Past and present of radiotherapy in management of malignancies

O.P. Trofimova, S.I. Tkachev, and T.V. Yuryeva

N.N. Blokhin Russian Cancer Research Center, RAMS, Moscow, Russian Federation


ABSTRACT

The article describes the stages of emergence and development of radiotherapy in management of malignancies of various locations, covering the period from the discovery of X-rays to the use of 60Co artificial isotope and development of the linear electron accelerator. Currently, radiotherapy is required for 70 % of cancer patients at some stage of tumor treatment. Improvements in radiotherapy technologies and development of new irradiation techniques made possible to solve the main task of radiotherapy, i.e. tumor destruction with minimal radiation exposure to surrounding healthy tissues, at the time being. This paper describes the radiotherapy techniques and explains in detail the differences between conventional and conformal radiotherapy. Also, preparation of patients for radiotherapy and the features of various conformal radiotherapy technologies are included.


Keywords: irradiation, radiotherapy, preparation for radiotherapy, linear electron accelerator.

Read in PDF (RUS)pdficon


References

  1. Гернек Ф. Пионеры атомного века. Великие исследователи от Максвелла до Гейзенберга. М.: Прогресс, 1974.  [Gernek F. Pionery atomnogo veka. Velikiye issledovateli ot Maksvella do Geyzenberga (Pioneers of atomic age. Great explorers from Maxwell to Heisenberg). M.: Progress, 1974.]
  2. Труфанов Г.Е., Асатурян М.А., Жаринов Г.М. Лучевая терапия (учебник для вузов). М.: ГЭОТАР-Медиа, 2007. Т. 2. [Trufanov G.E., Asaturyan M.A., Zharinov G.M. Luchevaya terapiya (uchebnik dlya vuzov) (Radiotherapy (manual for medical institutes)). M.: GEOTAR-Media, 2007. Vol. 2.]
  3. Grubbe E.H. Priority in the therapeutic use of X-Rays. Radiology 1933: 156–62.
  4. Hoffman R., Furie B., McGlave Ph. et al. Hematology: Basic Principles and Practice, 5th edn. Churchill Livingstone, 2008: 2560.
  5. Козлова А.В. Лучевая терапия злокачественных опухолей. М., 1971. [Kozlova A.V. Luchevaya terapiya zlokachestvennykh opukholey (Radiotherapy for malignant tumors). M., 1971.]
  6. Chao А., Tigner M. Handbook of Accelerator Physics and Engineering, 1999.
  7. Ткачев С.И., Нечушкин М.И., Юрьева Т.В. Современные возможности лучевой терапии злокачественных опухолей. Вестн. РАМН 2011; 12: 34–40.  [Tkachev S.I., Nechushkin M.I., Yuryeva T.V. Sovremennyye vozmozhnosti luchevoy terapii zlokachestvennykh opukholey (Current potentialities of radiotherapy for malignant tumors. In: Bull. of RAMS). Vestn. RAMN 2011; 12: 34–40.]
  8. Юрьева Т.В., Ратнер Т.Г., Сахаровская В.Г. Оценка качества рентге- новского симулятора с функцией компьютерной томографии. Сб. мат-лов III Евразийского конгресса по медицинской физике и инженерии «Меди- цинская физика — 2010». М., 2010; 2: 343–5. [Yuryeva T.V., Ratner T.G., Sakharovskaya V.G. Otsenka kachestva rentgenovskogo simulyatora s funktsiyey kompyuternoy tomografii. Sb. mat-lov III Yevraziyskogo kongressa po meditsinskoy fizike i inzhenerii «Meditsinskaya fizika — 2010» (Assessment of quality of X-ray simulator with computed tomography function. Coll. of materials of 3rd Eurasian congress on medical physics and engineering “Medical physics — 2010”). M., 2010; 2: 343–5.]
  9. Favier O., Heutte N., Stamatoullas-Bastard A. Survival after Hodgkin lymphoma: causes of death and excess mortality in patients treated in 8 consecutive trials. Cancer 2009; 115(8): 1680–91.
  10. Переслегин И.А., Саркисян Ю.Х. Клиническая радиология. М., 1973. [Pereslegin I.A., Sarkisyan Yu.Kh. Klinicheskaya radiologiya (Clinical radiology). M., 1973.]
  11. Артемова Н.А., Минайло И.И., Страх А.Г. Объемное планирование лучевой терапии. Мед. новости 2005; 11: 5–10. [Artemova N.A., Minaylo I.I., Strakh A.G. Obyemnoye planirovaniye luchevoy terapii (Three dimensional planning in radiotherapy. In: Med. news). Med. novosti 2005; 11: 5–10.]
  12. Артемова Н.А., Минайло И.И., Страх А.Г. Предлучевая подготовка с использованием объемного планирования. В сб.: Контроль качества лучевой терапии и лучевой диагностики. Минск, 2009: 261–70. [Artemova N.A., Minaylo I.I., Strakh A.G. Predluchevaya podgotovka s ispolzovaniyem obyemnogo planirovaniya. V sb.: Kontrol kachestva luchevoy terapii i luchevoy diagnostiki (Pre-irradiation preparation using three dimensional planning. : Quality control in radiotherapy and radiologic diagnosis). Minsk, 2009: 261–70.]
  13. ICRU Report 50: Prescribing, Recording and Reporting Photon Beam Therapy. Bethesda: International Commission on Radiation Units and Measurements, 1993.
  14. ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy. Bethesda: International Commission on Radiation Units and Measurements, 1999.
  15. Leeuwen F.E., Klokman W.J., Stovall M. Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin’s disease. J. Natl. Cancer Inst. 2003; 95(13): 971–80.
  16. Markova J., Kobe С., Skopalova М. FDG–PET for assessment of early treatment response after four cycles of chemotherapy in patients with advancedstage Hodgkin’s lymphoma has a high negative predictive value. Ann. Oncol. 2009; 20(7): 1270–4.

Immunophenotypical and cytogenetic features of tumor cells in a patient with chronic lymphocytic leukemia associated with prolonged exposure to irradiation

S.N. Kolyubaeva1, I.A. Sukhina1, V.Yu. Nikitin1, T.V. Isakova1, A.S. Polyakov1, S.N. Malakhova1, N.V. Il’yin2, J.N. Vinogradova2, and L.А. Myakoshina2

1 Military Medical Aсademy, Saint Petersburg, Russian Federation

2 Russian Research Centre for Radiology and Surgical Technologies, RF Ministry of Health, Saint Petersburg, Russian Federation


ABSTRACT

In this article, we describe immunoрhenotypical and cytogenetic features of tumor cells in the patient with chronic lymphocytic leukemia (CLL) and prolonged exposure to irradiation in the history. Finding of 0.67% to 0.73% of metaphases with dicentric chromosomes confirmed the effect of radiation in this patient. Chromosome banding with mitogen stimulation of peripheral lymphocytes revealed 2% of cells with 47,XY, +12 karyotype, while FISH detected the greater number of cells with trisomy 12 in interphase bone marrow cells and peripheral lymphocytes. Immunophenotyping of bone marrow cells revealed the difference from “classic” CCL, i.e. simultaneous low-positive CD22 and CD79b expression as well as CD38 expression on the surface of tumor cells.


Keywords: chronic lymphocytic leukemia, fluorescence in situ hybridization, trisomy 12, irradiation, radiation-specific damage.

Read in PDF (RUS)pdficon


REFERENCES

  1. Новик А.А. Классификация злокачественных лимфом. СПб.: ЭЛБИ, 2000. [Novik A.A. Klassifikatsiya zlokachestvennykh limfom (Classification of malignant lymphomas). SPb.: ELBI, 2000.]
  2. O’Brien S. Diagnosis and treatment of chronic lymphocytic leukemia. In: Neoplastic Diseases of the Blood, 3rd ed. Ed. by P.H. Wiernk, S. O’Brien, M.J. Keating. New York, Edinburgh, 2001: 151–9.
  3. Austen B., Skowronska A., Baker C. et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. Clin. Oncol. 2007; 25: 5448–7.
  4. Bea S., Lopez-Guellermo A., Ribas M. et al. Genetics imbalances in progressed B-cell chronic lymphocytic leukemia and transformed large-cell lymphoma (Richter’s syndrome). J. Pathol. 2002; 161: 957–8.
  5. Del Giudice I., Rossi D., Chiaretti S. et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) conferan unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica 2012; 97(3): 437–41.
  6. Rossi D., Rasi S., Fabbri G. et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012; 119(2): 521–6.
  7. Chumak V.V., Romanenko A.Y, Voillegue P.G. et al. The UkrainianAmerican study of leukemia and related disorders among Chernobyl cleanup workers from Ukraine: II. Estimation of bone marrow doses. Rad. Res. 2008; 170(6): 691–7.
  8. Romanenko A.Y., Finch S.C., Hatch M. et al. The Ukrainian-American study of leukemia and related desorders among Chernobyl cleanup workers from Ukraine: III. Radiation risk. Rad. Res. 2008; 170: 711–20.
  9. Krestinina L.Y., Preston D.L. Ostroumova E.V. et al. Protracted radiation exposure and cancer mortality in the Techa river cohort. Res. 2005; 164: 602–11.
  10. Zent C.S., Kyasa M.J., Evans R., Schichman S.A. Chronic lymphocytic leukemia incidence is substantially higher than estimated from tumor registry date. Cancer 2001; 92: 1325–30.
  11. Богданов А.Н., Саржевский В.О., Колюбаева С.Н. и др. Случай острого лимфобластного лейкоза с t(9;22) и несколькими дополнитель- ными перестройками. Гематол. и трансфузиол. 2008; 53(30): 35–8. [Bogdanov A.N., Sarzhevskiy V.O., Kolyubayeva S.N. i dr. Sluchay ostrogo limfoblastnogo leykoza s t(9;22) i neskolkimi dopolnitelnymi perestroykami (Case of acute lymphoblastic leukemia with t(9;22) and several additional rearrangements). i transfuziol. 2008; 53(30): 35–8.]
  12. Аn International System for human Cytogenetic Nomenclature. Recommendations of the International Standing Committee on the Human Cytogenetic Nomenclature. by L. Shaffer, N. Tommerup. Basel: S. Karger, 2009.
  13. Zucchetto A. Surface-antigen expression profiling (SEP) in B-cell chronic lymphocytic leukemia (B-CLL): Identification of markers with prognostic relevance. Immunol. Meth. 2005; 305: 20–32.
  14. Escudier S.M., Pereira-Leahy J.M., Drach J.M. et al. Fluorescent in situ hybridization and cytogenetic studies of trisomy 12 in chronic lymphocytic leukemia. Blood 1993; 81: 2702–7.
  15. Schlette E. CD79b expression in chronic lymphocytic leukemia. Association with trisomy 12 and atypical immunophenotype E. Arch. Lab. Med. 2003; 123: 561–6.