The Role of BAALC-Expressing Leukemia Precursor Cells in the Pathogenesis of Myelodysplastic Syndromes

NN Mamaev, MV Latypova, AI Shakirova, TL Gindina, MM Kanunnikov, NYu Tsvetkov, IM Barkhatov, SN Bondarenko, MD Vladovskaya, EV Morozova

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Prof. Nikolai Nikolaevich Mamaev, MD, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; e-mail: nikmamaev524@gmail.com

For citation: Mamaev NN, Latypova MV, Shakirova AI, et al. The Role of BAALC-Expressing Leukemia Precursor Cells in the Pathogenesis of Myelodysplastic Syndromes. Clinical oncohematology. 2022;15(1):62–8. (In Russ).

DOI: 10.21320/2500-2139-2022-15-1-62-68


ABSTRACT

The present paper provides evidence for a high detection rate of BAALC gene overexpression, also combined with WT1 gene overexpression, in patients with myelodysplastic syndromes (MDS) and FISH-verified chromosome defects. The BAALC and WT1 gene expression profiling in 16 MDS patients (6 out of them received allogeneic hematopoietic stem cell transplantation) showed an increased BAALC expression in 14 patients. The expression level in 2 patients was near the cut-off. Low expression levels were identified in a female patient with isolated 5q deletion in karyotype and also with its combination with complex karyotype. On the other hand, the highest expression levels were reported in patients with normal karyotype and 3q26 locus rearrangement, which was associated with EVI1 gene overexpression. Since the BAALC expression level, at least in patients with the major (except for М3 and М7) FAB-variants of acute myeloid leukemias (AML), was closely associated with BAALC-producing precursor cells of leukemia clone, a profound study of this phenomenon in MDS patients seems to be important for understanding the finest mechanisms underlying the pathogenesis of AML and AML relapses on the level of precursor cells.

Keywords: myelodysplastic syndromes, BAALC and WT1 genes, overexpression, post-transplantation relapses, BAALC-producing precursor cells, pathogenesis, prognosis.

Received: July 7, 2021

Accepted: November 4, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Gadji M, Pozzo AR. From cellular morphology to molecular and epigenetic anomalies of myelodysplastic syndromes. Genes Chromos Cancer. 2019;58(7):474–83. doi: 10.1002/gcc.22689.
  2. Schanz J, Cevik N, Fonatsch C, et al. Detailed analysis of clonal evolution and cytogenetic evolution patterns in patients with myelodysplastic syndromes (MDS) and related myeloid disorders. Blood Cancer J. 2018;8(3):28. doi: 10.1038/s41408-018-0061-z.
  3. Bersanelli M, Travaglino E, Meggendorfer M, et al. Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. J Clin Oncol. 2021;39(11):1223–33. doi: 10.1200/JCO.20.01659.
  4. Papaemmanuil E, Gerstung M, Malcovati L, et al. Сlinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27. doi: 10.1182/blood-2013-08-518886.
  5. Minetto P, Guolo F, Cavio M, et al. Combined assessment of WT1 and BAALC gene expression at diagnosis may improve leukemia-free survival prediction in patients with myelodysplastic syndromes. Leuk Res. 2015;39(8):866–73. doi: 10.1016/leukres.2015/04/011.
  6. Мамаев Н.Н., Шакирова А.И., Бархатов И.М. и др. Ведущая роль BAALC-экспрессирующих клеток-предшественниц в возникновении и развитии посттрансплантационных рецидивов у больных острыми миелоидными лейкозами. Клиническая онкогематология. 2020;13(1):75–88. doi: 10.21320/2500-2139-2020-13-1-75-88.
    [Mamaev NN, Shakirova AI, Barkhatov IM, et al. Crucial Role of BAALCExpressing Progenitor Cells in Emergence and Development of Post-Transplantation Relapses in Patients with Acute Myeloid Leukemia. Clinical oncohematology. 2020;13(1):75–88. doi: 10.21320/2500-2139-2020-13-1-75-88. (In Russ)]
  7. Mamaev NN, Shakirova AI, Barkhatov IM, et al. Crucial role of BAALC-expressing leukemic precursors in origin and development of posttransplant relapses in patients with acute myeloid leukemias. Int J Hematol. 2020;8(6):127–31. doi: 10.15406/htij.2020.08.00240.
  8. Mamaev NN, Shakirova AI, Barkhatov IM, et al. New opportunities for assay of leukemia initiating cells (LICs) participating in post-transplant relapse development in the patients with acute myeloid leukemia. 3rd Annual IACH Meeting, 1–3 October, 2020, Paris. Report #12.
  9. Mamaev NN, Shakirova AI, Gindina TL, et al. Quantitative study of BAALC- and WT1-expressing cell precursors in the patients with different cytogenetic and molecular AML variants treated with Gemtuzumab ozogamicin and hematopoietic stem cell transplantation. Cell Ther Transplant. 2021;10(1):55–62. doi: 10.18620/ctt-1866-8836-2021-10-1-55-62.
  10. Thol F, Kade S, Schlarmann C, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119(15):3578–84. doi: 10.1182/blood-2011-12-399337.
  11. Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodyspl astic sendromes. Leukemia. 2014;18(2):241–7. doi: 10.1038/leu.2013.336.
  12. Pauebelle E, Piesa A, Hayette S, et al. Efficacy of all-trans-retinoic acid in high risk acute myeloid leukemia with overexpression of EVI1. Oncol Ther. 2019;7(2):121–30. doi: 10.1007/s40487-019-0095-9.
  13. Field T, Perkins KJ, Huang Y, et al. 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2010;45(2):255–60. doi: 10.1038/bmt.2009.134.
  14. Мамаев Н.Н., Шакирова А.И., Морозова Е.В., Гиндина Т.Л. EVI1-позитивные лейкозы и миелодиспластические синдромы: теоретические и клинические аспекты (обзор литературы). Клиническая онкогематология. 2021;14(1):103–17. doi: 10.21320/2500-2139-2021-14-1-103-117.
    [Mamaev NN, Shakirova AI, Morozova EV, Gindina TL. EVI1-Positive Leukemias and Myelodysplastic Syndromes: Theoretical and Clinical Aspects (Literature Review). Clinical oncohematology. 2021;14(1):103–17. doi: 10.21320/2500-2139-2021-14-1-103-117. (In Russ)]
  15. Geoffroy М-С, Esnault C, de The H. Retinoids in hematology: a timely revival? Blood. 2021;137(18):2429–37. doi: 10.1182/blood.2020010100.

Analysis of Karyotype Aberrations in Children and Adolescents with Post-Transplantation Relapses of Acute Leukemia

T.L. Gindina, N.N. Mamaev, E.N. Nikolaeva, I.A. Petrova, S.N. Bondarenko, A.L. Alyanskii, N.V. Stancheva, O.A. Slesarchuk, M.Yu. Aver’yanova, L.S. Zubarovskaya, B.V. Afanas’ev

R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Tat’yana Leonidovna Gindina, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)233-12-43; e-mail: cytogenetics.bmt.lab@gmail.com

For citation: Gindina TL, Mamaev NN, Nikolaeva EN, et al. Analysis of Karyotype Aberrations in Children and Adolescents with Post-Transplantation Relapses of Acute Leukemia. Clinical oncohematology. 2015;8(4):420–427 (In Russ).

DOI: 10.21320/2500-2139-2015-8-4-420-427


ABSTRACT

Aim. To analyze the karyotype aberrations at the relapse after allogeneic HSCT (alloHSCT) in children and adolescents with acute leukemias, in order to evaluate their relation with disease-free survival and overall survival (OS) rates after the relapse and to identify prognostic groups of patients based on clinical and cytogenetic characteristic of a tumor.

Methods. Cytogenetic investigations were performed in 30 children and 15 adolescents (26 males and 19 females aged from 1.2 to 21 years; median age 10 years) with a post-transplant relapse (PTR) of acute myeloid leukemia (n = 29) and acute lymphoblastic leukemia (n = 16). The analysis of aberrating chromosomal abnormalities was performed by comparison of the karyotypes in relapse with those before the alloHSCT.

Results. Karyotype aberrations in PTR were observed in 29 (64 %) patients. 2 and more abnormal cytogenetic clones were observed in 10 (34 %) patients with PTR. Additional chromosomal aberrations acquired in PTR were related primarily to chromosomes 1, 11 and 19. OS after the relapse was higher in patients with alloHSCT performed during the remission and with one abnormal cytogenetic clone in PTR. Based on this, we formed three prognostic groups: the first group consisted of 8 (18 %) patients with 2 adverse factors and median 40-day OS after relapse; the second group included 20 (44 %) patients with 1 adverse factor and median OS after PTR equal to 152 days, and the 4-year survival was 16 %; the third group included 17 (38 %) patients without the above negative factors and median OS after relapse equal to 549 days, and the 4-year survival was 31 %. The multivariate analysis showed that the number of abnormal cytogenetic clones in leukemic population is an independent predictor of OS after PTR.

Conclusion. The presence of leukemic population of ³ 2 abnormal cytogenetic clones is the most important prognostic factor affecting the OS in PTR patients. Since the clonal evolution of the karyotype may be associated with the use of cytotoxic drugs in the therapy of acute leukemia in children and adolescents with indications for alloHSCT, the latter should be done as soon as possible and non-myeloablative conditioning regimen should be preferred.


Keywords: pediatric acute leukemias, post-transplantation relapses, clonal cytogenetic evolution.

Received: June 13, 2015

Accepted: November 8, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Schmidt-Hieber M, Blau I, Richter G, et al. Cytogenetic studies in acute leukemia patients relapsing after allogeneic stem cell transplantation. Cancer Genet Cytogenet. 2010;198(2):135–43. doi: 10.1016/j.cancergencyto.2010.01.005.
  2. Bacher U, Haferlach T, Alpermann Т, et al. Comparison of cytogenetic clonal evolution patterns following allogeneic hematopoietic transplantation versus conventional treatment in patients at relapse of AML. Biol Blood Marrow Transplant. 2010;16(12):1649–57. doi: 10.1016/j.bbmt.2010.06.007.
  3. Kawamata N, Ogawa S, Seeger K, et al. Molecular allelokaryotyping of relapsed pediatric acute lymphoblastic leukemia. Int J Oncol. 2009;34(6):1603–12. doi: 10.3892/ijo_00000290.
  4. Lee J, Jang P, Chung N, et al. Treatment of children with acute myeloid leukaemia who relapsed after allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2013;160(1):80–6. doi: 10.1111/bjh.12074.
  5. Lawler S, Khokhar M, Davies H, et al. Cytogenetic studies of leukemic recurrence in recipients of bone marrow allografts. Cancer Genet Cytogenet. 1990;47(1):249–63. doi: 10.1016/0165-4608(90)90034-8.
  6. Yuasa M, Uchida N, Kaji D, et al. Prognostic significance of the cytogenetic evolution after the hematopoietic stem cell transplantation in adult acute myeloid leukemia. Blood. 2013;122(21):1391.
  7. Cho Y, Chi H, Park S, et al. Comparative analysis of cytogenetic evolution patterns during relapse in the hematopoietic stem cell transplantation and chemotherapy settings of patients with acute leukemia. Blood. 2013;122(21):1320.
  8. Гиндина Т.Л., Мамаев Н.Н., Бондаренко С.Н. и др. Сложные хромосомные нарушения у больных с посттрансплантационными рецидивами острых лейкозов: клинические и теоретические аспекты. Клиническая онкогематология. 2015;8(1):69–77.
    [Gindina TL, Mamaev NN, Bondarenko SN, et al. Complex chromosomal aberrations in patients with post-tranplantation relapses of acute leukemias: clinical and theoretical aspects. Klinicheskaya onkogematologiya. 2015;8(1):69–77. (In Russ)]
  9. Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;8:61–6.
    [Gindina TL, Mamaev NN, Barhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;8:61–6 (In Russ)]
  10. Schaffer L, McGovan-Jordan J, Schmid M. An International System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013.
  11. Gindina T, Mamaev N, Bondarenko S, et al. Complex aberrant karyotype in patients with post-transplant relapses of acute myeloid and lymphoid leukemias evaluated by serial cytogenetic assays, including mFISH. Blood. 2014;124(21):5313.

Complex Chromosomal Aberrations in Patients with Post-Transplantation Relapses of Acute Leukemias: Clinical and Theoretical Aspects

TL Gindina, NN Mamaev, SN Bondarenko, NV Semenova, EN Nikolaeva, ME Vlasova, NV Stancheva, OA Slesarchuk, VN Vavilov, EV Morozova, AL Alyanskii, BV Afanasev

R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022

For correspondence: Tat’yana Leonidovna Gindina, PhD, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)233-12-43; e-mail: tatgindina@gmail.com

For citation: Gindina TL, Mamaev NN, Bondarenko SN, et al. Complex Chromosomal Aberrations in Patients with Post-Transplantation Relapses of Acute Leukemias: Clinical and Theoretical Aspects. Clinical oncohematology. 2015;8(1):69–77 (In Russ).


ABSTRACT

Objective. To analyze the incidence of a complex karyotype in patients with post-transplantation relapses of acute myeloid leukemias and to evaluate preliminary treatment results before and after bone marrow transplantation in order to elaborate optimal approaches to the treatment of this disease.

Methods. Cytogenetic investigations (including fluorescent in situ hybridization [FISH]) were performed in 100 patients (53 males, 47 females aged from 1 to 60; median — 23 years) with post-transplantation relapses of acute myeloid leukemias (AML) (n = 61) and acute lymphoblastic leukemia (ALL) (n = 39).

Results. Aberrant karyotypes were found in 90 % of AML and 97 % of ALL patients. The incidence of acute leukemias (AL) with complex karyotypes (CK) was significantly higher in ALL patients than that in the AML group (67 % vs 36 %; = 0.002). At that, the percentage of CK with 4 and more chromosome abnormalities per cell in ALL patients aged 1–18 years was also significantly higher than that in AML patients (60 % vs 30 %; = 0.03). Besides, this difference was observed in the CK+ proportion between ALL and AML groups. Transplantation was performed during the active phase of the disease (i.e. after remission) in 75 % vs 55 %, respectively (= 0.003).

Conclusions. Serial cytogenetic investigations showed that CKs before transplantation and in PTR are closely related, thus confirming their clonal nature. Therefore, it may be assumed that karyotype complication achieved by the PTR can be caused by both chemotherapy performed at early stages of acute leukemia and pre-transplant conditioning regimes. In this case, further increase of the chemotherapeutic intensity in order to prevent and treat expected PTRs in patients with CK+ acute leukemias seems to be unreasonable. In this connection, infusion of donor lymphocytes, administration of hypomethylating agents or medicines with target mechanism of action should be used for management of AML patients during the post-transplant period.


Keywords: acute leukemias, post-transplantation relapses, complex karyotype.

Received: September 2, 2014

Accepted: November 13, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Dobbelstein C, Dammann E, Weissinger E, et al. Prognostic impact of a newly defined structurally complex karyotype in patients with AML and MDS after allogeneic stem cell transplantation. Blood (ASH Annual Meeting Abstracts). 2013;122(21):3362–3.
  2. Mohr B, Stolzel F, Kramer M, et al. Karyotypic complexity in acute myeloid leukemia in the context of adverse prognosis. Blood (ASH Annual Meeting Abstracts). 2013;122(21):489.
  3. Rogers HJ, Vardiman JW, Anastasi J, et al. Complex or monosomal karyotype and not blast percentage is associated with poor survival in acute myeloid leukemia and myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2): a Bone Marrow Pathology Group study. Haematologica. 2014;99(5):821–9. doi: 10.3324/haematol.2013.096420.
  4. Mrozek K. Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin Oncol. 2008;358(4):365–77. doi: 10.1053/j.seminoncol.2008.04.007.
  5. Gohring G, Michalova K, Beverloo HB, et al. Complex karyotype newly defined: the strongest prognostic factor in advanced childhood myelodysplastic syndrome. Blood. 2010;116(19):3766–9. doi: 10.1182/blood-2010-04-280313.
  6. Schoch C, Haferlach T, Haase D, et al. Patients with de novo acute myeloid leukemia and complex karyotype aberrations show a pore prognosis despite intensive treatment: a study of 90 patients. Br J Haematol. 2001;112(1):118–26. doi: 10.1046/j.1365-2141.2001.02511.x.
  7. Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;8:61–6.
    [Gindina TL, Mamaev NN, Barkhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;8:61–6. (In Russ)]
  8. Schmid C, Schleuning M, Tischer J, et al. Early allo-SCT for AML with a complex aberrant karyotype – results from a prospective pilot study. Bone Marrow Transplant. 2012;47(1):46–53. doi: 10.1038/bmt.2011.15.
  9. Zaccaria A, Rosti G, Testoni N, et al. Chromosome studies in patients with nonlymphoсytic or acute lymphocytic leukemia submitted to bone marrow transplantation – results of European cooperative study. Cancer Genet Cytogenet. 1987;26(1):51–8.
  10. Schmidt-Hieber M, Blau IW, Richter G, et al. Cytogenetic studies in acute leukemia patients relapsing after allogeneic stem cell transplantation. Cancer Genet Cytogenet. 2010;198(2):135–43. doi: 10.1016/j.cancergencyto.2010.01.005.
  11. Chi HS, Cho YU, Park SH, et al. Comparative analysis of cytogenetic evolution patterns during relapse in the hematopoietic stem cell transplantation and chemotherapy settings of patients with acute leukemia. Blood (ASH Annual Meeting Abstracts). 2013;122(21):1320.
  12. Yuasa M, Uchida M, Kaji D, et al. Prognostic significance of the cytogenetic evolution after the hematopoietic stem cell transplantation in adult acute myeloid leukemia. Blood (ASH Annual Meeting Abstracts). 2013;122(21):1391–2.
  13. Гиндина Т.Л., Мамаев Н.Н., Кондакова Е.В. и др. Острые лимфобластные лейкозы с высокогиперплоидными кариотипами. Вестник гематологии. 2007;4:18–23.
    [Gindina TL, Mamaev NN, Kondakova EV, et al. Acute lymphoblastic leukemias with highly hyperploid karyotypes. Vestnik gematologii. 2007;4:18–23. (In Russ)]
  14. Schaffer LG, McGowan-Jordan J, Schmid M. ISCN. An International System for Human Cytogenetic Nomenclature. Basel: Karger; 2013.
  15. Schmid C, Labopin M, Nagler A, et al. Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT acute leukemia working party. J Clin Oncol. 2007;25(31):4938–45. doi: 10.1200/jco.2007.11.6053.
  16. Schroeder T, Czibere A, Platzbecker U, et al. Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 2013;27(6):1229–35. doi: 10.1038/leu.2013.7.
  17. Porter DL, Alyea EP, Antin JH, et al. NCI First International Workshop on the biology, prevention and treatment of relapse after allogeneic hematopoietic stem cell transplantation: Report from the Committee on treatment of relapse after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2010;16(11):1467–503. doi: 10.1016/j.bbmt.2010.08.001.
  18. Alyea EP, DeAngelo DJ, Moldrem J, et al. NCI First International Workshop on the Biology, Prevention and Treatment of Relapse after Allogeneic Hematopoietic Cell Transplantation: Report from the Committee on Prevention of Relapse Following Allogeneic Cell Transplantation for Hematologic Malignancies. Biol Blood Marrow Transplant. 2010;16(8):1037–69. doi: 10.1016/j.bbmt.2010.05.005.
  19. de Lima M, Giralt S, Thall PF. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome. Cancer. 2010;116(23):5420–31. doi: 10.1002/cncr.25500.
  20. de Lima M, Porter DL, Battiwalla M, et al. Proceedings from the National Cancer Institute’s Second International Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation: Part III. Prevention and treatment of relapse after allogeneic transplantation. Biol Blood Marrow Transplant. 2014;20(1):4–13. doi: 10.1016/j.bbmt.2013.08.012.
  21. Duque-Afonso J, Lubbert M, Cleary ML. Epigenetic modifications mediated by the AML1/ETO and MLL leukemia fusion proteins. In: Lubbert M, Jones PA, eds. Epigenetic Therapy of Cancer. Berlin Heidelberg: Springer-Verlag; 2014. pp. 121–44. doi: 10.1007/978-3-642-38404-2_6.
  22. Buron F, Malvezzi P, Villar E. Profiling sirolimus-induced inflammatory syndrome a prospective tricentric observational study. PloS One. 2013;8(1):e53078. doi: 10.1371/journal.pone.0053078.
  23. Kondo T, Tasaka T, Matsumoto K, et al. Philadelphia chromosome-positive acute lymphoblastic leukemia with extramedullary and meningeal relapse after allogeneic hematopoietic stem cell transplantation that was successfully treated with dasatinib. Springerplus. 2014;3:177. doi: 10.1186/2193-1801-3-177.
  24. Maziarz RT, Slater S. Post-transplant relapse. In: Maziarz RT, Slater S, eds. Blood and Marrow Transplant Handbook. Springer Science+Business Media, LLC; 2011. pp. 271–6. doi: 10.1007/978-1-4419-7506-5_24.