi A, et al. Results of AIEOP LNH-97 protocol for the treatment of anaplastic large cell lymphoma of childhood. Pediatr Blood Cancer. 2012;59(5):828–33. doi: 10.1002/pbc.24125.
  57. Gascoyne RD, Aoun P, Wu D, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–21.
  58. Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral Tcell Lymphoma Project. Blood. 2008;111(12):5496–504. doi: 10.1182/blood-2008-01-
  59. Abramov D, Oschlies I, Zimmermann M, et al. Expression of CD8 is associated with non-common type morphology and outcome in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2013;98(10):1547–53. doi: 10.3324/haematol.2013.085837.
  60. Damm-Welk C, Mussolin L, Zimmermann M, et al. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2014;123(3):334–7. doi: 10.1182/blood-2013-09-
  61. Bonvini P, Gastaldi T, Falini B, et al. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK+ CD30+ lymphoma cells by Hsp90 antagonist 17-allylamino, 17-demethoxygeldanamycin. Cancer Res. 2002;62(5):1559–66.
  62. Ergin M, Denning MF, Izban KF, et al. Inhibition of tyrosine kinase activity induces caspase-dependent apoptosis in anaplastic large cell lymphoma with NPM-ALK (p80) fusion protein. Exp Hematol. 2001;29(9):1082–90. doi: 10.1016/s0301-472x(01)00688-
  63. Han Y, Amin HM, Franko B, et al. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteasome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood. 2006;108(8):2796–803. doi: 10.1182/blood-2006-04-
  64. Ogura M, Tobinai K, Hatake K, et al. Phase I/II study of brentuximab vedotin in Japanese patients with relapsed or refractory CD30-positive Hodgkin’s lymphoma or systemic anaplastic large-cell lymphoma. Cancer Sci. 2014;105(7):840–6. doi: 10.1111/cas.12435.
  65. Mosse YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–80. doi: 10.1016/s1470-2045(13)70095-
  66. Brugieres L, Le Deley MC, Rosolen A, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: a results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27(6):897–903. doi: 10.1200/jco.2008.18.1487.
  67. Seidemann K, Tiemann M, Schrappe M, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–706. doi: 10.1182/blood.v97.12.3699.
  68. Woessmann W, Zimmermann M, Lenhard M, et al. Relapsed or refractory anaplastic large-cell lymphoma in children and adolescents after Berlin-Frankfurt-Muenster (BFM)-type first-line therapy: a BFM-group study. J Clin Oncol. 2011;29(22):3065–71. doi: 10.1200/jco.2011.34.8417.
  69. Goldberg JD, Casulo C, Horwitz The role of hematopoietic stem cell transplantation in peripheral T-cell lymphomas. In: Non-Hodgkin Lymphoma Cancer Drug Discovery and Development. Springer; 2013. pp. 279–93. doi: 10.1007/978-1-4614-5851-7_16.
  70. Giulino-Roth L, Ricafort R, Kernan NA, et al. Ten-year follow-up of pediatric patients with non-Hodgkin lymphoma treated with allogeneic or autologous stem cell transplantation. Pediatr Blood Cancer. 2013;60(12):2018–24. doi: 10.1002/pbc.24722.
  71. Woessmann W, Peters C, Lenhard M. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents – a Berlin-Frankfurt-Munster group report. Br J Haematol. 2006;133(2):176–82. doi: 10.1111/j.1365-2141.2006.06004.x.
  72. Mori T, Takimoto T, Katano N, et al. Recurrent childhood anaplastic large cell lymphoma: a retrospective analysis of registered cases in Japan. Br J Haematol. 2006;132(5):594–7. doi: 10.1111/j.1365-2005.05910.x.
  73. Луговская С.А., Почтарь М.Е., Тупицын Н.Н. Иммунофенотипирование в диагностике гемобластозов. М.: Триада, 2005. 165 с.
    [Lugovskaya SA, Pochtar’ ME, Tupitsyn NN. Immunofenotipirovanie v diagnostike gemoblastozov. (Immunophenotyping in diagnosis of hemoblastoses.) Moscow: Triada Publ.; 2005. 165 p. (In Russ)]
  74. Курильников А.Я. Мабтера — первые моноклональные антитела в терапии неходжкинских лимфом. Современная онкология. 2002;4(1):25–8.
    [Kuril’nikov AYa. Mabtera: first monoclonal antibodies in therapy of non-Hodgkin’s lymphomas. Sovremennaya onkologiya. 2002;4(1):25–8. (In Russ)]
  75. Reff M, Carner C, Chambers K, et al. Depletion of B-cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–45.
  76. Okur FV, Oguz A, Karadeniz C, et al. Refractoriness to rituximab monotherapy in a child with relapsed/refractory Burkitt non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2006;23(1):25–31. doi: 10.1080/08880010500313298.
  77. Marcus R, Hagenbeek A. The therapeutic use of rituximab in non-Hodgkin’s lymphoma. Eur J Haematol. 2007;78(s67):5–14. doi: 10.1111/j.1600-0609.2006.00789.x.
  78. Plosker GL, Figgitt DP. Rituximab. Drugs. 2003;63(8):803–43. doi: 10.2165/00003495-200363080-
  79. Михайлова Н.Б. Роль ритуксимаба в лечении неходжкинских лимфом (реферативный обзор рандомизированных клинических исследований). Современная онкология. 2009;11(3):28–31.
    [Mikhailova NB. Role of rituximab in treatment of non-Hodgkin’s lymphomas (abstract review of randomized clinical trials). Sovremennaya onkologiya. 2009;11(3):28–31. (In Russ)]
  80. Li X, Liu Z, Cao J, et al. Rituximab in combination with CHOP chemotherapy for the treatment of diffuse large B cell lymphoma in China: a 10-year retrospective follow-up analysis of 437 cases from Shanghai Lymphoma Research Group. Ann Hematol. 2012;91(6):837–45. doi: 10.1007/s00277-011-1375-
  81. Thomas DA, Faderl S, O’Brien S, et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. 2006;106(7):1569–80. doi: 10.1002/cncr.21776.
  82. Fayad L, Thomas D, Romaguera J. Update of the M. D. Anderson Cancer Center experience with hyper-CVAD and rituximab for the treatment of mantle cell and Burkitt-type lymphomas. Clin Lymph Myel. 2007;8(2):57–62. doi: 10.3816/clm.2007.s.034.
  83. Meinhardt A, Burkhardt B, Zimmermann M, et al. Phase II Window Study on Rituximab in Newly Diagnosed Pediatric Mature B-Cell Non-Hodgkin’s Lymphoma and Burkitt Leukemia. J Clin Oncol. 2010;28(19):3115–21. doi: 10.1200/jco.2009.26.6791.
  84. Bilic E, Femenic R, Conja J, et al. CD20-positive childhood B-non-Hodgkin lymphoma: morphology, immunophenotype and a novel treatment approach: a single center experience. Coll Antropol. 2010;34(1):171–5.
  85. Смирнова Н.В., Мякова Н.В., Белогурова М.Б. и др. Лечение зрелоклеточных В-клеточных неходжкинских лимфом с использованием комбинированной иммунохимиотерапии: возможности оптимизации терапевтической стратегии. Онкогематология. 2015;10(4):15–24. doi: 10.17650/1818-8346-2015-10-4-15-24.
    [Smirnova NV, Myakova NV, Belogurova MB, et al. Treatment of B-cells non-Hodgkin lymphomas with combined immunochemotherapy: ability to treatment optimization. Oncohematology. 2015;10(4):15–24. doi: 10.17650/1818-8346-2015-10-4-15-24. (In Russ)]
  86. Miyamoto KI, Kobayashi Y, Maeshima AM, et al. Clinicopathological prognostic factors of 24 patients with B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. Int J Hematol. 2016;103(6):693–702. doi: 1007/s12185-016-1989-z.
  87. Gerrard M, Cairo MS, Weston C, et al. Excellent survival following two courses of COPAD chemotherapy. Br J Haematol. 2008;141(6):840–7. doi: 10.1111/j.1365-2008.07144.x.
  88. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80. doi: 10.1182/blood-2006-07-
  89. Stary J, Zimmermann M, Campbell M, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol. 2014;32(3):174–84. doi: 10.1200/jco.2013.48.6522.