Clonal Evolution of Aplastic Anemia: A Brief Literature Review and a Case Report

ER Shilova1, TV Glazanova1, II Kostroma1, MN Zenina1,2, OE Rozanova1, ZhV Chubukina1, RR Sabitova1, NA Romanenko1, VA Balashova1, SV Gritsaev2

1 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024

2 II Mechnikov North-Western State Medical University, 41 Kirochnaya ul., Saint Petersburg, Russian Federation, 191015

For correspondence: Elena Romanovna Shilova, MD, PhD, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024; Tel.: +7(981)129-09-77, +7(812)717-08-90; e-mail: rniiht@mail.ru

For citation: Shilova ER, Glazanova TV, Kostroma II, et al. Clonal Evolution of Aplastic Anemia: A Brief Literature Review and a Case Report. Clinical oncohematology. 2022;15(3):298–306. (In Russ).

DOI: 10.21320/2500-2139-2022-15-3-298-306


ABSTRACT

Aplastic anemia (AA) is a non-neoplastic hematological disease closely associated with bone marrow failure which is typical of paroxysmal nocturnal hemoglobinuria (PNH) and myelodysplastic syndrome (MDS). The PNH clones can be detected in more than a half of AA patients at onset of the disease, and there is a probability for AA/PNH co-variants to progress to classic hemolytic PNH. At the same time, the AA patients treated by immunosuppressive therapy undergo the risk of disease transformation to MDS and acute myeloid leukemia. Currently known risk factors and possible precursors of such transformation are considered in the brief literature review. In addition to that, the paper provides a case report of AA/PNH transformation to MDS during complete AA remission after immunosuppressive therapy combined with a successful haploidentical transplantation of hematopoietic stem cells.

Keywords: aplastic anemia, myelodysplastic syndrome, paroxysmal nocturnal hemoglobinuria, immunosuppressive therapy, haploidentical transplantation of hematopoietic stem cells.

Received: January 28, 2022

Accepted: May 17, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Абдулкадыров К.М., Бессмельцев С.С. Апластическая анемия. М.: Наука; СПб.: Изд-во KN, 1995. 231 с.
    [Abdulkadyrov KM, Bessmeltsev SS. Aplasticheskaya anemiya. (Aplastic anemia.) Moscow: Nauka; Saint Petersburg: KN Publ.; 1995. 231 p. (In Russ)]
  2. Розанова О.Е. Иммунологические особенности патогенеза апластической анемии: роль цитокинов: Дис. … д-ра мед. наук. СПб., 2006.
    [Rozanova OE. Immunologicheskie osobennosti patogeneza aplasticheskoi anemii: rol’ tsitokinov. (Immunological features of the pathogenesis of aplastic anemia: the role of cytokines.) [dissertation] Saint Petersburg; 2006. (In Russ)]
  3. Кулагин А.Д., Лисуков И.А., Козлов В.А. Апластическая анемия: иммунопатогенез, клиника, диагностика, лечение. Новосибирск: Наука, 2008. 236 с.
    [Kulagin AD, Lisukov IA, Kozlov VA. Aplasticheskaya anemiya: immunopatogenez, klinika, diagnostika, lechenie. (Aplastic anemia: immunopathogenesis, clinical features, diagnosis, and treatment.) Novosibirsk: Nauka Publ.; 2008. 236 p. (In Russ)]
  4. Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood. 2006;108(8):2509–19. doi: 10.1182/blood-2006-03-010777.
  5. Zeng Y, Katsanis E. The complex pathophysiology of acquired aplastic anaemia. Clin Exp Immunol. 2015;180(3):361–70. doi: 10.1111/cei.12605.
  6. Михайлова Е.А., Фидарова З.Т., Устинова Е.Н. и др. Комбинированная иммуносупрессивная терапия больных апластической анемией: повторные курсы антитимоцитарного глобулина. Гематология и трансфузиология. 2014;59:11–8.
    [Mikhailova EA, Fidarova ZT, Ustinova EN, et al. Combined immunosuppressive therapy in patients with aplastic anemia: repeated courses of antithymocyte globulin. Gematologiya i transfuziologiya. 2014;59:11–8. (In Russ)]
  7. DeLatour P, Tabrizi R, Marcais A, et al. Nationwide survey on the use of horse antithymocyte globulins (ATGAM) in patients with acquired aplastic anemia: A report on behalf of the French Reference Center for Aplastic Anemia. Am J Hematol. 2018;93(5):635–42. doi: 10.1002/ajh.25050.
  8. Михайлова Е.А., Фидарова З.Т., Троицкая В.В. и др. Клинические рекомендации по диагностике и лечению апластической анемии (редакция 2019 г.). Гематология и трансфузиология. 2020;65(2):208–26. doi: 10.35754/0234-5730-2020-65-2-208-226.
    [Mihailova EA, Fidarova ZT, Troitskaya VV, et al. Clinical recommendations for the diagnosis and treatment of aplastic anemia (2019 edition). Gematologiya i transfuziologiya. 2020;65(2):208–26. doi: 10.35754/0234-5730-2020-65-2-208-226. (In Russ)]
  9. Townsley DM, Scheinberg P, Winkler T, et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N Engl J Med. 2017;376(16):1540–50. doi: 10.1056/NEJMoa1613878.
  10. Drexler B, Passweg J. Current evidence and the emerging role of eltrombopag in severe aplastic anemia. Ther Adv Hematol. 2021;12:2040620721998126. doi: 10.1177/2040620721998126.
  11. Kulagin A, Lisukov I, Ivanova M, et al. Prognostic value of paroxysmal nocturnal haemoglobinuria clone presence in aplastic anaemia patients treated with combined immunosuppression: results of two-centre prospective study. Br J Haematol 2014;164(4):546–54. doi: 10.1111/bjh.12661.
  12. Sugimori C, Chuhjo T, Feng X, et al. Minor population of CD55-CD59- blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood. 2006;107(4):1308–14. doi: 10.1182/blood-2005-06-2485.
  13. Zhao X, Zhang L, Jing L et al. The role of paroxysmal nocturnal hemoglobinuria clones in response to immunosuppressive therapy of patients with severe aplastic anemia. Ann Hematol. 2015;94(7):1105–10. doi: 10.1007/s00277-015-2348-5.
  14. Кулагин А.Д. Клинико-гематологические и иммунологические критерии долгосрочного прогноза приобретенной апластической анемии: Дис.… д-ра мед. наук. СПб., 2015.
    [Kulagin AD. Kliniko-gematologicheskie i immunologicheskie kriterii dolgosrochnogo prognoza priobretennoi aplasticheskoi anemii. (Clinical, hematological, and immunological criteria for long-term prognosis of acquired aplastic anemia.) [dissertation] Saint Petersburg; 2015. (In Russ)]
  15. Scheinberg P, Rios OJ, Scheinberg P, et al. Prolonged cyclosporine administration after antithymocyte globulin delays but does not prevent relapse in severe aplastic anemia. Am J Hematol. 2014;89(6):571–4. doi: 10.1002/ajh.2369.
  16. Frickhofen N, Heimpel H, Kaltwasser JP, Schrezenmeier H. Antithymocyte globulin with or without cyclosporin A: 11-year follow-up of a randomized trial comparing treatments of aplastic anemia. Blood. 2003;101(4):1236–42. doi: 10.1182/blood-2002-04-1134.
  17. Afable MG, Tiu RV, Maciejewski JP. Clonal evolution in aplastic anemia. Hematology Am Soc Hematol Educ Program. 2011;2011:90–5. doi: 10.1182/asheducation-2011.1.90.
  18. Sun L, Babushok DV. Secondary myelodysplastic syndrome and leukemia in acquired aplastic anemia and paroxysmal nocturnal hemoglobinuria. Blood. 2020;136(1):36–49. doi: 10.1182/blood.2019000940.
  19. Li Y, Li X, Ge, et al. Long-term follow-up of clonal evolutions in 802 aplastic anemia patients: a single-center experience. Ann Hematol. 2011;90(5):529–37. doi: 10.1007/s00277-010-1140-9.
  20. Фидарова З.Т., Михайлова Е.А., Гальцева И.В. и др. Динамика ПНГ-клона у больных апластической анемией в процессе иммуносупрессивной терапии. Клиническая лабораторная диагностика. 2016;61(8):490–4. doi: 10.18821/0869-2084-2016-61-8-490-494.
    [Fidarova ZT, Mikhailova EA, Galtseva IV, et al. The dynamics of paroxysmal nocturnal hemoglobinuria clone in patients with aplastic anemia in process of immune suppressive therapy. Klinicheskaia laboratornaia diagnostika. 2016;61(8):490–4. doi: 10.18821/0869-2084-2016-61-8-490-494. (In Russ)]
  21. Boddu PC, Kadia TM. Molecular pathogenesis of acquired aplastic anemia. Eur J Haematol. 2019;102(2):103–10. doi: 10.1111/ejh.13182.
  22. Young NS, Maciejewski JP, Sloand E, et al. The relationship of aplastic anemia and PNH. Int J Hematol. 2002;76(2):168–72. doi: 10.1007/BF03165111.
  23. Shresenmeier H, Hertenstein B, Wagner B, et al. A pathogenetic link between aplastic anemia and paroxysmal nocturnal haemoglobinuria is suggested by a high frequency of aplastic anaemia patients with a deficiency of phosphatidylinositol glycan anchored proteins. Exp Haematol. 1995;23(2):181.
  24. Griscelli-Bennaceur A, Gluckman E, Scrobohaci ML, et al. Aplastic anemia and paroxysmal nocturnal hemoglobinuria: search for a pathogenetic link. Blood 1995;85(5):1354–63.
  25. Shilova E, Glazanova T, Chubukina Z, et al. Aplastic anemia associated with PNH-clone – a single centre experience. Blood. 2016;128(22):5080. doi: 10.1182/blood.V128.22.5080.5080.
  26. Wanachiwanawin W, Siripanyaphinyo U, Piyawattanasakul N, Kinoshita T. A cohort study of the nature of paroxysmal nocturnal hemoglobinuria clones and PIG-A mutations in patients with aplastic anemia. Eur J Haematol. 2006;76(6):502–9. doi: 10.1111/j.0902-4441.2005.t01-1-EJH2467.
  27. Шилова Е.Р., Глазанова Т.В., Чубукина Ж.В. и др. Пароксизмальная ночная гемоглобинурия у пациентов с апластической анемией: проблемы, особенности, анализ клинического наблюдения. Клиническая онкогематология. 2019;12(3):319–28. doi: 10.21320/2500-2139-2019-12-3-319-328.
    [Shilova ER, Glazanova TV, Chubukina ZhV, et al. Paroxysmal Nocturnal Hemoglobinuria in Patients with Aplastic Anemia: Challenges, Characteristics, and Analysis of Clinical Experience. Clinical oncohematology. 2019;12(3):319–28. doi: 10.21320/2500-2139-2019-12-3-319-328. (In Russ)]
  28. Kulagin A, Golubovskaya I, Ivanova M, et al. Incidence and risk factors for hemolytic paroxysmal nocturnal hemoglobinuria (PNH) in aplastic anemia (AA) patients. Bone Marrow Transplant. 2014;49(Suppl 1):S42–S43. doi: 10.1038/bmt.2014.43.
  29. Кулагин А.Д., Лисуков И.А., Птушкин В.В. и др. Национальные клинические рекомендации по диагностике и лечению пароксизмальной ночной гемоглобинурии. Онкогематология. 2014;9(2):20–8. doi: 10.17650/1818-8346-2014-9-2-20-28.
    [Kulagin AD, Lisukov IA, Ptushkin VV, et al. National clinical guidelines for the diagnosis and treatment of paroxysmal nocturnal hemoglobinuria. Oncohematology. 2014;9(2):20–8. doi: 10.17650/1818-8346-2014-9-2-20-28. (In Russ)]
  30. Borowitz MJ, Craig FE, Digiuseppe JA, et al. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytometry B Clin Cytom. 2010;78(4):211–30. doi: 10.1002/cyto.b.20525.
  31. Nissen-Druey C, Tichelli A, Meyer-Monard S. Human hematopoietic colonies in health and disease. Acta Haematol. 2005;113(1):5–96. doi: 10.1159/000081987.
  32. Kojima S, Ohara A, Tsuchida M, еt al. Risk factors for evolution of acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosupressive therapy in children. Blood. 2002;100(3):786–90. doi: 10.1182/blood.v100.3.786.
  33. Балашова В.А., Шилова Е.Р., Семенова Н.Ю., Ругаль В.И. Колониеобразующая способность гемопоэтических стволовых клеток больных апластической анемией в зависимости от наличия ПНГ-клона. Гематология и трансфузиология. 2016;1:32.
    [Balashova VA, Shilova ER, Semenova NYu, Rugal VI. Colony-forming ability of hematopoietic stem cells in patients with aplastic anemia depending on the presence of a PNH clone. Gematologiya i transfuziologiya. 2016;1:32. (In Russ)]
  34. Пономаренко В.М., Блинова Т.С., Шилова Е.Р. Новые ультраструктурные особенности стромальных клеток костного мозга больных с апластической анемией. Гематология и трансфузиология. 1993;1:11–5.
    [Ponomarenko VM, Blinova TS, Shilova ER. New ultrastructural characteristics of the bone marrow stromal cells in patients with aplastic anemia. Gematologiya i transfuziologiya. 1993;1:11–5. (In Russ)]
  35. Вартанян Н.Л., Бессмельцев С.С., Семенова Н.Ю., Ругаль В.И. Мезенхимальные стромальные клетки при апластической анемии, гемобластозах и негематологических опухолях. Бюллетень Сибирского отделения РАМН. 2014;34(6):17–26.
    [Vartanyan NL, Bessmeltsev SS, Semenova NYu, Rugal VI. Mesenchymal stromal cells in aplastic anemia, hematological malignancies and non-hematological tumors. Byulleten Sibirskogo otdeleniya RAMN. 2014;34(6):17–26. (In Russ)]
  36. Погодина Н.А., Семенова Н.Ю., Ругаль В.И. и др. Биологические особенности паренхимы и стромы костного мозга при апластической анемии. Вестник гематологии. 2019;15(2):29–36.
    [Pogodina NA, Semenova NYu, Rugal VI, et al. Biological features of parenchyma and the bone marrow stroma in aplastic anemia. Vestnik gematologii. 2019;15(2):29–36. (In Russ)]
  37. Korkama E-S, Armstrong A-E, Jarva H, Meri S. Spontaneous remission in paroxysmal nocturnal hemoglobinuria – return to health or transition into malignancy? Front Immunol. 2018;9:1749. doi: 10.3389/fimmu.2018.01749.
  38. Babushok DV, Stanley N, Xie HM, et al. Clonal replacement underlies spontaneous remission in paroxysmal nocturnal haemoglobinuria. Br J Haematol. 2017;176(3):487–90. doi: 10.1111/bjh.13963.
  39. Illingworth A, Marinov I, Sutherland DR, et al. ICCS/ESCCA consensus guidelines to detect GPI-deficient cells in paroxysmal nocturnal hemoglobinuria (PNH) and related disorders part 3 – data analysis, reporting and case studies. Cytometry B Clin Cytom. 2018;94(1):49–66. doi: 10.1002/cyto.b.21609.
  40. Mortazavi Y, Tooze JA, Gordon-Smith EC, Rutherford TR. N-RAS gene mutation in patients with aplastic anemia and aplastic anemia/ paroxysmal nocturnal hemoglobinuria during evolution to clonal disease. Blood. 2000;95(2):646–50. doi: 10.1182/BLOOD.V95.2.646.
  41. Yoshizato T, Dumitriu B, Hosokawa K, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373(1):35–47. doi: 10.1056/NEJMoa1414799.
  42. Ogawa S. Clonal hematopoiesis in acquired aplastic anemia. Blood. 2016;128(3):337–47. doi: 10.1182/blood-2016-01-636381.
  43. Negoro E, Nagata Y, Clemente MJ, et Origins of myelodysplastic syndromes after aplastic anemia. Blood. 2017;130(17):1953–7. doi: 10.1182/blood-2017-02-767731.
  44. Белоцерковская Е.В., Зайкова Е.К., Петухов А.В. и др. Выявление мутаций генов эпигенетической регуляции генома IDH1/2, DNMT3A, ASXL1 и их сочетания с мутациями FLT3, NPM1, RUNX1 у пациентов с острыми миелоидными лейкозами. Клиническая онкогематология. 2021;14(1):13–21. doi: 10.21320/2500-2139-2021-14-1-13-21.
    [Belotserkovskaya EV, Zaikova EK, Petukhov AV, et al. Identification of Mutations in IDH1/2, DNMT3A, ASXL1 Genes of Genome Epigenetic Regulation and Their Co-Occurrence with FLT3, NPM1, RUNX1 Mutations in Acute Myeloid Leukemia. Clinical oncohematology. 2021;14(1):13–21. doi: 10.21320/2500-2139-2021-14-1-13-21. (In Russ)]
  45. Makishima H. Clonal hematopoiesis in aplastic anemia. Rinsho Ketsueki. 2018;59(10):1962–8. doi: 10.11406/rinketsu.59.1962.
  46. Кохно А.В., Паровичникова Е.Н., Михайлова Е.А., Савченко В.Г. Алгоритмы обследования и протоколы лечения больных с различными формами миелодиспластических синдромов. В кн.: Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. В.Г. Савченко. В 2 томах. М.: Практика, 2018. Т. 1. С. 441–78.
    [Kokhno AV, Parovichnikova EN, Mikhailova EA, Savchenko VG. Monitoring algorithms and treatment protocols for the patients with various myelodysplastic syndromes. In: Savchenko VG, ed. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika; 2018. In 2 volumes. Vol. 1. pр. 441–78. (In Russ)]
  47. Golubovskaya IK, Kulagin AD, Rudnitskaya YV, et al. Myelodysplastic syndrome/acute myeloid leukemia evolving from aplastic anemia: Efficacy of hematopoietic stem cell transplantation. Cell Ther Transplant. 2018;2(23):36–44. doi: 10.18620/ctt-1866-8836-2018-7-2-36-44.

EVI1-Positive Leukemias and Myelodysplastic Syndromes: Theoretical and Clinical Aspects (Literature Review)

NN Mamaev, AI Shakirova, EV Morozova, TL Gindina

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Prof. Nikolai Nikolaevich Mamaev, MD, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; e-mail: nikmamaev524@gmail.com

For citation: Mamaev NN, Shakirova AI, Morozova EV, Gindina TL. EVI1-Positive Leukemias and Myelodysplastic Syndromes: Theoretical and Clinical Aspects (Literature Review). Clinical oncohematology. 2021;14(1):103–17. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-103-117


ABSTRACT

The present review provides the analysis of theoretical background and therapy of prognostically poorest EVI1-positive myeloid leukemias and myelodysplastic syndromes which is performed at the RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation. The focus is on the evidence of the dominating role of EVI1 gene in impaired epigenetic regulation of hematopoiesis and, thus, on the feasibility of allogeneic hematopoietic stem cell transplantation with hypomethylating agents and/or trans-retinoic acid used for these diseases treatment.

Keywords: EVI1, acute myeloid leukemia, chronic myeloid leukemia, myelodysplastic syndrome, allo-HSCT, hypomethylating agents, trans-retinoic acid.

Received: September 12, 2020

Accepted: December 6, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Barjesteh van Waalwijk van Doorn-Khosrovani S. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2002;101(3):837–45. doi: 10.1182/blood-2002-05-1459.
  2. Lugthart S, van Drunen E, van Norden Y, et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood. 2008;111(8):4329–37. doi: 10.1182/blood-2007-10-119230.
  3. Groschel S, Lugthart S, Schlenk RF, et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol. 2010;28(12):2101–7. doi: 10.1200/JCO.2009.26.0646.
  4. Paquette RL, Nicoll J, Chalukya M, et al. Frequent EVI1 translocations in myeloid blast crisis CML that evolves through tyrosine kinase inhibitors. Cancer Genet. 2011;204(7):392–7. doi: 10.1016/j.cancergen.2011.06.002.
  5. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Лейкозы и миелодиспластические синдромы с высокой экспрессией гена EVI1: теоретические и клинические аспекты. Клиническая онкогематология. 2012;5(4):361–4.
    [Mamaev NN, Gorbunova AV, Gindina TL, et al. Leukemias and myelodysplastic syndromes with high expression of EVI1 gene: theoretical and clinical aspects. Klinicheskaya onkogematologiya. 2012;5(4):361–4. (In Russ)]
  6. Rogers HJ, Vardiman JW, Anastasi J, et al. Complex or monosomal karyotype and not blast percentage is associated with poor survival in acute myeloid leukemia and myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2): a Bone Marrow Pathology Group study. Haematologica. 2014;99(5):821–9. doi: 10.3324/haematol.2013.096420.
  7. Reiter E, Greinix H, Rabitsch W, et al. Low curative potential of bone marrow transplantation for highly aggressive acute myelogenous leukemia with inversion inv(3)(q21q26) or homologous translocation t(3;3)(q21;q26). Ann Hematol. 2000;79(7):374–7. doi: 10.1007/s002770000158.
  8. He X, Wang Q, Cen J, et al. Predictive value of high EVI1 expression in AML patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation in first CR. Bone Marrow Transplant. 2016;51(7):921–7. doi: 10.1038/bmt.2016.71.
  9. Gindina TL, Mamaev NN, Afanasyev BV. Chromosome abnormalities and hematopoietic stem cell transplantation in acute leukemias. In: ML Larramendy, S Soloneski (eds). Chromosomal abnormalities – A hallmark manifestation of genomic instability. IntechOpen; 2017. рр. 71– doi: 10.5772/67802.
  10. Halaburda K, Labopin M, Houhou M, et al. AlloHSCT for inv(3)(q21;q26)/t(3;3)(q21;q26) AML: a report from the acute leukemia working party of the European society for blood and marrow transplantation. Bone Marrow Transplant. 2018;53(6):683–91. doi: 10.1038/s41409-018-0165-x.
  11. Martinelli G, Ottaviani E, Buonamici S, et al. Association of 3q21q26 syndrome with different RPN1/EVI1 fusion transcripts. Haematologica. 2003;88(11):1221–8.
  12. Poppe B, Dastugue N, Vandesompele J, et al. EVI1 is consistently expressed as principal transcript in common and rare recurrent 3q26 rearrangements. Genes Chromos Cancer. 2006;45(4):349–56. doi: 10.1002/gcc.20295.
  13. De Braekeleer M, Le Bris MJ, De Braekeleer E, et al. 3q26/EVI1 rearrangements in myeloid hemopathies: a cytogenetic review. Fut Oncol. 2015;11(11):1675–86. doi: 10.2217/fon.15.64.
  14. Mamaev NN, Gindina TL, Morozova EV, et al. Primary myelodysplastic syndrome with two rare recurrent chromosome abnormalities [t(3q26/2;q22 and trisomy 13] associated with resistance to chemotherapy and hematopoietic stem cell transplantation. Cell Ther Transplant. 2018;7(2):64–9. doi: 10/18620/ctt-1866-8836-2018-7-2-64-69.
  15. Hodge JC, Bosler D, Rubinstein L, et al. Molecular and pathologic characterization of AML with double inv(3)(q21q26.2). Cancer Genet. 2019;230:28–36. doi: 10.1016/j.cancergen.2018.08.007.
  16. Testoni N, Borsaru G, Martinelli G, et al. 3q21 and 3q26 cytogenetic abnormalities in acute myeloblastic leukemia: biological and clinical features. Haematologica. 1999;84(8):690–4.
  17. Russell M, List A, Greenberg P, et al. Expression of EVI1 in myelodysplastic syndromes and other hematologic malignancies without 3q26 translocations. Blood. 1994;84(4):1243–8. doi: 10.1182/blood.V84.4.1243.1243.
  18. Groschel S, Schlenk RF, Engelmann J, et al. Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias: a study of the German-Austrian Acute Myeloid Leukemia Study Group and the Dutch-Belgian-Swiss HOVON/SAKK Cooperative Group. J Clin Oncol. 2013;31(1):95–103. doi: 10.1200/JCO.2011.41.5505.
  19. Ho PA, Alonzo TA, Gerbing RB, et al. High EVI1 expression is associated with MLL rearrangements and predicts decreased survival in paediatric acute myeloid leukaemia: a report from the children’s oncology group. Br J Haematol. 2013;162(5):670–7. doi: 10.1111/bjh.12444.
  20. Zhang Y, Owens K, Hatem L, et al. Essential role of PR-domain protein MDS1-EVI1 in MLL-AF9 leukemia. Blood. 2013;122(16):2888–92. doi: 10.1182/blood-2012-08-453662.
  21. Mucenski ML, Taylor BA, Ihle JN, et al. Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol. 1988;8(1):301–8. doi: 10.1128/mcb.8.1.301.
  22. Goyama S, Kurokawa M. Pathogenetic significance of ecotropic viral integration site-1 in hematological malignancies. Cancer Sci. 2009;100(6):990–5. doi: 10.1111/j.1349-7006.2009.01152.x.
  23. Hinai AA, Valk PJ. Review: Aberrant EVI1 expression in acute myeloid leukaemia. Br J Haematol. 2016;172(6):870–8. doi: 10.1111/bjh.13898.
  24. Yuan X, Wang X, Bi K, Jiang G. The role of EVI-1 in normal hematopoiesis and myeloid malignancies (Review). Int J Oncol. 2015;47(6):2028–36. doi: 10.3892/ijo.2015.3207.
  25. Delwel R, Funabiki T, Kreider BL, et al. Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA. Mol Cell Biol. 1993;13(7):4291–300. doi: 10.1128/mcb.13.7.4291.
  26. Funabiki T, Kreider BL, Ihle JN. The carboxyl domain of zinc fingers of the Evi-1 myeloid transforming gene binds a consensus sequence of GAAGATGAG. Oncogene. 1994;9(6):1575–81.
  27. Morishita K, Suzukawa K, Taki T, et al. EVI-1 zinc finger protein works as a transcriptional activator via binding to a consensus sequence of GACAAGATAAGATAAN1-28 CTCATCTTC. Oncogene. 1995;10(10):1961–7.
  28. Perkins AS, Kim JH. Zinc fingers 1–7 of EVI1 fail to bind to the GATA motif by itself but require the core site GACAAGATA for binding. J Biol Chem. 1996;271(2):1104–10. doi: 10.1074/jbc.271.2.1104.
  29. Bartholomew C, Kilbey A, Clark AM, Walker M. The Evi-1 proto-oncogene encodes a transcriptional repressor activity associated with transformation. Oncogene. 1997;14(5):569–77. doi: 10.1038/sj.onc.1200864.
  30. Kilbey A, Bartholomew C. Evi-1 ZF1 DNA binding activity and a second distinct transcriptional repressor region are both required for optimal transformation of Rat1 fibroblasts. Oncogene. 1998;16(17):2287–91. doi: 10.1038/sj.onc.1201732.
  31. Bordereaux D, Fichelson S, Tambourin P, Gisselbrecht S. Alternative splicing of the Evi-1 zinc finger gene generates mRNAs which differ by the number of zinc finger motifs. Oncogene. 1990;5(6):925–7.
  32. Alzuherri H, McGilvray R, Kilbey A, Bartholomew C. Conservation and expression of a novel alternatively spliced Evi1 exon. Gene. 2006;384:154–62. doi: 10.1016/j.gene.2006.07.027.
  33. Fears S, Mathieu C, Zeleznik-Le N, et al. Intergenic splicing of MDS1 and EVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc Natl Acad Sci USA. 1996;93(4):1642–7. doi: 10.1073/pnas.93.4.1642.
  34. Huang S, Shao G, Liu L. The PR domain of the Rb-binding zinc finger protein RIZ1 is a protein binding interface and is related to the SET domain functioning in chromatin-mediated gene expression. J Biol Chem. 1998;273(26):15933–9. doi: 10.1074/jbc.273.26.15933.
  35. Goyama S, Yamamoto G, Shimabe M, et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell. 2008;3(2):207–20. doi: 10.1016/j.stem.2008.06.002.
  36. Laricchia-Robbio L, Nucifora G. Significant increase of self-renewal in hematopoietic cells after forced expression of EVI1. Blood Cells Mol Dis. 2008;40(2):141–7. doi: 10.1016/j.bcmd.2007.07.012.
  37. Yoshimi A, Kurokawa M. Evi1 forms a bridge between the epigenetic machinery and signaling pathways. Oncotarget. 2011;2(7):575–86. doi: 10.18632/oncotarget.304.
  38. Buonamici S, Li D, Chi Y, et al. EVI1 induces myelodysplastic syndrome in mice. J Clin Invest. 2005;115(8):2296. doi: 1172/jci21716c1.
  39. Cuenco GM, Ren R. Both AML1 and EVI1 oncogenic components are required for the cooperation of AML1/MDS1/EVI1 with BCR/ABL in the induction of acute myelogenous leukemia in mice. Oncogene. 2004;23(2):569–79. doi: 10.1038/sj.onc.1207143.
  40. Glass C, Wilson M, Gonzalez R, et al. The role of EVI1 in myeloid malignancies. Blood Cells Mol Dis. 2014;53(1–2):67–76. doi: 10.1016/j.bcmd.2014.01.002.
  41. Jin G, Yamazaki Y, Takuwa M, et al. Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood. 2007;109(9):3998–4005. doi: 10.1182/blood-2006-08-041202.
  42. Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442(7104):818–22. doi: 10.1038/nature04980.
  43. Bindels EM, Havermans M, Lugthart S, et al. EVI1 is critical for the pathogenesis of a subset of MLL-AF9-rearranged AMLs. Blood. 2012;119(24):5838–49. doi: 10.1182/blood-2011-11-393827.
  44. Glass C, Wuertzer C, Cui X, et al. Global Identification of EVI1 Target Genes in Acute Myeloid Leukemia. PLoS One. 2013;8(6):e67134. doi: 10.1371/journal.pone.0067134.
  45. Hoyt PR, Bartholomew C, Davis AJ, et al. The Evi1 proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech Dev. 1997;65(1–2):55–70. doi: 10.1016/s0925-4773(97)00057-9.
  46. Nucifora G. The EVI1 gene in myeloid leukemia. Leukemia. 1997;11(12):2022–31. doi: 10.1038/sj.leu.2400880.
  47. Kataoka K, Sato T, Yoshimi A, et al. Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J Exp Med. 2011;208(12):2403–16. doi: 10.1084/jem.20110447.
  48. Zhang Y, Stehling-Sun S, Lezon-Geyda K, et al. PR-domain-containing Mds1-Evi1 is critical for long-term hematopoietic stem cell function. Blood. 2011;118(14):3853–61. doi: 10.1182/blood-2011-02-334680.
  49. Steinleitner K, Rampetsreiter P, Koffel R, et al. EVI1 and MDS1/EVI1 expression during primary human hematopoietic progenitor cell differentiation into various myeloid lineages. Anticancer Res. 2012;32(11):4883–9.
  50. Wieser R. The oncogene and developmental regulator EVI1: expression, biochemical properties, and biological functions. Gene. 2007;396(2):346–57. doi: 10.1016/j.gene.2007.04.012.
  51. Xi ZF, Russell M, Woodward S, et al. Expression of the Zn finger gene, EVI-1, in acute promyelocytic leukemia. Leukemia. 1997;11(2):212–20. doi: 10.1038/sj.leu.2400547.
  52. Aytekin M, Vinatzer U, Musteanu M, et al. Regulation of the expression of the oncogene EVI1 through the use of alternative mRNA 5’-ends. Gene. 2005;356:160–8. doi: 10.1016/j.gene.2005.04.032.
  53. Niederreither K, Subbarayan Y, Dolle P, et al. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet. 1999;21(4):444–8. doi: 1038/7788.
  54. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617–28. doi: 10.1056/NEJMoa040465.
  55. Morishita K, Parganas E, William CL, et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc Natl Acad Sci USA. 1992;89(9):3937–41. doi: 10.1073/pnas.89.9.3937.
  56. Ogawa S, Mitani K, Kurokawa M, et al. Abnormal expression of Evi-1 gene in human leukemias. Hum Cell. 1996;9(4):323–32.
  57. Lugthart S, Groschel S, Beverloo HB, et al. Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol. 2010;28(24):3890–8. doi: 10.1200/JCO.2010.29.2771.
  58. Groschel S, Sanders MA, Hoogenboezem R, et al. Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways. Blood. 2015;125(1):133–9. doi: 10.1182/blood-2014-07-591461.
  59. Langabeer SE, Rogers JR, Harrison G, et al. EVI1 expression in acute myeloid leukaemia. Br J Haematol. 2001;112(1):208–11. doi: 10.1046/j.1365-2141.2001.02569.x.
  60. Balgobind BV, Lugthart S, Hollink IH, et al. EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia. 2010;24(5):942–9. doi: 10.1038/leu.2010.47.
  61. Matsuo H, Kajihara M, Tomizawa D, et al. EVI1 overexpression is a poor prognostic factor in pediatric patients with mixed lineage leukemia-AF9 rearranged acute myeloid leukemia. Haematologica. 2014;99(11):e225–е227. doi: 10.3324/haematol.2014.107128.
  62. Testa U, Lo-Coco F. Targeting of leukemia-initiating cells in acute promyelocytic leukemia. Stem Cell Invest. 2015;2:8. doi: 10.3978/j.issn.2306-9759.2015.04.03.
  63. Jo A, Mitani S, Shiba N, et al. High expression of EVI1 and MEL1 is a compelling poor prognostic marker of pediatric AML. Leukemia. 2015;29(5):1076–83. doi: 10.1038/leu.2015.5.
  64. Sadeghian MH, Rezaei Dezaki Z. Prognostic Value of EVI1 Expression in Pediatric Acute Myeloid Leukemia: A Systematic Review. Iran J Pathol. 2018;13(3):294–300.
  65. Arai S, Yoshimi A, Shimabe M, et al. Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells. Blood. 2011;117(23):6304–14. doi: 10.1182/blood-2009-07-234310.
  66. De Weer A, Van der Meulen J, Rondou P, et al. EVI1-mediated down regulation of MIR449A is essential for the survival of EVI1 positive leukaemic cells. Br J Haematol. 2011;154(3):337–48. doi: 10.1111/j.1365-2141.2011.08737.x.
  67. Yamazaki H, Suzuki M, Otsuki A, et al. A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell. 2014;25(4):415–27. doi: 10.1016/j.ccr.2014.02.008.
  68. Groschel S, Sanders MA, Hoogenboezem R, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014;157(2):369–81. doi: 10.1016/j.cell.2014.02.019.
  69. Lugthart S, Figueroa ME, Bindels E, et al. Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI1. Blood. 2011;117(1):234–41. doi: 10.1182/blood-2010-04-281337.
  70. Bartholomew C, Morishita K, Askew D, et al. Retroviral insertions in the CB-1/Fim-3 common site of integration activate expression of the Evi-1 gene. Oncogene. 1989;4(5):529–34.
  71. Kreider BL, Orkin SH, Ihle JN. Loss of erythropoietin responsiveness in erythroid progenitors due to expression of the Evi-1 myeloid-transforming gene. Proc Natl Acad Sci USA. 1993;90(14):6454–8. doi: 10.1073/pnas.90.14.6454.
  72. Kataoka K, Kurokawa M. Ecotropic viral integration site 1, stem cell self-renewal and leukemogenesis. Cancer Sci. 2012;103(8):1371–7. doi: 10.1111/j.1349-7006.2012.02303.x.
  73. Soderholm J, Kobayashi H, Mathieu C, et al. The leukemia-associated gene MDS1/EVI1 is a new type of GATA-binding transactivator. Leukemia. 1997;11(3):352–8. doi: 10.1038/sj.leu.2400584.
  74. Laricchia-Robbio L, Fazzina R, Li D, et al. Point mutations in two EVI1 Zn fingers abolish EVI1-GATA1 interaction and allow erythroid differentiation of murine bone marrow cells. Mol Cell Biol. 2006;26(20):7658–66. doi: 10.1128/MCB.00363-06.
  75. Senyuk V, Sinha KK, Li D, et al. Repression of RUNX1 activity by EVI1: a new role of EVI1 in leukemogenesis. Cancer Res. 2007;67(12):5658–66. doi: 10.1158/0008-5472.CAN-06-3962.
  76. Laricchia-Robbio L, Premanand K, Rinaldi CR, Nucifora G. EVI1 Impairs myelopoiesis by deregulation of PU.1 function. Cancer Res. 2009;69(4):1633–42. doi: 10.1158/0008-5472.CAN-08-2562.
  77. Steinmetz B, Hackl H, Slabakova E, et al. The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid. Cell Cycle. 2014;13(18):2931–43. doi: 10.4161/15384101.2014.946869.
  78. Yuasa H, Oike Y, Iwama A, et al. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J. 2005;24(11):1976–87. doi: 10.1038/sj.emboj.7600679.
  79. Shimabe M, Goyama S, Watanabe-Okochi N, et al. Pbx1 is a downstream target of Evi-1 in hematopoietic stem/progenitors and leukemic cells. Oncogene. 2009;28(49):4364–74. doi: 10.1038/onc.2009.288.
  80. Kurokawa M, Mitani K, Irie K, et al. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature. 1998;394(6688):92–6. doi: 10.1038/27945.
  81. Izutsu K, Kurokawa M, Imai Y, et al. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood. 2001;97(9):2815–22. doi: 10.1182/blood.v97.9.2815.
  82. Kurokawa M, Mitani K, Yamagata T, et al. The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J. 2000;19(12):2958–68. doi: 10.1093/emboj/19.12.2958.
  83. Buonamici S, Li D, Mikhail FM, et al. EVI1 abrogates interferon-alpha response by selectively blocking PML induction. J Biol Chem. 2004;280(1):428–36. doi: 10.1074/jbc.M410836200.
  84. Pradhan AK, Mohapatra AD, Nayak KB, Chakraborty S. Acetylation of the proto-oncogene EVI1 abrogates Bcl-xL promoter binding and induces apoptosis. PLoS One. 2011;6(9):e25370. doi: 10.1371/journal.pone.0025370.
  85. Yatsula B, Lin S, Read AJ, et al. Identification of binding sites of EVI1 in mammalian cells. J Biol Chem. 2005;280(35):30712–22. doi: 10.1074/jbc.M504293200.
  86. Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42(8):722–6. doi: 10.1038/ng.621.
  87. Figueroa ME, Lugthart S, Li Y, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;17(1):13–27. doi: 10.1016/j.ccr.2009.11.020.
  88. Wagner JM, Hackanson B, Lubbert M, Jung M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenet. 2010;1(3–4):117–36. doi: 10.1007/s13148-010-0012-4.
  89. Senyuk V, Zhang Y, Liu Y, et al. Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis. Proc Natl Acad Sci USA. 2013;110(14):5594–9. doi: 10.1073/pnas.1302645110.
  90. Nikoloski G, Langemeijer SM, Kuiper RP, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42(8):665–7. doi: 10.1038/ng.620.
  91. Makishima H, Jankowska AM, Tiu RV, et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia. 2010;24(10):1799–804. doi: 10.1038/leu.2010.167.
  92. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi: 10.1056/NEJMoa1005143.
  93. Walter MJ, Ding L, Shen D, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–8. doi: 10.1038/leu.2011.44.
  94. Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301. doi: 10.1056/NEJMoa0810069.
  95. Langemeijer SM, Kuiper RP, Berends M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41(7):838–42. doi: 10.1038/ng.391.
  96. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
  97. van Haaften G, Dalgliesh GL, Davies H, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41(5):521–3. doi: 10.1038/ng.349.
  98. Liu Y, Chen L, Ko TC, et al. Evi1 is a survival factor which conveys resistance to both TGFbeta- and taxol-mediated cell death via PI3K/AKT. Oncogene. 2006;25(25):3565–75. doi: 10.1038/sj.onc.1209403.
  99. Yoshimi A, Goyama S, Watanabe-Okochi N, et al. Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood. 2011;117(13):3617–28. doi: 10.1182/blood-2009-12-261602.
  100. Bingemann SC, Konrad TA, Wieser R. Zinc finger transcription factor ecotropic viral integration site 1 is induced by all-trans retinoic acid (ATRA) and acts as a dual modulator of the ATRA response. FEBS J. 2009;276(22):6810–22. doi: 10.1111/j.1742-4658.2009.07398.x.
  101. Pauebelle E, Plesa A, Hayette S, et al. Efficacy of All-Trans-Retinoic Acid in high-risk acute myeloid leukemia with overexpression of EVI1. Oncol Ther. 2019;7(2):121–30. doi: 10.1007/s40487-019-0095-9.
  102. Vazquez I, Maicas M, Cervera J, et al. Down-regulation of EVI1 is associated with epigenetic alterations and good prognosis in patients with acute myeloid leukemia. Haematologica. 2011;96(10):1448–56. doi: 10.3324/haematol.2011. 040535.
  103. Daghistani M, Marin D, Khorashad JS, et al. EVI-1 oncogene expression predicts survival in chronic-phase CML patients resistant to imatinib treated with second-generation tyrosine kinase inhibitors. Blood. 2010;116(26):6014–7. doi: 10.1182/blood-2010-01-264234.
  104. Мамаев Н.Н., Шакирова А.И., Бархатов И.М. идр. Ведущая роль BAALC-экспрессирующих клеток-предшественниц в возникновении и развитии посттрансплантационных рецидивов у больных острыми миелоидными лейкозами. Клиническая онкогематология. 2020;13(1):75–88. doi: 10.21320/2500-2139-2020-13-1-75-88.
    [Mamaev NN, Shakirova AI, Barkhatov IM, et al. Crucial Role of BAALCExpressing Progenitor Cells in Emergence and Development of Post-Transplantation Relapses in Patients with Acute Myeloid Leukemia. Clinical oncohematology. 2020;13(1):75–88. doi: 10.21320/2500-2139-2020-13-1-75-88. (In Russ)]
  105. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. doi: 10.1038/367645a0.
  106. Matsushita H, Yahata T, Sheng Y, et al. Establishment of a humanized APL model via the transplantation of PML-RARA-transduced human common myeloid progenitors into immunodeficient mice. PLoS One. 2014;9(11):e111082. doi: 10.1371/journal.pone.0111082.
  107. Cole CB, Verdoni AM, Ketkar S, et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126(1):85–98. doi: 10.1172/JCI82897.
  108. Гудожникова Я.В., Мамаев Н.Н., Бархатов И.М. и др. Результаты молекулярного мониторинга в посттрансплантационный период с помощью серийного исследования уровня экспрессии гена WT1 у больных острыми миелоидными лейкозами. Клиническая онкогематология. 2018;11(3):241–51. doi: 10.21320/2500-2139-2018-11-3-241-251.
    [Gudozhnikova YaV, Mamaev NN, Barkhatov IM, et al. Results of Molecular Monitoring in Posttransplant Period by Means of Series Investigation of WT1 Gene Expression in Patients with Acute Myeloid Leukemia. Clinical oncohematology. 2018;11(3):241–51. doi: 10.21320/2500-2139-2018-11-3-241-251. (In Russ)]
  109. Dreyfus F, Bouscary D, Melle J, et al. Expression of the Evi-1 gene in myelodysplastic syndromes. Leukemia. 1995;9(1):203–5. doi: 10.1016/0145-2126(94)90237-2.
  110. Thol F, Yun H, Sonntag AK, et al. Prognostic significance of combined MN1, ERG, BAALC, and EVI1 (MEBE) expression in patients with myelodysplastic syndromes. Ann Hematol. 2012;91(8):1221–33. doi: 10.1007/s00277-012-1457-7.
  111. Russell M, Thompson F, Spier C, Taetle R. Expression of the EVI1 gene in chronic myelogenous leukemia in blast crisis. Leukemia. 1993;7(10):1654–7.
  112. Ogawa S, Kurokawa M, Tanaka T, et al. Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. Leukemia. 1996;10(5):788–94.
  113. Kuila N, Sahoo DP, Kumari M, et al. EVI1, BAALC and AME: prevalence of the secondary mutations in chronic and accelerated phases of chronic myeloid leukemia patients from eastern India. Leuk Res. 2009;33(4):594–6. doi: 10.1016/j.leukres.2008.07.018.
  114. Горбунова А.В., Гиндина Т.Л., Морозова Е.В. и др. Влияние молекулярно-генетических и цитогенетических факторов на эффективность аллогенной трансплантации костного мозга у больных хроническим миелолейкозом. Клиническая онкогематология. 2013;6(4):445–50.
    [Gorbunova AV, Gindina TL, Morozova EV, et al. Impact of molecular genetic and cytogenetic characteristics on outcomes of allogeneic hematopoietic stem cell transplantation in chronic myeloid leukemia. Klinicheskaya oncogematologiya. 2013;6(4):445–50. (In Russ)]
  115. Sato T, Goyama S, Kataoka K, et al. Evi1 defines leukemia-initiating capacity and tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Oncogene. 2014;33(42):5028–38. doi: 10.1038/onc.2014.108.
  116. Konantz M, Andre MC, Ebinger M, et al. EVI-1 modulates leukemogenic potential and apoptosis sensitivity in human acute lymphoblastic leukemia. Leukemia. 2013;27(1):56–65. doi: 10.1038/leu.2012.211.
  117. Mittal N, Li L, Sheng Y, et al. A critical role of epigenetic inactivation of miR-9 in EVI1high pediatric AML. Mol Cancer. 2019;18(1):30. doi: 10.1186/s12943-019-0952-z.
  118. Verhagen HJ, Smit MA, Rutten A, et al. Primary acute myeloid leukemia cells with overexpression of EVI-1 are sensitive to all-trans retinoic acid. Blood. 2016;127(4):458–63. doi: 10.1182/blood-2015-07-653840.
  119. Мамаев Н.Н, Горбунова А.В, Гиндина Т.Л. и др. Стойкое восстановление донорского гемопоэза у больной с посттрансплантационным рецидивом острого миеломонобластного лейкоза с inv(3)(q21q26), моносомией 7 и экспрессией онкогена EVI1 после трансфузий донорских лимфоцитов и использования гипометилирующих агентов. Клиническая онкогематология. 2014;7(1):71–5.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Stable donor hematopoiesis reconstitution after post­transplantation relapse of acute myeloid leukemia in patient with inv(3)(q21q26), –7 and EVI1 oncogene overexpression treated by donor lymphocyte infusions and hypomethylating agents. Klinicheskaya oncogematologiya. 2014;7(1):71–5. (In Russ)]
  120. He X, Wang Q, Cen J, et al. Predictive value of high EVI1 expression in AML patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation in first CR. Bone Marrow Transplant. 2016;51(7):921–7. doi: 10.1038/bmt.2016.71.
  121. Мамаев Н.Н., Морозова Е.В., Горбунова А.В. Теоретические и клинические аспекты эпигенетических изменений при миелодиспластических синдромах и острых нелимфобластных лейкозах (обзор литературы). Вестник гематологии. 2011;7(3):12–21.
    [Mamaev NN, Morozova EV, Gorbunova AV. Theoretical and practical aspects of epigenetic changes in myelodysplastic syndromes and acute non-lymphoblastic leukemias (literature review). Vestnik gematologii. 2011;7(3):12–21. (In Russ)]
  122. Mamaev N, Morozova E, Gindina T, et al. Dacogen and allogeneic bone marrow transplantation in the treatment of high-risk myelodysplastic syndromes with non-random chromosome abnormalities. Leuk Res. 2011;35(Suppl 1):72–3. doi: 10.1016/S0145-2126(11)70186-2.
  123. Mamaev N, Gorbunova A, Barkhatov I, et al. Biology and treatment of leukemia and myelodysplastic syndromes with high EVI-1 gene expression. ELN Frontiers Meeting 2012 “Myeloid neoplasms: approaching cure”. Istanbul, Turkey. Abstract No. 37.
  124. Yang X, Wong MPM, Ng RK. Aberrant DNA Methylation in Acute Myeloid Leukemia and Its Clinical Implications. Int J Mol Sci. 2019;20(18):4576. doi: 10.3390/ijms20184576.
  125. Nowek K, Sun SM, Dijkstra MK, et al. Expression of a passenger miR-9* predicts favorable outcome in adults with acute myeloid leukemia less than 60 years of age. Leukemia. 2016;30(2):303–9. doi: 10.1038/leu.2015.282.
  126. Li F, He W, Geng R, Xie X. Myeloid leukemia with high EVI1 expression is sensitive to 5-aza-2’-deoxycytidine by targeting miR-9. Clin Transl Oncol. 2020;22(1):137–43. doi: 10.1007/s12094-019-02121-y.
  127. Cattaneo F, Nucifora G. EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J Cell Biochem. 2008;105(2):344–52. doi: 10.1002/jcb.21869.
  128. Craddock C, Quek L, Goardon N, et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia. 2013;27(5):1028–36. doi: 10.1038/leu.2012.312.
  129. Trino S, Zoppoli P, Carella AM, et al. DNA methylation dynamic of bone marrow hematopoietic stem cells after allogeneic transplantation. Stem Cell Res Ther. 2019;10(1):138. doi: 10.1186/s13287-019-1245-6.
  130. Ahn JS, Kim YK, Min YH, et al. Azacitidine Pre-Treatment Followed by Reduced-Intensity Stem Cell Transplantation in Patients with Higher-Risk Myelodysplastic Syndrome. Acta Haematol. 2015;134(1):40–8. doi: 10.1159/000368711.
  131. Voso MT, Leone G, Piciocchi A, et al. Feasibility of allogeneic stem-cell transplantation after azacitidine bridge in higher-risk myelodysplastic syndromes and low blast count acute myeloid leukemia: results of the BMT-AZA prospective study. Ann Oncol. 2017;28(7):1547–53. doi: 10.1093/annonc/mdx154.
  132. Овечкина В.Н., Бондаренко С.Н., Морозова Е.В. и др. Роль терапии гипометилирующими препаратами перед аллогенной трансплантацией гемопоэтических стволовых клеток при острых миелоидных лейкозах и миелодиспластическом синдроме. Клиническая онкогематология. 2017;10(3):351–7. doi: 10.21320/2500-2139-2017-10-3-351-357.
    [Ovechkina VN, Bondarenko SN, Morozova EV, et al. The Role of Hypomethylating Agents Prior to Allogeneic Hematopoietic Stem Cells Transplantation in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clinical oncohematology. 2017;10(3):351–7. doi: 10.21320/2500-2139-2017-10-3-351-357. (In Russ)]
  133. Nishihori T, Perkins J, Mishra A, et al. Pretransplantation 5-azacitidine in high-risk myelodysplastic syndrome. Biol Blood Marrow Transplant. 2014;20(6):776–80. doi: 10.1016/j.bbmt.2014.02.008.
  134. de Lima M, Giralt S, Thall PF, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010;116(23):5420–31. doi: 10.1002/cncr.25500.
  135. Craddock C, Jilani N, Siddique S, et al. Tolerability and Clinical Activity of Post-Transplantation Azacitidine in Patients Allografted for Acute Myeloid Leukemia Treated on the RICAZA Trial. Biol Blood Marrow Transplant. 2016;22(2):385–90. doi: 10.1016/j.bbmt.2015.09.004.
  136. Marini C, Brissot E, Bazarbachi A, et al. Tolerability and Efficacy of Treatment With Azacytidine as Prophylactic or Preemptive Therapy for Myeloid Neoplasms After Allogeneic Stem Cell Transplantation. Clin Lymphoma Myel Leuk. 2020;20(6):377–82. doi: 10.1016/j.clml.2019.10.011.
  137. Бадаев Р.Ш., Заммоева Д.Б., Гиршова Л.Л. и др. Профилактическое применение азацитидина у пациентов с острыми миелоидными лейкозами после гаплоидентичной аллоТКМ. Клиническая онкогематология. 2019;12(1):37–42. doi: 10.21320/2500-2139-2019-12-1-37-42.
    [Badaev RSh, Zammoeva DB, Girshova LL, et al. Preventive Use of Azacitidine in Patients with Acute Myeloid Leukemia after Haploidentical Allo-BMT. Clinical oncohematology. 2019;12(1):37–42. doi: 10.21320/2500-2139-2019-12-1-37-42. (In Russ)]
  138. Cattaneo F, Nucifora G. EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J Cell Biochem. 2008;105(2):344–52. doi: 10.1002/jcb.21869.
  139. Estey EH, Thall PF, Pierce S, et al. Randomized phase II study of fludarabine + cytosine arabinoside + idarubicin ± all-trans retinoic acid ± granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Blood. 1999;93(8):2478–84. doi: 10.1182/blood.v93.8.2478.
  140. Schlenk RF, Frohling S, Hartmann F, et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia. 2004;18(11):1798–803. doi: 10.1038/sj.leu.2403528.
  141. Raza A, Buonamici S, Lisak L, et al. Arsenic trioxide and thalidomide combination produces multi-lineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pre-therapy EVI1 expression. Leuk Res. 2004;28(8):791–803. doi: 10.1016/j.leukres.2003.11.018.
  142. Burnett AK, Hills RK, Green C, et al. The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood. 2010;115(5):948–56. doi: 10.1182/blood-2009-08-236588.
  143. van Gils N, Verhagen HJMP, Smit L. Reprogramming acute myeloid leukemia into sensitivity for retinoic-acid-driven differentiation. Exp Hematol. 2017;52:12–23. doi: 10.1016/j.exphem.2017.04.007.
  144. Plesa A, Dumontet C, Mattei E, et al. High frequency of CD34+CD38-/low immature leukemia cells is correlated with unfavorable prognosis in acute myeloid leukemia. World J Stem Cells. 2017;9(12):227–34. doi: 10.4252/wjsc.v9.i12.227.
  145. Nguyen CH, Bauer K, Hackl H, et al. All-trans retinoic acid enhances, and a pan-RAR antagonist counteracts, the stem cell promoting activity of EVI1 in acute myeloid leukemia. Cell Death Dis. 2019;10(12):944. doi: 10.1038/s41419-019-2172-2.
  146. Field T, Perkins J, Huang Y, et al. 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2010;45(2):255–60. doi: 10.1038/bmt.2009.134.
  147. Kim DY, Lee JH, Park YH, et al. Feasibility of hypomethylating agents followed by allogeneic hematopoietic cell transplantation in patients with myelodysplastic syndrome. Bone Marrow Transplant. 2012;47(3):374–9. doi: 10.1038/bmt.2011.86.
  148. Jiang YZ, Su GP, Dai Y, et al. Effect of Decitabine Combined with Unrelated Cord Blood Transplantation in an Adult Patient with -7/EVI1+ Acute Myeloid Leukemia: a Case Report and Literature Review. Ann Clin Lab Sci. 2015;45(5):598–601.
  149. Schlenk RF, Lubbert M, Benner A, et al. All-trans retinoic acid as adjunct to intensive treatment in younger adult patients with acute myeloid leukemia: results of the randomized AMLSG 07-04 study. Ann Hematol. 2016;95(12):1931–42. doi: 10.1007/s00277-016-2810-z.
  150. Taussig DC, Vargaftig J, Miraki-Moud F, et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood. 2010;115(10):1976–84. doi: 10.1182/blood-2009-02-206565.
  151. Patel S, Zhang Y, Cassinat B, et al. Successful xenografts of AML3 samples in immunodeficient NOD/shi-SCID IL2Rγ–/– Leukemia. 2012;26(11):2432–5. doi: 10.1038/leu.2012.154.

Clinical Efficacy of Chelation Therapy in Patients with Low-Risk Myelodysplastic Syndrome

SV Gritsaev, II Kostroma, AA Zhernyakova

Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Sergei Vasil’evich Gritsaev, MD, PhD, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; Tel.: +7(812)717-54-68; e-mail: gritsaevsv@mail.ru

For citation: Gritsaev SV, Kostroma II, Zhernyakova AA. Clinical Efficacy of Chelation Therapy in Patients with Low-Risk Myelodysplastic Syndrome. Clinical oncohematology. 2019;12(2):120–4.

DOI: 10.21320/2500-2139-2019-12-2-120-124


ABSTRACT

The present literature review provides evidence that in patients with low-risk myelodysplastic syndrome and transfusion dependence blood parameters and survival rates can be improved by administration of iron chelators. Dose adequacy and therapy duration underlie clinical efficacy of chelators. Toxicity can be reduced by administrating a new formula of deferasirox that does not need to be dissolved in liquid before consuming.

Keywords: myelodysplastic syndrome, low risk, transfusion dependence, iron chelators, survival.

Received: August 20, 2018

Accepted: February 2, 2019

Read in PDF 


REFERENCES

  1. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.

  2. Bennett JM. Consensus statement on iron overload in myelodysplastic syndromes. Am J Hematol. 2008;83(11):858–61. doi: 10.1002/ajh.21269.

  3. Malcovati L, Porta MG, Pascutto C, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23(30):7594–603. doi: 1200/JCO.2005.01.7038.

  4. Steensma DP, Bennett JM. The myelodysplastic syndromes: Diagnosis and treatment. Mayo Clin Proc. 2006;81(1):104–30. doi: 10.4065/81.1.104.

  5. Mitchell M, Gore SD, Zeidan AM. Iron chelation therapy in myelodysplastic syndromes: where do we stand? Expert Rev Hematol. 2013;6(4):397–410. doi: 10.1586/17474086.2013.814456.

  6. Gattermann N, Jarisch A, Schlag R, et al. Deferasirox treatment of iron-overloaded chelation-naive and prechelated patients with myelodysplastic syndromes in medical practice: results from the observational studies eXtend and eXjange. Eur J Haematol. 2012;88(3):260–8. doi: 10.1111/j.1600-0609.2011.01726.x.

  7. List AF, Baer MR, Steensma DP, et al. Deferasirox reduces serum ferritin and labile plasma iron in RBC transfusion-dependent patients with myelodysplastic syndrome. J Clin Oncol. 2012;30(17):2134–9. doi: 10.1200/JCO.2010.34.1222.

  8. Greenberg PL, Koller CA, Cabantchik ZI, et al. Prospective assessment of effects on iron-overload parameters of deferasirox therapy in patients with myelodysplastic syndromes. Leuk Res. 2010;34(12):1560–5. doi: 10.1016/j.leukres.2010.06.013.

  9. Remacha AF, Arrizabalaga B, Del Canizo C, et al. Iron overload and chelation therapy in patients with low-risk myelodysplastic syndromes with transfusion requirements. Ann Hematol. 2010;89(2):147–54. doi: 10.1007/s00277-009-0794-7.

  10. Rose C, Brechignac S, Vassilief D, et al. Does iron chelation therapy improve survival in regularly transfused lower risk MDS patients? A multicenter study by the GFM (Groupe Francophone des Myelodysplasies). Leuk Res. 2010;34(7):864–70. doi: 10.1016/j.leukres.2009.12.004.

  11. Malcovati L. Impact of transfusion dependency and secondary iron overload on the survival of patients with myelodysplastic syndromes. Leuk Res. 2007;31(Suppl 3):S2–6. doi: 10.1016/S0145-2126(07)70459-9.

  12. Kohgo Y, Ikuta K, Ohtake T, et al. Body iron metabolism and pathophysiology of iron overload. Int J Hematol. 2008;88(1):7–15. doi: 10.1007/s12185-008-0120-5.

  13. Andrews NC. Closing the iron gate. N Engl J Med. 2012;366(4):376–7. doi: 10.1056/NEJMcibr1112780.

  14. Gardenghi S, Marongiu MF, Ramos P, et al. Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. 2007;109(11):5027–35. doi: 10.1182/blood-2006-09-048868.

  15. Andrews NC. Disorders of iron metabolism. N Engl J Med. 1999;341(26):1986–95. doi: 10.1056/NEJM199912233412607.

  16. Takatoku M, Uchiyama T, Okamoto S, et al. Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality. Eur J Haematol. 2007;78(6):487–94. doi: 10.1111/j.1600-0609.2007.00842.x.

  17. Gattermann N. Iron overload in myelodysplastic syndromes. Int J Hematol. 2018;107(1):55–63. doi: 10.1007/s12185-017-2367-1.

  18. Lyons R, Marek B, Paleyc C, et al. Relation between chelation and clinical outcomes in lower-risk patients with myelodysplastic syndromes: Registry analysis at 5 years. Leuk Res. 2017;56:88–95. doi: 10.1016/j.leukres.2017.01.033.

  19. Leitch H, Parmar A, Wells R, et al. Overall survival in lower IPSS risk MDS by receipt of iron chelation therapy, adjusting for patient-related factors and measuring from time of first red blood cell transfusion dependence: an MDS-CAN analysis. Br J Haematol. 2017;179(1):83–97. doi: 10.1111/bjh.14825.

  20. Mainous A, Tanner R, Hulihan M, et al. The impact of chelation therapy on survival in transfusional iron overload: a meta-analysis of myelodysplastic syndrome. Br J Haematol. 2014;167(5):720–3. doi: 10.1111/bjh.13053.

  21. Abraham I, Yami M, Yun S et al. Survival outcomes in iron chelated and non-chelated patients with lower-risk myelodysplastic syndromes: Review and pooled analysis of observational studies. Leuk Res. 2017;57:104–8. doi: 10.1016/j.leukres.2017.03.007.

  22. Gattermann N, Finelli C, Della Porta M, et al. Hematologic responses to deferasirox therapy in transfusion-dependent patients with myelodysplastic syndromes. Haematologica. 2012;97(9):1364–71. doi: 10.3324/haematol.2011.048546.

  23. Pullarkat V. Objectives of iron chelation therapy in myelodysplastic syndromes: more than meets the eye? Blood. 2009;114(26):5251–5. doi: 10.1182/blood-2009-07-234062.

  24. Zeidan AM, Hendrick F, Friedmann E, et al. Deferasirox therapy is associated with reduced mortality risk in a medicare population with myelodysplastic syndromes. J Comp Eff Res. 2015;4(4):327–40. doi: 10.2217/cer.15.20.

  25. Improta S, Villa MR, Volpe A, et al. Transfusion-dependent low-risk myelodysplastic patients receiving deferasirox: Long-term follow-up. Oncol Lett. 2013;6(6):1774–8. doi: 10.3892/ol.2013.1617.

  26. Breccia M, Voso M, Spiriti M, et al. An increase in hemoglobin, platelets and white blood cells levels by iron chelation as single treatment in multitransfused patients with myelodysplastic syndromes: clinical evidences and possible biological mechanisms. Ann Hematol. 2015;94(5):771–7. doi: 10.1007/s00277-015-2341-z.

  27. Delforge M, Selleslag D, Beguin Y, et al. Adequate iron chelation therapy for at least six months improves survival in transfusion-dependent patients with lower risk myelodysplastic syndromes. Leuk Res. 2014;38(5):557–63. doi: 10.1016/j.leukres.2014.02.003.

  28. Cermak J, Jonasova A, Vondrakova J, et al. A comparative study of deferasirox and deferiprone in the treatment of iron overload in patients with myelodysplastic syndromes. Leuk Res. 2013;37(12):1612–5. doi: 10.1016/j.leukres.2013.07.021.

  29. Nolte F, Angelucci E, Breccia M, et al. Updated recommendations on the management of gastrointestinal disturbances during iron chelation therapy with deferasirox in transfusion dependent patients with myelodysplastic syndrome – emphasis on optimized dosing schedules and new formulations. Leuk Res. 2015;39(10):1028–33. doi: 10.1016/j.leukres.2015.06.008.

  30. Taher AT, Origa R, Perrotta S, et al. New film-coated tablet formulation of deferasirox is well tolerated in patients with thalassemia or lower-risk MDS: Results of the randomized, phase II ECLIPSE study. Am J Hematol. 2017;92(5):420–8. doi: 10.1002/ajh.24668.

  31. Джадену® (инструкция по медицинскому применению). Швейцария: Novartis pharma, AG. Доступно по: https://www.vidal.ru/drugs/dzhadenu. Ссылка активна на 30.11.2018. [Dzhadenu® (package insert). Switzerland: Novartis pharma, AG. Available from: https://www.vidal.ru/drugs/dzhadenu. (accessed 30.11.2018) (In Russ)]

The Role of Hypomethylating Agents Prior to Allogeneic Hematopoietic Stem Cells Transplantation in Acute Myeloid Leukemia and Myelodysplastic Syndrome

VN Ovechkina1, SN Bondarenko1, EV Morozova1, IS Moiseev1, AA Osipova1, TL Gindina1, AI Shakirova1, TA Bykova1, AD Kulagin1, IA Samorodova2, EV Karyakina3, EA Ukrainchenko4, LS Zubarovskaya1, BV Afanas’ev1

1 RM Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

2 Municipal Clinical Hospital No. 31, 3 Dinamo pr-t, Saint Petersburg, Russian Federation, 197110

3 Municipal Hospital No. 15, 4 Avangardnaya str., Saint Petersburg, Russian Federation, 198205

4 Aleksandrov Hospital, 4 Solidarnosti pr-t, Saint Petersburg, Russian Federation, 193312

For correspondence: Varvara Nikolaevna Ovechkina, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)338-62-72; e-mail ovetchkina@gmail.com

For citation: Ovechkina VN, Bondarenko SN, Morozova EV, et al. The Role of Hypomethylating Agents Prior to Allogeneic Hematopoietic Stem Cells Transplantation in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clinical oncohematology. 2017;10(3):351–7 (In Russ).

DOI: 10.21320/2500-2139-2017-10-3-351-357


ABSTRACT

Background & Aims. The aim of the study was to evaluate the efficacy and safety of azacytidine and decitabine prior to allogeneic hematopoietic stem cell transplantation (allo-HSCT) in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia.

Materials & Methods. The research included 62 patients who received hypomethylating agents (HMA) prior to allo-HSCT. The median age was 28 years (range from 1 to 68 years), the study population consisted of 27 (43.5 %) women and 35 (56.5 %) men.

Results. The overall response (complete + partial remission) was observed in 42 % (n = 26) of cases. At the time of allo-HSCT no disease progression was observed in 41 (66 %) patients. The multivariant analysis showed the overall survival (OS) statistically significantly increased with the graft retention (hazard ratio [HR] 0.002; 95% confidence interval [95% CI] 0.001–0.74; p = 0.03), and also with the administration of HMA after allo-HSCT (HR 0.24; 95% CI 0.08–0.67; p = 0.007). The response (stabilisation, partial or complete remission) due to HMA administration prior to allo-HSCT (HR 6.4; 95% CI 0.75–54.0; p = 0.08) was associated with improved OS. The event-free survival (EFS) was significantly higher with the response to azacytidine and decitabine at the time of allo-HSCT (HR 38.9; 95% CI 1.3–1198.0; p = 0.03) and with the graft retention (HR 0.02; 95% CI 0.005–0.1; p = 0.001). In patients with MDS compared with AML (HR 2.3; 95% CI 0.9–22.0; p = 0.08), there was a tendency to EFS improvement. Progression-free survival rates were higher in patients with a number of blast cells in the bone marrow less than 31 % at the time of diagnosis (HR 1.1; 95% CI 1.1–9.9; p = 0.01).

Conclusion. The use of azacytidine and decitabine prior to allo-HSCT allows to safely control the tumor mass in patients with MDS and to maintain the achieved remission with AML. In patients with a response to HMA, the best OS and EFS values are seen after allo-HSCT.

Keywords: acute myeloid leukemia, myelodysplastic syndrome, allogeneic hematopoietic stem cell transplantation, hypomethylating agents, azacitidine, decitabine.

Received: December 19, 2016

Accepted: March 9, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Ширин А.Д., Баранова О.Ю. Гипометилирующие препараты в онкогематологии. Клиническая онкогематология. 2016;9(4):369–82. doi: 10.21320/2500-2139-2016-9-4-369–382.
    [Shirin AD, Baranova OYu. Hypomethylating Agents in Oncohematology. Clinical oncohematology. 2016;9(4):369–82. doi: 10.21320/2500-2139-2016-9-4-369–382. (In Russ)]
  2. Бондаренко С.Н., Семенова Е.В., Афанасьев Б.В. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при остром миелобластном лейкозе в первой ремиссии. Терапевтический архив. 2013;84(7):18–25.
    [Bondarenko SN, Semenova EV, Afanas’ev BV, et al. Allogeneic hematopoietic stem cell transplantation for acute myeloblastic leukemia in first remission. Terapevticheskii arkhiv. 2013;84(7):18–25. (In Russ)]
  3. Паровичникова Е.Н., Троицкая В.В., Савченко В.Г. и др. Лечение больных острыми миелоидными лейкозами по протоколу российского многоцентрового рандомизированного исследования ОМЛ-01.10: результаты координационного центра. Терапевтический архив. 2014;86(7):14–23.
    [Parovichnikova EN, Troitskaya VV, Savchenko VG, et al. Treating patients with acute myeloid leukemias according to the protocol of the AML-01.10 Russian multicenter randomized trial: the Coordinating Center’s results. Terapevticheskii arkhiv. 2014;86(7):14–23. (In Russ)]
  4. de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129(13):1753–62. doi: 10.1182/blood-2016-06-724500.
  5. Sohn SK, Moon JH. Survey of expert opinions and related recommendations regarding bridging therapy using hypomethylating agents followed by allogeneic transplantation for high-risk MDS. Crit Rev Oncol Hematol. 2015;95(2):243–50. doi: 10.1016/j.critrevonc.2015.03.004.
  6. Al-Ali HK, Jaekel N, Niederwieser D, et al. Azacitidine in patients with acute myeloid leukemia medically unfit for or resistant to chemotherapy: a multicenter phase I/II study. Leuk Lymphoma. 2012;53(1):110–7. doi: 10.3109/10428194.2011.606382.
  7. Cruijsen M, Lubbert M, Huls G, et al. Clinical Results of Hypomethylating Agents in AML Treatment. J Clin Med. 2014;4(1):1–17. doi: 10.3390/jcm4010001.
  8. Field T, Perkins J, Anasetti C, et al. 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2010;45(2):255–60. doi: 10.1038/bmt.2009.134.
  9. Al-Ali HK, Jaekel N, Niederwieser D. The role of hypomethylating agents in the treatment of elderly patients with AML. J Geriatr Oncol. 2014;5(1):89–105. doi: 10.1016/j.jgo.2013.08.004.
  10. Komrokji RS, DeZern AE, Sekeres MA, et al. Validation of International Working Group (IWG) Response Criteria in Higher-Risk Myelodysplastic Syndromes (MDS): A Report on Behalf of the MDS Clinical Research Consortium (MDS CRC). Blood. 2015;126:909.
  11. Seymour JF, Buckstein R, Santini V, et al. Efficacy and Safety of Azacitidine (AZA) Versus Conventional Care Regimens (CCR) in Patients Aged ≥ 75 Years with Acute Myeloid Leukemia (AML) in the Phase 3 AZA-AML-001 Study. Blood. 2016;128:2818.
  12. Garcia JS, Jain N, Godley LA. An update on the safety and efficacy of decitabine in the treatment of myelodysplastic syndromes. Onco Targets Ther. 2010;3:1–13. doi: 10.2147/ott.s7222.
  13. Кострома И.И., Грицаев С.В., Карягина Е.В. и др. Гематологическое улучшение — вариант благоприятного противоопухолевого ответа на лечение азацитидином при острых миелоидных лейкозах и миелодиспластических синдромах. Клиническая онкогематология. 2015;8(4):413–9. doi: 10.21320/2500-2139-2015-8-4-413-419.
    [Kostroma II, Gritsaev SV, Karyagina EV, et al. Hematological Improvement is a Favorable Response to Azacitidine in Patients with Acute Myeloid Leukemias and Myelodysplastic Syndromes. Clinical oncohematology. 2015;8(4):413–9. doi: 10.21320/2500-2139-2015-8-4-413-419. (In Russ)]
  14. Potter VT, Iacobelli S, Biezen A, et al. Comparison of Intensive Chemotherapy and Hypomethylating Agents before Allogeneic Stem Cell Transplantation for Advanced Myelodysplastic Syndromes: A Study of the Myelodysplastic Syndrome Subcommittee of the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2016;22(9):1615–20. doi: 10.1016/j.bbmt.2016.05.026.
  15. Jabbour E, Mathisen MS, Garcia-Manero G, et al. Allogeneic hematopoietic stem cell transplantation versus hypomethylating agents in patients with myelodysplastic syndrome: A retrospective case-control study. Am J Hematol. 2013;88(3):198–200. doi: 10.1002/ajh.23371.
  16. Ahn JS, Kim YK, Min YH, et al. Azacitidine Pre-Treatment Followed by Reduced-Intensity Stem Cell Transplantation in Patients with Higher-Risk Myelodysplastic Syndrome. Acta Haematol. 2015;134(1):40–8. doi: 10.1159/000368711.
  17. Waespe N, Akker Van Den M, Klaassen RJ, et al. Response to treatment with azacitidine in children with advanced myelodysplastic syndrome prior to hematopoietic stem cell transplantation. Haematologica. 2016;101(12):1508–15. doi: 10.3324/haematol.2016.145821.
  18. Prebet Th, Gore SD, Esterni B, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol. 2011;29(24):3322–7. doi: 10.1200/jco.2011.35.8135.
  19. Bally C, Thepot S, Quesnel B, et al. Azacitidine in the treatment of therapy related myelodysplastic syndrome and acute myeloid leukemia (tMDS/AML): A report on 54 patients by the Groupe Francophone Des Myelodysplasies (GFM). Leuk Res. 2013;37(6):637–40. doi: 10.1016/j.leukres.2013.02.014.
  20. Fenaux P, Mufti GJ, Peterson BL, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomized, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32. doi: 10.1016/s1470-2045(09)70003-8.
  21. Quintas-Cardama A, Ravandi F, Liu-Dumlao Th, et al. Epigenetic therapy is associated with similar survival compared with intensive chemotherapy in older patients with newly diagnosed acute myeloid leukemia. Blood. 2012;120(24):4840–5. doi: 10.1182/blood-2012-06-436055.
  22. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010;28(4):562–9. doi: 10.1200/jco.2009.23.8329.
  23. Pleyer L, Burgstaller B, Greil R, et al. Azacitidine front-line in 339 patients with myelodysplastic syndromes and acute myeloid leukaemia: comparison of French-American-British and World Health Organization classifications. J Hematol Oncol. 2016;9(1):39. doi: 10.1186/s13045-016-0263-4.
  24. Yahng SA, Yooh JH, Shin SH, et al. Response to pretransplant hypomethylating agents influences the outcome of allogeneic hematopoietic stem cell transplantation in adults with myelodysplastic syndromes. Eur J Haematol. 2013;90(2):111–20. doi: 10.1111/ejh.12038.
  25. Овечкина В.Н., Бондаренко С.Н., Морозова Е.В. и др. Острый миелобластный лейкоз и миелодиспластический синдром: применение азацитидина с профилактической и превентивной целью после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология. 2017;10(1):45–51. doi: 10.21320/2500-2139-2017-10-1-45-51.
    [Ovechkina VN, Bondarenko SN, Morozova EV, et al. Acute Myeloblastic Leukemia and Myelodysplastic Syndrome: Azacitidine for Prophylactic and Preventive Purposes after Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2017;10(1):45–51. doi: 10.21320/2500-2139-2017-10-1-45-51. (In Russ)]
  26. Craddock Ch, Jilani N, Siddique Sh, et al. Tolerability and Clinical Activity of Post-Transplantation Azacitidine in Patients Allografted for Acute Myeloid Leukemia Treated on the RICAZA Trial. Biol Blood Marrow Transplant. 2016;22(2):385–90. doi: 10.1016/j.bbmt.2015.09.004.

Acute Myeloblastic Leukemia and Myelodysplastic Syndrome: Azacitidine for Prophylactic and Preventive Purposes after Allogeneic Hematopoietic Stem Cell Transplantation

VN Ovechkina1, SN Bondarenko1, EV Morozova1, IS Moiseev1, OA Slesarchuk1, AG Smirnova1, OS Uspenskaya2, YaV Gudozhnikova1, AA Osipova1, VS Sergeev1, NN Mamaev1, LS Zubarovskaya1, BV Afanas’ev1

1 RM Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician IP Pavlov First St. Petersburg State Medical University, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022

2 Leningrad District Clinical Hospital, 45–49 Lunacharskogo pr-t, Saint Petersburg, Russian Federation, 194291

For correspondence: Varvara Nikolaevna Ovechkina, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel. +7(812)338-62-72; e-mail: ovetchkina@gmail.com

For citation: Ovechkina VN, Bondarenko SN, Morozova EV, et al. Acute Myeloblastic Leukemia and Myelodysplastic Syndrome: Azacitidine for Prophylactic and Preventive Purposes after Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2017;10(1):45-51 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-45-51


ABSTRACT

Aim. To evaluate the effectiveness of preventive and prophylactic post-transplantation therapy using azacitidine (5-AZA) in patients at high risk of post-transplantation relapse.

Methods. 136 patients were included in the study performed by the pairwise comparison: 68 of them received 5-AZA after allo-HSCT and 68 patients were included in the historical control group. 5-AZA was prescribed for prophylactic or preventive purposes. The results were assessed according to the OS, RR, EFS, DUM, and relapse-free and GVHR-free survival.

Results. 1-year OS was 76 % in the 5-AZA group (95% CI 60–84 %) and 44 % in the reference group (95% CI 33–55 %) (= 0.001); 2-year OS was 63 % (95% CI 39–67 %) and 37 % (95% CI 26–48 %) (= 0.007), respectively. The relapse rate (RR) in the 5-AZA group was 34 % (95% CI 22–46 %) during 1 year and 51 % (95% CI 38–64 %) in the reference group (= 0.02). 1- and 2-year disease unrelated mortality (DUM) was similar: 5 % in the 5-AZA group (95% CI 0.1–14.0 %) and 25 % (95% CI 13–37 %) in the reference group (= 0.005). 1-year EFS was 76 % in the 5-AZA group (95% CI 61–85 %) and 44 % in the reference group (95% CI 33–55 %) (= 0.001); 2-year EFS was 63 % (95% CI 39–67 %) and 37 % (95% CI 26–48 %) (= 0.01), respectively. 1-year relapse-free and GVHR-free survival was 55 % in the 5-AZA group (95% CI 41–69 %) and 28 % in the reference group (95% CI 17–39 %) (= 0.001); 2-year relapse-free and GVHR-free survival was 47 % (95% CI 32–62 %) and 27 % (95% CI 17–37 %) (= 0.002), respectively.

Conclusion. The use of 5-AZA for prophylactic and preventive purposes after allo-HSCT does not increase the risk of GVHR and DUM, does not suppress the GVL effect and can be used in combination with the donor lymphocyte infusion (DLI). The therapy with 5-AZA is safe during the early period after allo-HSCT. The drug does not suppress the GVL effect and can be used in high risk patients to prevent early post-transplantation relapse. The use of 5-AZA in combination with DLI does not increase the incidence of severe GVHR.

Keywords: acute myeloblastic leukemia, myelodysplastic syndrome, allogeneic hematopoietic stem cell transplantation, hypomethylating therapy, azacitidine.

Received: July 18, 2016

Accepted: December 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. O’Donnell MR, Tallman MS, Abboud CN, et al. Clinical Practice Guidelines in Oncology. Acute Myeloid Leukemia, Version 2.2013. J Natl Compr Canc Netw. 2013;11:1047–55.
  2. Cornelissen JJ, Gratwohl A, Schlenk RF, et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach. Nat Rev Clin Oncol. 2012;9(10):579–90. doi: 10.1038/nrclinonc.2012.150.
  3. Бондаренко С.Н., Семенова Е.В., Афанасьев Б.В. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при остром миелобластном лейкозе в первой ремиссии. Терапевтический архив. 2013;84(7):18–25.
    [Bondarenko SN, Semenova EV, Afanas’ev BV, et al. Allogeneic hematopoietic stem cell transplantation in acute myeloblastic leukemia at the first remission. Terapevticheskii arkhiv. 2013;84(7):18–25. (In Russ)]
  4. Паровичникова Е.Н., Троицкая В.В., Савченко В.Г. и др. Лечение больных острыми миелоидными лейкозами по протоколу российского многоцентрового рандомизированного исследования ОМЛ-01.10: результаты координационного центра. Терапевтический архив. 2014;86(7):14–23.
    [Parovichnikova EN, Troitskaya VV, Savchenko VG, et al. Treatment of patients with acute myeloid leukemias according to the protocol of the OML-01.10 multi-center randomized trial: coordination center results. Terapevticheskii arkhiv. 2014;86(7):14–23. (In Russ)]
  5. Greenberg PL, Stone RM, Al-Kali A, et al. Clinical Practice Guidelines in Oncology. Myelodysplastic Syndromes, Version 2.2017. J Natl Compr Canc Netw. 2017;15:60–87.
  6. Pavletic SZ, Kumar S, Mohty M, et al. NCA First International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogenic Hematopoietic Stem Cell Transplantation: report from the Committee on the Epidemiology and Natural History of Relapse following Allogeneic Cell Transplantation. Biol Blood Marrow Transplant. 2010;16(7):871–90. doi: 10.1016/j.bbmt.2010.04.004.
  7. Mawad R, Lionberger JM, Pagel JM. Strategies to Reduce Relapse after Allogeneic Hematopoietic Cell Transplantation in Acute Myeloid Leukemia. Curr Hematol Malig Rep. 2013;8(2):132–40. doi: 10.1007/s11899-013-0153-6.
  8. de Lima M, Porter DL, Battiwalla M, et al. Proceedings from the National CANCER Institute’s Second International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation: part III, prevention and treatment of relapse after allogeneic transplantation. Biol Blood Marrow Transplant. 2014;20(1):4–13. doi: 10.1016/j.bbmt.2013.08.012.
  9. Porter DL, Aleya EP, Antin JH, et al. NCI First International Workshop NCA First International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogenic Hematopoietic Stem Cell Transplantation: report from the Committee on Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation, Biol Blood Marrow Transplant. 2010;16(11):1467–503. doi: 10.1016/j.bbmt.2010.08.001.
  10. Слесарчук О.А., Бабенко Е.В., Афанасьев Б.В. и др. Эффективность инфузии донорских лимфоцитов у пациентов после различных видов аллогенных трансплантаций гемопоэтических стволовых клеток. Терапевтический архив. 2013;84(7):26–33.
    [Slesarchuk OA, Babenko EV, Afanas’ev BV, et al. Effectiveness of donor lymphocyte infusion of patients after different types of allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2013;84(7):26–33. (In Russ)]
  11. Schmid C, Labopin M, Nagler A, et al. Acute Leukaemia Working Party of the European Group for B. Marrow Transplantation. Treatment, risk factors, and outcome of adult with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation. Blood. 2012;119(6):1599–606. doi: 10.1182/blood-2011-08-375840.
  12. Christopeit M, Kuss O, Finke J, et al. Second allograft for hematologic relapse of acute leukemia after first allogeneic stem-cell transplantation from related and unrelated donors: the role of donor change. J Clin Oncol. 2013;31(26):3259–71. doi: 10.1200/jco.2012.44.7961.
  13. Craddock C, Nagra S, Peniket A, et al. Factors predicting long-term survival after T-cell depleted reduced intensity allogeneic stem cell transplantation for acute myeloid leukemia. Haematologica. 2010;95(6):989–95. doi: 10.3324/haematol.2009.013920.
  14. Kroger N, Stubig T, Atanackovic D. Immune-Modulating Drugs and Hypomethylating Agents to Prevent or Treat Relapse after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2014;20(2):168–72. doi: 10.1016/j.bbmt.2013.09.009.
  15. Thomas X. DNA methyltransferase inhibitors in acute myeloid leukemia: discovery, design and first therapeutic experiences. Expert Opin Drug Discov. 2012;7(11):1039–51. doi: 10.1517/17460441.2012.722618.
  16. Choi J, Ritchey J, Prior LJ, et al. In vivo administration of hypomethylating agents mitigate graft-versus-host-disease without sacrificing graft-versus-leukemia. Blood. 2010;116(1):129–39. doi: 10.1182/blood-2009-12-257253.
  17. Goodyear CO, Dennis M, Jilani N, et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia. Blood. 2012;119(14):3361–9. doi: 10.1182/blood-2011-09-377044.
  18. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with myelodisplastic syndrome: a study of leukemia and cancer group B. J Clin Oncol. 2002;20(10):2429–40. doi: 10.1200/jco.2002.04.117.
  19. de Lima M, Giralt S, Thall PF, et al. Maintenance Therapy With Low-Dose Azacitidine After Allogeneic Hematopoietic Stem Cell Transplantation for Recurrent Acute Myelogenous Leukemia or Myelodysplastic Syndrome. Cancer. 2010;116(23):5420–31. doi: 10.1002/cncr.25500.
  20. Platzbecker U, Wermke M, Radke J, et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia. 2012;26(3):381–9. doi: 10.1038/leu.2011.234.
  21. Craddock Ch, Jilani N, Siddique Sh, et al. Tolerability and Clinical Activity of Post-Transplantation Azacitidine in Patients Allografted for Acute Myeloid Leukemia Treated on the RICAZA Trial. Biol Blood Marrow Transplant. 2016;22(2):385–90. doi: 10.1016/j.bbmt.2015.09.004.
  22. Antar A, Otrock ZK, Kharfan-Dabaja M, et al. Azacitidine in the treatment of extramedullary relapse of AML after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2013;48(7):994–5. doi: 10.1038/bmt.2012.256.
  23. Schroeder T, Rachlis E, Bug G, et al. Treatment of Acute Myeloid Leukemia or Myelodysplastic Syndrome Relapse after Allogeneic Stem Cell Transplantation with Azacitidine and Donor Lymphocyte Infusions – A Retrospective Multicenter Analysis from the German Cooperative Transplant Study Group. Biol Blood Marrow Transplant. 2015;21(4):653–60. doi: 10.1016/j.bbmt.2014.12.016.
  24. Craddock Ch, Labopin M, Houhou M, et al. Activity and Tolerability of Azacitidine in Patients Who Relapse after Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia and Myelodysplasia: a Survey from the European Society for Blood and Marrow Transplantation. Blood. 2014;124: Poster 2506.
  25. Schroeder T, Czibere A, Platzbecker U, et al. Azacitidine and donor lymphocyte infusions ad first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 2013;27(6):1–7. doi: 10.1038/leu.2013.7.
  26. Steinmann J, Bertz H, Wasch R, et al. 5-Azacitidine and DLI can induce long-term remissions an AML patients relapsed after allograft. Bone Marrow Transplant. 2015;50(5):690–5. doi: 10.1038/bmt.2015.10.
  27. Schroeder T, Frobel J, Cadedduu R-P, et al. Salvage therapy with azacitidine increases regulatory T cells in peripheral blood of patients with AML or MDS and early relapse after allogeneic blood stem cell transplantation. Leukemia. 2013;27(9):1910–3. doi: 10.1038/leu.2013.64.
  28. Czibere A, Bruns I, Kroger N, et al. 5-Azacytidine for the treatment of patients with acute myeloid leukemia or myelodysplastic syndrome who relapse after allo-SCT: a retrospective analysis. Bone Marrow Transplant. 2010;45(5):872–6. doi: 10.1038/bmt.2009.266.
  29. Tessoulin B, Delaunay J, Chevallier P, et al. Azacitidine salvage therapy for relapse of myeloid malignancies following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2014;49(4):567–71. doi: 10.1038/bmt.2013.233.

 

 

Principles of Pathomorphological Differential Diagnosis of Myelodysplastic Syndromes

AM Kovrigina1, SA Glinkina1, VV Baikov2

1 Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022

For correspondence: Alla Mikhailovna Kovrigina, PhD, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM, Glinkina SA, Baikov VV. Principles of Pathomorphological Differential Diagnosis of Myelodysplastic Syndromes. Clinical oncohematology. 2015;8(1):62–8 (In Russ).


ABSTRACT

The article dwells on the diagnosis of myelodysplastic syndromes (MDS) in bone marrow trephine biopsies. The paper describes problems of a complex approach to differential diagnostics of MDS and non-clonal/reactive changes in hematopoiesis. It is emphasized that clinical and laboratory data, as well as data on patient’s medical history should be submitted to a pathologist. The authors substantiate the algorithm for the morphological investigation of a bone marrow trephine bioptate, including evaluation of cellularity, stromal patterns, and morphological signs of dysplasia. The diagnostic value of histochemistry and immunohistochemistry is discussed.


Keywords: myelodysplastic syndrome, bone marrow trephine biopsy, pathomorphology, differential diagnostics.

Received: October 22, 2014

Accepted: November 10, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  2. Boultwood J, Wainscoat JS. Gene silencing by DNA methylation in haematological malignancies. Br J Haematol. 2007;138(1):3–11. doi: 10.1111/j.1365-2141.2007.06604.x.
  3. Cazzola M, Porta MG, Malcovati L. The genetic basis of myelodysplasia and its clinical relevance. Blood. 2013;122(25):4021–34. doi: 10.1182/blood-2013-09-381665.
  4. Lindsley RC, Elbert BL. Molecular pathophysiology of myelodysplastic syndromes. Annu Rev Pathol. 2013;8(1):21–47. doi: 10.1146/annurev-pathol-011811-132436.
  5. Maciejewski JP, Mufti GJ. Whole genome scanning as a cytogenetic tool in hematologic malignancies. Blood. 2008;112(4):965–74. doi: 10.1182/blood-2008-02-130435.
  6. Mohamedali A, Gаken J, Twine NA, et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood. 2007;110(9):3365–73. doi: 10.1182/blood-2007-03-079673.
  7. Raza A, Galili N. The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Cancer. 2012;12(12):849–59. doi: 10.1038/nrc3321.
  8. Smith AE, Mohamedali AM, Kulasekararaj A, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010;116(19):3923–32. doi: 10.1182/blood-2010-03-274704.
  9. Thol F, Friesen I, Damm F, et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011;29(18):2499–506. doi: 10.1200/jco.2010.33.4938.
  10. Thol F, Kade S, Schlarmann C, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119(15):3578–84. doi: 10.1182/blood-2011-12-399337.
  11. Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9. doi: 10.1038/nature10496.
  12. Koca E, Buyukasik Y, Cetiner D, et al. Copper deficiency with increased hematogones mimicking refractory anemia with excess blasts. Leuk Res. 2008;32(3):495–9. doi: 10.1016/j.leukres.2007.06.023.
  13. Steensma DP. Dysplasia has a differential diagnosis: distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors. Curr Hematol Malig Rep. 2012;7(4):310–20. doi: 10.1016/j.leukres.2007.06.023.
  14. Tanaka N, Kim JS, Newell JD, et al. Rheumatoid arthritis-related lung diseases: CT findings. Radiology. 2004;232(1):81–91. doi: 10.1148/radiol.2321030174.
  15. Song Y, Du X, Hao F, et al. Immunosuppressive therapy of cyclosporin A for severe benzene-induced haematopoetic disorders and a 6-month follow-up. Chem Biol Interact. 2010;186(1):96–102. doi: 10.1016/j.cbi.2010.03.049.
  16. Komrokji RS, Moffitt HL, Padron E. Deletion 5q MDS: Molecular and therapeutic implications. Best Pract Res Clin Haematol. 2013;26(4):365–75. doi: 10.1016/j.beha.2013.10.013.
  17. Ковригина А.М., Байков В.В. Принципы патоморфологической дифференциальной диагностики первичного миелофиброза. Москва, Санкт-Петербург, 2014. 63 с.
    [Kovrigina AM, Baikov VV. Printsipy patomorfologicheskoi differentsial’noi diagnostiki pervichnogo mielofibroza. (Principles of pathomorphological differential diagnosis of primary myelofibrosis.) Moscow, Saint Petersburg; 2014. 63 p. (In Russ)]
  18. Foucar K. Myelodysplastic/Myeloproliferative Neoplasms. Am J Clin Pathol. 2009;132(2):281–9. doi: 10.1309/AJCPJ71PTVIKGEVT.
  19. Wang SA. Diagnosis of myelodysplastic syndromes in cytopenic patients. Hematol Oncol Clin North Am. 2011;25(5):1085–110. doi: 10.1016/j.hoc.2011.09.009.
  20. Thiele J, Kvasnicka H-M, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  21. Baur AS, Meuge-Moraw C, Schmidt PM, et al. CD34/QBEND10 immunostaining in bone marrow biopsies: an additional parameter for the diagnosis and classification of myelodysplastic syndromes. Eur J Haematol. 2000;64(2):71–9.
  22. Horny HP, Sotlar K, Valent P. Diagnostic value of histology and immunohistochemistry in myelodysplastic syndromes. Leuk Res. 2007;31(12):1609–16. doi: 10.1016/j.leukres.2007.05.010.
  23. Valent P, Horny HP. Minimal diagnostic criteria for myelodysplastic syndromes and separation from ICUS and IDUS: update and open questions. Eur J Clin Invest. 2009;39(7):548–53. doi: 10.1111/j.1365-2362.2009.02151.x.
  24. Valent P, Jager E, Mitterbauer-Hohendanner G, et al. Idiopathic bone marrow dysplasia of unknown significance (IDUS): definition, pathogenesis, follow up, and prognosis. Am J Cancer Res. 2011;1:531–41.
  25. Wimazal F, Fonatsch C, Thalhammer R. Idiopathic cytopenia of undetermined significance (ICUS) versus low risk MDS: The diagnostic interface. Leuk Res. 2007;31(11):1461–8. doi: 10.1016/j.leukres.2007.03.015.