Pomalidomide in Combination with Low-Dose Dexamethasone as the Treatment of “Double Refractory” Multiple Myeloma

AV Petrov2, DV Motorin2, OS Pokrovskaya1, ES Urnova1, MV Nareiko1, DV Babenetskaya2, YuA Alekseeva2, LL Girshova2, LP Mendeleeva1, AYu Zaritskii2

1 Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 Federal Almazov North-West Medical Research Centre, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Aleksei Vladilenovich Petrov, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.:+7(921)317-28-02; e-mail: avlpetrov@mail.ru

For citation: Petrov AV, Motorin DV, Pokrovskaya OS, et al. Pomalidomide in Combination with Low-Dose Dexamethasone as the Treatment of “Double Refractory” Multiple Myeloma. Clinical oncohematology. 2017;10(3):372–80 (In Russ).

DOI: 10.21320/2500-2139-2017-10-3-372-380


ABSTRACT

Background. The development of radical therapy for multiple myeloma (MM) is still a pressing problem. This progressive disease requires repeated courses of therapy using drugs without cross-resistance. The prognosis of “double refractory” MM which is resistant to key antitumor drugs, first generation protease inhibitors and immunomodulating agents, remains poor. The median progression-free survival (PFS) and overall survival (OS) in this cohort of patients are 5 and 9 months, respectively.

Aim. The aim was to assess the effectiveness and tolerability of pomalidomide in combination with low-dose of dexamethasone in “double refractory” relapsed/refractory multiple myeloma (RRMM).

Materials & Methods. According to study protocol, 10 patients from Hematology Research Center and Federal Almazov North-West Medical Research Centre with RRMM were included in the period from September 2015 to July 2016. The median age was 62.5 years (range 48–76 years), and the median number of therapy lines was 4 (range 3–5). All patients had a disease progression after the administration of bortezomib, lenalidomide, and alkylating agents. In addition, 6 (60 %) of 10 patients received high-dose melphalan chemotherapy followed by auto-HSCT. The median number of therapy lines was 6 (range 4–15).

Results. The overall response rate was 60 % and the minimum response (stabilization of the disease) was observed in 40 % of patients (IMWG criteria). The median PFS was 7.8 months; OS in 18 months was observed in 70 % of cases (the median not achieved). Treatment-associated grade III–IV hematologic toxicity was observed in 2 patients (5 episodes). Non-hematological adverse events of grade III–IV included acute coronary syndrome, deep vein thrombosis, neuropathic pain, and in 1 case acute delusional disorder, which required discontinuation of the therapy. The presence of initial cytopenia and renal failure before therapy with pomalidomide did not require the dosage reduction or discontinuation of treatment.

Conclusion. Pomalidomide with low-dose dexamethasone demonstrated a high overall response rate an acceptable toxicity profile in patients with RRMM.

Keywords: multiple myeloma, “double-refractoriness”, immunomodulating agents, pomalidomide.

Received: January 24, 2017

Accepted: May 6, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Howlade N, Noone A, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). Bethesda, MD: National Cancer Institute; 2012.
  2. Kyle RA, Therneau TM, Rajkumar SV, et al. Incidence of multiple myeloma in Olmsted County, Minnesota: Trend over 6 decades. Cancer. 2004;101(11):2667–74. doi: 10.1002/cncr.20652.
  3. Менделеева Л.П., Вотякова О.М., Покровская О.М. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2014;1(приложение 3):2–24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OM, et al. National clinical guidelines for diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2014;1(Suppl 3):2–24. (In Russ)]
  4. Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.) Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). М.: ФГБУ «МНИОИ им. П.А. Герцена» Минздрава России, 2017. 250 с.
    [Kaprin AD, Starinskii VV, Petrova GV, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2015 godu (zabolevaemost’ i smertnost’). (Malignant tumors in Russia in 2015 (incidence and mortality).) Moscow: FGBU MNIOI im. PA Gertsena Minzdrava Rossii Publ.; 2017. 250 p. (In Russ)]
  5. Doo NW, Coory M, White V. Low Uptake of Upfront Autologous Transplantation for Myeloma in a Jurisdiction With Universal Health Care Coverage: A Population-Based Patterns of Care Study in Australia. Clin Lymph Myel Leuk. 2014;14(1):61–7. doi: 10.1016/j.clml.2013.09.011.
  6. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26(1):149–57 doi: 10.1038/leu.2011.196.
  7. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20. doi: 10.1182/blood-2007-10-116129.
  8. Harousseau JL, Attal M, Avet-Loiseau H, et al. Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 phase III trial. J Clin Oncol. 2010;28(30):4621–9. doi: 10.1200/JCO.2009.27.9158.
  9. Sonneveld P, Salwender HJ, Van Der Holt B, et al. Bortezomib Induction and Maintenance in Patients with Newly Diagnosed Multiple Myeloma: Long-Term Follow-up of the HOVON-65/GMMG-HD4 Trial. Blood. 2015;126(27):23.
  10. Cavo M, Tacchetti P, Patriarca F, et al. GIMEMA Italian Myeloma Network Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet. 2010;376(9758):2075–85. doi: 10.1016/S0140-6736(10)61424-9.
  11. Barlogie B, Anaissie E, van Rhee F, et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol. 2007;138(2):176–85. doi: 10.1111/j.1365-2141.2007.06639.x.
  12. Вarlogie В, Mitchell А, van Rhee F, et al. Curing Multiple Myeloma (MM) with Total Therapy (TT). Blood. 2014;124(21):195.
  13. San Miguel JF, Schlag R, Khuageva NK, et al. Continued overall survival benefit after 5 years’ follow-up with bortezomib-melphalan-prednisone (VMP) versus melphalan-prednisone (MP) in patients with previously untreated multiple myeloma, and no increased risk of second primary malignancies: Final results of the phase 3 VISTA trial. 53rd Annual Meeting of the American Society of Hematology. Abstract 476. Presented December 12, 2011.
  14. Мещерякова Д.В., Моторин Д.В., Петров А.В. Аутологичная трансплантация стволовых гемопоэтических клеток у пациентов с множественной миеломой. Опыт трансплантации после терапии леналидомидом. Трансляционная медицина. 2012;6:82–90.
    [Meshcheryakova DV, Motorin DV, Petrov AV. Autologous stem cell transplantation in patients with multiple myeloma: experience of successful transplantation after lenalidomide treatment. Translyatsionnaya meditsina. 2012;6:82–90. (In Russ)]
  15. Kumar S, Therneau T, Gertz M, et al. Clinical Course of Patients With Relapsed Multiple Myeloma. Mayo Clin Proceed. 2004;79(7):867–74. doi: 10.4065/79.7.867.
  16. Абрамова Т.В., Обухова Т.Н., Покровская О.С. и др. Анализ общей выживаемости больных множественной миеломой в отдельных цитогенетических группах. Гематология и трансфузиология. 2016;61(1 Suppl 1):30.
    [Abramova TV, Obukhova TN, Pokrovskaya OS, et al. Analysis of overall survival in patients with multiple myeloma in different cytogenetic groups. Gematologiya i transfuziologiya. 2016;61(1 Suppl 1):30. (In Russ)]
  17. Marriott JB, Muller GW, Stirling D. Immunotherapeutic and anti-tumour potential of thalidomide analogues. Exp Opin Biol Ther. 2001;1:675–82. doi: 10.1517/14712598.1.4.675.
  18. Muller GW, Chen R, Huang S-Y, et al. Amino-substituted thalidomide analogs: potent inhibitors of TNF-α production. Bioorg Med Chem Lett. 1999;9(11):1625–30. doi: 10.1016/s0960-894x(99)00250-4.
  19. Rychak E, Mendy D, Shi T, et al. Pomalidomide in combination with dexamethasone results in synergistic anti-tumour responses in pre-clinical models of lenalidomide-resistant multiple myeloma. Br J Haematol. 2016;172(6):889–901. doi: 10.1111/bjh.13905.
  20. Семочкин С.В. Помалидомид в лечении рецидивов и рефрактерных форм множественной миеломы. Клиническая онкогематология. 2015;8(4):379–89. doi: 10.21320/2500-2139-2015-8-4-379-389.
    [Semochkin SV. Pomalidomide for Treatment of Relapsed and Refractory Multiple Myeloma. Clinical oncohematology. 2015;8(4):379–89. doi: 10.21320/2500-2139-2015-8-4-379-389. (In Russ)]
  21. Quach H, Ritchie D, Stewart AK, et al. Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia. 2010;24(1):22–32. doi: 10.1038/leu.2009.236.
  22. Dredge K, Marriott JB, Macdonald CD, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 2002;87(10):1166–72. doi: 10.1038/sj.bjc.6600607.
  23. Pal R, Monaghan S, Hassett A Immunomodulatory derivatives induce PU.1 down-regulation, myeloid maturation arrest, and neutropenia. Blood. 2010;115(3):605–14. doi: 10.1182/blood-2009-05-221077.
  24. Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98(1):210–6. doi: 10.1182/blood.v98.1.210.
  25. Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327(5971):1345–50. doi: 10.1126/science.1177319.
  26. Lindner S, Jan Krоnke. The Molecular Mechanism of Thalidomide Analogs in Hematologic Malignancies. J Mol Med (Berl). 2016;94(12):1327–34. doi: 10.1007/s00109-016-1450-z.
  27. Bjorund CC, Lu L, Kang J, et al. Rate of CRL4CRBN substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells regulation of c-Myc and IFR4. Blood Cancer J. 2015;5(10):e354. doi: 10.1038/bcj.2015.66.
  28. Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. 2012;26(11):2326–35. doi: 10.1038/leu.2012.119.
  29. Hideshima T, Cottini F, Nozawa Y. p-53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood. 2017;129(10):1308–19. doi: 10.1182/blood-2016-09-738500.
  30. Schey SA, Fields P, Bartlett JB, et al. Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol. 2004;22(16):3269–76. doi: 10.1200/JCO.2004.10.052.
  31. Lacy MQ, Hayman SR, Gertz MA, et al. Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol. 2009;27(30):5008–14. doi: 10.1200/JCO.2009.23.6802.
  32. Richardson PG, Siegel D, Baz R, et al. Phase 1 study of pomalidomide MTD, safety, and efficacy in patients with refractory multiple myeloma who have received lenalidomide and bortezomib. Blood. 2013;121(11):1961–7. doi: 10.1182/blood-2012-08-450742.
  33. Lacy MQ, Allred JB, Gertz MA, et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood. 2011;118(11):2970–5. doi: 10.1182/blood-2011-04-348896.
  34. Leleu X, Attal M, Arnulf B, et al. Pomalidomide plus low-dose dexamethasone is active and well tolerated in bortezomib and lenalidomide-refractory multiple myeloma: Intergroupe Francophone du Myelome 2009-02. Blood. 2013;121(11):1968–75. doi: 10.1182/blood-2012-09-452375.
  35. Miguel JS, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(11):1055–66. doi: 10.1016/S1470-2045(13)70380-2.
  36. Baz RC, Martin TG, Lin H-Y, et al. Randomized multicenter Phase II study of pomalidomide, cyclophosphamide, and dexamethasone in relapsed refractory myeloma. Blood. 2016;127(21):2561–8. doi: 10.1182/blood-2015-11-682518.
  37. Lacy MQ, La Plant BR, Laumann KM, et al. Pomalidomide, bortezomib and dexamethasone (PVD) for patients with relapsed lenalidomide refractory multiple myeloma (MM). Blood. 2014;124(21):304.
  38. Richardson PG, Hofmeister C, Raje NS, et al. A Phase 1, multicenter study of pomalidomide, bortezomib, and low-dose dexamethasone in patients with proteasome inhibitor exposed and lenalidomide-refractory myeloma (Trial MM-005). Blood. 2015;126(23):3036.
  39. Chari A, Lonial S, Suvannasankha A, et al. Open-label, multicenter, Phase 1b study of daratumumab in combination with pomalidomide and dexamethasone in patients with at least 2 lines of prior therapy and relapsed or relapsed and refractory multiple myeloma. Blood. 2015;126(23):508.
  40. Ramasamy K, Dimopoulos M, van de Donk NWCJ, et al. Safety of treatment (Tx) with pomalidomide (POM) and low-dose dexamethasone (LoDEX) in patients (Pts) with relapsed or refractory multiple myeloma (RRMM) and renal impairment (RI), including those on dialysis. Blood. 2015;126(23):374.
  41. Leleu X, Karlin L, Macro M, et al. Pomalidomide plus low-dose dexamethasone in multiple myeloma with deletion 17p and/or translocation (4;14): IFM 2010-02 trial results. Blood. 2015;125(9):1411–7. doi: 10.1182/blood-2014-11-612069.
  42. Richardson PG, Siegel DS, Vij R, et al. Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: a randomized Phase II study. Blood. 2014;123(12):1826–32. doi: 10.1182/blood-2013-11-538835.
  43. Palumbo A, Bringhen S, Mateos MV, et al. Geriatric assessment predicts survival and toxicities in elderly myeloma patients: In International Myeloma Group report. Blood. 2015;125(13):2068–74. doi: 10.1182/blood-2014-12-615187.
  44. Kumar S, Paiva B, Anderson K. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–46. doi: 10.1016/S1470-2045(16)30206-6.

 

Myeloid-Derived Suppressor Cells in Some Oncohematological Diseases

AV Ponomarev

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Aleksandr Vasil’evich Ponomarev, graduate student, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; e-mail: kl8546@yandex.ru

For citation: Ponomarev AV. Myeloid-Derived Suppressor Cells in Some Oncohematological Diseases. Clinical oncohematology. 2017;10(1):29-38–хх (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-29-38


ABSTRACT

Myeloid-derived suppressor cells are immature myeloid cells with immunosuppressive properties. The review presents characteristics of myeloid-derived suppressor cells. It includes phenotype variants, mechanisms of the suppressive effect on the immune system, and tumor recruitment mechanisms of myeloid suppressors. It provides a brief description of works which studied myeloid suppressor in oncohematological diseases including multiple myeloma, lymphomas, and leukemias.

Keywords: myeloid suppressors, myeloid-derived suppressor cells, multiple myeloma, lymphomas, leukemias.

Received: September 8, 2016

Accepted: December 3, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Тупицына Д.Н., Ковригина А.М., Тумян Г.С. и др. Клиническое значение внутриопухолевых FOXP3+ Т-регуляторных клеток при солидных опухолях и фолликулярных лимфомах: обзор литературы и собственные данные. Клиническая онкогематология. 2012;(5)3:193–203.
    [Tupitsyna DN, Kovrigina AM, Tumian GS, et al. Different clinical meaning of intratumoral FOXP3+ T-regulatory cells in solid tumors and follicular lymphomas: literature review and own data. Klinicheskaya onkogematologiya. 2012;(5)3:193–203. (In Russ)]
  2. Кадагидзе З.Г., Черткова А.И., Славина Е.Г. NKT-клетки и противоопухолевый иммунитет. Российский биотерапевтический журнал. 2011;10(3):9–16.
    [Kadagidze ZG, Chertkova AI, Slavina EG. NKT-cells and antitumor immunity. Rossiiskii bioterapevticheskii zhurnal. 2011;10(3):9–16. (In Russ)]
  3. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev 2012;12(4):253–68. doi: 10.1038/nri3175.
  4. Gabrilovich DI, Bronte V, Chen S-H, et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007;67(1):425– doi: 10.1158/0008-5472.CAN-06-3037.
  5. Bowen JL, Olson JK. Innate immune CD11b+Gr-1+ cells, suppressor cells, affect the immune response during Theiler’s virus-induced demyelinating disease. J Immunol. 2009;183(11):6971–80. doi: 10.4049/jimmunol.0902193.
  6. Tsiganov EN, Verbina EM, Radaeva TV, et al. Gr-1dim CD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice. J Immunol. 2014;192(10):4718–27. doi: 10.4049/jimmunol.1301365.
  7. Delano MJ, Scumpia PO, Weinstein JS, et al. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med. 2007;204(6):1463–74.
  8. Гапонов М.А., Хайдуков С.В., Писарев В.М. и др. Субпопуляционная гетерогенность миелоидных иммуносупрессорных клеток у пациентов с септическими состояниями. Российский иммунологический журнал. 2015;9(18):11–14.
    [Gaponov MA, Khaidukov SV, Pisarev VM, et al. Subpopulation heterogeneity of immunosuppressive myeloid cells in patients with sepsis. Rossiiskii immunologicheskii zhurnal. 2015;9(18):11–14. (In Russ)]
  9. Makarenkova VP, Bansal V, Matta BM, et al. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol. 2006;176(4):2085–94. doi: 10.4049/jimmunol.176.4.2085.
  10. Greten TF, Manns MP, Korangy F. Myeloid derived suppressor cells in human diseases. Int. 2011;11(7):802–7. doi: 10.1016/j.intimp.2011.01.003.
  11. Diaz-Montero CM, Salem ML, Nishimura MI, et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58(1):49–59. doi: 10.1007/s00262-008-0523-
  12. Yazdani Y, Mohammadnia-Afrouzi M, Yousefi M, et al. Myeloid-derived suppressor cells in B cell malignancies. Tumour Biol. 2015;36(10):7339–53. doi: 10.1007/s13277-015-4004-z.
  13. Пономарев А.В. Миелоидные супрессорные клетки: общая характеристика. Иммунология. 2016;37(1):47–50. doi: 10.18821/0206-4952-2016-37-1-47-50.
    [Ponomarev AV. Myeloid suppressor cells: general characteristics. Immunologiya. 2016;37(1):47–50. doi: 10.18821/0206-4952-2016-37-1-47- (In Russ)]
  14. Gabrilovich DI, Nagaraj S. Myeloid-derived-suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74. doi: 10.1038/nri2506.
  15. Lechner MG, Megiel C, Russell SM, et al. Functional characterization of human Cd33+ And Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl 2011;9(1):90. doi: 10.1186/1479-5876-9-90.
  16. Rodriguez PC, Ernstoff MS, Hernandez C, et al. Arginase I–Producing Myeloid-Derived Suppressor Cells in Renal Cell Carcinoma Are a Subpopulation of Activated Granulocytes. Cancer Res. 2009;69(4):1553–60.
  17. Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 2001;61(12):4756–60.
  18. Youn J-I, Collazo M, Shalova I, et al. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leuk 2012;91(1):167–81. doi: 10.1189/jlb.0311177.
  19. Youn J-I, Nagaraj S, Collazo M, et al. Subsets of Myeloid-Derived Suppressor Cells in Tumor Bearing Mice. J Immunol. 2008;181(8):5791–802. doi: 10.4049/jimmunol.181.8.5791.
  20. Corzo CA, Condamine T, Lu L, et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010;207(11):2439–53. doi: 10.1084/jem.20100587.
  21. Yang L, DeBusk LM, Fukuda K, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6(4):409–21. doi: 10.1016/j.ccr.2004.08.031.
  22. Zhuang J, Zhang J, Lwin ST, et al. Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+ myeloid-derived suppressor cells. PLoS One. 2012;7(11):e48871. doi: 1371/journal.pone.0048871.
  23. Choi J, Suh B, Ahn YO, et al. CD15+/CD16low human granulocytes from terminal cancer patients: granulocytic myeloid-derived suppressor cells that have suppressive function. Tumour Biol. 2012;33(1):121–9. doi: 10.1007/s13277-011-0254-
  24. Stanojevic I, Miller K, Kandolf-Sekulovic L, et al. A subpopulation that may correspond to granulocytic myeloid-derived suppressor cells reflects the clinical stage and progression of cutaneous melanoma. Int Immunol. 2016;28(2):87–97. doi: 10.1093/intimm/dxv053.
  25. Saiwai H, Kumamaru H, Ohkawa Y, et al. Ly6C+Ly6G– Myeloid-derived suppressor cells play a critical role in the resolution of acute inflammation and the subsequent tissue repair process after spinal cord injury. J Neurochem. 2013;125(1):74–88. doi: 10.1111/jnc.12135.
  26. Rodriguez PC, Augusto CO. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol 2008;222(1):180–91. doi: 10.1111/j.1600-065X.2008.00608.x.
  27. Srivastava MK, Sinha P, Clements VK, et al. Myeloid-derived suppressor cells inhibit T cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77. doi: 10.1158/0008-CAN-09-2587.
  28. Chevolet I, Speeckaert R, Schreuer M, et al. Characterization of the in vivo immune network of IDO, tryptophan metabolism, PD-L1, and CTLA-4 in circulating immune cells in melanoma. Oncoimmunology. 2015;4(3):e982382. doi: 10.4161/2162402X.2014.982382.
  29. Jitschin R, Braun M, Buttner M, et al. CLL-cells induce IDOhiCD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote Tregs. Blood. 2014;124(5):750–60. doi: 10.1182/blood-2013-12-
  30. Nagaraj S, Gupta K, Pisarev V, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007;13(7):828–35. doi: 10.1038/nm1609.
  31. Lu T, Ramakrishnan R, Altiok S, et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin 2011;121(10):4015–4029. doi: 10.1172/JCI45862.
  32. Hanson EM, Clements VK, Sinha P, et al. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J. Immunol. 2009;183(2):937–44. doi: 10.4049/jimmunol.0804253.
  33. Noman MZ, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211(5):781–90. doi: 10.1084/jem.20131916.
  34. Filipazzi P, Valenti R, Huber V, et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007;25(18):2546–53. doi: 10.1200/JCO.2006.08.5829.
  35. Sinha P, Clements VK, Bunt SK, et al. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007;179(2):977–83. doi: 10.4049/jimmunol.179.2.977.
  36. Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol. 2009;182(1):240–9. doi: 10.4049/jimmunol.182.1.240.
  37. Liu C, Yu S, Kappes J, et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood. 2007;109(10):4336–42. doi: 10.1182/blood-2006-09-
  38. Elkabets M, Ribeiro VSG, Dinarello CA, et al. IL-1b regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol. 2010;40(12):3347–57. doi: 10.1002/eji.201041037.
  39. Hoechst B, Voigtlaender T, Ormandy L, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50(3):799–807. doi: 10.1002/hep.23054.
  40. Pan PY, Ma G, Weber KJ, et al. Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 2010;70(1):99–108. doi: 10.1158/0008-CAN-09-1882.
  41. Hoechst B, Gamrekelashvili J, Manns MP, et al. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood. 2011;117(24):6532–41. doi: 10.1182/blood-2010-11-
  42. Shojaei F, Wu X, Malik AK, et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol. 2007;25(8):911–20. doi: 10.1038/nbt1323.
  43. Connolly MK, Mallen-St Clair J, Bedrosian AS, et al. Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. J Leuk Biol. 2010;87(4):713–25. doi: 10.1189/jlb.0909607.
  44. Yang L, Huang J, Ren X, et al. Abrogation of TGFb signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell. 2008;13(1):23–35. doi: 10.1016/j.ccr.2007.12.004.
  45. Giles A, Vicioso Y, Kasai M, et al. Bone marrow-derived progenitor cells develop into myeloid-derived suppressor cells at metastatic sites. J Immunother Cancer. 2013;1(Suppl 1):188. doi: 10.1186/2051-1426-1-S1-P188.
  46. Solito S, Falisi E, Diaz-Montero CM, et al. A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood. 2011;118(8):2254–65. doi: 10.1182/blood-2010-12-
  47. Marigo I, Bosio E, Solito S, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 2010;32(6):790–802. doi: 10.1016/j.immuni.2010.05.010.
  48. Highfill SL, Rodriguez PC, Zhou Q, et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood. 2010;116(25):5738–47. doi: 10.1182/blood-2010-06-
  49. Lechner MG, Liebertz DJ, Epstein AL. Characterization of cytokine-induced myeloid derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol. 2010;185(4):2273–84. doi: 10.4049/jimmunol.1000901.
  50. Atretkhany KS, Nosenko MA, Gogoleva VS, et al. TNF Neutralization Results in the Delay of Transplantable Tumor Growth and Reduced MDSC Accumulation. Front Immunol. 2016;7:147. doi: 10.3389/fimmu.2016.00147.
  51. De Veirman K, Van Valckenborgh E, Lahmar Q, et al. Myeloid-derived suppressor cells as therapeutic target in hematological malignancies. Front Oncol. 2014;4:349. doi: 10.3389/fonc.2014.00349.
  52. Ramachandran I, Martner A, Pisklakova A, et al. Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol. 2013;190(7):3815–23. doi: 10.4049/jimmunol.1203373.
  53. De Veirman K, Van Ginderachter JA, Lub S, et al. Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. Oncotarget. 2015;6(12):10532–47. doi: 10.18632/oncotarget.3300.
  54. Brimnes MK, Vangsted AJ, Knudsen LM, et al. Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol. 2010;72(6):540–7. doi: 10.1111/j.1365-2010.02463.x.
  55. Gorgun GT, Whitehill G, Anderson JL, et al. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013;121(15):2975–87. doi: 10.1182/blood-2012-08-
  56. Gorgun GТ, Samur MK, Cowens KB, et al. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clin Cancer Res. 2015;21(20):4607–18. doi: 10.1158/1078-CCR-15-0200.
  57. Busch A, Zeh D, Janzen V, et al. Treatment with lenalidomide induces immuno-activating and counter-regulatory immunosuppressive changes in myeloma patients. Clin Exp Immunol. 2014;177(2):439–53. doi: 10.1111/cei.12343.
  58. Wang Z, Zhang L, Wang H, et al. Tumor-induced CD14+HLA-DR (-/low) myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients. Cancer Immunol Immunother. 2015;64(3):389–99. doi: 10.1007/s00262-014-1646-
  59. De Keersmaecker B, Fostier K, Corthals J, et al. Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation. Cancer Immunol Immunother. 2014;63(10):1023–36. doi: 10.1007/s00262-014-1571-
  60. Castella B, Foglietta M, Sciancalepore P, et al. Anergic bone marrow Vg9Vd2 T cells as early and long-lasting markers of PD-1-targetable microenvironment-induced immune suppression in human myeloma. Oncoimmunology. 2015;4(11):e1047580. doi: 10.1080/2162402X.2015.1047580.
  61. Giallongo C, Tibullo D, Parrinello NL, et al. Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC). Oncotarget. 2016;7(52):85764– doi: 10.18632/oncotarget.7969.
  62. Lee SE, Lim JY, Ryu DB, et al. Circulating immune cell phenotype can predict the outcome of lenalidomide plus low-dose dexamethasone treatment in patients with refractory/relapsed multiple myeloma. Cancer Immunol Immunother. 2016;65(8):983–94. doi: 10.1007/s00262-016-1861-
  63. Favaloro J, Liyadipitiya T, Brown R, et al. Myeloid derived suppressor cells are numerically, functionally and phenotypically different in patients with multiple myeloma. Leuk Lymphoma. 2014;55(12):2893–900. doi: 10.3109/10428194.2014.904511.
  64. Franssen LE, van de Donk NW, Emmelot ME, et al. The impact of circulating suppressor cells in multiple myeloma patients on clinical outcome of DLIs. Bone Marrow Transplant. 2015;50(6):822–8. doi: 10.1038/bmt.2015.48.
  65. Lin Y, Gustafson MP, Bulur PA, et al. Immunosuppressive CD14+HLA-DRlow/– monocytes in B-cell non-Hodgkin lymphoma. Blood. 2011;117(3):872–81. doi: 10.1182/blood-2010-05-
  66. Tadmor T, Fell R, Polliack A, et al. Absolute monocytosis at diagnosis correlates with survival in diffuse large B-cell lymphoma—possible link with monocytic myeloid-derived suppressor cells. Hematol 2013;31(2):65–71. doi: 10.1002/hon.2019.
  67. Gustafson MP, Lin Y, LaPlant B, et al. Immune monitoring using the predictive power of immune profiles. J Immunother Cancer. 2013;1(1):7. doi: 10.1186/2051-1426-1-7.
  68. Wu C, Wu X, Zhang X, et al. Prognostic significance of peripheral monocytic myeloid-derived suppressor cells and monocytes in patients newly diagnosed with diffuse large B-cell lymphoma. Int J Clin Exp Med. 2015;8(9):15173–81.
  69. Sato Y, Shimizu K, Shinga J, et al. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma. Oncoimmunology. 2015;4(3):e995541. doi: 10.1080/2162402X.2014.995541.
  70. Romano A, Parrinello NL, Vetro C, et al. Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin Lymphoma patients treated up-front with a risk-adapted strategy. Br J Haematol. 2015;168(5):689–700. doi: 10.1111/bjh.13198.
  71. Marini O, Spina C, Mimiola E, et al. Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients. Oncotarget. 2016;19(7):27677–88. doi: 10.18632/oncotarget.8507.
  72. Azzaoui I, Uhel F, Rossille D, et al. T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid derived suppressor cells expressing IL-10, PD-L1 and S100A12. Blood. 2016;128(8):1081–92. doi: 10.1182/blood-2015-08-
  73. Zhang H, Li ZL, Ye SB, et al. Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunol Immunother. 2015;64(12):1587- doi: 10.1007/s00262-015-1765-6.
  74. Christiansson L, Sоderlund S, Svensson E, et al. Increased Level of Myeloid-Derived Suppressor Cells, Programmed Death Receptor Ligand 1/Programmed Death Receptor 1, and Soluble CD25 in Sokal High Risk Chronic Myeloid Leukemia. PLoS One. 2013;8(1):e55818. doi: 10.1371/journal.pone.0055818.
  75. Giallongo C, Romano A, Parrinello NL, et al. Mesenchymal Stem Cells (MSC) Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC) in Chronic Myeloid Leukemia Patients. PLoS One. 2016;11(7):e0158392. doi: 10.1371/journal.pone.0158392.
  76. Gustafson МP, Abraham RS, Lin Y, et al. Association of an increased frequency of CD14+HLA-DRlo/neg monocytes with decreased time to progression in chronic lymphocytic leukaemia (CLL). Br J Haematol. 2012;156(5):674–6. doi: 10.1111/j.1365-2011.08902.x.
  77. Liu J, Zhou Y, Huang Q, et al. CD14+HLA-DRlow/– expression: a novel prognostic factor in chronic lymphocytic leukemia. Oncol 2015;9(3):1167–72. doi: 10.3892/ol.2014.2808.
  78. Sun H, Li Y, Zhang ZF, et al. Increase in myeloid-derived suppressor cells (MDSCs) associated with minimal residual disease (MRD) detection in adult acute myeloid leukemia. Int J Hematol. 2015;102(5):579–86. doi: 10.1007/s12185-015-1865-
  79. Gleason MK, Ross JA, Warlick ED, et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood. 2014;123(19):3016–26. doi: 10.1182/blood-2013-10-
  80. Chen X, Eksioglu EA, Zhou J, et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest. 2013;123(11):4595–611. doi: 10.1172/JCI67580.
  81. Kittang AO, Kordasti S, Sand KE, et al. Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology. 2015;5(2):e1062208. doi: 10.1080/2162402X.2015.1062208.
  82. Noonan KA, Ghosh N, Rudraraju L, et al. Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunol Res. 2014;2(8):725–31. doi: 10.1158/2326-CIR-13-0213.

 

 

Certain Aspects of Autologous Hematopoietic Stem Cell Transplantation in Patients with Multiple Myeloma

SV Gritsaev, AA Kuzyaeva, SS Bessmel’tsev

Russian Scientific Research Institute of Hematology and Transfusiology under the Federal Medico-Biological Agency, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Sergei Vasil’evich Gritsaev, DSci, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; Tel: +7(812)717-58-57; e-mail: gritsaevsv@mail.ru

For citation: Gritsaev SV, Kuzyaeva AA, Bessmel’tsev SS. Certain Aspects of Autologous Hematopoietic Stem Cell Transplantation in Patients with Multiple Myeloma. Clinical oncohematology. 2017;10(1):7–12 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-7-12


ABSTRACT

The review dwells on certain problems of mobilization and conditioning regimens, as well as autologous hematopoietic stem cell transplantation (auto-HSCT) in patients with multiple myeloma. The aim of the review is to determine new approaches to improve the effectiveness of the auto-HSCT.

Keywords: multiple myeloma, autologous hematopoietic stem cell transplantation, mobilization regimen, conditioning regimen.

Received: July 13, 2016

Accepted: November 12, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: МК, 2016. 504 с.
    [Bessmel’tsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: MK Publ.; 2016. 504 p. (In Russ)]
  2. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2014;1(Приложение № 3):1–24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National guidelines for diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2014;1(Suppl 3):1–24. (In Russ)]
  3. Reece DE. Management of multiple myeloma: The changing landscape. Blood Rev. 2007;21(6):301–14. doi: 10.1016/j.blre.2007.07.001.
  4. Cavo M, Tosi P, Zamagni E, et al. Prospective, randomized study of single compared with double autologous stem-cell transplantation for multiple myeloma: Bologna 96 clinical study. J Clin Oncol. 2007;25(17):2434–41. doi: 10.1200/jco.2006.10.2509.
  5. Attal M, Harousseau JL, Facon T, et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med. 2003;349(26):2495–502. doi: 10.1056/nejmoa032290.
  6. Allan DS, Keeney M, Howson-Jan K, et al. Number of viable CD34(+) cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 2002;29(12):967–72. doi: 10.1038/sj.bmt.1703575.
  7. Michaelis LC, Saad A, Zhong X, et al. Salvage second hematopoietic cell transplantation in myeloma. Biol Blood Marrow Transplant. 2013;19(5):760–6. doi: 10.1016/j.bbmt.2013.01.004.
  8. Cook G, Williams C, Brown JM, et al. High dose chemotherapy plus autologous stem-cell transplantation as consolidation therapy in patients with relapsed multiple myeloma after previous autologous stem-cell transplantation (NCRI Myeloma X Relapse [Intensive trial]): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(14):874–85. doi: 10.1016/s1470-2045(14)70245-1.
  9. Musto P, Simeon V, Grossi A, et al. Predicting poor peripheral blood stem cell collection in patients with multiple myeloma receiving pre-transplant induction therapy with novel agents and mobilized with cyclophosphamide plus granulocyte-colony stimulating factor: results from a Gruppo Italiano Malattie Ematologiche dell’Adulto Multiple Myeloma Working Party study. Stem Cell Res Ther. 2015;6:64. doi: 10.1186/s13287-015-0033-1.
  10. Olivieri A, Marchetti M, Lemoli R, et al. Proposed definition of “poor mobilizer” in lymphoma and multiple myeloma: an analytic hierarchy process by ad hoc working group Gruppo ItalianoTrapianto di Midollo Osseo. Bone Marrow Transplant. 2012;47(3):342–51. doi: 10.1038/bmt.2011.82.
  11. To LB, Levesque JP, Herbert KE. How I treat patients who mobilize hematopoietic stem cells poorly. Blood. 2011;118(17):4530–40. doi: 10.1182/blood-2011-06-318220.
  12. Gertz MA. Current status of stem cell mobilization. Br J Haematol. 2010;150(6):647–62. doi: 10.1111/j.1365-2141.2010.08313.x.
  13. Popat U, Saliba R, Thandi R, et al. Impairment of filgrastim induced stem cell mobilization after prior lenalidomide in patients with multiple myeloma. Biol Blood Marrow Transplant. 2009;15(6):718–23. doi: 10.1016/j.bbmt.2009.02.011.
  14. Mazumder A, Kaufman J., Niesvizky R, et al. Effect of lenalidomide therapy on mobilization of peripheral blood stem cells in previously untreated multiple myeloma patients (letter). Leukemia. 2008;22(60):1280–1. doi: 10.1038/sj.leu.2405035.
  15. Giralt S, Costa L, Schriber J, et al. Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol Blood Marrow Transplant. 2014;20(3):295–308. doi: 10.1016/j.bbmt.2013.10.013.
  16. Duong HK, Savani BN, Copelan E, et al. Peripheral blood progenitor cell mobilization for autologous and allogeneic hematopoietic cell transplantation: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2014;20(9):1262–73. doi: 10.1016/j.bbmt.2014.05.003.
  17. Sung AD, Grima DT, Bernard LM, et al. Outcomes and costs of autologous stem cell mobilization with chemotherapy plus G-CSF vs G-CSF alone. Bone Marrow Transplant. 2013;48(11):1444–9. doi: 10.1038/bmt.2013.80.
  18. Gertz MA, Kumar SK, Lacy MQ, et al. Comparison of high-dose CY and growth factor with growth factor alone for mobilization of stem cells for transplantation in patients with multiple myeloma. Bone Marrow Transplant. 2009;43(8):619–25. doi: 10.1038/bmt.2008.369.
  19. Arora M, Burns LJ, Barker JN, et al. Randomized comparison of granulocyte colony-stimulating factor versus granulocyte-macrophage colony-stimulating factor plus intensive chemotherapy for peripheral blood stem cell mobilization and autologous transplantation in multiple myeloma. Biol Blood Marrow Transplant. 2004;10(6):395–404. doi: 10.1016/s1083-8791(04)00068-0.
  20. Nakasone H, Kanda Y, Ueda T, et al. Retrospective comparison of mobilization methods for autologous stem cell transplantation in multiple myeloma. Am J Hematol. 2009;84(12):809–14. doi: 10.1002/ajh.21552.
  21. Mark T, Stern J, Furst JR, et al. Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma. Biol Blood Marrow Transplant. 2008;14(7):795–8. doi: 10.1016/j.bbmt.2008.04.008.
  22. Costa LJ, Miller AN, Alexander ET, et al. Growth factor and patient-adapted use of plerixafor is superior to CY and growth factor for autologous hematopoietic stem cells mobilization. Bone Marrow Transplant. 2011;46(4):523–8. doi: 10.1038/bmt.2010.170.
  23. DiPersio J., Stadtmauer EA, Nademanee A, et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood. 2009;113(23):5720–6. doi: 10.1182/blood-2008-08-174946.
  24. Покровская О.С. Механизм действия и клиническая эффективность антагониста хемокинового рецептора CXCR4 плериксафора при мобилизации гемопоэтических стволовых клеток. Клиническая онкогематология. 2012;5(4):371–9.
    [Pokrovskaya OS. Mechanism of action and clinical activity of CXCR4 antagonist Plerixafor in stem cell mobilization. Klinicheskaya onkogematologiya. 2012;5(4):371–9. (In Russ)]
  25. Кучер М.А., Моталкина М.С., Климова О.У. и др. Плериксафор у пациентов со сниженной мобилизационной способностью аутологичных гемопоэтических стволовых клеток. Клиническая онкогематология. 2016;9(2):155–61. doi: 10.21320/2500-2139-2016-9-2-155-61.
    [Kucher MA, Motalkina MS, Klimova OU, et al. Plerixafor in Patients with Decreased Mobilizing Ability of Autologous Hematopoietic Stem Cells. Clinical oncohematology. 2016;9(2):155–61. doi: 10.21320/2500-2139-2016-9-2-155-61. (In Russ)]
  26. Levesque JP, Takamatsu Y, Nilsson SK, et al. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood. 2001;98(5):1289–97. doi: 10.1182/blood.V98.5.1289.
  27. Levesque JP, Hendy J, Takamatsu Y, et al. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest. 2003;111(2):187–96. doi: 10.1172/jci15994.
  28. Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and upregulating CXCR4. Nat Immunol. 2002;3(7):687–94. doi: 10.1038/ni813.
  29. Cesana C, Carlo-Stella C, Regazzi E, et al. CD34+ cells mobilized by cyclophosphamide and granulocyte colonystimulating factor (G-CSF) are functionally different from CD34+ cells mobilized by G-CSF. Bone Marrow Transplant. 1998;21(6):561–8. doi: 10.1038/sj.bmt.1701133.
  30. Bruns I, Steidl U, Fischer JC, et al. Pegylated granulocyte colony-stimulating factor mobilizes CD34+ cells with different stem and progenitor subsets and distinct functional properties in comparison with unconjugated granulocyte colony-stimulating factor. Haematologica. 2008;93(3):347–55. doi: 10.3324/haematol.12081.
  31. Kim MG, Han N, Lee EK, Kim T. Pegfilgrastim vs filgrastim in PBSC mobilization for autologous hematopoietic SCT: a systematic review and meta-analysis. Bone Marrow Transplant. 2015;50(4):523–30. doi: 10.1038/bmt.2014.297.
  32. Tuchman SA, Bacon WA, Huang LW, et al. Cyclophosphamide-based hematopoietic stem cell mobilization before autologous stem cell transplantation in newly diagnosed multiple myeloma. J Clin Apher. 2015;30(3):176–82. doi: 10.1002/jca.21360.
  33. Dingli D, Nowakowski GS, Dispenzieri A, et al. Cyclophosphamide mobilization does not improve outcome in patients receiving stem cell transplantation for multiple myeloma. Clin Lymphoma Myeloma. 2006;6(5):384–8. doi: 10.3816/clm.2006.n.014.
  34. Hamadani M, Kochuparambil ST, Osman S, et al. Intermediate-dose versus low-dose cyclophosphamide and granulocyte colony-stimulating factor for peripheral blood stem cell mobilization in patients with multiple myeloma treated with novel induction therapies. Biol Blood Marrow Transplant. 2012;18(7):1128–35. doi: 10.1016/j.bbmt.2012.01.005.
  35. Hiwase DK, Bollard G, Hiwase S. Intermediate-dose CY and G-CSF more efficiently mobilize adequate numbers of PBSC for tandem autologous PBSC transplantation compared with low-dose CY in patients with multiple myeloma. Cytotherapy. 2007;9(6):539–47. doi: 10.1080/14653240701452800.
  36. Jantunen E, Putkonen M, Nousiainen T, Low-dose or intermediate-dose cyclophosphamide plus granulocyte colonystimulating factor for progenitor cell mobilisation in patients with multiple myeloma. Bone Marrow Transplant. 2003; 31(5):347–51. doi: 10.1038/sj.bmt.1703840.
  37. Nazha A, Cook R, Vogl DT, et al. Stem cell collection in patients with multiple myeloma: impact of induction therapy and mobilization regimen. Bone Marrow Transplant. 2011;46(1):59–63. doi: 10.1038/bmt.2010.63.
  38. Brioli A, Perrone G, Patriarca F, et al. Successful mobilization of PBSCs predicts favorable outcomes in multiple myeloma patients treated with novel agents and autologous transplantation. Bone Marrow Transplant. 2015;50(5):673–8. doi: 10.1038/bmt.2014.322.
  39. Samaras P, Pfrommer S, Seifert B, et al. Efficacy of vinorelbine plus granulocyte colonye-stimulation factor for CD34+ hematopoietic progenitor cell mobilization in patients with multiple myeloma. Biol Blood Marrow Transplant. 2015;21(1):74–80. doi: 10.1016/j.bbmt.2014.09.020.
  40. Heizmann M, O’Meara AC, Moosmann PR, et al. Efficient mobilization of PBSC with vinorelbine/G-CSF in patients with malignant lymphoma. Bone Marrow Transplant. 2009;44(2):75–9. doi: 10.1038/bmt.2008.434.
  41. Annunziata M, Celentano M, Pocali B, et al. Vinorelbine plus intermediate dose cyclophosphamide is an effective and safe regimen for the mobilization of peripheral blood stem cells in patients with multiple myeloma. Ann Hematol. 2006;85(6):394–9. doi: 10.1007/s00277-005-0058-0.
  42. Bargetzi MJ, Passweg J, Baertschi E, et al. Mobilization of peripheral blood progenitor cells with vinorelbine and granulocyte colony-stimulating factor in multiple myeloma patients is reliable and cost effective. Bone Marrow Transplant. 2003;31(2):99–103. doi: 10.1038/sj.bmt.1703787.
  43. Schmid A, Friess D, Taleghani BM, et al. Role of plerixafor in autologous stem cell mobilization with vinorelbine chemotherapy and granulocyte-colony stimulating factor in patients with myeloma: a phase II study (PAV-trial). Leuk Lymphoma. 2015;56(3):608–14. doi: 10.3109/10428194.2014.927454.
  44. Moreau P, Facon T, Attal M, et al. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood. 2002;99(3):731–5. doi: 10.1182/blood.v99.3.731.
  45. Palumbo A, Bringhen S, Bruno B, et al. Melphalan 200 mg/m(2) versus melphalan 100 mg/m(2) in newly diagnosed myeloma patients: a prospective, multicenter phase 3 study. Blood. 2010;115(10):1873–9. doi: 10.1182/blood-2010-08-301085.
  46. Giralt S. 200mg/m2 melphalan – the gold standard for multiple myeloma. Nat Rev. 2010;7(9):490–1. doi: 10.1038/nrclinonc.2010.104.
  47. Philips GL, Meisenberg BR, Reece DE, et al. Activity of single-agent melphalan 220 to 300 mg/m2 with amifostine cytoprotection and autologous hematopoietic stem cell support in non-Hodgkin and Hodgkin lymphoma. Bone Marrow Transplant. 2004;33(8):781–7. doi: 10.1038/sj.bmt.1704424.
  48. Moreau P, Milpied N, Mahe B. Melphalan 220 mg/m2 followed by peripheral blood stem cell transplantation in 27 patients with advanced multiple myeloma. Bone Marrow Transplant. 1999;23(10):1003–6. doi: 10.1038/sj.bmt.1701763.
  49. Reece D., Song K., Leblanc R., et al. Efficacy and safety of busulfan-based conditioning regimens for multiple myeloma. Oncologist. 2013;18:611–8. doi: 10.1634/theoncologist.2012-0384.
  50. Roussel M, Moreau P, Huynh A, et al. Bortezomib ad high-dose melphalan as conditioning regimen before autologous stem cell transplantation in patients with de novo multiple myeloma: a phase 2 study of the Intergroupe Francophone du Myelome (IFM). Blood. 2010;115(1):32–7. doi: 10.1182/blood-2009-06-229658.
  51. Nishihori T, Alekshun TJ, Shain K, et al. Bortezomib salvage followed by a phase I/II study of bortezomib plus high-dose melphalan and tandem autologous transplantation for patients with primary resistant myeloma. Br J Haematol. 2012;157(5):553–63. doi: 10.1111/j.1365-2141.2012.09099.x.
  52. Huang W, Li J, Li H, et al. High-dose melphalan with bortezomib as conditioning regimen for autologous stem cell transplant in patients with newly diagnosed multiple myeloma who exhibited at least very good partial response to bortezomib-based induction therapy. Leuk Lymphoma. 2012;53(12):2507–10. doi: 10.3109/10428194.2012.685735.
  53. Mark TM, Reid W, Niesvizky R, et al. A phase 1 study of bendamustine and melphalan conditioning for autologous stem cell transplant in multiple myeloma. Biol Blood Marrow Transplant. 2013;19(5):831–7. doi: 10.3109/10428194.2012.685735.
  54. Martino M, Tripepi G, Messina G, et al. A phase II, single-arm, prospective study of bendamustine plus melphalan conditioning for second autologous stem cell transplantation in de novo multiple myeloma patients through a tandem transplant strategy. Bone Marrow Transplant. 2016;51(9):1197–203. doi: 10.1038/bmt.2016.94.
  55. Visani G, Malerba L, Stefani PM, et al. BeEAM (bendamustine, etoposide, cytarabine, melphalan) before autologous stem cell transplantation is safe and effective for resistant/relapsed lymphoma patients. Blood. 2011;118(12):3419–25. doi: 10.1182/blood-2011-04-351924.
  56. Veeraputhiran M, Jain T, Deol A, et al. BEAM conditioning regimen has higher toxicity compared with high-dose melphalan for salvage autologous hematopoietic stem cell transplantation in multiple myeloma. Clin Lymph Myeloma Leuk. 2015;15(9):531–5. doi: 10.1016/j.clml.2015.05.008.
  57. Abu Zaid B, Abdul-Hai A, Grotto I, et al. Autologous transplant in multiple myeloma with an augmented conditioning protocol. Leuk Lymphoma. 2013;54(11):2480–4. doi: 10.3109/10428194.2013.782608.
  58. Musso M, Messina G, Marcacci G, et al. High-dose melphalan plus thiotepa as conditioning regimen before second autologous stem cell transplantation for “de novo” multiple myeloma patients: a phase II study. Biol Blood Marrow Transplant. 2015;21(11):1932–8. doi: 10.1016/j.bbmt.2015.06.011.

 

Elotuzumab for Treatment of Multiple Myeloma (Literature Review)

OM Votyakova

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Ol’ga Mikhailovna Votyakova, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-92-09; e-mail: omvtk@yandex.ru

For citation: Votyakova OM. Elotuzumab for Treatment of Multiple Myeloma (Literature Review). Clinical oncohematology. 2016;9(4):438–45 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-438-445


ABSTRACT

Chemotherapy has been the main treatment option for multiple myeloma for several decades. However, a considerable increase in the life expectancy was observed in multiple myeloma patients when thalidomide, bortezomib and lenalidomide had been introduced into clinical practice. Nevertheless, the disease remains incurable and there is an unmet need in fundamentally new treatment methods. Elotuzumab is a humanized IgG1 monoclonal antibody that specifically targets SLAMF7, an antigen belonging to the signaling lymphocytic activation molecule family, with its high expression detected on myeloma cells. This review presents the mechanism of action of elotuzumab, preclinical data and the main clinical studies of this monoclonal antibody.


Keywords: monoclonal antibodies, elotuzumab, clinical studies, multiple myeloma.

Received: May 25, 2016

Accepted: June 15, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403. doi: 10.1016/j.ejca.2012.12.027.
  2. Статистика злокачественных новообразований в России и странах СНГ в 2012 г. Под ред. М.И. Давыдова, Е.М. Аксель. М.: Издательская группа РОНЦ им. Н.Н. Блохина, 2014. 226 с.
    [Davydova MI, Aksel’ EM, eds. Statistika zlokachestvennykh novoobrazovanii v Rossii i stranakh SNG v 2012 g. (Statistics of malignancies in Russia and CIS in) Moscow: Izdatel’skaya gruppa RONTs im. N.N. Blokhina Publ.; 2014. 226 p. (In Russ)]
  3. EER Stat Fact Sheets: Myeloma, 2004–2010. [Internet] Available from: http://seer.cancer.gov/statfacts/html/mulmy.html. (accessed 25.08.2014).
  4. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20. doi: 10.1182/blood-2007-10-116129.
  5. Madan S, Lacy M, Dispenzieri A, et al. Efficacy of retreatment with immunomodulatory compounds in patients receiving initial therapy for newly diagnosed multiple myeloma. Blood. 2010;116(21): Abstract 1964.
  6. Knopf KB, Duh MS, Lafeuille M-H, et al. Meta-Analysis of the Efficacy and Safety of Bortezomib Re-treatment in Patients with Multiple Myeloma. Clin Lymph Myel 14(5):380–8. doi: 10.1016/j.clml.2014.03.005.
  7. Kumar SK, Therneau TM, Gertz MA, et al. Clinical course of patients with relapsed multiple myeloma. Mayo Clin Proc. 2004;79(7):867–74. doi: 10.4065/79.7.867.
  8. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26(1):149–57. doi: 10.1038/leu.2011.196.
  9. San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, Phase III trial. Lancet Oncol. 2013;14(11):1055–66. doi: 10.1016/S1470-2045(13)70380-2.
  10. Siegel DS, Martin T, Wang M, et al. A Phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapse and refractory multiple myeloma. Blood. 2012;120(14):2817–25. doi: 10.1182/blood-2012-05-425934.
  11. Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget. 2013;4(12):2186–207. doi: 10.18632/oncotarget.1497.
  12. Palumbo A, Sonneveld P. Preclinical and clinical evaluation of elotuzumab, a SLAMF7-targeted humanized monoclonal antibody in development for multiple myeloma. Exp Rev Hematol. 2015;8(4):481–91. doi: 10.1586/17474086.2015.1053866.
  13. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79. doi: 10.1111/j.1365-2141.2007.06705.x.
  14. Kellner J, Liu B, Kang Y, Li Z. Fact or fiction–identifying the elusive multiple myeloma stem cell. J Hematol Oncol. 2013;7(6):91. doi: 10.1186/1756-8722-6-91.
  15. Stewart AK, Rajkumar SV, Dimopoulos MA, et al.; ASPIRE Investigators. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52. doi: 10.1056/NEJMoa1411321.
  16. Mentlik JA, Cohen AD, Campbell KS. Combination immune therapies to enhance anti-tumor responses by NK cells. Front Immunol. 2013;23(4):481. doi: 10.3389/fimmu.2013.00481.
  17. Rossi M, Botta C, Correale P, et al. Immunologic microenvironment and personalized treatment in multiple myeloma. Expert Opin Biol Ther. 2013;13(Suppl 1):S83–93. doi: 10.1517/14712598.2013.799130.
  18. Palumbo A, Cavallo F. Have drug combinations supplanted stem cell transplantation in myeloma? Blood. 2012;120(24):4692–8. doi: 10.1182/blood-2012-05-423202.
  19. Teh BW, Harrison SJ, Pellegrini M, et al. Changing treatment paradigms for patients with plasma cell myeloma: impact upon immune determinants of infection. Blood Rev. 2014;28(2):75–86. doi: 10.1016/j.blre.2014.01.004.
  20. Feyler S, Selby PJ, Cook G. Regulating the regulators in cancer-immunosuppression in multiple myeloma (MM). Blood Rev. 2013;27(3):155–64. doi: 10.1016/j.blre.2013.04.004.
  21. Yi Q. Novel immunotherapies. Cancer J. 2009;15(6):502–10. doi: 10.1097/PPO.0b013e3181c51f0d.
  22. Lonial S, Kaufman J, Laubach J, Richardson P. Elotuzumab: a novel anti-CS1 monoclonal antibody for the treatment of multiple myeloma. Expert Opin Biol Ther. 2013;13(12):1731–40. doi: 10.1517/14712598.2013.847919.
  23. Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775–84. doi: 10.1158/1078-0432.CCR-07-4246.
  24. Veillette A. SLAM-family receptors: immune regulators with or without SAP-family adaptors. Cold Spring Harb Perspect Biol. 2010;2(3):a002469. doi: 10.1101/cshperspect.a002469.
  25. Bouchon A, Cella M, Grierson HL, et al. Cutting edge: activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J Immunol. 2001;167(10):5517–21. doi: 10.4049/jimmunol.167.10.5517.
  26. Cruz-Munoz ME, Dong Z, Shi X, et al. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat Immunol. 2009;10(3):297–305. doi: 10.1038/ni.1693.
  27. Collins SM, Bakan CE, Swartzel GD, et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother. 2013;62(12):1841–9. doi: 10.1007/s00262-013-1493-8.
  28. Tai YT, Dillon M, Song W, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329–37. doi: 10.1182/blood-2007-08-107292.
  29. Veillette A, Guo H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit Rev Oncol Hematol. 2013;88(1):168–77. doi: 10.1016/j.critrevonc.2013.04.003.
  30. Moreau Ph, Touzeau K. Elotuzubab for the treatment multiple myeloma. Fut Oncol. 2014;10(6):949–56. doi: 10.2217/fon.14.56.
  31. Benson DM. Jr, Byrd JC. CS1-directed monoclonal antibody therapy for multiple myeloma. J Clin Oncol. 2012;30(16):2013–5. doi: 10.1200/jco.2011.40.4061.
  32. Balasa B, Yun R, Belmar NA, et al. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-a Cancer Immunol Immunother. 2015;64(1):61–73. doi: 10.1007/s00262-014-1610-3.
  33. van Rhee F, Szmania SM, Dillon M, et al. Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther. 2009;8(9):2616–24. doi: 10.1158/1535-7163.MCT-09-0483.
  34. Zonder JA, Mohrbacher AF, Singhal S, et al. A Phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552–9. doi: 10.1182/blood-2011-06-360552.
  35. Jakubowiak AJ, Benson DM, Bensinger W, et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol. 2012;30(16):1960–5. doi: 10.1200/jco.2011.37.7069.
  36. Lonial S, Vij R, Harousseau JL, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953–9. doi: 10.1200/jco.2011.37.2649.
  37. Eleutherakis-Papaiakovou V, Bamias A, Gika D, et al. Renal failure in multiple myeloma: incidence, correlations, and prognostic significance. Leuk Lymphoma. 2007;48(2):337–41. doi: 10.1080/10428190601126602.
  38. Berdeja J, Jagannath S, Zonder J, et al. Pharmacokinetics and Safety of Elotuzumab Combined With Lenalidomide and Dexamethasone in Patients With Multiple Myeloma and Various Levels of Renal Impairment: Results of a Phase Ib Study. Clin Lymph Myel Leuk. 2016;16(3):129–38. doi: 1016/j.clml.2015.12.007.
  39. Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, Refractory myeloma. N Engl J Med. 2003;348(26):2609–17. doi: 1056/nejmoa030288.
  40. Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352(24):2487–98. doi: 10.1056/nejmoa043445.
  41. Dimopoulos MA, Chen C, Spencer A, et al. Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. 2009;23(11):2147–52. doi: 10.1038/leu.2009.147.
  42. Jakubowiak A, Offidani M, Pegourie B, et al. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. 2016;127(23):2833–40. doi: 10.1182/blood-2016-01-694604.
  43. Richardson PG, Jagannath S, Moreau P, et al. Final results for the 1703 phase 1b/2 study of elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed/refractory multiple myeloma. 2014;124(21): Abstract 302.
  44. Phase III Study of Lenalidomide and Dexamethasone With or Without Elotuzumab to Treat Newly Diagnosed, Previously Untreated Multiple Myeloma (ELOQUENT-1). [Internet] Available from: clinicaltrials.gow/ct2/show/NCT01335399. (accessed 21.05.2016).
  45. Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015;373(7):621–31. doi: 10.1056/NEJMoa1505654.
  46. Lonial S, Dimopoulos M, Palumbo A, et al. ELOQUENT-2: A phase III, randomized, open-label study of lenalidomide (Len)/dexamethasone (dex) with/without elotuzumab (Elo) in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J Clin Oncol. 2015;33(Suppl): Abstract 8508.
  47. Genzen JR, Kawaguchi KR, Furman RR. Detection of a monoclonal antibody therapy (ofatumumab) by serum protein and immunofixation electrophoresis. Br J Haematol. 2011;155(1):123–5. doi: 10.1111/j.1365-2141.2011.08644.x.
  48. McCudden CR, Voorhees PM, Hainsworth SA, et al. Interference of monoclonal antibody therapies with serum protein electrophoresis tests. Clin Chem. 2010;56(12):1897–9. doi: 10.1373/clinchem.2010.152116.
  49. Axel AE, McCudden CR, Xie H, et al. Development of clinical assay to mitigate daratumumab, an IgG1K monoclonal antibody, interference with serum immunofixation (IFE) and clinical assessment of M-protein response in multiple myeloma. Cancer Res. 2014;74(19):2563. doi: 10.1158/1538-7445.am2014-2563.
  50. US Food and Drug Administration. Elotuzumab [media release]. [Internet] Available from: http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm474719.htm. (accessed 22.05.2016).
  51. European commission Community register of medicinal products for human usе. [Internet] Available from: http://ec.europa.eu/health/documents/community-register/html/h1088.htm. (accessed 22.05.2016).
  52. NCCN Clinical Guidelines Version 3.2016. [Internet] Available from: https://www.nccn.org/store/login/login.aspx?ReturnURL=https://www.nccn.org/professionals/physician_gls/PDF/myeloma.pdf. (accessed 23.05.2016).

 

 

Clinical Significance of Immunophenotyping of Bone Marrow Cells in Multiple Myeloma

OYu Yakimovich, OM Votyakova, NV Lyubimova, NN Tupitsyn

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Oksana Yur’evna Yakimovich, graduate student, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-28-54; e-mail: ronc_ramn@mail.ru

For citation: Yakimovich OYu, Votyakova OM, Lyubimova NV, Tupitsyn NN. Clinical Significance of Immunophenotyping of Bone Marrow Cells in Multiple Myeloma. Clinical oncohematology. 2016;9(3):296-301 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-296-301


ABSTRACT

Aim. To analyze the relationship between expression of aberrant CD45, CD19, CD56 markers on the plasma cells and clinical and laboratory findings and prognostically significant parameters in patients with multiple myeloma (MM).

Methods. This scientific research includes data on clinical investigation and immunophenotyping of bone marrow cells obtained from 64 MM patients treated in the N.N. Blokhin Russian Cancer Research Center over the period from 2004 to 2015. The three-color flow cytometry was performed using a direct immunofluorescence technique (CD38-PerCP, CD138-FITC monoclonal antibodies) and PE-conjugated monoclonal antibodies against CD45, CD19, and CD56.

Results. Comparison of average values of the total count of plasma cells, the number of plasmablasts, proplasmacyte and mature plasma cells (according to the myelogram) and comparison of these data with the level of expression of the CD19 marker demonstrated a significant relationship between the CD19 negative immunophenotype and both a higher level of the total count of plasma cells and immature plasma cells. There also was a significant correlation between the CD19 negative immunophenotype and a higher level of C-reactive protein, which is significant prognostic factor in MM. In addition, there was a significant relationship between the CD19 negative phenotype and a higher percentage of young neutrophils in blood, i.e. with a more frequent “left shift”. The CD56 negative phenotype is associated with plasmablastic morphology of plasma cells and with the presence of plasma cells in the peripheral blood. Plasma cell leukemia is more common in patients with СD56 negative phenotype of myeloma cells. The CD45 negative immunophenotype was associated with a higher level of k-type FLCs, Bence-Jones proteinuria and with a higher serum creatinine, than in the cases of CD45 positive phenotype.

Conclusion. The study of the immunophenotype of plasma cells in MM has important scientific and practical significance and requires further study.


Keywords: multiple myeloma, aberrant immunophenotype of malignant plasma cells, CD45, CD19, and CD56 markers, clinical and laboratory parameters.

Received: March 17, 2016

Accepted: April 1, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. Зуева Е.Е., Русанова Е.Б., Куртова А.В. Диагностика множественной миеломы и мониторинг эффективности терапии. Иммунология гемопоэза. 2008;5(2):44–56.
    [Zueva EE, Rusanova EB, Kurtova AV. Diagnosis of multiple myeloma and treatment efficacy monitoring. Immunologiya gemopoeza. 2008;5(2):44–56. (In Russ)]
  2. Bataille R, Jero G, Robillard N, et al. The phenotype of normal, reactive and malignant plasma cells. Identification of “many and multiple myelomas” and of new targets for myeloma therapy. Haematologica. 2006;91(9):1234–40.
  3. de Tute RM, Jack AS, Child JA, et al. A single-tube six-colour flow cytometry screening assay for the detection of minimal residual disease in myeloma. Leukemia. 2007;21(9):2046–9. doi: 10.1038/sj.leu.2404815.
  4. Johnsen HE, Bogsted М, Klausen TW, et al. Multiparametric flow cytometry profiling of neoplastic plasma cells in multiple myeloma. Cytometry B Clin Cytom. 2010;78В(5):338–47. doi: 10.1002/cyto.b.20523.
  5. Manzanera GM, San Miguel Izquierdo JF, de Matos OA. Immunophenotyping of plasma cells in multiple myeloma. Meth Mol Med. 2005;113:5–24. doi: 10.1385/1-59259-916-8:5.
  6. Mateo G, Castellanos M, Rasillo A, et al. Genetic abnormalities and patterns of antigenic expression in multiple myeloma. Clin Cancer Res. 2005;11(10):3661–7. doi: 10.1158/1078-0432.CCR-04-1489.
  7. Ocqueteau M, Orfao A, Almeida J, et al. Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol. 1998;152(6):1655–65.
  8. Perez-Persona E, Vidriales MB, Mateo G, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smouldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110(7):2586–92. doi: 10.1182/blood-2007-05-088443.
  9. Rawstron AC, Davies FE, Das Gupta R, et al. Flow cytometric disease monitoring in multiple myeloma: The relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood. 2002;100(9):3095–100. doi: 10.1182/blood-2001-12-0297.
  10. Rawstron AC, Orfao A, Beksac M, et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica. 2008;93(3):431–8. doi: 10.3324/haematol.11080.
  11. Robillard N, Pellat-Deceunynck C, Bataille R. Phenotypic characterization of the human myeloma cell growth fraction. Blood. 2005;105(12):4845–8. doi: 10.1182/blood-2004-12-4700.
  12. San Miguel JF, Almeida J, Mateo G, et al. Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: A tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood. 2002;99(5):1853–6. doi: 10.1182/blood.v99.5.1853.
  13. Sezer O, Heider U, Zavrski I, Possinger K. Differentiation of monoclonal gammopathy of undetermined significance and multiple myeloma using flow cytometric characteristics of plasma cells. Haematologica. 2001;86(8):837–43.
  14. Moreau P, Robillard N, Avet-Loiseau H, et al. Patients with CD45 negative multiple myeloma receiving high-dose therapy have a shorter survival than those with CD45 positive multiple myeloma. Haematologica. 2004;89(5):547–51.
  15. Pellat-Deceunynck C, Barille S, Jego G, et al. The absence of CD56 (NCAM) on malignant plasma cells is a hallmark of plasma cell leukemia and of a special subset of multiple myeloma. Leukemia. 1998;12(12):1977–82. doi: 10.1038/sj.leu.2401211.
  16. Jego G, Avet-Loiseau H, Robillard N, et al. Reactive plasmacytoses in multiple myeloma during hematopoietic recovery with G- or GM-CSF. Leuk Res. 2000;24(7):627–30. doi: 10.1016/s0145-2126(00)00033-3.
  17. Sarasquete ME, Garcia-Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90(10):1365–72.
  18. Ishikawa H, Tsuyama N, Abroun S, et al. Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6. Blood. 2002;99(6):2172–8. doi: 10.1182/blood.v99.6.2172.
  19. Robillard N, Wuilleme S, Lode L, et al. CD33 is expressed on plasma cells of a significant number of myeloma patients, and may represent a therapeutic target. Leukemia. 2005;19(11):2021–2. doi: 10.1038/sj.leu.2403948.
  20. Tassone P, Goldmacher VS, Neri P, et al. Cytotoxic activity of the maytansinoid immunoconjugate B-B4- DM1 against CD138+ multiple myeloma cells. Blood. 2004;104(12):3688–96. doi: 10.1182/blood-2004-03-0963.
  21. Treon SP, Raje N, Anderson KC. Immunotherapeutic strategies for the treatment of plasma cell malignancies. Semin Oncol. 2000;27(5):598–613.
  22. Тупицын Н.Н. Иммунология клеток крови. В кн.: Гематология. Национальное руководство. Под ред. О.А. Рукавицына. М.: ГЭОТАР-Медиа, 2015. С. 70–8.
    [Tupitsyn NN. Blood cell immunology. In: Rukavitsyn OA, ed. Gematologiya. Natsional’noe rukovodstvo. (Hematology. National guidelines.) Moscow: GEOTAR-Media Publ.; 2015. pp. 70–8. (In Russ)]
  23. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2014;59(приложение 3):1–37.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines for diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2014;59(Suppl. 3):1–37. (In Russ)]
  24. Lin Р. Плазмоклеточная миелома. Прогресс в лечении множественной миеломы. Best Clin Pract, русское издание. 2009;2:11–6.
    [Lin P. Plasma cell myeloma. Progress in treatment of multiple myeloma. Best Clin Pract, Russian edition. 2009;2:11–6 (In Russ)]
  25. Вотякова О.М., Любимова Н.В., Турко Т.А. и др. Клиническое значение исследования свободных легких цепей иммуноглобулинов при множественной миеломе. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2010;5(4):16–20.
    [Votyakova OM, Lyubimova NV, Turko TA, et al. Clinical implication of immunoglobulin free light chains study in patients with multiple myeloma. Vestnik RONTs im. N.N. Blokhina RAMN. 2010;5(4):16–20. (In Russ)]

Pomalidomide for Treatment of Relapsed and Refractory Multiple Myeloma

S.V. Semochkin

N.I. Pirogov Russian National Research Medical University under the Ministry of Health of the Russian Federation, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Sergei Vyacheslavovich Semochkin, DSci, Professor, 1 Ostrovityanova str., Moscow, Russian Federation, 117997; Tel.: +7(495)653-14-78; e-mail: s.semochkin@gmail.com

For citation: Semochkin SV. Pomalidomide for Treatment of Relapsed and Refractory Multiple Myeloma. Clinical oncohematology. 2015;8(4):379–389 (In Russ).

DOI: 10.21320/2500-2139-2015-8-4-379-389


ABSTRACT

Pomalidomide is a third-generation immunomodulatory drug recommended for patients with multiple myeloma refractory to lenalidomide and bortezomib. The safety profile is optimized for application in patients with intensive and continuous anti-tumor treatment. Pomalidomide was approved by the Food and Drug Administration (FDA) and by the European Medicines Agency (EMA) in 2013 for use in patients with relapsed and refractory MM who have received at least two prior therapies, including lenalidomide and bortezomib, and have demonstrated disease progression on their last therapy or within 60 days after completion of the last therapy. Registration of pomalidomide for similar indications in Russia is pending in 2015. Pomalidomide has a similar mechanism of action with the other immunomodulators. The drug produces a direct cytostatic effect and causes an indirect effect by affecting the bone marrow microenvironment and T/NK-cells immunity. The recommended starting dose of pomalidomide is 4 mg daily (1–21/28) combined with low-dose dexamethasone 40 mg weekly for young patients or 20 mg for patients older than 75 years. The treatment should be performed till disease progression or unacceptable toxicity. This review summarizes current recommendations for dose adjustment depending on tolerance and prevention of thrombotic complications. The article presents author’s own clinical experience of successful application of pomalidomide for the management of a patient at high cytogenetic risk with «double» refractoriness to lenalidomide and bortezomib and preceding intensive anti-tumor treatment. The life expectancy was about 16 months after initiation of pomalidomide; this fact is consistent with literature data.


Keywords: pomalidomide, immunomodulatory drugs, multiple myeloma.

Received: April 8, 2015

Accepted: October 20, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Менделеева Л.П., Вотякова О.М., Покровская О.М. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2014;1(приложение 3):2–24.
    [Mendeleeva LP, Votyakova OM, Pokrovskaya OM, et al. National clinical guidelines for diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2014;1(Suppl. 3):2–24. (In Russ)]
  2. Бессмельцев С.С. Множественная миелома (лечение рецидивов и рефрактерных форм): обзор литературы и собственные данные. Часть III. Клиническая онкогематология. 2014;7(2):137–74.
    [Bessmel’tsev SS. Multiple myeloma (treatment of relapsed and refractory forms): literature review and own data. Part III. Klinicheskaya onkogematologiya. 2014;7(2):137–74. (In Russ)]
  3. Rajkumar SV. Multiple myeloma: 2014 Update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89(10):999–1009. doi: 10.1002/ajh.23810.
  4. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26(1):149–57. doi: 10.1038/leu.2012.15.
  5. Kumar A, Porwal M, Verma A, Mishra AK. Impact of pomalidomide therapy in multiple myeloma: a recent survey. J Chemother. 2014;26(6):321–7. doi: 10.1179/1973947814y.0000000201.
  6. Семочкин С.В. Биологические основы применения иммуномодулирующих препаратов в лечении множественной миеломы. Онкогематология. 2010;1:21–31.
    [Semochkin SV. Biological fundamentals of application of immunomodulatory agents in treatment of multiple myeloma. Onkogematologiya 2010;1:21–31. (In Russ)]
  7. Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. 2012;26(11):2326–35. doi: 10.1038/leu.2012.119.
  8. Zhu YX, Braggio E, Shi CX, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118(18):4771–9. doi: 10.1182/blood-2011-05-356063.
  9. Heintel D, Rocci A, Ludwig H, et al. High expression of cereblon (CRBN) is associated with improved clinical response in patients with multiple myeloma treated with lenalidomide and dexamethasone. Br J Haematol. 2013;161(5):695–700. doi: 10.1111/bjh.12338.
  10. Schuster SR, Kortuem KM, Zhu YX, et al. The clinical significance of cereblon expression in multiple myeloma. Leuk Res. 2014;38(1):23–8. doi: 10.1016/j.leukres.2013.08.015.
  11. Chamberlain PP, Lopez-Girona A, Miller K, et al. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol. 2014;21(9):803–9. doi: 10.1038/nsmb.2874.
  12. Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343(6168):305–9. doi: 10.1126/science.1244917.
  13. Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4 (CRBN). Br J Haematol. 2014;164(6):811–21. doi: 10.1111/bjh.12708.
  14. Kronke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–5. doi: 10.1126/science.124485.
  15. Shi ChX, Zhu YuX, Jedlowski P, et al. Ikaros Degradation Efficiency Correlates with Response of Multiple Myeloma (MM) Cells to IMiD Therapy and Is Blocked By Proteasome Inhibitors. Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 2247.
  16. Mitsiades N, Mitsiades CS, Poulaki V, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood. 2002;99(11):4079–86. doi: 10.1182/blood.v99.11.4079.
  17. Zhu YX, Kortuem KM, Stewart AK. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma. 2013;54(4):683–7. doi: 10.3109/10428194.2012.728597.
  18. Li S, Pal R, Monaghan SA, et al. IMiD immunomodulatory compounds block C/EBPb translation through eIF4E down-regulation resulting in inhibition of MM. Blood. 2011;117(19):5157–65. doi: 10.1182/blood-2010-10-314278.
  19. Huang X, Di Liberto M, Jayabalan D, et al. Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4. Blood. 2012;120(5):1095–106. doi: 10.1182/blood-2012-03-415984.
  20. Corral LG, Haslett PA, Muller GW, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol. 1999;163(1):380–6.
  21. Anderson G, Gries M, Kurihara N, et al. Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood. 2006;107(8):3098–105. doi: 10.1182/blood-2005-08-3450.
  22. Haslett PA, Corral LG, Albert M, Kaplan G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med. 1998;187(11):1885–92. doi: 10.1084/jem.187.11.1885.
  23. Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98(1):210–6. doi: 10.1182/blood.V98.1.210.
  24. Galustian C, Meyer B, Labarthe MC, et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol. Immunother. 2009;58(7):1033–45. doi: 10.1007/s00262-008-0620-4.
  25. Schey SA, Fields P, Bartlett JB, et al. Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol. 2004;22(16):3269–76. doi: 10.1200/jco.2004.10.052.
  26. Streetly MJ, Gyertson K, Daniel Y, et al. Alternate day pomalidomide retains anti-myeloma effect with reduced adverse events and evidence of in vivo immunomodulation. Br J Haematol. 2008;141(1):41–51. doi: 10.1111/j.1365-2141.2008.07013.x
  27. Richardson PG, Siegel D, Baz R, et al. Phase 1 study of pomalidomide MTD, safety, and efficacy in patients with refractory multiple myeloma who have received lenalidomide and bortezomib. Blood. 2013;121(11):1961–7. doi: 10.1182/blood-2012-08-450742.
  28. Leleu X, Attal M, Arnulf B, et al. Pomalidomide plus low-dose dexamethasone is active and well tolerated in bortezomib and lenalidomide-refractory multiple myeloma: intergroupe Francophone du Myelome 2009-02. Blood. 2013;121(11):1968–75. doi: 10.1182/blood-2012-09-452375.
  29. Pegourie B, Petillon MO, Karlin L, et al. Long-Term Exposure to Pomalidomide-Dexamethasone in Pts with Refractory Myeloma. Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 3466.
  30. Lacy MQ, Allred JB, Gertz MA, et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood. 2011;118(11):2970–5. doi: 10.1182/blood-2011-04-348896.
  31. Richardson PG, Siegel DS, Vij R, et al. Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: a randomized phase II study. Blood. 2014;123(12):1826–32. doi: 10.1182/blood-2014-04-566661.
  32. San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, Phase III trial. Lancet Oncol. 2013;14(11):1055–66. doi: 10.1016/s1470-2045(13)70380-2.
  33. Dimopoulos M, Palumbo A, Weisel K, et al. Safety and Efficacy in the Stratus (MM-010) Trial, a Single-Arm Phase 3b Study Evaluating Pomalidomide + Low-Dose Dexamethasone in Patients with Refractory or Relapsed and Refractory Multiple Myeloma. Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 80.
  34. Richardson P, Hofmeister CC, Siegel D, et al. MM-005: A phase I trial of pomalidomide, bortezomib, and low-dose dexamethasone (PVD) in relapsed and/or refractory multiple myeloma (RRMM). ASCO Meet Abstr. 2013;31:8584.
  35. Shah JJ, Edward A, Stadtmauer EA, et al. Phase I/II Dose Expansion Of a Multi-Center Trial Of Carfilzomib and Pomalidomide With Dexamethasone (Car-Pom-d) In Patients With Relapsed/Refractory Multiple Myeloma. Blood. 2013;122:690.
  36. Dimopoulos MA, Leleu X, Palumbo A, et al. Expert panel consensus statement on the optimal use of pomalidomide in relapsed and refractory multiple myeloma. Leukemia. 2014;28(8):1573–9. doi: 10.1038/leu.2014.60.
  37. Palumbo A, Palladino C. Venous and arterial thrombotic risks with thalidomide: evidence and practical guidance. Ther Adv Drug Saf. 2012;3(5):255–66. doi: 10.1177/2042098612452291.
  38. Palumbo A, Cavo M, Bringhen S, et al. Aspirin, warfarin, or enoxaparin thromboprophylaxis in patients with multiple myeloma treated with thalidomide: a phase III, open-label, randomized trial. J Clin Oncol. 2011;29(8):986–93. doi: 10.1200/jco.2010.31.6844.
  39. Kasserra C, Assaf M, Hoffmann M, et al. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug-drug interaction potential in vitro and in healthy subjects. J Clin Pharmacol. 2015;55(2):168–78. doi: 10.1002/jcph.384.
  40. Khalafallah A, Maiwald M, Cox A, et al. Effect of immunoglobulin therapy on the rate of infections in multiple myeloma patients undergoing autologous stem cell transplantation or treated with immunomodulatory agents. Mediterr J Hematol Infect Dis. 2010;2(1):e2010005. doi: 10.4084/mjhid.2010.005.
  41. Palumbo A, Dimopoulos MA, Weisel K, et al. Outcomes for Older Patients in Stratus (MM-010), a Single-Arm, and Phase 3b Study of Pomalidomide + Low-Dose Dexamethasone in Refractory or Relapsed and Refractory Multiple Myeloma. Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 4770.
  42. Weisel K, Dimopoulos MA, Cavo M, et al. Pomalidomide + Low-Dose Dexamethasone in Patients with Refractory or Relapsed and Refractory Multiple Myeloma and Renal Impairment: Analysis of Patients from the Phase 3b Stratus Trial (MM-010). Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 4755.
  43. Rossi CA, Aneja E, Boyer A, et al. Effect of Renal and Hepatic Function on Pomalidomide Dose in Patients with Relapsed/Refractory Multiple Myeloma. Blood (ASH Annual Meeting Abstracts). 2014;124(21): Abstract 4754.
  44. Short KD, Rajkumar SV, Larson D, et al. Incidence of extramedullary disease in patients with multiple myeloma in the era of novel therapy, and the activity of pomalidomide on extramedullary myeloma. Leukemia. 2011;25(6):906–8. doi: 10.1038/leu.2011.29.
  45. Leleu X, Karlin L, Macro M, et al. Pomalidomide plus low-dose dexamethasone in relapsed or refractory multiple myeloma (RRMM) with deletion (del)17p and/or translocation t(4;14). Blood (ASH Annual Meeting Abstracts). 2013;122(21): Abstract 689.
  46. Leleu X, Karlin L, Macro M, et al. Pomalidomide plus low-dose dexamethasone in multiple myeloma with deletion 17p and/or translocation (4;14): IFM 2010-02 trial results. Blood. 2015;125(9):1411–7. doi: 10.1182/blood-2014-11-612069.
  47. Hanaizi Z, Flores B, Hemmings R, et al. The European Medicines Agency Review of Pomalidomide in Combination with Low-Dose Dexamethasone for the Treatment of Adult Patients with Multiple Myeloma: Summary of the Scientific Assessment of the Committee for Medicinal Products for Human Use. The Oncologist. 2015;20(3):329–34. doi: 10.1634/theoncologist.2014-0073.

Correlation between Expression of RARa Transcription Factor and Genes of VEGFR3-Dependent Signaling System in Multiple Myeloma

NN Kalitin, IV Buravtsova

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Nikolai Nikolaevich Kalitin, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-17-69; e-mail: f.oskolov@mail.ru

For citation: Kalitin NN, Buravtsova IV. Correlation between Expression of RARa Transcription Factor and Genes of VEGFR3-Dependent Signaling System in Multiple Myeloma. Clinical oncohematology. 2015;8(1):31–5 (In Russ).


ABSTRACT

Background. All-trans retinoic acid (ATRA) is a natural metabolite of vitamin A, which can regulate the gene expression by means of interaction between different types of nuclear retinoic acid receptors (RARs). It has been demonstrated that it may lead to suppression of in vivo and in vitro tumor cell growth and can contribute to its survival. For example, in a number of studies, it has been demonstrated that one of RAR subtypes, RARa, modulates expression of a number of vascular endothelial growth factors (VEGFs), mainly VEGF-A. At the same time, the exact mechanisms regulating the RARa-mediated regulation of VEGF (especially VEGF-C and VEGF-D and their receptor VEGFR3) expression are still unclear.

Methods. Changes in expression of mRNAs of VEGF-C, VEGF-D genes and their receptor VEGFR3 in a group of 17 multiple myeloma patients before and after treatment were analyzed in the article. The obtained data were then compared with changes in gene expression of the RARa receptor.

Results. It has been found that overall levels of VEGF-C, VEGF-D and VEGFR3 gene expression were reduced in response to the therapy. Changes in expression of these genes correlated with the RARa expression.

Conclusions. The correlation between VEGF-C, VEGF-D and VEGFR3 expression and RARa expression could indicate a possible involvement of RARa- protein in regulation of VEGFR3-associated signaling system gene expression.

Scientific value. These results may describe a possible mechanism of VEGF-C, VEGF-D and VEGFR3 expression by the RARa transcription factor.


Keywords: multiple myeloma, gene expression, VEGFR3-dependent system, RARa.

Received: August 27, 2014

Accepted: October 20, 2014

Read in  PDF (RUS)pdficon


REFERENCES

  1. Neufeld G. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13(1):9–22.
  2. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84. doi: 10.1038/nm0603-677.
  3. Ristimaki A, Narko K, Enholm B, et al. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem. 1998;273(14):8413–8.
  4. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10(9):940–54.
  5. Leid M, Kastner P, Chambon P. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci. 1992;17(10):427–33. doi: 10.1016/0968-0004(92)90014-z.
  6. Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995;83(6):841–50. doi: 10.1016/0092-8674(95)90200-7.
  7. Delacroix L, Moutier E, Altobelli G, et al. Cell-specific interaction of retinoic acid receptors with target genes in mouse embryonic fibroblasts and embryonic stem cells. Mol Cell Biol. 2010;30(1):231–44. doi: 10.1128/mcb.00756-09.
  8. Eifert C, Sangster-Guity N, Yu LM, et al. Global gene expression profiles associated with retinoic acid-induced differentiation of embryonal carcinoma cells. Mol Reprod Dev. 2006;73(7):796–824. doi: 10.1002/mrd.20444.
  9. Maeno T, Tanaka T, Sando Y, et al. Stimulation of vascular endothelial growth factor gene transcription by all trans retinoic acid through Sp1 and Sp3 sites in human bronchioloalveolar carcinoma cells. Am J Respir Cell Mol Biol. 2002;26(2):246–53. doi: 10.1165/ajrcmb.26.2.4509.
  10. Tsuzuki S, Kitajima K, Nakano T, et al. Cross talk between retinoic acid signaling and transcription factor GATA-2. Mol Cell Biol. 2004;24(15):6824–36. doi: 10.1128/mcb.24.15.6824-6836.2004.
  11. Kappel A, Schlaeger TM, Flamme I, et al. Role of SCL/Tal-1, GATA, and its transcription factor binding sites for the regulation of flk-1 expression during murine vascular development. Blood. 2000;96(9):3078–85.
  12. Durie BGM, Salmon SE. A clinical staging system for multiple myeloma. Cancer. 1975;36(3):842–54. doi: 10.1002/1097-0142(197509)36:3<842::aid-cncr2820360303>3.0.co;2-u.
  13. Rajkumar SV, Leong T, Roche PC, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res. 2000;6(8):3111–6.
  14. Vacca A, Ribatti D, Presta M, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood. 1999;93(9):3064–73.
  15. Schafer G, Wissmann C, Hertel J, et al. Regulation of vascular endothelial growth factor D by orphan receptors hepatocyte nuclear factor-4A and chicken ovalbumin upstream promoter transcription factors 1 and 2. Cancer Res. 2008;68(2):457–66. doi: 10.1158/0008-5472.CAN-07-5136.
  16. Калитин Н.Н., Какпакова Е.С., Карамышева А.Ф. Влияние ретиноевой кислоты на экспрессию мРНК генов факторов роста эндотелия сосудов VEGF и рецептора VEGFR1 в культурах клеток множественной миеломы человека. Вопросы биологической, медицинской и фармацевтической химии. 2012;10:64–8.
    [Kalitin NN, Kakpakova ES, Karamysheva AF. Effect of retinoid acid on expression of mRNA in genes of vascular endothelial growth factor VEGF and VEGFR1 receptor in cultures of human multiple myeloma cells. Voprosy biologicheskoi, meditsinskoi i farmatsevticheskoi khimii. 2012;10:64–8. (In Russ)]

Role of TGF-b1 Gene Polymorphism in Development of Multiple Myeloma

AA Pavlova1, LN Bubnova1, YuV Sokolova1, EV Karyagina2, SS Bessmel’tsev1, IE Pavlova1

1 Russian Scientific Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

2 Municipal Hospital No. 15, 4 Avangardnaya str., Saint Petersburg, Russian Federation, 198205

For citation: Pavlova AA, Bubnova LN, Sokolova YuV, et al. Role of TGF-b1 Gene Polymorphism in Development of Multiple Myeloma. Clinical oncohematology. 2015;8(3):274–80 (In Russ).


ABSTRACT

Background & Aims. Multiple myeloma (MM) is a hematological malignancy characterized by uncontrolled proliferation of the clonal plasma cells. Studies showed that the TGF-b1 cytokine induces growth of the tumor clone in MM. The aim of this study was to detect single nucleotide polymorphisms (SNP) of the TGF-b gene (codon 10, codon 25) associated with the development of MM and to determine risks of the bone disease development in residents of the Northwest Russia.

Methods. 43 patients with MM were examined (mean age: 69.2 ± 9.0 years). Patients were divided into two groups: the 1st group with severe osteolytic bone lesions and the 2nd one with signs of osteoporosis and solitary foci of lysis. The control group consisted of 40 healthy donors (mean age: 49.8 ± 10.1 years).

Results. The study demonstrated that MM was associated with TGF-b1 codon 25 CC genotype and TGF-b1 codon 10/codon 25 T/C haplotype. However, the TGF-b1 codon 25 GG genotype can be considered a marker of resistance to development of MM. Osteoporosis was associated with the TGF-b1 codon 25 GG genotype, whereas the TGF-b1 codon 25 GC was detected more frequently in patients with severe osteolytic bone lesions.

Conclusion. The obtained results indicate that individual genotypes and haplotypes of TGF-b1 are involved in the formation of predisposition to development of multiple myeloma.


Keywords: multiple myeloma, cytokines, TGF-b1, single nucleotide polymorphisms.

Received: February 9, 2015

Accepted: May 30, 2015

Read in  PDF (RUS)pdficon


REFERENCES

  1. Бессмельцев С.С. Множественная миелома (патогенез, клиника, диагностика, дифференциальный диагноз). Часть I. Клиническая онкогематология. 2013;6(3):237–57.
    [Bessmel’tsev SS. Multiple myeloma (pathogenesis, clinical manifestations, diagnosis, differential diagnosis). Part I. Klinicheskaya onkogematologiya. 2013;6(3):237–57. (In Russ)]
  2. Черныш Н.Ю., Бессмельцев С.С., Козлов А.В. и др. Апоптотическая активность клеток костного мозга больных множественной миеломой. Вестник гематологии. 2009;5(3):5–11.
    [Chernysh NYu, Bessmel’tsev SS, Kozlov AV, et al. Apoptotic activity of bone marrow cells of patients with multiple myeloma. Vestnik gematologii. 2009;5(3):5–11. (In Russ)]
  3. Badros A. In the age of novel therapies, what defines high-risk multiple myeloma. J Natl Compr Canc Netw. 2010;8(Suppl 1):28–34.
  4. Свирновский А.И., Григорович С.А. Плейотропная резистентность опухолевых клеток к терапевтическим воздействиям при В-клеточных лимфопролиферативных заболеваниях. Медицинские новости. 2005;9:5–16.
    [Svirnovskii AI, Grigorovich SA. Pleiotropic resistance of tumor cells to therapeutic actions in B-cell lymphoproliferative disorders. Meditsinskie novosti. 2005;9:5–16. (In Russ)]
  5. Zheng C, Huang DR, Bergenbrant S, et al. Interleukin 6, tumour necrosis factor a, interleukin 1b and interleukin 1 receptor antagonist promoter or coding gene polymorphisms in multiple myeloma. Br J Haematol. 2000;109(1):39–45. doi: 10.1046/j.1365-2141.2000.01963.x.
  6. Atoum MF, Tanashat RQ, Mahmoud SA. Negative association of the HLA-DQB1*02 allele with breast cancer development among Jordanians. Asian Pacif J Cancer Prev. 2013;14(11):7007–10. doi: 10.7314/apjcp.2013.14.11.7007.
  7. Stern M, Opelz G, Dohler B, et al. Natural killer-cell receptor polymorphisms and posttransplantation non-Hodgkin lymphoma. Blood. 2010;115(19):3960–5. doi: 10.1182/blood-2009-10-250134.
  8. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation and cancer. J Clin Invest. 2007;117(5):1175–83. doi: 10.1172/jci31537.
  9. Landskron G, De la Fuente M, Thuwajit P, et al. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014:149185. doi: 10.1155/2014/149185.
  10. Коненков В.И., Смольникова М.В. Структурные основы и функциональная значимость аллельного полиморфизма генов цитокинов человека и их рецепторов. Медицинская иммунология. 2003;5(1–2):11–28.
    [Konenkov VI, Smol’nikova MV. Structural matrix and functional significance of allelic polymorphism of human cytokine genes and their receptors. Meditsinskaya immunologiya. 2003;5(1–2):11–28. (In Russ)]
  11. Kekik C, Besisik S, Oguz FS, et al. Determination of cytokine gene polymorphisms in Turkish patients with multiple myeloma. Adv Mol Med. 2007;3(4):189–95.
  12. Ferrarini M, Mazzoleni G, Steimberg N, et al. Innovative models to assess multiple myeloma biology and the impact of drugs. In: Hajek R, ed. Multiple myeloma – a quick reflection on the fast progress. InTech; 2013. doi: 10.5772/54312.
  13. Yasui H, Hideshima T, Anderson KC. Inhibition of TGF-b Signaling in Multiple Myeloma and Its Bone Marrow Microenvironment. In: Jakowlew SB, ed. Transforming Growth Factor-b in Cancer Therapy. Vol. II. Springer; 2008. pp. 219–27. doi: 10.1007/978-1-59745-293-9_15.
  14. Павлова А.А., Павлова И.Е., Бессмельцев С.С. Цитокины и их роль в патогенезе множественной миеломы (Обзор литературы). Medline.ru. 2013;14:313–35.
    [Pavlova AA, Pavlova IE, Bessmel’tsev SS. Cytokines and their role in pathogenesis of multiple myeloma (Literature review). Medline.ru. 2013;14:313–35. (In Russ)]
  15. Buijs JT, Stayrook KR, Guise TA. The role of TGF-b in bone metastasis: novel therapeutic perspectives. BoneKey Rep. 2012;1(6):96. doi: 10.1038/bonekey.2012.96.
  16. Matsumoto T, Abe M. TGF-b-related mechanisms of bone destruction in multiple myeloma. Bone. 2011;48(1):129–34. doi: 10.1016/j.bone.2010.05.036.
  17. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22(4):233–41. doi: 10.1080/08977190412331279890.
  18. Mytilineos J, Laux G, Opelz G. Relevance of IL-10, TGF-b1, TNF-a and IL-4Ra gene polymorphisms in kidney transplantation: a collaborative transplant study report. Am J Transplant. 2004;4(10):1684–90. doi: 10.1111/j.1600-6143.2004.00561.x.
  19. Banu C, Moise A, Arion CV, et al. Cytokine gene polymorphisms support diagnostic monitoring of Romanian multiple myeloma patients. J Med Life. 2011;4(3):264–8.
  20. Brown EE, Lan Q, Zheng T, et al. Common variants in genes that mediate immunity and risk of multiple myeloma. Int J Cancer. 2007;120(12):2715–22. doi: 10.1002/ijc.22618.
  21. Барсова Р.М., Титов Б.В., Матвеева Н.А. и др. Участие гена TGFB1 в формировании предрасположенности к инфаркту миокарда. Acta Nat. 2012;4(2):76–82.
    [Barsova RM, Titov BV, Matveeva NA, et al. Involvement of the TGFB1 gene in predisposition to myocardial infarction. Acta Nat. 2012;4(2):76–82. (In Russ)]
  22. Blade J, Samson D, Reece D, et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplantation. Br J Haematol. 1998;102(5):1115–23. doi: 10.1046/j.1365-2141.1998.00930.x.
  23. Durie BGM, Harousseau J-L, San-Miguel J, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–73. doi: 10.1038/sj.leu.2404284.
  24. Бабышкина Н.Н., Малиновская Е.А., Стахеева М.Н. и др. Роль трансформирующего ростового фактора TGF-b1 в патогенезе рака молочной железы. Сибирский онкологический журнал. 2010;6(42):63–70.
    [Babyshkina NN, Malinovskaya EA, Stakheeva MN, et al. Role of transforming growth factor TGF-b1 in pathogenesis of breast cancer. Sibirskii onkologicheskii zhurnal. 2010;6(42):63–70. (In Russ)]
  25. Wrzesinnski SH, Wan YY, Flavell RA. Transforming growth factor-b and the immune response: implications for anticancer therapy. Clin Cancer Res. 2007;13(18):5262–70. doi: 10.1158/1078-0432.ccr-07-1157.

Multiple Myeloma: 7-Year Experience of Applying Targeted Therapy in Novosibirsk and Its Results

T.I. Pospelova1, N.V. Skvortsova1, I.N. Nechunaeva2

1 Novosibirsk State Medical University, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091

2 Municipal Hospital No. 2, 21 Polzunova str., Novosibirsk, Russian Federation, 630051

For correspondence: Nataliya Valer’evna Skvortsova, PhD, associate professor, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091; Tel.: +8(383)279-94-06; e-mail: nata_sk78@mail.ru

For citation: Pospelova T.I., Skvortsova N.V., Nechunaeva I.N. Multiple Myeloma: 7-Year Experience of Applying Targeted Therapy in Novosibirsk and Its Results. Klin. Onkogematol. 2015;8(3):267–73. (In Russ.)


ABSTRACT

Objective. To evaluate results of the 7-year experience in treatment of multiple myeloma (MM) with proteasome inhibitor (bortezomib) in the Novosibirsk Municipal Hematological Center.

Methods. 199 MM patients treated in the Novosibirsk Municipal Hematological Center over the period from July, 2006, till December, 2014, were enrolled in the study. The median age of patients was 68 years (varied from 36 to 81). 98 patients received bortezomib as the first line therapy and 101 patients as the second line.

Results. The overall response rate of the first line therapy was 78.5 %; at that, 25 % of patients achieved a complete and almost complete remission. The median time to achieve response was 72 days. With the progression or refractory MM, the efficacy of bortezomib as a part of a combined antitumor therapy was 68.3 %. Bortezomib proved to be effective when its administration was resumed by patients who had received bortezomib and other components of the combined regimen previously (overall response: 68.4 %). The median overall survival rate has not been achieved, and 7-year survival rate was 70 %. Adverse events of bortezomib were predictable and manageable; the most relevant of them included gastrointestinal and hematologic disorders, fatigue, and peripheral neuropathy.

Conclusion. Bortezomib is a highly effective drug, which plays an important role in the treatment of MM as the first and subsequent line therapies; its administration results in significant increase in patients’ overall survival.


Keywords: multiple myeloma, effectiveness of treatment, bortezomib, overall survival.

Received: February 16, 2015

Accepted: May 28, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001.
  2. DeVita VT Jr, Hellman S, Rosenberg SA, eds. Cancer. Principles and Practice of Oncology. 5th edition. Philadelphia: Lippincott-Raven; 1997.
  3. Ludwig H, Bolejack V, Crowley J, et al. Survival and years of life lost in different age cohorts of patients with multiple myeloma. J Clin Oncol. 2010;28(9):1599–605. doi: 10.1200/jco.2009.25.2114.
  4. Kuehl WM, Bergsagel PL. Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest. 2012;122(10):3456–63. doi: 10.1172/jci61188.
  5. El-Amm J, Tabbara IA. Emerging Therapies in Multiple Myeloma. J Clin Oncol. 2015;38(3):315–21. doi: 10.1097/COC.0b013e3182a4676b.
  6. Kumar SK, Radjkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20. doi: 10.1182/blood-2007-10-116129.
  7. Kumar SK, et al. Survival in Myeloma Is Improving With Novel Agents. Blood (ASH Annual Meeting Abstracts). 2012:3972.
  8. Вотякова О.М. Современная терапия множественной миеломы. Бюллетень сибирской медицины. 2008;3(приложение):33–41.
    [Votyakova OM. Modern therapy for multiple myeloma. Byulleten’ sibirskoi meditsiny. 2008;3(Suppl):33–41. (In Russ)]
  9. Kyle RA, Rajkumar SV. Multiple myeloma. Blood. 2008;111(6):2962–72. doi: 10.1182/blood-2007-10-078022.
  10. Montagut C, Rovira A, Mellado B, et al. Preclinical and clinical development of the proteasome inhibitor bortezomib in cancer treatment. Drugs Today (Barc.). 2005;41(5):299–315. doi: 10.1358/dot.2005.41.5.893706.
  11. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2(4):301–10. doi: 10.1038/nrc780.
  12. Mitsiades N, Mitsiades CS, Richardson PG, et al. The proteasome inhibitor PS-341 potentates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003;101(6):2377–80. doi: 10.1182/blood-2002-06-1768.
  13. Бессмельцев С.С., Карягина Е.В., Стельмашенко Л.В. и др. Бортезомиб (Велкейд) в комбинации с дексаметазоном в лечении рефрактерных/рецидивирующих форм множественной миеломы у пожилых больных. Онкогематология. 2010;2:40–5.
    [Bessmel’tsev SS, Karyagina EV, Stel’mashenko LV, et al. Bortezomib (Velcade) in combination with dexamethasone in the treatment of refractory/relapsing forms of multiple myeloma in elderly patients. Onkogematologiya. 2010;2:40–5. (In Russ)]
  14. Richardson PG, Barlogie B, Berenson J. еt al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348(26):2609–17. doi: 10.1056/nejmoa030288.
  15. Richardson PG, Britmberg H, Jagannath S, et al. Characterization and reversibility of peripheral neuropaty in patients with advanced multiple myeloma treated with bortezomib. Summit and Crest study group. Hematol J. 2004;5(Suppl):S129.
  16. Moreau P, Pylypenko H, Grosicki S, et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma a randomized, phase 3, non-inferiority study. Lancet Oncol. 2011;12(5):431. doi: 10.1016/s1470-2045(11)70081-x.
  17. Blade J, Samson D, Reece D, et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Br J Haematol. 1998;102(5):1115–23. doi: 10.1046/j.1365-2141.1998.00930.x.
  18. Поспелова Т.И., Скворцова Н.В., Нечунаева И.Н. Результаты лечения множественной миеломы препаратом бортезомиб. Онкогематология. 2009;2:35–41.
    [Pospelova TI, Skvortsova NV, Nechunaeva IN. Results of treatment of multiple myeloma with bortezomib. Onkogematologiya. 2009;2:35–41. (In Russ)]
  19. Скворцова Н.В., Поспелова Т.И., Нечунаева И.Н. и др. Эффективность повторной терапии бортезомибом у пациентов с рефрактерными и рецидивирующими формами множественной миеломы. Бюллетень Сибирского отделения Российской академии медицинских наук. 2013;33(1):76–82.
    [Skvortsova NV, Pospelova TI, Nechunaeva IN, et al. Efficacy of repeated treatment with bortezomib in patients with refractory and relapsing forms of multiple myeloma. Byulleten’ Sibirskogo otdeleniya Rossiiskoi akademii meditsinskikh nauk. 2013;33(1):76–82. (In Russ)]
  20. Скворцова Н.В., Мельникова Т.В., Мельниченко Е.В., Мишенин А.В. Эффективность таргетной терапии множественной миеломы с использованием ингибиторов протеасом. Бюллетень Сибирского отделения Российской академии медицинских наук. 2011;31(2):94–100.
    [Skvortsova NV, Mel’nikova TV, Mel’nichenko EV, Mishenin AV. Efficacy of targeted therapy for multiple myeloma using proteasome inhibitors. Byulleten’ Sibirskogo otdeleniya Rossiiskoi akademii meditsinskikh nauk. 2011;31(2):94–100. (In Russ)]
  21. Поспелова Т.И., Скворцова Н.В., Нечунаева И.Н. и др. Результаты лечения рефрактерных/рецидивирующих форм множественной миеломы. Гематология и трансфузиология. 2012;57(3):21–2.
    [Pospelova TI, Skvortsova NV, Nechunaeva IN, et al. Results of treatment of refractory/relapsing forms of multiple myeloma. Gematologiya i transfuziologiya. 2012;57(3):21–2. (In Russ)]
  22. Mateos M-V, Hernandez JM, Hernandez MT, et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: updated time-to-events results and prognostic factors for time to progression. Haematologica. 2008;93(4):560–5. doi: 10.3324/haematol.12106.
  23. Lonial S, Waller EK, Richardson PG, et al. Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood. 2005;106(12):3777–84. doi: 10.1182/blood-2005-03-1173.
  24. NCCN GuidelinesTM Version 1. 2011 Multiple myeloma. Available from: www.nccn.org. (accessed 20.06.2015).

Role of Bendamustine in Treatment of Multiple Myeloma

O.M. Votyakova

N.N. Blokhin Russian Cancer Research Center of RAMS, Moscow, Russian Federation

For citation: Votyakova O.M. Role of Bendamustine in Treatment of Multiple Myeloma. Klin. onkogematol. 2014; 7(3): 301–10 (In Russ.).


ABSTRACT

Bendamustine is an antineoplastic drug with a double mechanism of action combining the properties of alkylating compound and purine analog; it has a promising activity in multiple myeloma (MM). In 2013, Bendamustine (Ribomustin) was registered in Russia for treatment of patients older than 65 years of age with newly diagnosed ММ who are not eligible for high dose chemotherapy (HDC) with autologous transplantation of hemopoetic stem cells and who have clinical signs of neuropathy which impede the use of thalidomide and/or bortezomib. The review presents data on the product efficacy and safety both as monotherapy and in combination with glucocorticoids and target therapy (bortezomib, thalidomide, lenalidomide), in newly diagnosed and relapsed MM patients. The presented data permit to recommend bendamustine combined with glucocorticoids and novel drugs for MM patients with relapses and as the first line therapy in some patients with polyneuropathy who are not eligible for HDC with autologous transplantation of hemopoetic stem cells.


Keywords: multiple myeloma, bendamustine, ribomustin.

Address correspondence to: omvtk@yandex.ru

Accepted: May 23, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Jemal A., Siegel R., Xu J. et al. Cancer statistics, 2010. CA Cancer J. Clin. 2010; 60: 277–300.
  2. Статистика злокачественных новообразований в России и странах СНГ в 2009 году. Под ред. М.И. Давыдова, Е.М. Аксель. Вестник РОНЦ им. Н.Н. Блохина РАМН 2011; 22(3): 170. [Davydov M.I., Aksel’ E.M., eds. Statistical data on malignant neoplasms in Russia and CIS countries in 2009. Vestnik RONTs im. N.N. Blokhina RAMN 2011; 22(3): 170. (In Russ.)].
  3. SEER Cancer Statistics, National Cancer Institute, 2012.
  4. Osgood E.E. The survival time of patients with plasmocytic myeloma. Cancer Chemother. Rep. 1960; 9: 1–10.
  5. Myeloma Trials Collaborative Group. Combination chemotherapy versus melphalan plus prednison as treatment for multiple myeloma: an overview of 6,633 patients from 27 randomized trials. J. Clin. Oncol. 1998; 16(12): 3832–42.
  6. Kumar S.K., Rajkumar S.V., Dispenzieri A. et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111(5): 2516–20.
  7. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под рук. И.В. Поддубной, В.Г. Сав- ченко. М.: Мedia Medica, 2013: 63–71, 82–4. [Poddubnaya I.V., Savchenko V.G. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines in diagnosis and treatment of lymphoproliferative disorders). Moscow: Media Medica Publ., 2013. pp. 63–71, 82–4.].
  8. San Miguel J.F., Schlag R., Khuageva N.K. et al. Bortezomib plus Melphalan and Prednisone for Initial Treatment of Multiple Myeloma. N. Engl. J. Med. 2008; 359(9): 906–17.
  9. Сheson B.D., Rummel M.J. Bendamustine: rebirth of an old drug. J. Clin. Oncol. 2009; 27(9): 1492–501.
  10. Ozegowski W., Krebs D. IMET 3393 (-[Methyl-5-bis-(b-chlorethyl)-aminobenzimidazolyl-(2)]-butyricb10. Ozegowski W., Krebs D. IMET 3393 (-[Methyl-5-bis-( acid hydrochloride, a new cytostatic agent from among the series of bensimidazole mustard compounds [in German]. Zbl. Pharm. 1971; 110: 1013–9
  11. Pratt G., Bowcock S., Lai M. et al. United Kingdom Myeloma Forum (UKMF) position statement on the use of bendamustine in myeloma. Int. J. Lab. Hematol. 2013 Apr 25.
  12. Gentile M., Recchia A.G., Mazzone C. et al. An old drug with a new future: bendamustine in multiple myeloma. Expert Opin. Pharmacother. 2013; 14(16): 2263–80.
  13. Сheson B.D., Leoni L. Bendamustine: Mechanism of Action and Clinical Data. Clin. Advanc. Hematol. Oncol. 2011; 9(8 Suppl. 19): 1–12.
  14. Leoni L.M., Bailey B., Reifert J. et al. Bendamustine (Treanda) displays a distinct pattern of cytotoxicity and unique mechanistic features compared with other alkylating agent. Clin. Cancer Res. 2008; 14: 309–17.
  15. Hartmann M., Zimmer C. Investigation of cross-link formation in DNA by the alkylating cytostatic IMET 3106, 3393 and 3943. Biochim. Biophys. Acta. 1972; 287: 386–9.
  16. Strumberg D., Hrstrick A., Doll K. et al. Bendamustine hydrochloride activity against doxorubicin-resistant human breast carcinoma cell lines. Anticancer Drugs 1996; 7: 415–21.
  17. Leoni L.M., Niemeyer C.C., Kefoor C. et al. In vitro and ex vivo activity of SDX-105 (bendamustine) in drug-resistant lymphoma cells. Proc. Am. Assoc. Cancer Res. 2004; 45: 278. Abstract 1215.
  18. Bremer K. High rates of long-lasting remissions after 5-day bendamustine chemotherapy cycles in pre-treated low-grade non-Hodgkins-lymphomas. J. Cancer Res. Clin. Oncol. 2002; 128: 603–9.
  19. Roue G., Lopez-Guerra M., Milpied P. et al. Bendamustine is effective in p53-deficient B-cell neoplasms and requires oxidative stress and caspaseindependent signaling. Clin. Cancer Res. 2008; 14: 6907–15.
  20. Инструкция по медицинскому применению препарата Рибомустин. [Patient’s Information Leaflet of Ribomustin].
  21. Preiss R., Sohr R., Matthias M. et al. The pharmacokinetics of bendamustine (Cytostasan) in humans. Pharmazie 1985; 40: 782–4.
  22. Chovan J.P., Li F., Yu E., Ring S.C. Metabolic profile of [(14)C] bendamustine in rat urine and bile: preliminary structural identification of metabolites. Drug Metab. Dispos. 2007; 35: 1744–55.
  23. Haase D., Preiss R., Sohr R. Untersuchungen zur Plasmaeiweissbindung von Bendamustine (Cytostasan) und Ambazon. Z. Klein. Med. 1990; 45: 1267–72.
  24. Teichert J., Baumann F., Chao Q. et al. Characterization of two phase I metabolites of bendamustine in human liver microsomes and in cancer patients treated with bendamustine hydrochloride. Cancer Chemother. Pharmacol. 2007; 59: 759–70.
  25. Gandhi V. Metabolism and mechanism of action of bendamustine: rationales for combination therapy. Semin. Oncol. 2002; 29(Suppl. 13): 4–11.
  26. Owen J.S., Melhem M., Passarell J.A. et al. Bendamustine pharmacokinetic profile and exposure response relationship in patients with indolent non-Hodgkin’s lymphoma. Cancer Chemother. Pharmacol. 2010; 66: 1039–49.
  27. Ujjani C.H., Cheson B.D. Bandamustine in chronic lymphocytic leukemia and non-Hodgkin lymphoma. Expert Rev. Anticancer Ther. 2010; 10(9): 1353–65.
  28. Leoni L.M. Bendamustine: rescue of effective antineoplastic agent from the mid-twentieth century. Semin. Oncol. 2011; 48(Suppl. 1): 4–11.
  29. Elefante A., Czuczman M.S. Bendamustine for the treatment of indolent non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. Am. J. Health Syst. Pharm. 2010; 67: 713–23.
  30. Ponisch W., Mitrou P.S., Mercle K. et al. East German Study Group of Hematology and Oncology (OSH). Treatment of bendamustine and prednisone in patients with newly diagnosed multiple myeloma results in superior complete response rate, prolonged time to treatment failure and improved quality of life compared to the treatment with melphalan and prednisone — a randomized phase III study of East German Study Group of Hematology and Oncology (OSH). J. Cancer Res. Clin. Oncol. 2006; 132: 205–12.
  31. Moreau P., San Miguel J., Ludwig H. et al. Multiple myeloma; ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013; 24(Suppl. 6): 133–7.
  32. Berdeja J., Savona M., Chu L. et al. Bendamustine, Bortezomib and Dexamethasone (BBD) As First-Line Treatment of Patients (Pts) With Multiple Myeloma Who Are Not Candidates For High Dose Chemotherapy. Blood (ASH Annual Meeting Abstract) 2013; 122(21): 3193.
  33. Press R., Teichert J., Ponisch W. et al. Pharmacokinetis and toxicity profile of bendamustine in multiple myeloma patients with end-stage renal disease. Hematol. J. 2003; 4(Suppl 1): 263.
  34. Ponisch W., Andrea M., Wagner I. et al. Successful treatment of patients with newly diagnosed/untreated multiple myeloma and advanced renal failure using bortezomib in combination with bendamustine and prednisone. J. Cancer Res. Clin. Oncol. 2012; 138: 1405–12.
  35. Knop S., Straka C., Haen M. et al. The efficacy and toxicity of bendamustine in recurrent myeloma after high-dose chemotherapy. Haematologica 2005; 90: 1287–8.
  36. Michael M., Bruns I., Bolke E. et al. Bendamustine in patients with relapsed or refractory multiple myeloma. Eur. J. Med. Res. 2010; 15: 13–9.
  37. Damaj G., Malard F., Hulin C. et al. Efficacy of bendamustine in relapsed/ refractory myeloma patients: results from the French compassionate use program. Leuk. Lymphoma 2012; 53: 632–4.
  38. Lonial S. Treatment of relapsed and refractory multiple myeloma. Hematol. Educ. Program Ann. Congress Eur. Hematol. Assoc. 2013; 7(1): 216–25.
  39. Glasmacher A., Hahn C., Hoffmann F. et al. A systematic review of phase-II trials of thalidomide monotherapy in patients with relapsed or refractory multiple myeloma. Br. J. Haematol. 2006; 132: 584–93.
  40. Dimopoulos M.A., Zervas K., Kouvatseas G. et al. Thalidomide and dexamethasone combination for refractory multiple myeloma. Ann. Oncol. 2001; 12(7): 991–5.
  41. Lacy M.Q., Hayman S.R., Gertz M.A. et al. Pomalidomide (CC4047) plus low dose dexamethasone (Pom/dex) is active and well tolerated in lenalidomide refractory multiple myeloma (MM). Leukemia 2010; 24: 1934–9.
  42. Ponisch W., Rozanski M., Goldschmidt A. et al. East German Study Group of Hematology and Oncology. Combined bendamustine, prednisilone and thalidomide for refractory or relapse multiple myeloma after autologous stem cell transplantation or conventional chemotherapy: results of a Phase I clinical trial. Br. J. Haematol. 2008; 143: 191–200.
  43. Grey-Devies E., Bosworth J.L., Boyd K.D. et al. Bendamustine, thalidomide and dexamethasone is an effective salvage regimen for advanced stage multiple myeloma. Br. J. Haematol. 2012; 156: 552–5.
  44. Schey S., Yong K., Williams C. et al. Identifying An Optimally Effective But Tolerable Dose Of Bendamustine In Combination With Thalidomide and Dexamethasone In Patients With Relapsed Or Refractory Multiple Myeloma. Blood (ASH Annual Meeting Abstract) 2013; 122(21): 286.
  45. Ponisch W., Heyn S., Beck J. et al. Lenalidomide, bendamustine and prednisolone exhibits a favourable safety and efficacy profile in relapsed or refractory multiple myeloma: final results of a phase 1 clinical trial OSHO – #077. Br. J. Haematol. 2013; 162(2): 202–9.
  46. Lentzsch S., O’ Sullivan A., Kennedy R.S. et al. Combination of bendamustine, lenalidomide and dexamethasone (BLD) in patients with relapsed and refractory multiple myeloma is feasible and highly effective: results of a phase 1–2 open-label dose escalation study. Blood 2012; 119: 4608–13.
  47. Kumar S.K., Krishnan A., Roy V. et al. Phase I/II, Multicenter, Open-Label, Dose-Escalation Study of Bendamustine in Combination with Lenalidomide and Dexamethasone (BRD) in Patients with Relapsed Multiple Myeloma: A Multiple Myeloma Research Consortium Study. Blood (ASH Annual Meeting Abstracts) 2012; 120: 2965.
  48. Pozzi S., Badiali S., Corso A. et al. Bendamustine, Low-Dose Dexamethasone, and Lenalidomide (BdL) For The Treatment Of Patients With Relapsed Multiple Myeloma Confirms Very Promising Results In a Phase I/II Study. Blood (ASH Annual Meeting Abstract) 2013; 122(21): 3212.
  49. Fenk R., Michael M., Zohren F. et al. Escalation therapy with bortezomib, dexamethason and bendamustine for patients with relapsed or refractory multiple myeloma. Leuk. Lymphoma 2007; 48: 2345–51.
  50. Berenson J.R., Yellin O., Bessudo A. et al. Phase I/II trial assessing bendamustine plus bortezomib combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. Br. J. Haematol. 2013; 160: 321–30.
  51. Hrusovsky I., Heidtmann H.-H. Combination therapy of bortezomib with bendamustine in elderly patients with advanced multiple myeloma. Clinical observations. Blood 2007; 110: 4851.
  52. Ludwig H., Kasparu H., Leitgeb C. et al. Bendamustine-bortezomibdexamethasone is an active and well tolerated regimen in patients with relapsed or refractory multiple myeloma. Blood 2013; online November 13, 2013.
  53. Ponisch W., Bourgeois M., Moll B. et al. Combined bendamustine, prednisone and bortezomib (BPV) in patients with relapsed or refractory multiple myeloma. J. Cancer Res. Clin. Oncol. 2013; 139: 499–508.
  54. Rodon Ph., Hulin C., Pegourie Br. et al. Bendamustine, Bortezomib and Dexamethasone (BVD) In Elderly Patients With Multiple Myeloma In First Relapse: Final Analysis Of The Intergroupe Francophone Du Myelome (IFM) 2009-01 Trial. Blood (ASH 2013 Annual Meeting Abstract) 2013; 122(21): 1971.
  55. Offidani M., Corvatta L., Maracci L. et al. Bendamustine, Bortezomib and Dexamethasone (BVD): A Combination With a Substantial Activity and a Manageable Toxicity In Patients With Relapsed-Refractory Multiple Myeloma (MM). Blood (ASH Annual Meeting Abstract) 2013; 122(21): 1974.
  56. Ponisch W., Bourgeois M., Moll B. et al. Bendamustine and prednisone in combination with bortezomib (BPV) in the treatment of patients with relapsed or refractory multiple myeloma and light-chain induced renal failure. J. Cancer Res. Clin. Oncol. 2013; 139(3): 499–508.
  57. Malpas J.S., Bergsagel D.E., Kyle R., Anderson K. (eds.) Myeloma: Biology and Management, 2nd Edition. Oxford Medical Publications, 1998: 417.