Artificial Intelligence in Hematology

“Artificial intelligence will not replace physicians, however, those physicians who use artificial

intelligence will replace those who don’t.”

Dr. Bertalan Mesko, the medical futurist


AS Luchinin

Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

For correspondence: Aleksandr Sergeevich Luchinin, MD, PhD, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; Tel.: +7(919)506-87-86; e-mail: glivec@mail.ru

For citation: Luchinin AS. Artificial Intelligence in Hematology. Clinical oncohematology. 2022;15(1):16–27. (In Russ).

DOI: 10.21320/2500-2139-2022-15-1-16-27


ABSTRACT

‘Artificial Intelligence’ is a general term to designate computer technologies for solving the problems that require implementation of human intelligence, for example, human voice or image recognition. Most artificial intelligence products with application in healthcare are associated with machine learning, i.e., a field of informatics and statistics dealing with the generation of predictive or descriptive models through data-based learning, rather than programming of strict rules. Machine learning has been widely used in pathomorphology, radiology, genomics, and electronic medical record data analysis. In line with the current trend, artificial intelligence technologies will most likely become increasingly integrated into health research and practice, including hematology. Thus, artificial intelligence and machine learning call for attention and understanding on the part of researchers and clinical physicians. The present review covers important terms and basic concepts of these technologies, as well as offers examples of their actual use in hematological research and practice.

Keywords: artificial intelligence, machine learning, neural network.

Received: September 23, 2021

Accepted: December 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Muhsen IN, Shyr D, Sung AD, Hashmi SK. Machine Learning Applications in the Diagnosis of Benign and Malignant Hematological Diseases. Clin Hematol Intern. 2021;3(1):13–20. doi: 10.2991/chi.k.201130.001.
  2. Radakovich N, Nagy M, Nazha A. Machine learning in haematological malignancies. Lancet Haematol. 2020;7(7):e541–e550. doi: 10.1016/S2352-3026(20)30121-6.
  3. Deo RC. Machine Learning in Medicine. Circulation. 2015;132(20):1920–30. doi: 10.1161/CIRCULATIONAHA.115.001593.
  4. Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236–46. doi: 10.1093/bib/bbx044.
  5. Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9. doi: 10.1038/s41591-018-0316-z.
  6. Komura D, Ishikawa S. Machine learning approaches for pathologic diagnosis. Virchows Arch. 2019;475(2):131–8. doi: 10.1007/s00428-019-02594-w.
  7. Sha L, Osinski BL, Ho IY, et al. Multi-Field-of-View Deep Learning Model Predicts Nonsmall Cell Lung Cancer Programmed Death-Ligand 1 Status from Whole-Slide Hematoxylin and Eosin Images. J Pathol Inform. 2019;10(1):24. doi: 10.4103/jpi.jpi_24_19.
  8. Abramoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1(1):39. doi: 10.1038/s41746-018-0040-6.
  9. Benjamens S, Dhunnoo P, Mesko B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020;3(1):118. doi: 10.1038/s41746-020-00324-0.
  10. Shouval R, Fein JA, Savani B, et al. Machine learning and artificial intelligence in haematology. Br J Haematol. 2021;192(2):239–50. doi: 10.1111/bjh.16915.
  11. Shahid AH, Singh MP. Computational intelligence techniques for medical diagnosis and prognosis: problems and current developments. Biocybern Biomed Eng. 2019;39(3):638–72. doi: 10.1016/j.bbe.2019.05.010.
  12. Морозов С.П., Владзимирский А.В., Кляшторный В.Г. и др. Клинические испытания программного обеспечения на основе интеллектуальных технологий (лучевая диагностика). Лучшие практики лучевой и инструментальной диагностики. Препринт № ЦДТ-2019-1. М., 2019. 34 с.
    [Morozov SP, Vladzimirskii AV, Klyashtornyi VG, et al. Clinical acceptance of software based on artificial intelligence technologies (radiology). Preprint No. CDT-2019-1. Luchshie praktiki luchevoi i instrumental’noi diagnostiki. (Best practices in medical imaging.) Moscow; 2019. 34 (In Russ)]
  13. Shekelle PG, Shetty K, Newberry S, et al. Machine Learning Versus Standard Techniques for Updating Searches for Systematic Reviews: A Diagnostic Accuracy Study. Ann Intern Med. 2017;167(3):213–5. doi: 10.7326/L17-0124.
  14. Kimura K, Tabe Y, Ai T, et al. A novel automated image analysis system using deep convolutional neural networks can assist to differentiate MDS and AA. Sci Rep. 2019;9(1):13385. doi: 10.1038/s41598-019-49942-z.
  15. Wang Q, Bi S, Sun M, et al. Deep learning approach to peripheral leukocyte recognition. PLoS One. 2019;14(6):e0218808. doi: 10.1371/journal.pone.0218808.
  16. Hegde RB, Prasad K, Hebbar H, Singh BMK. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybern Biomed Eng. 2019;39(2):382–92. doi: 10.1016/j.bbe.2019.01.005.
  17. Syrykh C, Abreu A, Amara N, et al. Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. NPJ Digit Med. 2020;3(1):63. doi: 10.1038/s41746-020-0272-0.
  18. Achi HE, Belousova T, Chen L, et al. Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning. Ann Clin Lab Sci. 2019;49(2):153–60.
  19. Sheng B, Zhou M, Hua M, et al. A blood cell dataset for lymphoma classification using faster R-CNN. Biotechnol Biotechnol Equip. 2020;34(1):413–20. doi: 10.1080/13102818.2020.1765871.
  20. Xu L, Tetteh G, Lipkova J, et al. Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on (68)Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods. Contrast Media Mol Imaging. 2018;2018:1–11. doi: 10.1155/2018/2391925.
  21. Martinez-Martinez F, Kybic J, Lambert L, Meckova Z. Fully automated classification of bone marrow infiltration in low-dose CT of patients with multiple myeloma based on probabilistic density model and supervised learning. Comput Biol Med. 2016;71:57–66. doi: 10.1016/j.compbiomed.2016.02.001.
  22. Wang L, Zhao Z, Luo Y, et al. Classifying 2-year recurrence in patients with DLBCL using clinical variables with imbalanced data and machine learning methods. Comput Meth Program Biomed. 2020;196:105567. doi: 10.1016/j.cmpb.2020.105567.
  23. Biccler JL, Eloranta S, de Nully Brown P, et al. Optimizing Outcome Prediction in Diffuse Large B-Cell Lymphoma by Use of Machine Learning and Nationwide Lymphoma Registries: A Nordic Lymphoma Group Study. JCO Clin Cancer Inform. 2018;2:1–13. doi: 10.1200/CCI.18.00025.
  24. Guncar G, Kukar M, Notar M, et al. An application of machine learning to haematological diagnosis. Sci Rep. 2018;8(1):411. doi: 10.1038/s41598-017-18564-8.
  25. Breiman L. Random forests. Machine Learning. 2001;45:5–32. doi: 1023/A:1010933404324.
  26. Nazha A, Komrokji RS, Meggendorfer M, et al. A Personalized Prediction Model to Risk Stratify Patients with Myelodysplastic Syndromes. Blood. 2018;132(Suppl 1):793. doi: 10.1182/blood-2018-99-114774.
  27. Hu SB, Wong DJ, Correa A, et al. Prediction of Clinical Deterioration in Hospitalized Adult Patients with Hematologic Malignancies Using a Neural Network Model. PLoS One. 2016;11(8):e0161401. doi: 10.1371/journal.pone.0161401.
  28. Prochazka VK, Matustikova S, Furst T, et al. Bayesian Network Modelling As a New Tool in Predicting of the Early Progression of Disease in Follicular Lymphoma Patients. Blood. 2020;136(Suppl 1):20–1. doi: 10.1182/blood-2020-139830.
  29. Mahmood N, Shahid S, Bakhshi T, et al. Identification of significant risks in pediatric acute lymphoblastic leukemia (ALL) through machine learning (ML) approach. Med Biol Eng Comput. 2020;58(11):2631–40. doi: 10.1007/s11517-020-02245-2.
  30. Gandelman JS, Byrne MT, Mistry AM, et al. Machine learning reveals chronic graft-versus-host disease phenotypes and stratifies survival after stem cell transplant for hematologic malignancies. Haematologica. 2019;104(1):189–96. doi: 10.3324/haematol.2018.193441.
  31. Chen D, Goyal G, Go RS, et al. Improved Interpretability of Machine Learning Model Using Unsupervised Clustering: Predicting Time to First Treatment in Chronic Lymphocytic Leukemia. JCO Clin Cancer Inform. 2019;3:1–11. doi: 10.1200/CCI.18.00137.
  32. Coombes CE, Abrams ZB, Li S, et al. Unsupervised machine learning and prognostic factors of survival in chronic lymphocytic leukemia. J Am Med Inform Assoc. 2020;27(7):1019–27. doi: 10.1093/jamia/ocaa060.
  33. Shah P, Kendall F, Khozin S, et al. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med. 2019;2(1):69. doi: 10.1038/s41746-019-0148-3.
  34. Shouval R, Labopin M, Bondi O, et al. Prediction of Allogeneic Hematopoietic Stem-Cell Transplantation Mortality 100 Days After Transplantation Using a Machine Learning Algorithm: A European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study. J Clin Oncol. 2015;33(28):3144–51. doi: 10.1200/JCO.2014.59.1339.
  35. Nazha A, Hu ZH, Wang T, et al. A Personalized Prediction Model for Outcomes after Allogeneic Hematopoietic Cell Transplant in Patients with Myelodysplastic Syndromes. Biol Blood Marrow Transplant. 2020;26(11):2139–46. doi: 10.1016/j.bbmt.2020.08.003.
  36. Bigorra L, Larriba I, Gutierrez-Gallego R. Machine learning algorithms for accurate differential diagnosis of lymphocytosis based on cell population data. Br J Haematol. 2019;184(6):1035–7. doi: 10.1111/bjh.15230.
  37. Nazha A, Sekeres MA, Bejar R, et al. Genomic Biomarkers to Predict Resistance to Hypomethylating Agents in Patients with Myelodysplastic Syndromes Using Artificial Intelligence. JCO Precis Oncol. 2019;3:1–11. doi: 10.1200/po.19.00119.
  38. Milgrom SA, Elhalawani H, Lee J, et al. A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma. Sci Rep. 2019;9(1):1322. doi: 10.1038/s41598-018-37197-z.
  39. Moraes LO, Pedreira CE, Barrena S, et al. A decision-tree approach for the differential diagnosis of chronic lymphoid leukemias and peripheral B-cell lymphomas. Comput Meth Program Biomed. 2019;178:85–90. doi: 10.1016/j.cmpb.2019.06.014.
  40. Ni W, Hu B, Zheng C, et al. Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine. Oncotarget. 2016;7(44):71915–21. doi: 10.18632/oncotarget.12430.
  41. Fuse K, Uemura S, Tamura S, et al. Patient-based prediction algorithm of relapse after allo-HSCT for acute Leukemia and its usefulness in the decision-making process using a machine learning approach. Cancer Med. 2019;8(11):5058–67. doi: 10.1002/cam4.2401.
  42. Goswami C, Poonia S, Kumar L, Sengupta D. Staging System to Predict the Risk of Relapse in Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplantation. Front Oncol. 2019;9:633. doi: 10.3389/fonc.2019.00633.
  43. Gal O, Auslander N, Fan Y, Meerzaman D. Predicting Complete Remission of Acute Myeloid Leukemia: Machine Learning Applied to Gene Expression. Cancer Inform. 2019;18:1–5. doi: 10.1177/1176935119835544.
  44. Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett. 2020;471:61–71. doi: 10.1016/j.canlet.2019.12.007.
  45. Ubels J, Sonneveld P, van Beers EH, et al. Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects. Nat Commun. 2018;9(1):2943. doi: 10.1038/s41467-018-05348-5.
  46. Shain KH, Hart D, Silva AS, et al. Reinforcement Learning to Optimize the Treatment of Multiple Myeloma. Blood. 2019;134(Suppl_1):5511. doi: 10.1182/blood-2019-132234.
  47. Mateos MV, Blacklock H, Schjesvold F, et al. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial. Lancet Haematol. 2019;6(9):e459–e469. doi: 10.1016/S2352-3026(19)30110-3.
  48. Liao JJZ, Farooqui MZH, Marinello P, et al. Using artificial intelligence tools in answering important clinical questions: The KEYNOTE-183 multiple myeloma experience. Contemp Clin Trials. 2020;99:106179. doi: 10.1016/j.cct.2020.106179.
  49. Третье мнение. AI для клинической лабораторной диагностики (электронный документ). Доступно по: https://thirdopinion.ai/ru#rec Ссылка активна на 06.10.2021.
    [Third Opinion. AI for clinical laboratory diagnostics (Internet). Available from: https://thirdopinion.ai/ru#rec354556522 (accessed 06.10.2021). (In Russ)]

Immunohistochemical Subtype and Parameters of International Prognostic Index in the New Prognostic Model of Diffuse Large B-Cell Lymphoma

SV Samarina1, AS Luchinin1, NV Minaeva1, IV Paramonov1, DA D’yakonov1, EV Vaneeva1, VA Rosin1, SV Gritsaev2

1 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Valer’evna Samarina, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; Tel.: +7(912)732-47-56; e-mail: samarinasv2010@mail.ru

For citation: Samarina SV, Luchinin AS, Minaeva NV, et al. Immunohistochemical Subtype and Parameters of International Prognostic Index in the New Prognostic Model of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(4):385–90 (In Russ).

DOI: 10.21320/2500-2139-2019-12-4-385-390


ABSTRACT

Aim. To develop an integrated prognostic model of diffuse large B-cell lymphoma (DLBCL) on the basis of immunohistochemical tumor subtype and parameters of International Prognostic Index (IPI).

Materials & Methods. Out of 104 DLBCL patients in the data base 81 (77.9 %) met the eligibility criteria. Median age was 58 years (range 23–83). All patients were treated with R-СНОР. The creation of overall survival (OS) prognostic model for DLBCL patients was based on machine learning with classification and regression trees. OS was analyzed using Kaplan-Meier method. Survival curves were compared by means of log rank test and hazard ratio (HR). Any test was considered significant if two-sided level of < 0.05 was reached.

Results. Following the developed model three groups of patients were identified: the 1st group of low risk (the combination of low, intermediate-low, and intermediate-high risks according to IPI and GCB subtype); the 2nd group of intermediate risk (the combination of low, intermediate-low, and intermediate-high risks according to IPI and non-GCB subtype); the 3d group of high risk (irrespective of subtype). In the group of low risk (n = 26) 2-year OS during the monitoring period was 100 %. In the group of intermediate risk (n = 34) median OS was not reached, 2-year OS was 74 %, and expected 5-year OS was 68 %. In the group of high risk (n = 21) median OS was 25 months, 2-year OS was 46 %, and expected 5-year OS was 37 % (log rank< 0.0001). HR calculated for the high-risk group compared with the low- and intermediate-risk groups was 5.1 (95% CI 2.1–12.1; p = 0.0003).

Conclusion. A new integrated system of DLBCL prognosis is suggested which includes IPI risk parameters and immunohistochemical subtype based on Hans algorithm. This prognostic system can be used in clinical practice for DLBCL patient stratification and risk-adapted therapy.

Keywords: diffuse large B-cell lymphoma, overall survival, prognosis, International Prognostic Index, machine learning.

Received: March 18, 2019

Accepted: August 27, 2019

Read in PDF


REFERENCES

  1. Martellia M, Ferrerib AJM, Agostinellic C, et al. Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 2013;87(2):146–71. doi: 10.1016/j.critrevonc.2012.12.009.

  2. Lynch RC, Gratzinger D, Advani RH. Clinical Impact of the 2016 Update to the WHO Lymphoma Classification. Curr Treat Options Oncol. 2017;18(7):45. doi: 10.1007/s11864-017-0483-z.

  3. Li X, Huang H, Xu B, et al. Dose-Dense Rituximab-CHOP versus Standard Rituximab-CHOP in Newly Diagnosed Chinese Patients with Diffuse Large B-Cell Lymphoma: A Randomized, Multicenter, Open-Label Phase 3 Trial. Cancer Res Treat. 2019;51(3):919–32. doi: 10.4143/crt.2018.230.

  4. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42. doi: 10.1056/NEJMoa011795.

  5. Castellino A, Chiappella A, LaPlant BR, et al. Lenalidomide plus R-CHOP21 in newly diagnosed diffuse large B-cell lymphoma (DLBCL): long-term follow-up results from a combined analysis from two phase 2 trials. Blood Cancer J. 2018;8(11):108. doi: 10.1038/s41408-018-0145-9.

  6. Sharman JP, Forero-Torres A, Costa LJ, et al. Obinutuzumab plus CHOP is effective and has a tolerable safety profile in previously untreated, advanced diffuse large B-cell lymphoma: the phase II GATHER study. Leuk Lymphoma. 2018;60(4):894–903. doi: 10.1080/10428194.2018.1515940.

  7. Kameoka Y, Akagi T, Murai K, et al. Safety and efficacy of high-dose ranimustine (MCNU) containing regimen followed by autologous stem cell transplantation for diffuse large B-cell lymphoma. Int J Hematol. 2018;108(5):510–5. doi: 10.1007/s12185-018-2508-1.

  8. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  9. Biccler J, Eloranta S, de Nully Brown P, et al. Simplicity at the cost of predictive accuracy in diffuse large B-cell lymphoma: a critical assessment of the R-IPI, IPI, and NCCN-IPI. Cancer Med. 2018;7(1):114–22. doi: 10.1002/cam4.1271.

  10. Shipp MA, Harrington DP, Anderson JR, et al. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.

  11. Li JM, Wang L, Shen Y, et al. Rituximab in combination with CHOP chemotherapy for the treatment of diffuse large B cell lymphoma in Chinese patients. Annals Hematol. 2007;86(9):639–45. doi: 10.1007/s00277-007-0320-8.

  12. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene-expression profiling. Nature. 2000;403(6769):503–51. doi: 10.1038/35000501.

  13. Wang KL, Chen C, Shi PF, et al. Prognostic Value of Morphology and Hans Classification in Diffuse Large B Cell Lymphoma. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018;26(4):1079–85. doi: 10.7534/j.issn.1009-2137.2018.04.023.

  14. Rashidi A, Oak E, Carson KR, et al. Outcomes with R-CEOP for R-CHOP-ineligible patients with diffuse large B-cell lymphoma are highly dependent on cell of origin defined by Hans criteria. Leuk Lymphoma. 2016;57(5):1191–3. doi: 10.3109/10428194.2015.1096356.

  1. Ye ZY, Cao YB, Lin TY, Lin HL. Subgrouping and outcome prediction of diffuse large B-cell lymphoma by immunohistochemistry. Zhonghua Bing Li Xue Za Zhi. 2007;36(10):654–9.

  1. Montalban C, Diaz-Lopez A, Martin A, et al. Differential prognostic impact of GELTAMO-IPI in cell of origin subtypes of Diffuse Large B Cell Lymphoma as defined by the Hans algorithm. Br J Haematol. 2018;182(4):534–41. doi: 10.1111/bjh.15446.

  2. Tibiletti MG, Martin V, Bernasconi B, et al. BCL2, BCL6, MYC, MALT 1, and BCL10 rearrangements in nodal diffuse large B-cell lymphomas: a multicenter evaluation of a new set of fluorescent in situ hybridization probes and correlation with clinical outcome. Hum Pathol. 2009;40(5):645–52. doi: 10.1016/j.humpath.2008.06.032.

  3. Jaglal MV, Peker D, Tao J, Cultrera JL. Double and Triple Hit Diffuse Large B Cell Lymphomas and First Line Therapy. Blood. 2012;120:4885 [abstract].

  4. Kim M, Suh C, Kim J, Hong JY. Difference of Clinical Parameters between GCB and Non-GCB Subtype DLBCL. Blood. 2017;130:5231 [abstract].

  5. Da Costa CBT. Machine Learning Provides an Accurate Classification of Diffuse Large B-Cell Lymphoma from Immunohistochemical Data. J Pathol Inform. 2018;9(1):21. doi: 10.4103/jpi.jpi_14_18.

  6. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2016.

    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders). Moscow: Buki Vedi Publ.; 2016. (In Russ)]

  7. Leval L, Harris NL. Variability in immunophenotype in diffuse large B-cell lymphoma and it‘s clinical relevance. Histopathol. 2003;43(6):509–28. doi: 10.1111/j.1365-2559.2003.01758.x.

  8. Skarbnik AP, Donato ML. Safety and Efficacy Data for Combined Checkpoint Inhibition with Ipilimumab (Ipi) and Nivolumab (Nivo) As Consolidation Following Autologous Stem Cell Transplantation (ASCT) for High-Risk Hematological Malignancies. Blood. 2018;132:256.

  9. Matsuki E, Younes A. Checkpoint Inhibitors and Other Immune Therapies for Hodgkin and Non-Hodgkin Lymphoma. Curr Treat Options Oncol. 2016;17(6):31. doi: 10.1007/s11864-016-0401-9.

  10. Kaneko H, Tsutsumi Y, Fujino T, et al. Favorable event free-survival of high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation for higher risk diffuse large B-cell lymphoma in first complete remission. Hematol Rep. 2015;7(2):5812 [abstract]. doi: 10.4081/hr.2015.5812.