New Possibilities of Treatment for Relapsed/Refractory Multiple Myeloma: A Literature Review

OM Votyakova

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Ol’ga Mikhailovna Votyakova, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: 8(499)324-92-09; e-mail: omvtk@yandex.ru 24

For citation: Votyakova OM. New Possibilities of Treatment for Relapsed/Refractory Multiple Myeloma: A Literature Review. Clinical oncohematology. 2017;10(4):425–34 (In Russ).

DOI: 10.21320/2500-2139-2017-10-4-425-434


ABSTRACT

Despite improvements in the treatment of patients with newly diagnosed multiple myeloma (MM) through the introduction of new drugs and high-dose chemotherapy with autologous hematopoietic stem cell transplantation, relapses are still inevitable in all patients. The use of immunomodulatory agents (thalidomide, lenalidomide) and proteasome inhibitor bortezomib has improved the treatment of relapses. However, the disease progression lead to repeated relapses and eventually refractory MM. For these patients new therapeutic strategies are needed, including the development of more effective drugs within the existing classes and the study of new combinations, as well as searching new targets for the treatment of MM. We present the key clinical data on the efficacy and safety of the most promising proteasome inhibitors (carfilzomib, ixazomib), new generation immunomodulatory drug pomalidomide, and monoclonal antibodies (daratumumab and elotuzumab).

Keywords: proteasome inhibitors, immunomodulatory medication, monoclonal antibodies, multiple myeloma.

Received: March 14, 2017

Accepted: June 20, 2017

Read in PDF


REFERENCES

  1. Kumar SK, Dispenzieri A, Lacy MQ, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–5. doi: 10.1038/leu.2013.313.
  2. Ludwig H, Sonneveld P, Davies F, et al. European Perspective on Multiple Myeloma Treatment Strategies in 2014. Oncologist. 2014;19(8):829–44. doi: 10.1634/theoncologist.2014-0042.
  3. Rajkumar SV, Harousseau J-L, Durie B, et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood. 2011;117(18):4691–5. doi: 10.1182/blood-2010-10-299487.
  4. Richardson PG, Sonnefeld P, Schuster M, et al. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood. 2007;110(11):3557–60. doi: 10.1182/blood-2006-08-036947.
  5. Dimopoulos MA, Spencer A, Attal M, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007;357(21):2123–32. doi: 10.1056/NEJMoa070594.
  6. Weber DM, Chen C, Niesvizky R, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med. 2007;357(21):2133–42. doi: 10.1056/NEJMoa070596.
  7. Weber D, Knight R, Chen C, et al. Prolonged overall survival with lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. Blood. 2007;110(11): Abstract 412.
  8. Kumar SK, Therneau TM, Gertz MA, et al. Clinical course of patients with relapsed multiple myeloma. Mayo Clin Proc. 2004;79(7):867–74.
  9. Usmani S, Ahmadi T, Ng Y, et al. Analysis of Real-World Data on Overall Survival in Multiple Myeloma Patients With ≥ 3 Prior Lines of Therapy Including a Proteasome Inhibitor (PI) and an Immunomodulatory Drug (IMiD), or Double Refractory to a PI and an IMiD. Oncologist. 2016;21:1355–61. doi: 10.1634/theoncologist.2016-0104.
  10. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter International Myeloma Working Group study. Leukemia. 2012;26(1):149–57. doi: 10.1038/leu.2011.196.
  11. Bolli N, Avert-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997. doi: 10.1038/ncomms3997.
  12. Lohr JG, Stojanov P, Carter SL, et al. Multiple Myeloma Research Consortium. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25(1):91–101. doi: 10.1016/j.ccr.2013.12.015.
  13. Egan JB, Shi CH, Tembe W, et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood. 2012;120(5):1060–6. doi: 10.1182/blood-2012-01-405977.
  14. Yee AJ, Raje NS. Sequencing of nontransplant treatments in multiple myeloma patients with active disease. Hematology Am Soc Hematol Educ Program. 2016(1):495–503. doi: 10.1182/asheducation-2016.1.495.
  15. Stewart AK, Rajkumar SV, Dimopoulos MA, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52. doi: 10.1056/NEJMoa1411321.
  16. Moreau P, Masszi T, Grzasko N, et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;374(17):1621–34. doi: 10.1056/NEJMoa1516282.
  17. Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015;373(7):621–31. doi: 10.1056/NEJMoa1505654.
  18. Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;375(14):1319–31. doi: 10.1056/NEJMoa1607751.
  19. Kuhn DJ, Orlowski RZ, Bjorklund CC. Second generation proteasome inhibitors: carfilzomib and immunoproteasome-specific inhibitors (IPSIs). Curr Cancer Drug Targets. 2011;11(3):285–95. doi: 10.2174/156800911794519725.
  20. Siegel DS, Martin T, Wang M, et al. A phase 2 study of single agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood. 2012;120(14):2817–25. doi: 10.1182/blood-2012-05-425934.
  21. Dimopoulos MA, Moreau P, Palumbo A, et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol. 2015;17(1):27–38. doi: 10.1016/S1470-2045(15)00464-7.
  22. Avet-Loiseau H, Fonseca R, Siegel D, et al. Efficacy and Safety of Carfilzomib, Lenalidomide, and Dexamethasone Vs Lenalidomide and Dexamethasone in Patients with Relapsed Multiple Myeloma Based on Cytogenetic Risk Status: Subgroup Analysis from the Phase 3 Study Aspire (NCT01080391). Blood. 2015;126(23):731.
  23. Kupperman E, Lee EC, Cao Y, et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 2010;70(5):1970–80. doi: 10.1158/0008-5472.CAN-09-2766.
  24. Lee EC, Fitzgerald M, Bannerman B, et al. Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B-cell and plasma cell malignancies. Clin Cancer Res. 2011;17(23):7313–23. doi: 10.1158/1078-0432.CCR-11-0636.
  25. San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, Phase III trial. Lancet Oncol. 2013;14(11):1055–66. doi: 10.1016/S1470-2045(13)70380-2.
  26. Dimopoulos MA, Weisel KC, Song KW, et al. Cytogenetics and long-term survival of patients with refractory or relapsed and refractory multiple myeloma treated with pomalidomide and low-dose dexamethasone. Haematologica. 2015;100(10):1327–33. doi: 10.3324/haematol.2014.117077.
  27. Dimopoulos MA, Leleu X, Palumbo A, et al. Expert panel consensus statement on the optimal use of pomalidomide in relapsed and refractory multiple myeloma. Leukemia. 2014;28(8):1573–85. doi: 10.1038/leu.2014.60.
  28. ИМНОВИД® (IMNOVID®) инструкция по применению [электронный документ]. Доступно по: https://www.vidal.ru/drugs/imnovid__44356. Ссылка активна на 31.07.2017.[IMNOVID® instruction for medical use [Internet]. Available from: https://www.vidal.ru/drugs/imnovid__44356. (accessed 31.07.17) (In Russ)]
  29. Baz RC, Martin TG, Lin H-Y, et al. Randomized multicenter phase 2 study of pomalidomide, cyclophosphamide, and dexamethasone in relapsed refractory myeloma. Blood. 2016;127(21):2561–8. doi: 10.1182/blood-2015-11-682518.
  30. Lacy MQ, LaPlant BR, Laumann KM, et al. Pomalidomide, Bortezomib and Dexamethasone (PVD) for Patients with Relapsed Lenalidomide Refractory Multiple Myeloma (MM). Blood. 2014;124(21):304.
  31. Collins SM, Bakan CE, Swartzel GD, et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother. 2013;62(12):1841–9. doi: 10.1007/s00262-013-1493-8.
  32. Veillette A, Guo H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit Rev Oncol Hematol. 2013;88(1):168–77. doi: 10.1016/j.critrevonc.2013.04.003.
  33. Lonial S, Richardson P, Mateos M-V, et al. ELOQUENT-2 update: Phase III study of elotuzumab plus lenalidomide/dexamethasone (ELd) vs Ld in relapsed/refractory multiple myeloma (RRMM)—Identifying responders by subset analysis. 2016 ASCO Annual Meeting. Poster 8037. Available from: http://meetinglibrary.asco.org/record/126339/abstract (accessed 31.07.17).
  34. Lin P, Owens R, Tricot G, Wilson CS. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol. 2004;121(4):482–8. doi: 10.1309/74r4-tb90-buwh-27jx.
  35. de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J. Immunol. 2011;186(3):1840–8. doi: 10.4049/jimmunol.1003032.
  36. Lammerts van Bueren J, Jakobs D, Kaldenhoven N, et al. Direct in vitro comparison of daratumumab with surrogate analogs of CD38 antibodies MOR03087, SAR650984 and Ab79. Blood. 2014;124(21):3474.
  37. Overdijk MB, Verploegen S, Bogels M, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. mAbs. 2015;7(2):311–21. doi: 10.1080/19420862.2015.1007813.
  38. Jansen JHM, Boross P, Overdijk MB, et al. Daratumumab, a human CD38 antibody induces apoptosis of myeloma tumor cells via Fc receptor-mediated crosslinking. Blood. 2012;120(21): Abstract 2974.
  39. Krejcik J, Casneuf T, Nijhof I, et al. Immunomodulatory effects and adaptive immune response to daratumumab in multiple myeloma. Blood. 2015:126(23): Abstract 3037.
  40. Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207–19. doi: 10.1056/NEJMoa1506348.
  41. Lonial S, Weiss BM, Usmani SZ, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet. 2016;387(10027):1551–60. doi: 10.1016/S0140-6736(15)01120-4.
  42. Usmani SZ, Weiss BM, Plesner T, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood. 2016;128(1):37–44. doi: 10.1182/blood-2016-03-705210.
  43. Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;375:754–66. doi: 10.1056/NEJMoa1606038.

Elotuzumab for Treatment of Multiple Myeloma (Literature Review)

OM Votyakova

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Ol’ga Mikhailovna Votyakova, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-92-09; e-mail: omvtk@yandex.ru

For citation: Votyakova OM. Elotuzumab for Treatment of Multiple Myeloma (Literature Review). Clinical oncohematology. 2016;9(4):438–45 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-438-445


ABSTRACT

Chemotherapy has been the main treatment option for multiple myeloma for several decades. However, a considerable increase in the life expectancy was observed in multiple myeloma patients when thalidomide, bortezomib and lenalidomide had been introduced into clinical practice. Nevertheless, the disease remains incurable and there is an unmet need in fundamentally new treatment methods. Elotuzumab is a humanized IgG1 monoclonal antibody that specifically targets SLAMF7, an antigen belonging to the signaling lymphocytic activation molecule family, with its high expression detected on myeloma cells. This review presents the mechanism of action of elotuzumab, preclinical data and the main clinical studies of this monoclonal antibody.


Keywords: monoclonal antibodies, elotuzumab, clinical studies, multiple myeloma.

Received: May 25, 2016

Accepted: June 15, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403. doi: 10.1016/j.ejca.2012.12.027.
  2. Статистика злокачественных новообразований в России и странах СНГ в 2012 г. Под ред. М.И. Давыдова, Е.М. Аксель. М.: Издательская группа РОНЦ им. Н.Н. Блохина, 2014. 226 с.
    [Davydova MI, Aksel’ EM, eds. Statistika zlokachestvennykh novoobrazovanii v Rossii i stranakh SNG v 2012 g. (Statistics of malignancies in Russia and CIS in) Moscow: Izdatel’skaya gruppa RONTs im. N.N. Blokhina Publ.; 2014. 226 p. (In Russ)]
  3. EER Stat Fact Sheets: Myeloma, 2004–2010. [Internet] Available from: http://seer.cancer.gov/statfacts/html/mulmy.html. (accessed 25.08.2014).
  4. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20. doi: 10.1182/blood-2007-10-116129.
  5. Madan S, Lacy M, Dispenzieri A, et al. Efficacy of retreatment with immunomodulatory compounds in patients receiving initial therapy for newly diagnosed multiple myeloma. Blood. 2010;116(21): Abstract 1964.
  6. Knopf KB, Duh MS, Lafeuille M-H, et al. Meta-Analysis of the Efficacy and Safety of Bortezomib Re-treatment in Patients with Multiple Myeloma. Clin Lymph Myel 14(5):380–8. doi: 10.1016/j.clml.2014.03.005.
  7. Kumar SK, Therneau TM, Gertz MA, et al. Clinical course of patients with relapsed multiple myeloma. Mayo Clin Proc. 2004;79(7):867–74. doi: 10.4065/79.7.867.
  8. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26(1):149–57. doi: 10.1038/leu.2011.196.
  9. San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, Phase III trial. Lancet Oncol. 2013;14(11):1055–66. doi: 10.1016/S1470-2045(13)70380-2.
  10. Siegel DS, Martin T, Wang M, et al. A Phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapse and refractory multiple myeloma. Blood. 2012;120(14):2817–25. doi: 10.1182/blood-2012-05-425934.
  11. Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget. 2013;4(12):2186–207. doi: 10.18632/oncotarget.1497.
  12. Palumbo A, Sonneveld P. Preclinical and clinical evaluation of elotuzumab, a SLAMF7-targeted humanized monoclonal antibody in development for multiple myeloma. Exp Rev Hematol. 2015;8(4):481–91. doi: 10.1586/17474086.2015.1053866.
  13. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79. doi: 10.1111/j.1365-2141.2007.06705.x.
  14. Kellner J, Liu B, Kang Y, Li Z. Fact or fiction–identifying the elusive multiple myeloma stem cell. J Hematol Oncol. 2013;7(6):91. doi: 10.1186/1756-8722-6-91.
  15. Stewart AK, Rajkumar SV, Dimopoulos MA, et al.; ASPIRE Investigators. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52. doi: 10.1056/NEJMoa1411321.
  16. Mentlik JA, Cohen AD, Campbell KS. Combination immune therapies to enhance anti-tumor responses by NK cells. Front Immunol. 2013;23(4):481. doi: 10.3389/fimmu.2013.00481.
  17. Rossi M, Botta C, Correale P, et al. Immunologic microenvironment and personalized treatment in multiple myeloma. Expert Opin Biol Ther. 2013;13(Suppl 1):S83–93. doi: 10.1517/14712598.2013.799130.
  18. Palumbo A, Cavallo F. Have drug combinations supplanted stem cell transplantation in myeloma? Blood. 2012;120(24):4692–8. doi: 10.1182/blood-2012-05-423202.
  19. Teh BW, Harrison SJ, Pellegrini M, et al. Changing treatment paradigms for patients with plasma cell myeloma: impact upon immune determinants of infection. Blood Rev. 2014;28(2):75–86. doi: 10.1016/j.blre.2014.01.004.
  20. Feyler S, Selby PJ, Cook G. Regulating the regulators in cancer-immunosuppression in multiple myeloma (MM). Blood Rev. 2013;27(3):155–64. doi: 10.1016/j.blre.2013.04.004.
  21. Yi Q. Novel immunotherapies. Cancer J. 2009;15(6):502–10. doi: 10.1097/PPO.0b013e3181c51f0d.
  22. Lonial S, Kaufman J, Laubach J, Richardson P. Elotuzumab: a novel anti-CS1 monoclonal antibody for the treatment of multiple myeloma. Expert Opin Biol Ther. 2013;13(12):1731–40. doi: 10.1517/14712598.2013.847919.
  23. Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775–84. doi: 10.1158/1078-0432.CCR-07-4246.
  24. Veillette A. SLAM-family receptors: immune regulators with or without SAP-family adaptors. Cold Spring Harb Perspect Biol. 2010;2(3):a002469. doi: 10.1101/cshperspect.a002469.
  25. Bouchon A, Cella M, Grierson HL, et al. Cutting edge: activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J Immunol. 2001;167(10):5517–21. doi: 10.4049/jimmunol.167.10.5517.
  26. Cruz-Munoz ME, Dong Z, Shi X, et al. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat Immunol. 2009;10(3):297–305. doi: 10.1038/ni.1693.
  27. Collins SM, Bakan CE, Swartzel GD, et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother. 2013;62(12):1841–9. doi: 10.1007/s00262-013-1493-8.
  28. Tai YT, Dillon M, Song W, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329–37. doi: 10.1182/blood-2007-08-107292.
  29. Veillette A, Guo H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit Rev Oncol Hematol. 2013;88(1):168–77. doi: 10.1016/j.critrevonc.2013.04.003.
  30. Moreau Ph, Touzeau K. Elotuzubab for the treatment multiple myeloma. Fut Oncol. 2014;10(6):949–56. doi: 10.2217/fon.14.56.
  31. Benson DM. Jr, Byrd JC. CS1-directed monoclonal antibody therapy for multiple myeloma. J Clin Oncol. 2012;30(16):2013–5. doi: 10.1200/jco.2011.40.4061.
  32. Balasa B, Yun R, Belmar NA, et al. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-a Cancer Immunol Immunother. 2015;64(1):61–73. doi: 10.1007/s00262-014-1610-3.
  33. van Rhee F, Szmania SM, Dillon M, et al. Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther. 2009;8(9):2616–24. doi: 10.1158/1535-7163.MCT-09-0483.
  34. Zonder JA, Mohrbacher AF, Singhal S, et al. A Phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552–9. doi: 10.1182/blood-2011-06-360552.
  35. Jakubowiak AJ, Benson DM, Bensinger W, et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol. 2012;30(16):1960–5. doi: 10.1200/jco.2011.37.7069.
  36. Lonial S, Vij R, Harousseau JL, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953–9. doi: 10.1200/jco.2011.37.2649.
  37. Eleutherakis-Papaiakovou V, Bamias A, Gika D, et al. Renal failure in multiple myeloma: incidence, correlations, and prognostic significance. Leuk Lymphoma. 2007;48(2):337–41. doi: 10.1080/10428190601126602.
  38. Berdeja J, Jagannath S, Zonder J, et al. Pharmacokinetics and Safety of Elotuzumab Combined With Lenalidomide and Dexamethasone in Patients With Multiple Myeloma and Various Levels of Renal Impairment: Results of a Phase Ib Study. Clin Lymph Myel Leuk. 2016;16(3):129–38. doi: 1016/j.clml.2015.12.007.
  39. Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, Refractory myeloma. N Engl J Med. 2003;348(26):2609–17. doi: 1056/nejmoa030288.
  40. Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352(24):2487–98. doi: 10.1056/nejmoa043445.
  41. Dimopoulos MA, Chen C, Spencer A, et al. Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. 2009;23(11):2147–52. doi: 10.1038/leu.2009.147.
  42. Jakubowiak A, Offidani M, Pegourie B, et al. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. 2016;127(23):2833–40. doi: 10.1182/blood-2016-01-694604.
  43. Richardson PG, Jagannath S, Moreau P, et al. Final results for the 1703 phase 1b/2 study of elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed/refractory multiple myeloma. 2014;124(21): Abstract 302.
  44. Phase III Study of Lenalidomide and Dexamethasone With or Without Elotuzumab to Treat Newly Diagnosed, Previously Untreated Multiple Myeloma (ELOQUENT-1). [Internet] Available from: clinicaltrials.gow/ct2/show/NCT01335399. (accessed 21.05.2016).
  45. Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015;373(7):621–31. doi: 10.1056/NEJMoa1505654.
  46. Lonial S, Dimopoulos M, Palumbo A, et al. ELOQUENT-2: A phase III, randomized, open-label study of lenalidomide (Len)/dexamethasone (dex) with/without elotuzumab (Elo) in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J Clin Oncol. 2015;33(Suppl): Abstract 8508.
  47. Genzen JR, Kawaguchi KR, Furman RR. Detection of a monoclonal antibody therapy (ofatumumab) by serum protein and immunofixation electrophoresis. Br J Haematol. 2011;155(1):123–5. doi: 10.1111/j.1365-2141.2011.08644.x.
  48. McCudden CR, Voorhees PM, Hainsworth SA, et al. Interference of monoclonal antibody therapies with serum protein electrophoresis tests. Clin Chem. 2010;56(12):1897–9. doi: 10.1373/clinchem.2010.152116.
  49. Axel AE, McCudden CR, Xie H, et al. Development of clinical assay to mitigate daratumumab, an IgG1K monoclonal antibody, interference with serum immunofixation (IFE) and clinical assessment of M-protein response in multiple myeloma. Cancer Res. 2014;74(19):2563. doi: 10.1158/1538-7445.am2014-2563.
  50. US Food and Drug Administration. Elotuzumab [media release]. [Internet] Available from: http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm474719.htm. (accessed 22.05.2016).
  51. European commission Community register of medicinal products for human usе. [Internet] Available from: http://ec.europa.eu/health/documents/community-register/html/h1088.htm. (accessed 22.05.2016).
  52. NCCN Clinical Guidelines Version 3.2016. [Internet] Available from: https://www.nccn.org/store/login/login.aspx?ReturnURL=https://www.nccn.org/professionals/physician_gls/PDF/myeloma.pdf. (accessed 23.05.2016).

 

 

Monoclonal Antibodies: from Development to Clinical Application

YuI Budchanov

Tver’ Medical University, 4 Sovetskaya str., Tver’, Russian Federation, 170000

For correspondence: Yurii Ivanovich Budchanov, 3 1st per. Krasnoi Slobody, Tver’, Russian Federation, 170001; e-mail: budjur@mail.ru

For citation: Budchanov YuI. Monoclonal Antibodies: from Development to Clinical Application. Clinical oncohematology. 2016;9(3):237-44 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-237-244


ABSTRACT

The development of monoclonal antibodies (MABs) resulted in revolutionary achievements in diagnosing and treating of oncohematological disorders. The review dwells on the history of the development and improved technologies for production of monoclonal antibodies illustrated by anti-CD20-MABs which recognize different epitopes of the CD20 antigens and have a higher antitumor activity. Engineering techniques can contribute to understanding the effector mechanisms of the application of the novel anti-CD20-MABs and are intended for further improvement of the treatment results.


Keywords: monoclonal antibodies, rituximab, ofatumumab, obinutuzumab, hybridoma technology.

Received: January 13, 2016

Accepted: March 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7. doi: 10.1038/256495a0.
  2. Galfre G. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977;266(5602):550–2. doi: 10.1038/266550a0.
  3. Гордеева О.Б., Семикина Е.Л. Современные возможности определения группы крови и резус-принадлежности в педиатрической практике. Вопросы диагностики в педиатрии. 2010;2(4):9–16.
    [Gordeeva OB, Semikina EL. Current capabilities of the blood group and Rhesus factor typing in pediatric practice. Voprosy diagnostiki v pediatrii. 2010;2(4):9–16. (In Russ)]
  4. Рагимов А.А., Дашкова Н.Г. Трансфузионная иммунология. М.: МИА, 2004. С. 270.
    [Ragimov AA, Dashkova NG. Transfuzionnaya immunologiya. (Transfusion immunology.) Moscow: MIA Publ.; 2004. pp. 270. (In Russ)]
  5. Freedman A. Follicular lymphoma: 2014 update on diagnosis and management. Am J Hematol. 2014;89(4):429–36. doi: 10.1002/ajh.23674.
  6. Preijers FW, Huys E, Moshaver B. OMIP-010: a new 10-color monoclonal antibody panel for polychromatic immunophenotyping of small hematopoietic cell samples. Cytometry A. 2012;81A(6):453–5. doi: 10.1002/cyto.a.22056.
  7. Тупицын Н.Н., Гривцова Л.Ю., Купрышина Н.А. Иммунодиагностика опухолей крови на основании многоцветных (8 цветов панелей) европейского консорциума по проточной цитометрии (EURO-FLOW). Иммунология гемопоэза. 2015;13(1):31–62.
    [Tupitsyn NN, Grivtsova LYu, Kupryshina NA. Haematopoietic malignancies immune diagnostics based on Euroflow Consortium proposals: 8-color flow cytometry. Immunologiya gemopoeza. 2015;13(1):31–62. (In Russ)]
  8. Тупицын Н.Н. Иммунология клеток крови. В кн.: Гематология. Национальное руководство. Под ред. О.А. Рукавицына. М.: ГЭОТАР-Медиа, 2015. С. 69–79.
    [Tupitsyn NN. Blood cell immunology. In: Rukavitsyn OA, ed. Gematologiya. Natsional’noe rukovodstvo. (Hematology. National guidelines.) Moscow: GEOTAR-Media Publ.; 2015. pp. 69–79. (In Russ)]
  9. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6:343–57. doi: 10.1038/nri1837.
  10. Riley JK, Sliwkowski MX. CD20: a gene in search of a function. Semin Oncol. 2000;27(12):17–24.
  11. Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today. 1994;15(9):450–4. doi: 10.1016/0167-5699(94)90276-3.
  12. Renaudineau Y, Devauchelle-Pensec V, Hanrotel C, et al. Monoclonal anti-CD20 antibodies: mechanisms of action and monitoring of biological effects. Joint Bone Spine. 2009;76(5):458–63. doi: 10.1016/j.jbspin.2009.03.010.
  13. Martin P, Furman RR, Coleman M, Leonard JP. Phase I to III trials of anti-B cell therapy in non-Hodgkin’s lymphoma. Clin Cancer Res. 2007;13(18):5636–42. doi: 10.1158/1078-0432.ccr-07-1085.
  14. St Clair EW. Novel targeted therapies for autoimmunity. Curr Opin Immunol. 2009;21(6):648–57. doi: 10.1016/j.coi.2009.09.008.
  15. Gurcan H, Keskin D, Stern J, et al. A review of the current use of rituximab in autoimmune diseases. Int Immunopharmacol. 2009;9(1):10–25. doi: 10.1016/j.intimp.2008.10.004.
  16. Castillo-Trivino T, Braithwaite D, Bacchetti P, Waubant E. Rituximab in relapsing and progressive forms of multiple sclerosis: a systematic review. PLoS One. 2013;8(7):e66308. doi: 10.1371/journal.pone.0066308.
  17. Otukesh H, Hoseini R, Rahimzadeh N, Fazel M. Rituximab in the treatment of nephrotic syndrome: a systematic review. Iran J Kidney Dis. 2013;7(4):249–56. doi: 10.13172/2053-0293-1-1-480.
  18. Morrison VA. Immunosuppression associated with novel chemotherapy agents and monoclonal antibodies. Clin Infect Dis. 2014;59(5):360–4. doi: 10.1093/cid/ciu592.
  19. Rosman Z, Shoenfeld Y, Zandman-Goddard G. Biologic therapy for autoimmune diseases: an update. BMC Med. 2013;11(1):88. doi: 10.1186/1741-7015-11-88.
  20. Bhandari PR, Pai VV. Novel applications of Rituximab in dermatological disorders. Indian Dermatol Online J. 2014;5(3):250–9. doi: 10.4103/2229-5178.137766.
  21. Cang S, Mukhi N, Wang K, Liu D. Novel CD20 monoclonal antibodies for lymphoma therapy. J Hematol Oncol. 2012;5(1):64. doi: 10.1186/1756-8722-5-64.
  22. Rioufol C, Salles G. Obinutuzumab for chronic lymphocytic leukemia. Expert Rev Hematol. 2014;7(5):533–43. doi: 10.1586/17474086.2014.953478.
  23. Owen CJ, Stewart DA. Obinutuzumab for the treatment of patients with previously untreated chronic lymphocytic leukemia: overview and perspective. Ther Adv Hematol. 2015;6(4):161–70. doi: 10.1177/2040620715586528.
  24. Shah A. Obinutuzumab: A Novel Anti-CD20 Monoclonal Antibody for Previously Untreated Chronic Lymphocytic Leukemia. Ann Pharmacother. 2014;48(10):1356–61. doi: 10.1177/1060028014543271.
  25. Golay J, Da Roit F, Bologna L, et al. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood. 2013;122(20):3482–91. doi: 10.1182/blood-2013-05-504043.
  26. Shah A. New developments in the treatment of chronic lymphocytic leukemia: role of obinutuzumab. Ther Clin Risk Manage. 2015;11:1113–22. doi: 10.2147/TCRM.S71839.
  27. Cerquozzi S, Owen C. Clinical role of obinutuzumab in the treatment of naive patients with chronic lymphocytic leukemia. Biol Targ Ther. 2015;9:13–22. doi: 10.2147/BTT.S61600.
  28. Seiter K, Mamorska-Dyga A. Obinutuzumab treatment in the elderly patient with chronic lymphocytic leukemia. Clin Interv Aging. 2015;12(10):951–61. doi: 10.2147/cia.s69278.
  29. Алексеев С.М., Капланов К.Д., Иванов Р.А., Черняева Е.В. Современный подход к разработке и исследованию биоаналогов на примере первого российского препарата моноклональных антител — Ацеллбия® (ритуксимаб). Исследования и практика в медицине. 2015;2(1):8–12. doi: 10.17709/2409-2231-2015-2-1-8-12.
    [Alekseev SM, Kaplanov KD, Ivanov RA, Chernyaeva EV. Current approach to development of biosimilar products containing monoclonal antibodies as an active substance – non-clinical studies of the first Russian rituximab biosimilar, Acellbia®. Research’n Practical Medicine Journal. 2015;2(1):8–12. doi: 10.17709/2409-2231-2015-2-1-8-12. (In Russ)]
  30. Tada M, Tatematsu K-I, Ishii-Watabe A, et al. Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori). mAbs. 2015;7(6):1138–50. doi: 10.1080/19420862.2015.1078054.
  31. Gonzalez-Gonzalez E, Alvarez MM, Marquez-Ipina AR, et al. Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead. Crit Rev Biotechnol. 2015;26:1–16. doi: 10.3109/07388551.2015.1114465.