Current Quality-of-Life Aspects in Patients with Classical Ph-Negative Myeloproliferative Neoplasms in the Russian Federation: Results and Discussion of the National Observational Program MPN-QoL-2020

TI Ionova1,2,3,*, EA Andreevskaya4,*, EN Babich5,*, NB Bulieva6,7,*, OYu Vinogradova8,9,10,*, EM Volodicheva11,*, SV Voloshin12,13,14,*, NN Glonina15,*, SK Dubov16,*, NB Esef’eva17,*, AYu Zaritskey18,*, EE Zinina19,*, MO Ivanova20,*, TYu Klitochenko21,*, AV Kopylova22,*, AD Kulagin23,*, GB Kuchma24,25,*, OYu Li26,*, EG Lomaia18,*, AL Melikyan27,*, VYa Melnichenko3,*, SN Menshakova28,*, NV Minaeva29,*, TA Mitina30,*, EV Morozova23,*,TP Nikitina1,2,*, OE Ochirova31,*, AS Polyakov13,*, TI Pospelova32,*, AV Proidakov33,*, OA Rukavitsyn34,*, GSh Safuanova35,36,*, IN Subortseva27,*, MS Fominykh37,*, MV Frolova38,*, TV Shelekhova39,*, DG Sherstnev39,*, TV Shneider40,*, VA Shuvaev12,41,*, ZK Abdulkhalikova23,†, LV Anchukova38,†, IA Apanaskevich15,†, AN Arnautova22,†, MV Barabanshchikova23,†, NV Berlina34,†, AP Bityukov34,†, EA Gilyazitdinova27,†, VI Gilmanshina36,†, EK Egorova27,†, EV Efremova12,†, EB Zhalsanova31,†, EN Kabanova19,†, OB Kalashnikova20,†, AE Kersilova41,†, TI Kolosheinova27,†, PM Kondratovskii16,†, EV Koroleva28,†, AN Kotelnikova34,†, NA Lazareva16,†, NS Lazorko18,†, EV Lyyurova33,†, AS Lyamkina32,†, YuN Maslova20,†, ES Mileeva12,†, NE Mochkin3,†, EK Nekhai16,†, YaA Noskov13,†, ES Osipova29,†, MM Pankrashkina8,†, EV Potanina16,†, OD Rudenko25,†, TYu Rozhenkova36,†, EI Sbityakova18,†, NT Siordiya18,†, AV Talko16,†, EI Usacheva42,†, YuB Chernykh30,†, TV Chitanava18,†, KS Shashkina27,†, DI Shikhbabaeva8,†, KS Yurovskaya23,†

1 Saint Petersburg State University Hospital, 154 Fontanki nab., Saint Petersburg, Russian Federation, 198103

2 Multinational Center for Quality of Life Research, 1 Artilleriiskaya ul., Saint Petersburg, Russian Federation, 191014

3 NI Pirogov National Medical and Surgical Center, 70 Nizhnyaya Pervomaiskaya ul., Moscow, Russian Federation, 105203

4 Krai Clinical Hospital No. 1, 7 Kokhanskogo ul., Chita, Russian Federation, 672038

5 Yugry District Clinical Hospital, 40 Kalinina ul., Khanty-Mansiisk, Russian Federation, 628011

6 I Kant Baltic Federal University, 14 Aleksandra Nevskogo ul., Kaliningrad, Russian Federation, 236041

7 Clinical Hospital of Kaliningrad Region, 74 Klinicheskaya ul., Kaliningrad, Russian Federation, 236016

8 Moscow Municipal Center for Hematology, SP Botkin City Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

9 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova ul., Moscow, Russian Federation, 117997

10 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela ul., Moscow, Russian Federation, 117997

11 Tula Regional Clinical Hospital, 1A korp. 1 Yablochkova ul., Tula, Russian Federation, 300053

12 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya ul., Saint Petersburg, Russian Federation, 191024

13 SM Kirov Military Medical Academy, 6 Akademika Lebedeva ul., Saint Petersburg, Russian Federation, 194044

14 II Mechnikov North-Western State Medical University, 47 Piskarevskii pr-t, Saint Petersburg, Russian Federation, 195067

15 SI Sergeev Krai Clinical Hospital No. 1, 9 Krasnodarskaya ul., Khabarovsk, Russian Federation, 680009

16 Krai Center of Hematology, Krai Clinical Hospital No. 2, 55 Russkaya ul., Vladivostok, Russian Federation, 690105

17 Ulyanovsk Regional Clinical Hospital, 7 III Internatsionala ul., Ulyanovsk, Russian Federation, 432017

18 VA Almazov National Medical Research Center, 2 Akkuratova ul., Saint Petersburg, Russian Federation, 197341

19 Surgut District Clinical Hospital, 14 Energetikov ul., Surgut, Russian Federation, 628408

20 Clinical and Diagnostic Center, IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo ul., Saint Petersburg, Russian Federation, 197022

21 Volgograd Regional Clinical Oncology Dispensary, 78 Zemlyachki ul., Volgograd, Russian Federation, 400138

22 Lipetsk Municipal Hospital No. 3 “Svobodnyi sokol”, 10 Ushinskogo ul., Lipetsk, Russian Federation, 398007

23 RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 12 Rentgena ul., Saint Petersburg, Russian Federation, 197022

24 Orenburg State Medical University, 6 Sovetskaya ul., Orenburg, Russian Federation, 460000

25 Orenburg Regional Clinical Hospital, 23 Aksakova ul., Orenburg, Russian Federation, 460018

26 Sakhalin Regional Clinical Hospital, 430 Mira pr-t, Yuzhno-Sakhalinsk, Russian Federation, 693004

27 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

28 Regional Clinical Hospital, 105 Peterburgskoe sh., Tver, Russian Federation, 170036

29 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya ul., Kirov, Russian Federation, 610027

30 MF Vladimirskii Moscow Regional Research Clinical Institute, 61/2 Shchepkina ul., Moscow, Russian Federation, 129110

31 NA Semashko Republican Clinical Hospital, 12 Pavlova ul., Ulan-Ude, Russian Federation, 670031

32 Novosibirsk State Medical University, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091

33 Komi Republican Oncology Dispensary, 46 Nyuvchimskoe sh., Syktyvkar, Republic of Komi, Russian Federation, 167904

34 NN Burdenko Main Military Clinical Hospital, 3 Gospital’naya pl., Moscow, Russian Federation, 105229

35 Bashkir State Medical University, 3 Lenina ul., Ufa, Republic of Bashkortostan, Russian Federation, 450008

36 GG Kuvatov Republican Clinical Hospital, 132 Dostoevskogo ul., Ufa, Republic of Bashkortostan, Russian Federation, 450005

37 Multispecialty Clinic “Skandinaviya”, AVA-PETER, 55A Liteinyi pr-t, Saint Petersburg, Russian Federation, 191014

38 Vologda Regional Clinical Hospital, 17 Lechebnaya ul., Vologda, Russian Federation, 160002

39 VI Razumovskii Saratov State Medical University, 6/9 53rd Strelkovoi Divizii ul., Saratov, Russian Federation, 410028

40 Leningrad Regional Clinical Hospital, 45 korp. 2A Lunacharskogo pr-t, Saint Petersburg, Russian Federation, 194291

41 VV Veresaev Municipal Clinical Hospital, 10 Lobnenskaya ul., Moscow, Russian Federation, 127644

42 SM Clinic, 19 korp. 1 Udarnikov pr-t, Saint Petersburg, Russian Federation, 195279

* Coordinators and members of Expert Panel.

Program participants.

For correspondence: Tatyana Pavlovna Nikitina, MD, PhD, 1 Artilleriiskaya ul., Saint Petersburg, Russian Federation, 191014; e-mail: qolife@mail.ru

For citation: Ionova TI, Andreevskaya EA, Babich EN, et al. Current Quality-of-Life Aspects in Patients with Classical Ph-Negative Myeloproliferative Neoplasms in the Russian Federation: Results and Discussion of the National Observational Program MPN-QoL-2020. Clinical oncohematology. 2022;15(2):176–97. (In Russ).

DOI: 10.21320/2500-2139-2022-15-2-176-197


ABSTRACT

Background. The National Observational Program MPN-QoL-2020 was aimed at collecting the data on QoL (quality of life) characteristics and symptoms as well as patient- and physician-related disease and treatment perceptions in classical Ph-negative myeloproliferative neoplasms (MPN) in the Russian Federation.

Aim. Using new standardized forms, to analyze the quality of life among patients with various MPNs, to characterize ubiquitous symptoms and their effect on quality of life among the myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET) patients as well as to describe the perceptions of disease- and therapy-associated problems as reported by patients and hematologists treating them.

Materials & Methods. The study enrolled 1100 patients with Ph-negative MPNs (355 MF, 408 PV, and 337 ET patients at the mean age of 58 ± 14 years, 61 % women). The study also involved 100 hematologists (mean age of 42 ± 12 years, 85 % women) from 37 health and preventive facilities in 8 Federal districts of the Russian Federation. The patients contributed to the study by one-time completing a special MPN10 form for MPN symptom assessment, a special QoL questionnaire HM-PRO for hematological malignancy patients, as well as a patient checklist. The task of hematologists consisted in one-time filling out of a physician checklist and completing the medical records of all the enrolled MPN patients.

Results. For the first time in the Russian Federation, the real clinical practice yielded the data on the quality of life in Ph-negative MPN patients, symptom profiles in different MPNs, and the extent of their effect on everyday life. QoL impairments mostly relate to physical and emotional functioning of MPN patients and to feeding and drinking regime, but rarely to social functioning. More than 1/3 of patients with Ph-negative MPNs reported on considerable QoL impairments. Absolute majority of patients complain of weakness: 92.6 % in MF, 83.7 % in PV, and 82 % in ET. The profiles of relevant symptoms and their intensity differ in various MPNs. The study identified the symptoms which need most to be corrected, both in the view of patients and physicians. There were established differences between patient- and doctor-reported evaluations of the attitude to the disease and treatment as well as the aspects for improvement in physician-patient relationship.

Conclusion. The National Observational Program MPN-QoL-2020 has resulted in characterization of QoL impairments in MPN patients in Russia. It determined the spectrum of particular disease and treatment challenges specific to these patients. Moreover, their unmet needs were updated. The outcomes of MPN-QoL-2020 can serve as a basis for the guidelines for QoL improvement/maintenance in Ph-negative MPNs and for activities aimed at raising MPN patients’ awareness about the disease and its treatment.

Keywords: classical Ph-negative myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, primary myelofibrosis, quality of life, MPN10 form.

Received: October 12, 2021

Accepted: February 10, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и лечению Ph-негативных миелопролиферативных заболеваний (истинной полицитемии, эссенциальной тромбоцитемии, первичного миелофиброза) (редакция 2020 г.). Клиническая онкогематология. 2021;14(2):262–98. doi: 10.21320/2500-2139-2021-14-2-262-298.
    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National Clinical Guidelines on Diagnosis and Treatment of Ph-Negative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis) (Edition 2020). Clinical oncohematology. 2021;14(2):262–98. doi: 10.21320/2500-2139-2021-14-2-262-298. (In Russ)]
  2. Geyer JT, Orazi A. Myeloproliferative neoplasms (BCR-ABL1 negative) and myelodysplastic/myeloproliferative neoplasms: current diagnostic principles and upcoming updates. Int J Lab Hematol. 2016;38(Suppl 1):12–9. doi: 10.1111/ijlh.12509.
  3. Mesa RA, Passamonti F. Individualizing Care for Patients With Myeloproliferative Neoplasms: Integrating Genetics, Evolving Therapies, and Patient-Specific Disease Burden. Am Soc Clin Oncol Educ. 2016;35:e324–e335. doi: 10.1200/EDBK_159322.
  4. Меликян А.Л., Суборцева И.Н., Шуваев В.А. и др. Современный взгляд на диагностику и лечение классических Ph-негативных миелопролиферативных заболеваний. Клиническая онкогематология. 2021;14(1):129–37. doi: 10.21320/2500-2139-2021-14-1-129-137.
    [Melikyan AL, Subortseva IN, Shuvaev VA, et al. Current View on Diagnosis and Treatment of Classical Ph-Negative Myeloproliferative Neoplasms. Clinical oncohematology. 2021;14(1):129–37. doi: 10.21320/2500-2139-2021-14-1-129-137. (In Russ)]
  5. Иванова М.О., Морозова Е.В., Барабанщикова М.В., Афанасьев Б.В. Ph-негативные миелопролиферативные новообра­зования: проблемы диагностики и терапии в России на примере Санкт-Петербурга. Клиническая онкогематология. 2021;14(1):45–52. doi: 10.21320/2500-2139-2021-14-1-45-52.
    [Ivanova MO, Morozova EV, Barabanshchikova MV, Afanasyev BV. Ph-Negative Myeloproliferative Neoplasms: Diagnosis and Treatment Challenges in Russia (the Case of Saint Petersburg). Clinical oncohematology. 2021;14(1):45–52. doi: 10.21320/2500-2139-2021-14-1-45-52. (In Russ)]
  6. Новик А.А., Ионова Т.И. Руководство по исследованию качества жизни в медицине. Под ред. Ю.А. Шевченко. 4-е изд., перераб. и доп. М.: Изд-во Национального медико-хирургического центра им. Н.И. Пирогова, 2021. 664 с.
    [Novik AA, Ionova TI. Rukovodstvo po issledovaniyu kachestva zhizni v meditsine. (Guide to the study of quality of life in medicine.) YuA Shevchenko, ed. 4th revised edition. Moscow: Natsional’nyi mediko-khirurgicheskii tsentr im. I. Pirogova Publ.; 2021. 664 p. (In Russ)]
  7. Mesa R, Miller CB, Thyne M, et al. Myeloproliferative neoplasms (MPNs) have a significant impact on patients’ overall health and productivity: the MPN Landmark survey. BMC Cancer. 2016;16:167. doi: 10.1186/s12885-016-2208-2.
  8. Mesa RA, Miller CB, Thyne M, et al. Differences in Treatment Goals and Perception of Symptom Burden Between Patients With Myeloproliferative Neoplasms (MPNs) and Hematologists/Oncologists in the United States: Findings From the MPN Landmark Survey. Cancer. 2017;123(3):449–58. doi: 10.1002/cncr.30325.
  9. Yu J, Parasuraman S, Paranagama D, et al. Impact of Myeloproliferative neoplasms on patients’ employment status and work productivity in the United States: results from the living with MPNs survey. BMC С 2018;18(1):420. doi: 10.1186/s12885-018-4322-9.
  10. Harrison CN, Koschmieder S, Foltz L, et al. The impact of myeloproliferative neoplasms (MPNs) on patient quality of life and productivity: results from the international MPN Landmark survey. Ann Hematol. 2017;96(10):1653–65. doi: 10.1007/s00277-017-3082-y.
  11. Xiao Z, Chang C-S, Morozova E, et al. Impact of myeloproliferative neoplasms (MPNs) and perceptions of treatment goals amongst physicians and patients in 6 countries: an expansion of the MPN Landmark Survey. HemaSphere. 2019;3(Suppl 1):294–5. doi: 10.1097/01.HS9.0000561008.75001.e7.
  12. Saydam G, Chang C, Morozova E, et al. Impact of myeloproliferative neoplasms (MPNs) and perceptions of treatment goals amongst physicians and patients in 6 countries: an expansion of the MPN Landmark Survey. Leuk Res. 2019;85:S60–S61. doi: 10.1016/S0145-2126(19)30353-4.
  13. Morozova EV, Barabanshchikova MV, Ionova TI, Afanasyev BV. Attitudes to the disease and therapy in patients with chronic Ph-negative myeloproliferative neoplasms: results of the physician and patient surveys in Russia as a part of International Landmark Study. Cell Ther Transplant. 2020;9(2):28–39. doi: 10.18620/ctt-1866-8836-2020-9-2-28-39.
  14. Качество жизни пациентов с миелопролиферативными новообразованиями и отношение пациентов и врачей к проблемам заболевания и лечения: результаты национальной наблюдательной программы МПН-КЖ-2020. Под ред. Т. И. Ионовой. М.: Практическая медицина, 2021. 36 с.
    [Ionova TI, ed. Kachestvo zhizni patsientov s mieloproliferativnymi novoobrazovaniyami i otnoshenie patsientov i vrachei k problemam zabolevaniya i lecheniya: rezul’taty natsional’noi nablyudatel’noi programmy MPN-KZh-2020. (Quality of life of patients with myeloproliferative neoplasms and patient- and doctor-reported attitudes to the disease and treatment issues: outcomes of the National Observational Program MPN-Qol-2020.) Moscow: Prakticheskaya meditsina Publ.; 2021. 36 p. (In Russ)]
  15. Меликян А.Л., Туркина А.Г., Абдулкадыров К.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз). Гематология и трансфузиология. 2014;59(4):31–56.
    [Melikyan AL, Turkina AG, Abdulkadyrov KM, et al. Clinical guidelines for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis). Gematologiya i transfuziologiya. 2014;59(4):31–56. (In Russ)]
  16. Scherber R, Dueck AC, Johansson P, et al. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. 2011;118(2):401–8. doi: 10.1182/blood-2011-01-328955.
  17. Emanuel RM, Dueck AC, Geyer HL, et al. Myeloproliferative Neoplasm (MPN) Symptom Assessment Form Total Symptom Score: Prospective International Assessment of an Abbreviated Symptom Burden Scoring System Among Patients with MPNs. J Clin Oncol. 2012;30(33):4098–103. doi: 10.1200/JCO.2012.42.3863.
  18. Ионова Т.И., Виноградова О.Ю., Ефремова Е.В. и др. Разработка и результаты апробации русской версии опросника MPN10 для оценки симптомов у пациентов с миелопролиферативными новообразованиями с учетом международных рекомендаций. Клиническая онкогематология. 2020;13(2):176–84. doi: 10.21320/2500-2139-2020-13-2-176-184.
    [Ionova TI, Vinogradova OYu, Efremova EV, et al. Development and Validation Results of the Russian MPN10 Form for Symptom Assessment in Patients with Myeloproliferative Neoplasms in Compliance with International Recommendations. Clinical oncohematology. 2020;13(2):176–84. doi: 10.21320/2500-2139-2020-13-2-176-184. (In Russ)]
  19. Goswami P, Oliva EN, Ionova TI, et al. Paper and electronic versions of HM-PRO, a novel patient-reported outcome measure for hematology: an equivalence study. J Comp Eff Res. 2019;8(7):523–33. doi: 10.2217/cer-2018-0108.
  20. Goswami P, Oliva EN, Ionova T, et al. Reliability of a novel haematological malignancy specific patient-reported outcome measure: HM-PRO. Front Pharmacol. 2020;11:571066. doi: 10.3389/fphar.2020.571066.
  21. Afanasyev B, Avtorhanova M, Bannikova M, et al. Implementation of Haematological Malignancies Patient Reported Outcome Measure in Clinical Practice: Haematologists’ Experience. Eur Med J Hematol. 2020;8(1):59–61.
  22. Petruk С, Mathias J. The Myeloproliferative Neoplasm Landscape: A Patient’s Eye View. Adv Ther. 2020;37(5):2050–70. doi: 10.1007/s12325-020-01314-0.
  23. Brochmann N, Flachs EM, Christensen AI, et al. Health-Related Quality of Life in Patients with Philadelphia-Negative Myeloproliferative Neoplasms: A Nationwide Population-Based Survey in Denmark. Cancers. 2020;12(12):3565. doi: 10.3390/cancers12123565.
  24. Gathany A, Scherber RM, Girardo M, et al. Myeloproliferative Neoplasm Quality of Life (MPN-QOL) Study Group: MPN Experimental Assessment of Symptoms By Utilizing Repetitive Evaluation (MEASURE) Trial. Blood. 2018;132(Suppl 1):1762. doi: 10.1182/blood-2018-99-111559.
  25. Langlais BT, Geyer H, Scherber R, et al. Quality of life and symptom burden among myeloproliferative neoplasm patients: do symptoms impact quality of life? Leuk Lymphoma. 2019;60(2):402–8. doi: 10.1080/10428194.2018.1480768.
  26. Mesa R, Palmer J, Eckert R, Huberty J. Quality of Life in Myeloproliferative Neoplasms: Symptoms and Management Implications. Hematol Oncol Clin North Am. 2021;35(2):375–90. doi: 10.1016/j.hoc.2020.12.006.

Correlation of the Number of TGFβF1-Expressing Atypical Megakaryocytes with the Degree of Bone Marrow Stroma Fibrosis and Osteosclerosis in Patients with Essential Thrombocythemia and Different Stages of Primary Myelofibrosis

DI Chebotarev, AM Kovrigina, AL Melikyan

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Dmitrii Ilich Chebotarev, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(916)091-27-09; e-mail: chebadmitry@gmail.com

For citation: Chebotarev DI, Kovrigina AM, Melikyan AL. Correlation of the Number of TGFβF1-Expressing Atypical Megakaryocytes with the Degree of Bone Marrow Stroma Fibrosis and Osteosclerosis in Patients with Essential Thrombocythemia and Different Stages of Primary Myelofibrosis. Clinical oncohematology. 2022;15(1):76–84. (In Russ).

DOI: 10.21320/2500-2139-2022-15-1-76-84


ABSTRACT

Background. As morphological pattern of bone marrow (BM) biopsy samples at advanced stages of clonal evolution in essential thrombocythemia (ET) appears similar to that in the development of post-thrombocythemic myelofibrosis and primary myelofibrosis (PMF), the expression of fibrogenesis factors by atypical megakaryocytes (MKC) acquires increased interest.

Aim. To study the expression of the transforming growth factor TGFβF1 by atypical MKC; to relate the number of TGFβF1-positive MKCs with the degree of BM stroma fibrosis and trabecular bone changes in patients with ET and different PMF stages.

Materials & Methods. BM biopsy samples of ET and PMF patients, obtained before cytoreductive therapy, were subjected to histochemical study with Gomori stain and Masson trichrome as well as to CD42b and TGFβF1 antibody immunohistochemical assays. The degree of myelofibrosis and osteosclerosis was estimated by semi-quantitative method in accordance with the European Consensus guidelines. The morphological characteristics of atypical MKC included the comparative evaluation of nuclear-cytoplasmic ratio.

Results. The number of MKCs with high nuclear-cytoplasmic ratio was significantly higher in BM biopsy samples of patients with pre-fibrosis/early PMF (pre-PMF) stage and fibrosis stage of PMF (f-PMF) compared with BM biopsy samples of ET patients. The analysis of TGFβF1 expression showed different numbers of positive MKCs in the study groups. The matching of the number of TGFβF1-positive MKCs with the degree of myelofibrosis and osteosclerosis, with no regard to nosologic entities, revealed significant moderate correlation between these features (r = 0.431, = 0.001 и r = 0.499, = 0.001, respectively). In 55 % of pre-PMF patients’ BM biopsy samples, histochemical study with Masson trichrome stain visualized minimal immature osteoid deposits on bone trabeculae. Similar changes were also identified in f-PMF patients’ BM biopsy samples, whereas the ET patients’ samples featured none of them.

Conclusion. The results of the study prove that the pathological clone of MKC with TGFβF1 expression affects myelofibrosis and osteosclerosis processes whose manifestation in BM biopsy samples is associated with the number of TGFβF1-expressing atypical MKCs.

Keywords: primary myelofibrosis, pre-fibrosis and fibrosis stages, essential thrombocythemia, osteosclerosis, TGFβF1, pathomorphology, immunohistochemistry.

Received: August 12, 2021

Accepted: November 30, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Swerdlow S, Campo E, Harris N, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC Press; 2017. рр. 174–7.
  2. Kreipe H, Busche G, Bock O, Hussein K. Myelofibrosis: molecular and cell biological aspects. Fibrogen Tiss Repair. 2012;5(Suppl 1):S21. doi: 10.1186/1755-1536-5-S1-S21.
  3. Buhr T, Choritz H, Georgii A. The impact of megakaryocyte proliferation of the evolution of myelofibrosis. Histological follow-up study in 186 patients with chronic myeloid leukaemia. Virchows Arch A Pathol Anat Histopathol. 1992;420(6):473–8. doi: 10.1007/BF01600251.
  4. Martyre MC. Platelet PDGF and TGF-β Levels in Myeloproliferative Disorders. Leuk Lymphoma. 1991;6(1):1–6. doi: 10.3109/10428199109064872.
  5. Wang JC. Importance of plasma matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinase (TIMP) in development of fibrosis in agnogenic myeloid metaplasia. Leuk Lymphoma. 2005;46(9):1261–8. doi: 10.1080/10428190500126463.
  6. Bock O, Loch G, Schade U, et al. Aberrant expression of transforming growth factor beta-1 (TGF beta-1) per se does not discriminate fibrotic from non-fibrotic chronic myeloproliferative disorders. J Pathol. 2005;205(5):548–57. doi: 10.1002/path.1744.
  7. Agarwal A, Morrone K, Bartenstein M, et al. Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig. 2016;3:5. doi: 10.3978/j.issn.2306-9759.2016.02.03.
  8. Jacquelin S, Kramer F, Mullally A, Lane SW. Murine Models of Myelofibrosis. Cancers (Basel). 2020;12(9):2381. doi: 10.3390/cancers12092381.
  9. Thiele J, Kvasnicka HM, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  10. Krystal G, Lam V, Dragowska W, et al. Transforming growth factor beta 1 is an inducer of erythroid differentiation. J Exp Med. 1994;180(3):851–60. doi: 10.1084/jem.180.3.851.
  11. Wickenhauser C, Hillienhof A, Jungheim K, et al. Detection and quantification of transforming growth factor beta (TGF-beta) and platelet-derived growth factor (PDGF) release by normal human megakaryocytes. Leukemia. 1995;9(2):310–5.
  12. Sennikov SV, Eremina LV, Samarin DM, et al. Cytokine gene expression in erythroid cells. Eur Cytokine Netw. 1996;7(4):771–4.
  13. Di Giandomenico S, Kermani P, Molle N, et al. Megakaryocyte TGFβ1 partitions erythropoiesis into immature progenitor/stem cells and maturing precursors. Blood. 2020;136(9):1044–54. doi: 10.1182/blood.2019003276.
  14. Tang Y, Hu M, Xu Y, et al. Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-β Theranostics. 2020;10(5):2229–42. doi: 10.7150/thno.40559.
  15. Malara A, Abbonante V, Zingariello M, et al. Megakaryocyte contribution to bone marrow fibrosis: many arrows in the quiver. Mediterr J Hematol Infect Dis. 2018;10(1):e2018068. doi: 10.4084/MJHID.2018.068.
  16. Bonewald LF, Mundy GR. Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res. 1990;250:261–76. doi: 10.1097/00003086-199001000-00036.
  17. Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4(1):16009. doi: 10.1038/boneres.2016.9.
  18. Jann J, Gascon S, Roux S, Faucheux N. Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci. 2020;21(20):7597. doi: 10.3390/ijms21207597.
  19. Zhang Z, Zhang X, Zhao D, et al. TGF β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Mol Med Rep. 2019;19(5):3505–18. doi: 10.3892/mmr.2019.10051.
  20. Murshed M. Mechanism of Bone Mineralization. Cold Spring Harb Perspect Med. 2018;8(12):a031229. doi: 10.1101/cshperspect.a031229.
  21. Чеботарев Д.И., Ковригина А.М., Меликян А.Л., Кузьмина Л.А. Сравнительная характеристика изменений клеточного состава, стромы костного мозга и трабекулярной кости при трансплантации аллогенных гемопоэтических стволовых клеток у больных первичным миелофиброзом. Гематология и трансфузиология. 2021;66(1):68–78. doi: 10.35754/0234-5730-2021-66-1-68-78.
    [Chebotarev DI, Kovrigina AM, Melikyan AL, Kuzmina LA. Comparative characteristics of bone marrow cell composition, stroma, and trabecular bone in allogenic hematopoietic stem cell transplantation in patients with primary myelofibrosis. Russian journal of hematology and transfusiology. 2021;66(1):68–78. doi: 10.35754/0234-5730-2021-66-1-68-78. (In Russ)]
  22. Szuber N, Mudireddy M, Nicolosi M, et al. 3023 Mayo Clinic Patients With Myeloproliferative Neoplasms: Risk-Stratified Comparison of Survival and Outcomes Data Among Disease Subgroups. Mayo Clin Proc. 2019;94(4):599–610. doi: 10.1016/j.mayocp.2018.08.022.

National Clinical Guidelines on Diagnosis and Treatment of Ph-Negative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis) (Edition 2020)

AL Melikyan1, AM Kovrigina1, IN Subortseva1, VA Shuvaev2, EV Morozova3, EG Lomaia4, BV Afanasyev3, TA Ageeva5, VV Baikov3, OYu Vinogradova6, SV Gritsaev2, AYu Zaritskey4, TI Ionova7, KD Kaplanov6, IS Martynkevich2, TA Mitina8, ES Polushkina9, TI Pospelova5, MA Sokolova1, AB Sudarikov1, AG Turkina1, YuV Shatokhin10, RG Shmakov9, VG Savchenko1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

3 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

4 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

5 Novosibirsk State Medical University, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091

6 Moscow Municipal Center for Hematology, SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

7 NI Pirogov Clinic for High Medical Technology, Saint Petersburg State University, 7/9 Universitetskaya emb., Saint Petersburg, Russian Federation, 199034

8 NF Vladimirskii Moscow Regional Research Clinical Institute, 61/2 Shchepkina str., Moscow, Russian Federation, 129110

9 VI Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina str., Moscow, Russian Federation, 117997

10 ФГБОУ ВО «Ростовский государственный медицинский университет» Минздрава России, Нахичеванский пер., д. 29, Ростов-на-Дону, Российская Федерация, 344022

For correspondence: Anait Levonovna Melikyan, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: anoblood@ mail.ru

For citation: Melikyan AL, Kovrigina AM, Subortseva IN, et al. National Clinical Guidelines on Diagnosis and Treatment of Ph-Negative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis) (Edition 2020). Clinical oncohematology. 2021;14(2):262–98. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-262-298


ABSTRACT

The development of National clinical guidelines on diagnosis and treatment of Ph-negative myeloproliferative neoplasms comes in response to the need to standardize the approach to diagnosis and treatment. The availability of clinical guidelines can facilitate the choice of adequate treatment strategy, provides practicing physicians with exhaustive and up-to-date information on advantages and shortcomings of different treatment methods as well as lets health professionals better assess expected extents of treatment required by patients. In 2013 a working group was formed to develop and formulate clinical guidelines on the treatment of myeloproliferative neoplasms. These guidelines were first published in 2014, afterwards they were revised and republished. The dynamic development of current hematology presupposes constant updating of knowledge and implementation of new diagnosis and treatment methods in clinical practice. In this context clinical guidelines present a dynamic document to be continuously amended, expanded, and updated in accordance with scientific findings and new requirements of specialists who deal directly with this category of patients. The present edition is an upgraded version of clinical guidelines with updated information on the unification of constitutional symptoms assessment using MPN-SAF TSS questionnaire (MPN10), on applying prognostic scales in primary myelofibrosis, assessing therapy efficacy in myeloproliferative neoplasms, revising indications for prescription, on dose correction, and discontinuation of targeted drugs (ruxolitinib). The guidelines are intended for oncologists, hematologists, healthcare executives, and medical students.

Keywords: myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, primary myelofibrosis, JAK2V617F, CALR, MPL, prognosis, hydroxyurea, interferon-α, ruxolitinib, anagrelide.

Received: November 12, 2020

Accepted: February 23, 2021

Read in PDF

Статистика Plumx английский

 

Current View on Diagnosis and Treatment of Classical Ph-Negative Myeloproliferative Neoplasms

AL Melikyan1, IN Subortseva1, VA Shuvaev2,3, EG Lomaia4, EV Morozova5, LA Kuzmina1, OYu Vinogradova6,7,8, AYu Zaritskey4

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

3 VV Veresaev Municipal Clinical Hospital, 10 Lobnenskaya str., Moscow, Russian Federation, 127644

4 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

5 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

6 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

7 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117997

8 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Anait Levonovna Melikyan, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: anoblood@mail.ru

For citation: Melikyan AL, Subortseva IN, Shuvaev VA, et al. Current View on Diagnosis and Treatment of Classical Ph-Negative Myeloproliferative Neoplasms. Clinical oncohematology. 2021;14(1):129–37. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-129-137


ABSTRACT

Classical Ph-negative myeloproliferative neoplasms (MPN) constitute a group of diseases including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Over the past decade, the approaches to understanding of MPN pathogenesis and therapy have considerably changed. At the same time, etiological factors and pathophysiological mechanisms of disease progress are being thoroughly studied. The improvement of diagnosis methods and new approaches to therapy can reduce complications and mortality risks. The review outlines the current diagnosis methods, such as the molecular genetic one, and provides prognostic scores. Different methods of conservative therapy are assessed. Special attention is paid to quality of life measurement and targeted treatment of patients.

Keywords: myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, primary myelofibrosis, JAK2V617F, CALR, MPL, prognosis, constitutional symptoms, MPN10, ruxolitinib.

Received: September 1, 2020

Accepted: December 10, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Меликян А.Л., Туркина А.Г., Абдулкадыров К.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз). Гематология и трансфузиология. 2014;59:31–56.
    [Melikyan AL, Turkina AG, Abdulkadyrov KM, et al. Clinical guidelines on diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis). Gematologiya i transfuziologiya. 2014;59:31–56. (In Russ)]
  2. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.) Гематология и трансфузиология. 2018;63(3):275–315.
    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National clinical guidelines on diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2018). Gematologiya i transfuziologiya. 2018;63(3):275–315. (In Russ)]
  3. Абрамова А.В., Абдуллаев А.О., Азимова М.Х. и др. Алгоритмы диагностики и протоколы лечения заболеваний системы крови. В 2 томах. М.: Практика, 2018. Том 2.
    [Abramova AV, Abdullaev AO, Azimova MKh, et al. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. V 2 tomakh. (Diagnostic algorithms and treatment protocols in hematological diseases. 2 volumes.) Moscow: Praktika Publ.; 2018. 2. (In Russ)]
  4. Меликян А.Л., Суборцева И.Н., Галстян Г.М. Протокол дифференцированного посиндромного лечения больных первичным миелофиброзом. В кн.: Алгоритмы диагностики и протоколы лечения заболеваний системы крови. По ред. А.В. Абрамовой, А.О. Абдуллаева и др. В 2 томах. М.: Практика, 2018. Том 2. С. 777–802.
    [Melikyan AL, Subortseva IN, Galstyan GM. Protocol of differentiated syndromic treatment of patients with primary myelofibrosis. In: Abramova AV, Abdullaev AO, et al., eds. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. V 2 tomakh. (Diagnostic algorithms and treatment protocols in hematological diseases. 2 volumes.) Moscow: Praktika Publ.; 2018. Vol. 2. pр. 777–802. (In Russ)]
  5. Geyer H, Scherber R, Kosiorek H, et al. Symptomatic Profiles of Patients With Polycythemia Vera: Implications of Inadequately Controlled Disease. J Clin Oncol. 2016. 34(2):151–9. doi: 10.1200/JCO.2015.62.9337.
  6. Ионова Т.И., Анчукова Л.В., Виноградова О.Ю. и др. Качество жизни и спектр симптомов у больных миелофиброзом на фоне терапии: данные клинической практики. Гематология и трансфузиология. 2016;61(1):17–25. doi: 10.18821/0234-5730-2016-61-1-17-25.
    [Ionova TI, Anchukova LV, Vinogradova OYu, et al. Quality of life and symptom profile in patients with myelofibrosis undergoing treatment: Data of clinical practice. Gematologiya i transfuziologiya. 2016;61(1):17–25. doi: 10.18821/0234-5730-2016-61-1-17-25. (In Russ)]
  7. Xiao Z, Chang C-S, Morozova E, et al. Impact of myeloproliferative neoplasms (MPNS) and perceptions of treatment goals amongst physicians and patients in 6 countries: an expansion of the MPN landmark survey. 2019;3(s1):294–5. doi: 10.1097/01.hs9.0000561008.75001.e7.
  8. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  9. Passamonti F, Cervantes F, Vannucchi AM, et al. Dynamic International Prognostic Scoring System (DIPSS) predicts progression to acute myeloid leukemia in primary myelofibrosis. 2010;116(15):2857–8. doi: 10.1182/blood-2010-06-293415.
  10. Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/JCO.2010.32.2446.
  11. Vannucchi AM, Guglielmelli P, Rotunno G, et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for primary myelofibrosis: an AGIMM & IWG-MRT project. 2014;124(21):405. doi: 10.1182/blood.v124.21.405.405.
  12. Guglielmelli P, Lasho TL, Rotunno G, et al. MIPSS70: Mutation-Enhanced International Prognostic Score System for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018;36(4):310–8. doi: 10.1200/JCO.2017.76.4886.
  13. Passamonti F, Giorgino T, Mora B, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. 2017;31(12):2726–31. doi: 10.1038/leu.2017.169.
  14. Robin M, de Wreede LC, Wolschke C, et al. Long-term outcome after allogeneic hematopoietic cell transplantation for myelofibrosis. 2019;104(9):1782–8. doi: 10.3324/haematol.2018.205211.
  15. Барабанщикова М.В., Морозова Е.В., Байков В.В. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при миелофиброзе. Клиническая онкогематология. 2016;9(3):279–86. doi: 10.21320/2500-2139-2016-9-3-279-286.
    [Barabanshchikova MV, Morozova EV, Baykov VV, et al. Allogeneic Hematopoietic Stem Cell Transplantation in Myelofibrosis. Clinical oncohematology. 2016;9(3):279–86. doi: 10.21320/2500-2139-2016-9-3-279-286. (In Russ)]
  16. Виноградова О.Ю., Шуваев В.А., Мартынкевич И.С. и др. Таргетная терапия миелофиброза. Клиническая онкогематология. 2017;10(4):471–8. doi: 10.21320/2500-2139-2017-10-4-471-478.
    [Vinogradova OYu, Shuvaev VA, Martynkevich IS, et al. Targeted Therapy of Myelofibrosis. Clinical oncohematology. 2017;10(4):471–8. doi: 10.21320/2500-2139-2017-10-4-471-478. (In Russ)]
  17. Руксолитиниб (инструкция по медицинскому применению). Доступно по: https://www.vidal.ru/drugs/molecule/2304. Ссылка активна на 22.10.2020.
    [Ruxolitinib (package insert). Available from: https://www.vidal.ru/drugs/molecule/2304. (accessed 22.10.2020) (In Russ)]
  18. Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European Leukemia Net (ELN) consensus report. 2013;122(8):1395–8. doi: 10.1182/blood-2013-03-488098.
  19. Ломаиа Е.Г., Сиордия Н.Т., Сендерова О.М. и др. Ранний ответ и отдаленные результаты терапии миелофиброза руксолитинибом: многоцентровое ретроспективное исследование в 10 центрах Российской Федерации. Клиническая онкогематология. 2020;13(3):335–45. doi: 10.21320/2500-2139-2020-13-3-335-345.
    [Lomaia EG, Siordiya NT, Senderova OM, et al. Early Response and Long-Term Outcomes of Ruxolitinib Therapy in Myelofibrosis: Multicenter Retrospective Study in 10 Centers of the Russian Federation. Clinical oncohematology. 2020;13(3):335–45. doi: 10.21320/2500-2139-2020-13-3-335-345. (In Russ)]
  20. Lomaia E, Siordiya N, Dimov G, et al. Early spleen response is a good prognostic factor of ruxolinib outcome in patients with myelofibrosis. 2019;3(S1):989. doi: 10.1097/01.hs9.0000567308.09016.52.

Current Genetic Models for Prediction of Primary Myelofibrosis

LB Polushkina1, VA Shuvaev1, MS Fominykh1, YuA Krivolapov2, EA Belyakova2, ZP Asaulenko2, EV Motyko1, LS Martynenko1, MP Bakai1, NYu Tsybakova1, SV Voloshin1,3, SS Bessmeltsev1, AV Chechetkin1, IS Martynkevich1

1 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

2 II Mechnikov North-Western State Medical University, 41 Kirochnaya str., Saint Petersburg, Russian Federation, 191015

3 SM Kirov Military Medical Academy, 6 Akademika Lebedeva str., Saint Petersburg, Russian Federation, 194044

For correspondence: Lyubov Borisovna Polushkina, PhD in Biology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; e-mail: polushkina.lb@gmail.com

For citation: Polushkina LB, Shuvaev VA, Fominykh MS, et al. Current Genetic Models for Prediction of Primary Myelofibrosis. Clinical oncohematology. 2019;12(4):391–7 (In Russ).

DOI: 10.21320/2500-2139-2019-12-4-391-397


ABSTRACT

Aim. To study the relationship of karyotype, JAK2, CALR, and MPL driver mutations and ASXL1 mutation status with the progression and prediction of primary myelofibrosis (PMF).

Materials & Methods. The trial included 110 PMF patients (38 men and 72 women), median age was 59 years (range 18–82) with median follow-up after diagnosis of 2.6 years (range 0.1–23). The patients were examined for JAK2, CALR, MPL, and ASXL1 mutations. Restriction fragment length polymorphism technique was used for the analysis of V617F substitution in JAK2 and 515 codon mutation in MPL. CALR (exon 9) and ASXL1 (exon 12) mutation tests were performed using Sanger direct sequencing. In 48 (44 %) out of 110 patients bone marrow cell karyotype was determined. Clinical and hematological parameters and median overall survival (OS) of patients were analyzed with regard to detected genetic aberrations and combinations of them.

Results. JAK2, CALR, MPL mutations were detected in 55 (50 %), 28 (25.5 %), and 7 (6.4 %) out of 110 patients, respectively. Triple negative (TN) status was identified in 20 (18.2 %) out of 110 examined patients. ASXL1 mutations were detected in 22 (20 %) out of 110 patients. Out of 48 patients in 32 (66.7 %) normal karyotype, in 3 (6.3 %) favorable karyotype, in 4 (8.3 %) intermediate-prognosis karyotype, and in 9 (18.7 %) unfavorable karyotype were detected. The comparison of clinical and hematological parameters showed a number of significant differences. JAK2-positive patients had a higher hemoglobin level (median 129 g/L; = 0.021). TN was associated with a high IPSS risk (= 0.011), low hemoglobin level (median 101 g/L; = 0.006), continuing drop in platelet count (median 266 × 109/L; = 0.041), increased lymphocyte count (median 26.9 × 109/L; = 0.001). The detection of terminating mutations in ASXL1 correlated with palpable enlarged spleen (= 0.050), reduced platelet count (median 184 × 109/L; = 0.016), leukocyte count > 25 × 109/L (= 0.046), and blast count ≥ 1 % (< 0.001). Univariate regression analysis showed that terminating mutations in ASXL1 (hazard ratio [HR] 2.9; = 0.018), unfavorable karyotype (HR 8.2; < 0.001), and TN (ОР 8.1; < 0.001) had prognostic value for OS. ASXL1 mutation was associated with significantly worse OS in TN patients. Median OS of ASXL1-negative patients without high-risk chromosomal aberrations was significantly longer than in patients with high-risk karyotype and/or ASXL1 mutation.

Conclusion. Several genetic defects in tumor cells are associated with phenotypic manifestations of PMF. Based on the results of cytogenetic analysis and mutation determination of JAK2, CALR, MPL, and ASXL1, patients can be classified in different “genetic” risk groups when PMF is diagnosed.

Keywords: primary myelofibrosis, mutations, karyotype, prediction.

Received: April 8, 2019

Accepted: September 1, 2019

Read in PDF


REFERENCES

  1. Абдулкадыров К.М., Шуваев В.А., Мартынкевич И.С. Первичный миелофиброз: собственный опыт и новое в диагностике и лечении. Онкогематология. 2015;10(2):26–36. doi: 10.17650/1818-8346-2015-10-2-26-36.

    [Abdulkadyrov KM, Shuvaev VA, Martynkevich IS. Primary myelofibrosis: own experience and news from diagnostic and treatment. Oncohematology. 2015;10(2):26–36. doi: 10.17650/1818-8346-2015-10-2-26-36. (In Russ)]

  2. Абдулкадыров К.М., Шуваев В.А., Мартынкевич И.С. Миелопролиферативные новообразования. М.: Литтерра, 2016. 298 с.

    [Abdulkadyrov KM, Shuvaev VA, Martynkevich IS. Mieloproliferativnye novoobrazovaniya. (Myeloproliferative neoplasms.) Moscow: Litterra Publ.; 298 p. (In Russ)]

  3. Абдулкадыров К.М., Шуваев В.А., Мартынкевич И.С. Критерии диагностики и современные методы лечения первичного миелофиброза. Вестник гематологии. 2013;9(3):44–78.

    [Abdulkadyrov KM, Shuvaev VA, Martynkevich Diagnostic criteria and current methods of primary myelofibrosis treatment. Vestnik gematologii. 2013;9(3):44–78. (In Russ)]

  4. Tefferi A. Pathogenesis of myelofibrosis with myeloid metaplasia. J Clin Oncol. 2005;23(23):8520–30. doi: 10.1200/jco.2004.00.9316.

  5. Levine RL, Pardanani A, Tefferi A, et al. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer. 2007;7(9):673–83. doi: 10.1038/nrc2210.

  6. Milosevic Feenstra JD, Nivarthi H, Gisslinger H, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127(3):325–32. doi: 10.1182/blood-2015-07-661835.

  7. Tefferi A. Primary myelofibrosis: 2019 update on diagnosis, risk-stratification and management. Am J Hematol. 2018;93(12):1551–60. doi: 10.1002/ajh.25230.

  8. Tefferi A, Lasho TL, Finke CM, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1(2):105–11. doi: 10.1182/bloodadvances.2016000208.

  9. Hussein K, Van Dyke DL, Tefferi A. Conventional cytogenetics in myelofibrosis: literature review and discussion. Eur J Haematol. 2009;82(5):329–38. doi: 10.1111/j.1600-0609.2009.01224.x.

  10. Gangat N, Caramazza D, Vaidya R, et al. DIPSS Plus: A Refined Dynamic International Prognostic Scoring System for Primary Myelofibrosis That Incorporates Prognostic Information From Karyotype, Platelet Count, and Transfusion Status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/jco.2010.32.2446.

  11. Guglielmelli P, Biamonte F, Score J, et al. EZH2 mutational status predicts poor survival in myelofibrosis. Blood. 2011;118(19):5227–34. doi: 10.1182/blood-2011-06-363424.

  12. Tefferi A, Lasho TL, Tischer A, et al. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR Blood. 2014;124(15):2465–6. doi: 10.1182/blood-2014-07-588426.

  13. Tefferi A, Lasho TL, Finke C, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia. 2014;28(7):1568–70. doi: 10.1038/leu.2014.83.

  14. Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28(7):1494–500. doi: 10.1038/leu.2014.57.

  15. Argote JA, Dasanu CА. ASXL1 mutations in myeloid neoplasms: pathogenetic considerations, impact on clinical outcomes and survival. Curr Med Res Opin. 2016;34(5):757–63. doi: 10.1080/03007995.2016.1276896.

  16. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision of the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  17. Guglielmelli P, Lasho TL, Rotunno G, et al. MIPSS70: Mutation-Enhanced International Prognostic Score System for Transplantation-Age Patients With Primary Myelofibrosis. J Clin Oncol. 2018;36(4):310–8. doi: 10.1200/jco.2017.76.4886.

  18. Tefferi A, Guglielmelli P, Lasho TL, et al. MIPSS70+ Version 2.0: Mutation and Karyotype Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J Clin Oncol. 2018;36(17):1769–70. doi: 10.1200/jco.2018.78.9867.

  19. Tefferi A, Guglielmelli P, Nicolosi M, et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia. 2018;32(7):1631–42. doi: 10.1038/s41375-018-0107-z.

Targeted Therapy of Myelofibrosis

OYu Vinogradova1,3,4, VA Shuvaev2, IS Martynkevich2, MM Pankrashkina1,3, MS Fominykh2, EV Efremova2, KYu Krutikova2, LB Polushkina2, NN Sharkunov1, SV Voloshin2, AV Chechetkin2

1SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

2Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

3Dmitrii Rogachev National Medical Pediatric Hematology, Oncology and Immunology Research Center, 1 Samory Mashela str., Moscow, Russian Federation, 117198

4NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Ol’ga Yur’evna Vinogradova, MD, PhD, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284; Tel.: 8(495)945-97-61; e-mail: olgavinz@mail.ru.

For citation: Vinogradova OYu, Shuvaev VA, Martynkevich IS, et al. Targeted Therapy of Myelofibrosis. Clinical oncohematology. 2017;10(4):471–8 (In Russ).

DOI: 10.21320/2500-2139-2017-10-4-471-478


ABSTRACT

Background. Myelofibrosis (primary myelofibrosis, post-essential trombocythemia myelofibrosis, post-polycythemia myelofibrosis) is the most complex and pressing problem among all Ph-negative myeloproliferative diseases. The present article summarizes the author’s experience of using new Janus kinase inhibitors in routine clinical practice, and compares the data with the results of other clinical research.

Aim. To evaluate the use of ruxolitinib in patients with myelofibrosis.

Materials & Methods. Our analysis includes 48 patients (21 men and 27 women) with histologically verified myelofibrosis (primary myelofibrosis in 36 cases, post-essential trombocythemia myelofibrosis in 10 cases, and post-polycythemia myelofibrosis in 2 cases) in a chronic stage. All patients received ruxolitinib. Median age at the start of therapy was 60 years (range from 35 to 79). Massive splenomegaly (≥ 10 cm below the costal margin) was found in 34 (71 %) of 48 patients. The initial dose of ruxolitinib was determined by the platelet level. The efficacy of the therapy was evaluated in accordance with ELN 2013 criteria.

Results. Median duration of treatment was 18 months (range from 1 to 50 months). Symptoms of intoxication were relieved in 33 of 37 patients (89 %). The spleen size decreased in 64 % of patients. In 33 % of cases spleen size did not change, whereas an increase was observed in 3 % of patients. In the majority of patients hemoglobin level remained stable through the course of treatment. Three of 14 transfusion dependent patients did not require blood transfusions after 3 months of therapy. In patients with high thrombocyte levels prior to ruxolitinib therapy the mean level was approaching normal by the end of the 1st month of treatment. The median JAK2V617F mutant allele burden at the beginning treatment was 56.5 % (n = 20; 22.5–126.1 %). After 6 moths of treatment it accounted for 62.3 % (n = 11; 25.4–79.7 %) and in 12 months accounted for 47.4 % (n = 12; 14.2–102.2 %). By the time of the analysis 42 of 48 patients continued the ruxolitinib treatment (88 %). Death occurred in 4 patients. Overall 1-year (92 %) and 2-year (87 %) survival corresponds to the data of COMFORT-I, COMFORT-II and JUMP clinical trials.

Conclusion. Ruxolitinib showed to be an effective treatment for myelofibrosis. The most pronounced and rapid effect ruxolitinib had on the spleen size and the symptoms of intoxication. The tolerability of ruxolitinib was satisfactory in the majority of patients. According to the author’s data, ruxolitinib had a small impact on the JAK2V617F mutant allele burden. The overall survival rate in patients with myelofibrosis, receiving ruxolitinib in the clinical setting was similar to that of in the clinical trials.

Keywords: primary myelofibrosis, post-essential trombocythemia myelofibrosis, post-polycythemia myelofibrosis, JAK2V617F, ruxolitinib, clinical practice, targeted therapy.

Received: February 11, 2017

Accepted: May 22, 2017

Read in PDF


REFERENCES

  1. Абдулкадыров К.М., Шуваев В.А., Мартынкевич И.С. Миелопролиферативные новообразования. М.: Littera, 2016. 304 с.[Abdulkadyrov KM, Shuvayev VA, Martynkevich IS. Mieloproliferativnye novoobrazovaniya. (Myeloproliferative Neoplasms.) Moscow: Littera Publ.; 2016. 304 p. (In Russ)]
  2. Абдулкадыров К.М., Шуваев В.А., Мартынкевич И.С. Первичный миелофиброз: собственный опыт и новое в диагностике и лечении. Онкогематология. 2015;10(2):25–35. doi: 10.17650/1818-8346-2015-10-2-26-36.[Abdulkadyrov KM, Shuvayev VA, Martynkevich IS. Primary myelofibrosis: own experience and news from diagnostic and treatment. Oncohematology. 2015;10(2):25–35. doi: 10.17650/1818-8346-2015-10-2-26-36. (In Russ)]
  3. Shuvaev V, Martynkevich I, Abdulkadyrova A, et al. Ph-Negative Chronic Myeloproliferative Neoplasms–Population Analysis, a Single Center 10-years’ Experience. Blood (56th ASH Annual Meeting Abstracts). 2014;124(21): Abstract 5556.
  4. Shuvaev V, Udaleva V, Golovchenko R, et al. Primary myelofibrosis–a survey based on the 20-years’ experience of a single center. Haematologica. 2013;98(Suppl 1):624.
  5. Cervantes F, Passamonti F, Barosi G. Life expectancy and prognostic factors in the classic BCR/ABL-negative myeloproliferative disorders. Leukemia. 2008;22(5):905–14. doi: 10.1038/leu.2008.72.
  6. Абдулкадыров К.М., Шуваев В.А., Мартынкевич И.С. Критерии диагностики и современные методы лечения первичного миелофиброза. Вестник гематологии. 2013;9(3):44–78.[Abdulkadyrov KM, Shuvayev VA, Martynkevich IS. Diagnostic criteria and current methods of primary myelofibrosis treatment. Vestnik gematologii. 2013;9(3):44–78. (In Russ)]
  7. Gupta V, Hari P, Hoffman R. Allogeneic hematopoietic cell transplantation for myelofibrosis in the era of JAK inhibitors. Blood. 2012;120(7):1367–79. doi: 10.1182/blood-2012-05-399048.
  8. Vannucchi AM, Kantarjian HM, Kiladjian J-J, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica. 2015;100(9):1139–45. doi: 10.3324/haematol.2014.119545.
  9. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2008;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  10. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2009;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  11. Gangat N, Caramazza D, Vaidya R, et al. DIPSS Plus: A Refined Dynamic International Prognostic Scoring System for Primary Myelofibrosis That Incorporates Prognostic Information from Karyotype, Platelet Count, and Transfusion Status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/jco.2010.32.2446.
  12. Vannucchi AM, Rotunno G, Pascutto C, Pardanani A. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project. (56th ASH Annual Meeting and Exposition, San-Francisco, December 6–9, 2014) Blood. 2014;2014:P405.
  13. Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013;122(8):1395. doi: 10.1182/blood-2013-03-488098.
  14. Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30(8):1701–7. doi: 10.1038/leu.2016.148.
  15. Verstovsek S, Mesa RA, Gotlib J, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55. doi: 10.1186/s13045-017-0417-z.
  16. Al-Ali HK, Griesshammer M, le Coutre P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: a snapshot of 1144 patients in the JUMP trial. Haematologica. 2016;101(9):1065–73. doi: 10.3324/haematol.2016.143677.

Myelofibrosis Models: Literature Review and Own Data

AA Silyutina, II Gin, NM Matyukhina, EN Balayan, PA Butylin

VA Almazov Federal North-West Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Pavel Andreevich Butylin, PhD, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; e-mail: butylinp@gmail.com

For citation: Silyutina AA, Gin II, Matyukhina NM, et al. Myelofibrosis Models: Literature Review and Own Data. Clinical oncohematology. 2017;10(1):75–84 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-75-84


ABSTRACT

Background & Aims. Chronic myeloproliferative disorders typically develop during a long latent period, and it complicates the study of the mechanism of its pathogenesis. Observations from the clinical practice should be confirmed by experiments. The mechanisms of oncological transformation related to mutations associated with chronic myeloproliferative diseases were confirmed in transgene animal models. Biological models permitted to determine a complex nature of myelofibrosis. However, studies of the cellular mechanisms of myelofibrosis require new models. This paper presents a review of published models of myeloproliferative disorders, mainly, primary myelofibrosis, and results of studies of a new cell line with expression of JAK2 V617F. The aim of this study is to create a new cell line with expression of transforming JAK2 V617F mutation in acute monocytic leukemia THP-1 cells.

Methods. Transgenic cell lines were created on the basis of monocytic leukemia THP-1 cell line that can differentiate into macrophages. Direct mutagenesis was used to cause V617F mutation. Two cell lines were created: one with JAK2 expression with V617F mutation, the other with wild type JAK2.

Results. Both transgenic lines were characterized by increased JAK2 expression as compared to non-modified cells. In routine cultivation, transgenic THP-1 cells retained the morphology of monocytes. After treatment with phorbol ester, THP-1 differentiated into macrophages and become adherent to culture plastic. Adherent cells demonstrated the variety of shapes: some of them were spherical, the other ones had pseudopodia. No significant differences in viability of cells were observed. However, macrophages expressing mutant JAK2 and overexpressing the wild type JAK2 demonstrated a tendency to decreased amount unlivable cells during cultivation.

Conclusion. The obtained cell model can be used for estimating the influence of JAK2 V617F mutation on pro- and antifibrotic potential of macrophages that can help to investigate the pathogenetic role of macrophages in myelofibrosis development. In addition, this model can help to develop novel methods of therapy and diagnostics of primary and secondary myelofibrosis.

Keywords: Ph-negative chronic myeloproliferative disorders, primary myelofibrosis, JAK2 V617F, transgenic animals.

Received: September 15, 2016

Accepted: December 13, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100(7):2292–302. doi: 10.1182/blood-2002-04-1199.
  2. Hoffman R, Rondelli D. Biology and treatment of primary myelofibrosis. Hematol Am Soc Hematol Educ Program. 2007;1:346–54. doi: 10.1182/asheducation-2007.1.346.
  3. Mesa RA, Niblack J, Wadleigh M, et al. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international internet-based survey of 1179 MPD patients. Cancer. 2007;109(1):68–76. doi: 10.1002/cncr.22365.
  4. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  5. Scherber R, Dueck AC, Johansson P, et al. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood. 2011;118(2):401–8. doi: 10.1182/blood-2011-01-328955.
  6. Barosi G, Mesa RA, Thiele J, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia. 2008;22(2):437–8. doi: 10.1038/sj.leu.2404914.
  7. Tefferi A. Myelofibrosis with myeloid metaplasia. N Engl J Med. 2000;342(17):1255–65. doi: 10.1056/nejm200004273421706.
  8. Jacobson RJ, Salo A, Fialkow PJ. Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood. 1978;51:189–94.
  9. Reeder TL, Bailey RJ, Dewald GW, Tefferi A. Both B and T lymphocytes may be clonally involved in myelofibrosis with myeloid metaplasia. Blood. 2003;101(5):1981–3. doi: 10.1182/blood-2002-07-2341.
  10. Reilly JT. Idiopathic myelofibrosis: pathogenesis, natural history and management. Blood Rev. 1997;11(4):233–42. doi: 10.1016/s0268-960x(97)90022-9.
  11. Mehta J, Wang H, Iqbal SU, Mesa R. Epidemiology of myeloproliferative neoplasms (MPN) in the United States. Leuk Lymphoma. 2014;55(3):595–600. doi: 10.3109/10428194.2013.813500.
  12. Kaushansky K. Thrombopoietin: The primary regulator of platelet production. Blood. 1995;86(2):419–31.
  13. de Sauvage FJ, Carver-Moore K, Luoh SM, et al. Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J Exp Med. 1996;183(2):651–6.
  14. Vannucchi AM, Villeval J-L, Wagner-Ballon O, et al. Animal Models of Myelofibrosis. In: Conn PM, ed. Sourcebook of Models for Biomedical Research. Totowa: Humana Press Inc.; 2008. pр. 713–23. doi: 10.1007/s12223-008-0071-5.
  15. Ulich TR, del Castillo J, Senaldi G, et al. Systemic hematologic effects of PEG-rHuMGDF-induced megakaryocyte hyperplasia in mice. Blood. 1996;87(12):5006–15.
  16. Villeval JL, Cohen-Solal K, Tulliez M, et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood. 1997;90(11):4369–83.
  17. Yan XQ, Lacey D, Fletcher F, et al. Chronic exposure to retroviral vector encoded MGDF (MPL-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood. 1995;86(11):4025–33.
  18. Ohwada A, Rafii S, Moore MA, Crystal RG. In vivo adenovirus vector-mediated transfer of the human thrombopoietin cDNA maintains platelet levels during radiation-and chemotherapy-induced bone marrow suppression. Blood. 1996;88(3):778–84.
  19. Cannizzo SJ, Frey BM, Raffi S, et al. Augmentation of blood platelet levels by intratracheal administration of an adenovirus vector encoding human thrombopoietin cDNA. Nat Biotechnol. 1997;15(6):570–3. doi: 10.1038/nbt0697-570.
  20. Abina MA, Tulliez M, Duffour MT, et al. Thrombopoietin (TPO) knockout phenotype induced by cross-reactive antibodies against TPO following injection of mice with recombinant adenovirus encoding human TPO. J Immunol. 1998;160(9):4481–9.
  21. Frey BM, Rafii S, Teterson M, et al. Adenovector-mediated expression of human thrombopoietin cDNA in immune-compromised mice: Insights into the pathophysiology of osteomyelofibrosis. J Immunol. 1998;160(2):691–9.
  22. Zhou W, Toombs CF, Zou T, et al. Transgenic mice overexpressing human c-MPL ligand exhibit chronic thrombocytosis and display enhanced recovery from 5-fluorouracil or antiplatelet serum treatment. Blood. 1997;89(5):1551–9.
  23. Kakumitsu H, Kamezaki K, Shimoda K, et al. Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res. 2005;29(7):761–9. doi: 10.1016/j.leukres.2004.12.009.
  24. Yanagida M, Ide Y, Imai A, et al. The role of transforming growth factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis in rats. Br J Haematol. 1997;99(4):739–45.
  25. Abina MA, Tulliez M, Lacout C, et al. Major effects of TPO delivered by a single injection of a recombinant adenovirus on prevention of septicemia and anemia associated with myelosuppression in mice: Risk of sustained expression inducing myelofibrosis due to immunosuppression. Gene Ther. 1998;5(4):497–506. doi: 10.1038/sj.gt.3300638.
  26. Shultz LD, SchweitzerPA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-SCID mice. J. Immunol. 1995;154:180–91.
  27. Serreze DV, Gaedeke JW, Leiter EH. Hematopoietic stem-cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: defective regulation of cytokine receptors and protein kinase C. Proc Natl Acad Sci USA. 1993;90(20):9625–9. doi: 10.1073/pnas.90.20.9625.
  28. Wagner-Ballon O, Hedia Chagraoui H, Eric Prina E, et al. Monocyte/Macrophage Dysfunctions Do Not Impair the Promotion of Myelofibrosis by High Levels of Thrombopoietin. J Immunol. 2006;176(11):6425–33. doi: 10.4049/jimmunol.176.11.6425.
  29. Tefferi A. Experimental myelofibrosis in mice and the implications to human disease. Leuk Res. 2005;29(7):723–6. doi: 10.1016/j.leukres.2004.12.006.
  30. Tsai SF, Martin DI, Zon LI, et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature. 1989;339(6224):446–51. doi: 10.1038/339446a0.
  31. Romeo PH, Prandini MH, Joulin V, et al. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature. 1990;344(6265):447–9. doi: 10.1038/344447a0.
  32. Yu C, Cantor AB, Yang H, et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med. 2002;195(11):1387–95. doi: 10.1084/jem.20020656.
  33. Migliaccio AR, Rana RA, Sanchez M, et al. GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J Exp Med. 2003;197(3):281–96. doi: 10.1084/jem.20021149.
  34. McDevitt MA, Shivdasani RA, Fujiwara Y, et al. A “knockdown” mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc Natl Acad Sci USA. 1997;94(13): 6781–5. doi: 10.1073/pnas.94.13.6781.
  35. Shivdasani RA, Fujiwara Y, McDevitt MA, et al. A line-age-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 1997;16(13):3965–73. doi: 10.1093/emboj/16.13.3965.
  36. Vyas P, Ault K, Jackson CW, et al. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood. 1999;93(9):2867–75.
  37. Centurione L, Di Baldassarre A, Zingariello M, et al. Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1(low) mice. Blood. 2004;104(12):3573–80. doi: 10.1182/blood-2004-01-0193.
  38. Vannucchi AM, Bianchi L, Cellai C, et al. Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1(low) mice). Blood. 2002;100(4):1123–32. doi: 10.1182/blood-2002-06-1913.
  39. Vannucchi AM, Migliaccio AR, Paoletti F, et al. Pathogenesis of myelofibrosis with myeloid metaplasia: Lessons from mouse models of the disease. Semin Oncol. 2005;32(4):365–72. doi: 10.1053/j.seminoncol.2005.04.008.
  40. Radich J. The Molecular Biology of Myeloproliferative Disorders. Cancer Cell. 2010;18(1):7–8. doi: 10.1016/j.ccr.2010.06.006.
  41. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61. doi: 10.1016/s0140-6736(05)74230-6.
  42. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. doi: 10.1056/nejmoa051113.
  43. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97. doi: 10.1016/j.ccr.2005.03.023.
  44. Kiladjian JJ. The spectrum of JAK2-positive myeloproliferative neoplasms. Hematol Am Soc Hematol Educ Program. 2012;2012:561–6. doi: 10.1182/asheducation-2012.1.561.
  45. Levine RL, Gilliland DG. Myeloproliferative disorders. Blood. 2008;112(6):2190–8. doi: 10.1182/blood-2008-03-077966.
  46. Chen M, Cheng A, Chen YQ, et al. The amino terminus of JAK3 is necessary and sufficient for binding to the common gamma chain and confers the ability to transmit interleukin 2-mediated signals. Proc Natl Acad Sci USA. 1997;94(13):6910–5. doi: 10.1073/pnas.94.13.6910.
  47. Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002;277(49):47954–63. doi: 10.1074/jbc.m205156200.
  48. Griffith J, Black J, Faerman C, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell. 2004;13(2):169–78. doi: 10.1016/s1097-2765(03)00505-7.
  49. Lindauer K, Loerting T, Liedl KR, et al. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Engin. Design Select. 2001;14(1):27–37. doi: 10.1093/protein/14.1.27.
  50. Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93(3):385–95. doi: 10.1016/s0092-8674(00)81167-8.
  51. Levine RL, Loriaux M, Huntly BJ, et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood. 2005;106(10):3377–9. doi: 10.1182/blood-2005-05-1898.
  52. Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia-chromosome negative CML and megakaryocytic leukemia. Blood. 2005;106(10):3370–3. doi: 10.1182/blood-2005-05-1800.
  53. Steensma DP, Dewald GW, Lasho TL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and the myelodysplastic syndrome. Blood. 2005;106(4):1207–9. doi: 10.1182/blood-2005-03-1183.
  54. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.
  55. Scott LM, Scott MA, Campbell PJ, Green AR. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood. 2006;108(7):2435–7. doi: 10.1182/blood-2006-04-018259.
  56. Wernig G, Mercher T, Okabe R, et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107(11):4274–81. doi: 10.1182/blood-2005-12-4824.
  57. Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108(5):1652–60. doi: 10.1182/blood-2006-02-002030.
  58. Tiedt R, Hao-Shen H, Sobas MA, et al. Ratio of mutant JAK2-V617F to wild type JAK2 determines the MPD phenotypes in transgenic mice. Blood. 2007;111(8):3931–40. doi: 10.1182/blood-2007-08-107748.
  59. Xing S, Ho WT, Zhao W, et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood. 2008;111(10):5109–17. doi: 10.1182/blood-2007-05-091579.
  60. Marty C, Lacout C, Martin A, et al. Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood. 2010;116(5):783–7. doi: 10.1182/blood-2009-12-257063.
  61. Li J, Kent DG, Chen E, Green AR. Mouse models of myeloproliferative neoplasms: JAK of all grades. Dis Model Mech. 2011;4(3):311–7. doi: 10.1242/dmm.006817.
  62. Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270. doi: 10.1371/journal.pmed.0030270.
  63. Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: A study of 1182 patients. Blood. 2006;108(10):3472–6. doi: 10.1182/blood-2006-04-018879.
  64. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.
  65. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.
  66. Wang WA, Groenendyk J, Michalak M. Calreticulin signaling in health and disease. Int J Biochem Cell Biol. 2012;44(6):842–6. doi: 10.1016/j.biocel.2012.02.009.
  67. Michalak M, Groenendyk J, Szabo E, et al. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 2009;417(3):651–66. doi: 10.1042/BJ20081847.
  68. Gold LI, Eggleton P, Sweetwyne MT, et al. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J. 2010;24(3):665–83. doi: 10.1096/fj.09-145482.
  69. Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. 2012;32(7):805–18. doi: 10.1038/onc.2012.130.
  70. Rumi E, Pietra D, Ferretti V, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123(10):1544–51. doi: 10.1182/blood-2013-11-539098.
  71. Cabagnols X, Defour JP, Ugo V, et al. Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution. Leukemia. 2014;29(1):249–52. doi: 10.1038/leu.2014.270.
  72. Marty C, Pecquet C, Nivarthi H, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127(10):1317–24. doi: 10.1182/blood-2015-11-679571.
  73. Chachoua I, Pecquet C, El-Khoury M, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127(10):1325–35. doi: 10.1182/blood-2015-11-681932.
  74. Thiele J, Kvasnicka HM, Boeltken B. Resident bone marrow macrophages in idiopathic (primary) myelofibrosis (IMF): a histochemical and morphometric study on sequential trephine biopsies. Leuk Res. 1999;23(11):983–5. doi: 10.1016/s0145-2126(99)00120-4.
  75. Tsuchiya S, Kobayashi Y, Goto Y, et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982;42(4):1530–6.

 

 

Biology of Myeloproliferative Malignancies

AL Melikyan, IN Subortseva

Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Irina Nikolaevna Subortseva, PhD, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-44-71; e-mail: soubortseva@yandex.ru

For citation: Melikyan AL, Subortseva IN. Biology of Myeloproliferative Malignancies. Clinical oncohematology. 2016;9(3):326-35 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-314-325


ABSTRACT

Chronic myeloproliferative diseases (WHO, 2001), or myeloproliferative neoplasms/malignancies (MPN) (WHO, 2008), are clonal diseases characterized by proliferation of one or more myelopoietic cell line in the bone marrow with signs of unimpaired terminal differentiation and is normally associated with changes in peripheral blood characteristics. The group of classical Ph-negative MPNs consists of polycythemia vera, essential thrombocythemia, primary myelofibrosis and unclassified MPNs. Acquired somatic mutations contributing to the pathogenesis of Ph-negative MPNs include JAK2 (V617F, exon 12), MPL, CALR gene mutations found in about 90 % of patients. However, these molecular events are not unique in the pathogenesis of the diseases. Mutations of other genes (ТЕТ2, ASXL1, CBL, IDH1/IDH2, IKZF1, DNMT3A, SOCS, EZH2, TP53, RUNX1, and HMGA2) are involved in formation of the disease phenotype. This review describes current concepts concerning the molecular biology of MPNs.


Keywords: chronic myeloproliferative diseases, myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, primary myelofibrosis, genes JAK2, CALR, and MPL.

Received: April 11, 2016

Accepted: April 11, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29(6):761–70. doi: 10.1200/jco.2010.31.8436.
  2. Tefferi A, Thiele J, Vardiman JW. The 2008 World Health Organization classification system for myeloproliferative neoplasms: order out of chaos. Cancer. 2009;115(17):3842–7. doi: 10.1002/cncr.24440.
  3. Barosi G. Essential thrombocythemia vs. early/prefibrotic myelofibrosis: why does it matter. Best Pract Res Clin Haematol. 2014;27(2):129–40. doi: 10.1016/j.beha.2014.07.004.
  4. Vannucchi AM. Management of myelofibrosis. Am Soc Hematol Educ Program. 2011;2011(1):222–30. doi:10.1182/asheducation-2011.1.222.
  5. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  6. Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/jco.2010.32.2446.
  7. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  8. Tefferi A. How I treat myelofibrosis. Blood. 2011;117(13):3494–504. doi: 10.1182/blood-2010-11-315614.
  9. Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28(7):1494–500. doi: 10.1038/leu.2014.57.
  10. Agarwal MB, Malhotra H, Chakrabarti P, et al. Myeloproliferative neoplasms working group consensus recommendations for diagnosis and management of primary myelofibrosis, polycythemia vera, and essential thrombocythemia. Indian J Med Paediatr Oncol. 2015;36(1):3–16. doi: 10.4103/0971-5851.151770.
  11. Campregher PV, Santos FP, Perini GF, Hamerschlak N. Molecular biology of Philadelphia-negative myeloproliferative neoplasms. Rev Bras Hematol Hemoter. 2012;34(2):150–5. doi: 10.5581/1516-8484.20120035.
  12. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–87. doi: 10.1111/j.1600-065X.2008.00754.x.
  13. Liu KD, Gaffen SL, Goldsmith MA. JAK/STAT signaling by cytokine receptors. Curr Opin Immunol. 1998;10(3):271–8. doi: 10.1016/s0952-7915(98)80165-9.
  14. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24(6):1128–38. doi: 10.1038/leu.2010.69.
  15. Riedy MC, Dutra AS, Blake TB, et al. Genomic sequence, organization, and chromosomal localization of human JAK3. Genomics. 1996;37(1):57–61. doi: 10.1006/geno.1996.0520.
  16. Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002;277(49):47954–63. doi: 10.1074/jbc.M205156200.
  17. Benekli M, Baer MR, Baumann H, Wetzler M. Signal transducer and activator of transcription proteins in leukemias. Blood. 2003;101(8):2940–54. doi: 10.1182/blood-2002-04-1204.
  18. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118(7):1723–35. doi: 10.1182/blood-2011-02-292102.
  19. Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108(5):1652–660. doi: 10.1182/blood-2006-02-002030.
  20. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.
  21. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. doi: 10.1056/NEJMoa051113.
  22. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97. doi: 10.1016/j.ccr.2005.03.023.
  23. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. The Lancet. 2005;365(9464):1054–61. doi: 10.1016/S0140-6736(05)71142-9.
  24. Butcher CM, Hahn U, To LB, et al. Two novel JAK2 exon 12 mutations in JAK2V617F-negative polycythaemia vera patients. Leukemia. 2008;22(4):870–3. doi: 10.1038/sj.leu.2404971.
  25. Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocyticleukemia. Blood. 2005;106(10):3370–3. doi: 10.1182/blood-2005-05-1800.
  26. Pich A, Riera L, Sismondi F, et al. JAK2V617F activating mutation is associated with the myeloproliferative type of chronic myelomonocytic leukaemia. J Clin Pathol. 2009;62(9):798–801. doi: 10.1136/jcp.2009.065904.
  27. Johan MF, Goodeve AC, Bowen DT, et al. JAK2 V617F Mutation is uncommon in chronic myelomonocytic leukaemia. Br J Haematol. 2005;130(6):968. doi: 10.1111/j.1365-2141.2005.05719.x.
  28. Renneville A, Quesnel B, Charpentier A, et al. High occurrence of JAK2 V617 mutation in refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Leukemia. 2006;20(11):2067–70. doi: 10.1038/sj.leu.2404405.
  29. Verstovsek S, Silver RT, Cross NC, Tefferi A. JAK2V617F mutational frequency in polycythemia vera: 100%, > 90%, less? Leukemia. 2006;20(11):2067. doi:10.1038/sj.leu.2404379.
  30. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110(3):840–6. doi: 10.1182/blood-2006-12-064287.
  31. Barosi G, Bergamaschi G, Marchetti M, et al. JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood. 2007;110(12):4030–6. doi: 10.1182/blood-2007-07-099184.
  32. Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861–9. doi: 10.1038/leu.2013.119.
  33. Lussana F, Caberlon S, Pagani C, et al. Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res. 2009;124(4):409–17. doi: 10.1016/j.thromres.2009.02.004.
  34. Wang M, He N, Tian T, et al. Mutation analysis of JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in Chinese patients with myeloproliferative neoplasms. BioMed Res Int. 2014;2014:485645. doi: 10.1155/2014/485645.
  35. Passamonti F, Thiele J, Girodon F, et al. A prognostic model to predict survival in 867 World Health Organization-defined essential thrombocythemia at diagnosis: a study by the International Working Group on Myelofibrosis Research and Treatment. Blood. 2012;120(6):1197–201. doi: 10.1182/blood-2012-01-403279.
  36. Barbui T, Carobbio A, Rambaldi A, Finazzi G. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: is leukocytosis a causative factor? Blood. 2009;114(4):759–63. doi: 10.1182/blood-2009-02-206797.
  37. Barbui T, Finazzi G, Carobbio A, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood. 2012;120(26):5128–33. doi: 10.1182/blood-2012-07-444067.
  38. Tefferi A, Pardanani A. Myeloproliferative neoplasms – a contemporary review. JAMA Oncol. 2015;1(1):97–105. doi: 10.1001/jamaoncol.2015.89.
  39. Nussenzveig RH, Swierczek SI, Jelinek J, et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol. 2007;35(1):32–8. doi: 10.1016/j.exphem.2006.11.012.
  40. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68. doi: 10.1056/NEJMoa065202.
  41. Williams DM, Kim AH, Rogers O, et al. Phenotypic variations and new mutations in JAK2 V617F-negative polycythemia vera, erythrocytosis, and idiopathic myelofibrosis. Exp Hematol. 2007;35(11):1641–6. doi: 10.1016/j.exphem.2007.08.010.
  42. Passamonti F, Elena C, Schnittger S, et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood. 2011;117(10):2813–6. doi: 10.1182/blood-2010-11-316810.
  43. Campbell PJ, Griesshammer M, Dohner K, et al. V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood. 2006;107(5):2098–100. doi: 10.1182/blood-2005-08-3395.
  44. Martinez-Aviles L, Besses C, Alvarez-Larran A, et al. JAK2 exon 12 mutations in polycythemia vera or idiopathic erythrocytosis. Haematologica. 2007;92(12):1717–8. doi: 10.3324/haematol.12011.
  45. Sangkhae V, Etheridge SL, Kaushansky K, Hitchcock IS. The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm. Blood. 2014;124(26):3956–63. doi: 10.1182/blood-2014-07-587238.
  46. Chou FS, Mulloy JC. The thrombopoietin/MPL pathway in hematopoiesis and leukemogenesis. J Cell Biochem. 2011;112(6):1491-8. doi: 10.1002/jcb.23089.
  47. Abe M, Suzuki K, Inagaki O, et al. A novel MPL point mutation resulting in thrombopoietin-independent activation. Leukemia. 2002;16(8):1500–6. doi: 10.1038/sj.leu.2402554.
  48. Ding J, Komatsu H, Wakita A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood. 2004;103(11):4198–200. doi: 10.1182/blood-2003-10-3471.
  49. Moliterno AR, Williams DM, Gutierrez-Alamillo LI, et al. Mpl Baltimore: A thrombopoietin receptor polymorphism associated with thrombocytosis. Proc Natl Acad Sci USA. 2004;101(31):11444–7. doi: 10.1073/pnas.0404241101.
  50. Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270. doi: 10.1371/journal.pmed.0030270.
  51. Staerk J, Lacout C, Sato T, et al. An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood. 2006;107(5):1864–71. doi: 10.1182/blood-2005-06-2600.
  52. Boyd EM, Bench AJ, Goday-Fernandez A, et al. Clinical utility of routine MPL exon 10 analysis in the diagnosis of essential thrombocythaemia and primary myelofibrosis. Br J Haematol. 2010;149(2):250–7. doi: 10.1111/j.1365-2141.2010.08083.x.
  53. Lambert MP, Jiang J, Batra V, et al. A novel mutation in MPL (Y252H) results in increased thrombopoietin sensitivity in essential thrombocythemia. Am J Hematol. 2012;87(5):532–4. doi: 10.1002/ajh.23138.
  54. Hussein K, Bock O, Theophile K, et al. MPLW515L mutation in acute megakaryoblastic leukaemia. Leukemia. 2009;23(5):852–5. doi: 10.1038/leu.2008.371.
  55. Beer PA, Campbell PJ, Scott LM, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood. 2008;112(1):141–9. doi: 10.1182/blood-2008-01-131664.
  56. Akpinar TS, Hancer VS, Nalcaci M, Diz-Kucukkaya R. MPL W515L/K Mutations in chronic myeloproliferative neoplasms. Turk J Haematol. 2013;30(1):8–12. doi: 10.4274/tjh.65807.
  57. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood. 2008;112(3):844–7. doi: 10.1182/blood-2008-01-135897.
  58. Teofili L, Giona F, Torti L, et al. Hereditary thrombocytosis caused by MPLSer505Asn is associated with a high thrombotic risk, splenomegaly and progression to bone marrow fibrosis. Haematologica. 2010;95(1):65–70. doi: 10.3324/haematol.2009.007542.
  59. Sun C, Zhang S, Li J. Calreticulin gene mutations in myeloproliferative neoplasms without Janus kinase 2 mutations. Leuk Lymphoma. 2015;56(6):1593–8. doi: 10.3109/10428194.2014.953153.
  60. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.
  61. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.
  62. Shirane S, Araki M, Morishita S, et al. JAK2, CALR, and MPL mutation spectrum in Japanese myeloproliferative neoplasms patients. Haematologica. 2015;100(2):46–8. doi: 10.3324/haematol.2014.115113.
  63. Lundberg P, Karow A, Nienhold R, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8. doi: 10.1182/blood-2013-11-537167.
  64. Lavi N. Calreticulin mutations in myeloproliferative neoplasms. Rambam Maimonides Med J. 2014;5(4):e0035. doi: 10.5041/RMMJ.10169.
  65. Rumi E, Harutyunyan AS, Pietra D, et al. CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. Blood. 2014;123(15):2416–9. doi: 10.1182/blood-2014-01-550434.
  66. Haslam K, Langabeer SE. Incidence of CALR mutations in patients with splanchnic vein thrombosis. Br J Haematol. 2015;168(3):459–60. doi: 10.1111/bjh.13121.
  67. Turon F, Cervantes F, Colomer D, et al. Role of calreticulin mutations in the aetiological diagnosis of splanchnic vein thrombosis. J Hepatol. 2015;62(1):72–4. doi: 10.1016/j.jhep.2014.08.032.
  68. Tefferi A, Wassie EA, Lasho TL, et al. Calreticulin mutations and long-term survival in essential thrombocythemia. Leukemia. 2014;28(12):2300–3. doi: 10.1038/leu.2014.148.
  69. Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–7. doi: 10.1038/leu.2014.3.
  70. Tefferi A, Lasho TL, Finke C, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia. 2014;28(7):1568–70. doi: 10.1038/leu.2014.83.
  71. Shide K, Kameda T, Shimoda H, et al. TET2 is essential for survival and hematopoietic stem cell homeostasis. Leukemia. 2012;26(10):2216–23. doi: 10.1038/leu.2012.94.
  72. Ito S, D’Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129–33. doi: 10.1038/nature09303.
  73. Paulsson K, Haferlach C, Fonatsch C, et al. The idic(X)(q13) in myeloid malignancies: breakpoint clustering in segmental duplications and association with TET2 mutations. Hum Mol Genet. 2010;19(8):1507–14. doi: 10.1093/hmg/ddq024.
  74. Tefferi A, Pardanani A, Lim KH, et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia. 2009;23(5):905–11. doi: 10.1038/leu.2009.47.
  75. Martinez-Aviles L, Besses C, Alvarez-Larran A, et al. TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms. Ann Hematol. 2012;91(4):533–41. doi: 10.1007/s00277-011-1330-0.
  76. Patriarca A, Colaizzo D, Tiscia G, et al. TET2 mutations in Ph-negative myeloproliferative neoplasms: identification of three novel mutations and relationship with clinical and laboratory findings. BioMed Res Int. 2013;2013:929840. doi: 10.1155/2013/929840.
  77. Schaub FX, Looser R, Li S, et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood. 2010;115(10):2003–7. doi: 10.1182/blood-2009-09-245381.
  78. Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301. doi: 10.1056/NEJMoa0810069.
  79. Beer PA, Delhommeau F, LeCouedic JP, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115(14):2891–900. doi: 10.1182/blood-2009-08-236596.
  80. Ortmann CA, Kent DG, Nangalia J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372(7):601–12. doi: 10.1056/NEJMoa1412098.
  81. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
  82. Carbuccia N, Murati A, Trouplin V, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23(11):2183–6. doi: 10.1038/leu.2009.141.
  83. Carbuccia N, Trouplin V, Gelsi-Boyer V, et al. Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia. 2010;24(2):469–73. doi: 10.1038/leu.2009.218.
  84. Abdel-Wahab O, Adli M, LaFave LM, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22(2):180–93. doi: 10.1016/j.ccr.2012.06.032.
  85. Brecqueville M, Rey J, Bertucci F, et al. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromos Cancer. 2012;51(8):743–55. doi: 10.1002/gcc.21960.
  86. Katoh M. Functional and cancer genomics of ASXL family members. Br J Cancer. 2013;109(2):299–306. doi: 10.1038/bjc.2013.281.
  87. Cervantes F. How I treat myelofibrosis. Blood. 2014;124(17):2635–42. doi: 10.1182/blood-2014-07-575373.
  88. Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42(8):722–6. doi: 10.1038/ng.621.
  89. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 2008;647(1–2):21–9. doi: 10.1016/j.mrfmmm.2008.07.010.
  90. Im AP, Sehgal AR, Carroll MP, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia. 2014;28(9):1774–83. doi: 10.1038/leu.2014.124.
  91. Walter MJ, Ding L, Shen D, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–8. doi: 10.1038/leu.2011.44.
  92. Yamashita Y, Yuan J, Suetake I, et al. Array-based genomic resequencing of human leukemia. Oncogene. 2010;29(25):3723–31. doi: 10.1038/onc.2010.117.
  93. Abdel-Wahab O, Pardanani A, Rampal R, et al. DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia. 2011;25(7):1219–20. doi: 10.1038/leu.2011.82.
  94. Brecqueville M, Cervera N, Gelsi-Boyer V, et al. Rare mutations in DNMT3A in myeloproliferative neoplasms and myelodysplastic syndromes. Blood Cancer J. 2011;1(5):e18. doi: 10.1038/bcj.2011.15.
  95. Rudd CE. Lnk adaptor: novel negative regulator of B cell lymphopoiesis. Sci STKE. 2001;2001(85):pe1. doi: 10.1126/stke.2001.85.pe1.
  96. Gery S, Cao Q, Gueller S, et al. Lnk inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F. J Leuk Biol. 2009;85(6):957–65. doi: 10.1189/jlb.0908575.
  97. Soriano G, Heaney M. Polycythemia vera and essential thrombocythemia: new developments in biology with therapeutic implications. Curr Opin Hematol. 2013;20(2):169–75. doi: 10.1097/MOH.0b013e32835d82fe.
  98. Oh ST, Simonds EF, Jones C, et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood. 2010;116(6):988–92. doi: 10.1182/blood-2010-02-270108.
  99. Lasho TL, Pardanani A, Tefferi A. LNK mutations in JAK2 mutation-negative erythrocytosis. N Engl J Med. 2010;363(12):1189–90. doi: 10.1056/NEJMc1006966.
  100. Rathinam C, Thien CB, Flavell RA, Langdon WY. Myeloid leukemia development in c-Cbl RING finger mutant mice is dependent on FLT3 signaling. Cancer Cell. 2010;18(4):341–52. doi: 10.1016/j.ccr.2010.09.008.
  101. Loh ML, Sakai DS, Flotho C, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood. 2009;114(9):1859–63. doi: 10.1182/blood-2009-01-198416.
  102. Sanada M, Suzuki T, Shih LY, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460(7257):904–8. doi: 10.1038/nature08240.
  103. Zhang MY, Fung TK, Chen FY, Chim CS. Methylation profiling of SOCS1, SOCS2, SOCS3, CISH and SHP1 in Philadelphia-negative myeloproliferative neoplasm. J Cell Mol Med. 2013;17(10):1282–90. doi: 10.1111/jcmm.12103.
  104. Fourouclas N, Li J, Gilby DC, et al. Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders. Haematologica. 2008;93(11):1635–44. doi: 10.3324/haematol.13043.
  105. Kastner P, Chan S. Role of Ikaros in T-cell acute lymphoblastic leukemia. World J Biol Chem. 2011;2(6):108–14. doi: 10.4331/wjbc.v2.i6.108.
  106. Jager R, Kralovics R. Molecular pathogenesis of Philadelphia chromosome negative chronic myeloproliferative neoplasms. Curr Cancer Drug Targets. 2011;11(1):20–30. doi: 10.2174/156800911793743628.
  107. Ikeda K, Ogawa K, Takeishi Y. The role of HMGA2 in the proliferation and expansion of a hematopoietic cell in myeloproliferative neoplasms. Fukushima J Med Sci. 2012;58(2):91–100. doi: 10.5387/fms.58.91.
  108. Harada-Shirado K, Ikeda K, Ogawa K, et al. Dysregulation of the MIRLET7/HMGA2 axis with methylation of the CDKN2A promoter in myeloproliferative neoplasms. Br J Haematol. 2015;168(3):338–49. doi: 10.1111/bjh.13129.
  109. Raza S, Viswanatha D, Frederick L, et al. TP53 mutations and polymorphisms in primary myelofibrosis. Am J Hematol. 2012;87(2):204–6. doi: 10.1002/ajh.22216.
  110. Lu M, Hoffman R. p5 as a target in myeloproliferative neoplasms. Oncotarget. 2012;3(10):1052–3. doi: 10.18632/oncotarget.719.
  111. Gurney AL, Wong SC, Henzel WJ, de Sauvage FJ. Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and Shc phosphorylation. Proc Natl Acad Sci USA. 1995;92(12):5292–6. doi: 10.1073/pnas.92.12.5292
  112. Tefferi A, Thiele J, Vannucchi AM, Barbui T. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia. 2014;28(7):1407–13. doi: 10.1038/leu.2014.35.
  113. Broseus J, Park JH, Carillo S, et al. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood. 2014;124(26):3964–6. doi: 10.1182/blood-2014-06-583161.
  114. Hasan S, Lacout C, Marty C, et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNa. Blood. 2013;122(8):1464–77. doi: 10.1182/blood-2013-04-498956.
  115. Pardanani A, Lasho T, Finke C, et al. LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia. 2010;24(10):1713–8. doi: 10.1038/leu.2010.163.

New Сytogenetic Approaches in Patients with Primary Myelofibrosis

TL Gindina, NN Mamaev, VV Baikov, MV Barabanshchikova, EN Nikolaeva, IA Petrova, IS Moiseev, OV Pirogova, YuYu Vlasova, MO Ivanova, EV Morozova, SN Bondarenko, BV Afanasev

R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Tat’yana Leonidovna Gindina, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: + 7(812)233-12-43; e-mail: cytogenetics.bmt.lab@gmail.com

For citation: Gindina TL, Mamaev NN, Baikov VV, et al. New Сytogenetic Approaches in Patients with Primary Myelofibrosis. Clinical oncohematology. 2016;9(1):61–9 (In Russ).

DOI: 10.21320/2500-2139-2016-9-1-61-69


ABSTRACT

Aim. To evaluate the potential of a new cytogenetic technique in patients with primary myelofibrosis (PMF).

Materials and methods. 48-hour blood cell cultures (according to Singh et al., 2013) were used for cytogenetic study in 11 PMF patients (5 female, 6 men, aged 32–60 years; median 48.6 years). GTG-banding and different types of fluorescence in situ hybridization (FISH) techniques were used for identification of chromosomal aberrations.

Results. The incidence of abnormal karyotypes in blood cultures was significantly higher than that in standard bone marrow cultures (82 vs 27 %; < 0.01). The polyploid clones were found in blood cultures of 45 % of patients. Structural chromosomal aberrations were found in chromosomes 6, 1, 3, as well as 16 and 17 (in 2 and 1 patients with each aberration, respectively). In all but one patients these abnormalities in diploid and polyploid metaphases were identical. Partial 1q trisomy resulted from adding of additional (1q21–1q44) material translocated to the short arm of chromosome 5 to the material of 2 normal homologue of chromosome 1. It seems that 1q+, i(17q) and some others chromosomal abnormalities were secondary, whereas 6p21 locus involvement may be a primary defect in PMF. The t(3;6)(q25;p21) translocation described for the first time and confirmed by FISH should be considered a variant of well-known translocation t(1;6). Allo-HSCT in 2 patients with 1q+ was successful, whereas there were problems with engraftment in a female patient with prognostically unfavorable t(3;3)(q21;q26) translocation associated with the EVI1 gene overexpression.

Conclusion. Cytogenetic examinations in blood cultures provide important additional information about PMF patients.


Keywords: primary myelofibrosis, 48-hour peripheral blood cell culture, cytogenetics.

Received: July 14, 2015

Accepted: November 1, 2015

Read in PDF (RUS) pdficon


REFERENCES

  1. Heuck G. Zwei Falle von Leukamie mit eigenthumlichem Blut-resp Knochenmarkbefund. Archiv fur pathologische Anatomie und Physiologie und fur klinische Medicin. 1879;78(3):475–96. doi: 10.1007/bf01878089.
  2. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6(4):372–5.
  3. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90. doi: 10.1056/nejmoa1311347.
  4. Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28:1472–7. doi: 10.1038/leu.2014.3.
  5. Panagiota V, Thol F, Markus B, et al. Prognostic effect of calreticulin mutations in patients with myelofibrosis after allogeneic hematopoetic stem cell transplantation. Leukemia. 2014;28:1552–5. doi: 10.1038/leu.2014.66.
  6. Komrokji RS, Seymour JF, Roberts AW, et al. Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2 (V617F) inhibitor, in patients with myelofibrosis. Blood. 2015;125(17):2649–55. doi: 10.1182/blood-2013-02-484832.
  7. Hoffman R, Rondalli D. Biology and treatment of primary myelofibrosis. Hematology (Am Soc Hematol Educ Program). 2007:346–54. doi: 10.1182/asheducation-2007.1.346.
  8. Geraedts JP, den Ottolander GJ, Ploem JE, Muninghe OG. An identical translocation between chromosome 1 and 7 in three patients with myelofibrosis and myeloid metaplasia. Br J Haematol. 1980;44:569–75. doi: 10.1111/j.1365-2141.1980.tb08711.x.
  9. Bernstein R, Pinto MR, Behr A, Mendelow B. Chromosome 3 abnormalities in acute non-lymphocytic leukemia (ANLL) with abnormal thrombopoiesis: report of three patients with a “new” inversion anomaly and a further case of homologous translocation. Blood. 1982;60:613–7.
  10. Clare N, Elson D, Mannhof L. Cytogenetic studies of peripheral myeloblasts and bone marrow fibroblasts in acute myelofibrosis. Am J Clin Pathol. 1982;77:762–6. doi: 10.1093/ajcp/77.6.762.
  11. Borgstrom GM, Knutila S, Ruutu T, et al. Abnormalities of chromosome 13 in myelofibrosis. Scand J Haematol. 1984;33:15–21.
  12. Miller JB, Testa JR, Lindgren V, Rowley JD. The pattern and clinical significance of karyotypic abnormalities in patients with idiopathic and postpolycythemic myelofibrosis. Cancer. 1985;55:582–91. doi: 10.1002/1097-0142(19850201)55:3<582::aid-cncr2820550318>3.0.co;2-o.
  13. Castoldi G, Cuneo A, Tomasi P, Ferrari L. Chromosome abnormalities in myelofibrosis. Acta Haematol. 1987;78(Suppl. 1):104–8. doi: 10.1159/000205913.
  14. Smadja N, Krulik M, de Gramount A, et al. Cytogenetic studies in twelve patients with primary myelofibrosis and myeloid metaplasia. Cancer Genet Cytogenet. 1987;24:151–8. doi: 10.1016/0165-4608(87)90092-6.
  15. Demory JL, Dupriez B, Fenaux P, et al. Cytogenetic studies and their prognostic significance in agnogenic myeloid metaplasia: a report of 47 cases. Blood. 1988;72:855–9.
  16. Djordjevic V, Dencic-Fekete M, Jovanovic J, et al. Cytogenetics of agnogenic myeloid metaplasia: a study of 61 patients. Cancer Genet Cytogenet. 2007;173:57–62. doi: 10.1016/j.cancergencyto.2006.09.02.
  17. Hidaka K, Shide K, Shimoda H, et al. The impact of cytogenetic abnormalities on the prognosis of primary myelofibrosis: a prospective survey of 202 cases in Japan. Eur J Haematol. 2009;83:328–33. doi: 10.1111/j.1600-0609.2009.01298.x.
  18. Hussein K, Van Dyke DL, Tefferi A. Conventional cytogenetics in myelofibrosis: literature review and discussion. Am J Hematol. 2009;82:329–38. doi: 10.1111/j.1600-0609.2009.01224.x.
  19. Caramazza D, Begna KH, Gangar N, et al. Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients. Leukemia. 2011;25:82–8. doi: 10.1038/leu.2010.234.
  20. Tefferi A, Lasho TL, Jimma Th, et al. One thousand patients with primary myelofibrosis: The Mayo clinic experience. Mayo Clin Proc. 2012;87(1):25–33. doi: 10.1016/j.mayocp.2011.11.001.
  21. Wassie E, Finke Ch., Gangat N, et al. A compendium of cytogenetic abnormalities in myelofibrosis: molecular and phenotypic correlates in 826 patients. Br J Haematol. 2014; doi: 10.1111/bjh.132. doi: 10.1111/bjh.13260.
  22. Li B, Xu J, Li Ch, et al. Cytogenetic studies and their prognostic contribution in 565 Chinese patients with primary fibrosis. Am J Hematol. 2014;89(11):1043–7. doi: 10.1002/ajh.23824.
  23. Абдулкадыров К.М., Шуваев В.А., Мартынкевич И.С. Первичный миелофиброз: собственный опыт и новое в диагностике и лечении. Онкогематология. 2015;10(2):26–36.
    [Abdulkadyrov KM, Shuvaev VA, Martynkevich IS. Primary myelofibrosis: own experience and news from diagnostic and treatment. Onkogematologiya. 2015;10(2):26–36. (In Russ)]
  24. Singh NR, Morris ChM, Koleth M, et al. Polyploidy in myelofibrosis: analysis by cytogenetic and SNP indicates association with advancing disease. Mol Cytogenet. 2013;6:59–71. doi: 10.1186/1755-8166-6-59.
  25. Devine SM, Hoffman R, Verma A, et al. Allogeneic blood cell transplantation following reduced-intensity conditioning is effective therapy for older patients with myelofibrosis with myeloid metaplasia. Blood. 2002;99:2255–8. doi: 10.1182/blood.v99.6.2255.
  26. Kroger N, Zabelina T, Schieder H, et al. Pilot study of reduced-intensity conditioning followed by allogeneic stem cell transplantation from related and unrelated donors in patients with myelofibrosis. Br J Haematol. 2005;128:690–7. doi: 10.1111/j.1365-2141.2005.05373.x.
  27. Merup M, Lazarevic V, Nahi H, et al. Different outcome of allogeneic transplantation in myelofibrosis using conventional or reduced-intensity conditioning regimens. Br J Haematol. 2006;135:367–73. doi: 10.1111/j.1365-2141.2006.06302.x.
  28. Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114:5264–70. doi: 10.1182/blood-2009-07-234880.
  29. Schaffer LG, McGovan-Jordan J, Schmid M. ISCN. An international System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013.
  30. Tefferi A, Dingli D, Li C, Dewald GW. Prognostic diversity among cytogenetic abnormalities in myelofibrosis with myeloid metaplasia. Cancer. 2005;104:1656–60. doi: 10.1002/cncr.21358.
  31. Strasser-Weiple K, Steurer M, Kees M, et al. Chromosome 7 deletions are associated with unfavorable prognosis in myelofibrosis and myeloid metaplasia. Blood. 2005;105(10):4146. doi: 10.1182/blood-2004-11-4319.
  32. Hussein K, Huang J, Lasho T, et al. Karyotype complements the International Prognostic Scoring System for primary myelofibrosis. Eur J Haematol. 2009;82:256–9. doi: 10.1111/j.1600-0609.2009.01216.x.
  33. Hussein K, Pardanani AD, Van Dyke DL, et al. International Prognostic Scoring System-independent cytogenetic risk categorization in primary myelofibrosis. Blood. 2010;115:496–9. doi: 10.1182/blood-2009-08-240135.
  34. Gangat N, Caramazza D, Vaidya R, et al. DIPSS Plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/jco.2010.32.2446.
  35. Vaidya R, Caramazza D, Begna KH, et al. Monosomal karyotype in primary myelofibrosis is detrimental to both overall and leukemia-free survival. Blood. 2011;117(21):5612–5. doi: 10.1182/blood-2010-11-320002.
  36. Huret JL. Atlas of Genetics and Cytogenetics in Oncology and Haematology. Poitiers: University Hospital; 2011. p. 5. doi: 10.4267/2042/44590.

In vitro model of myelofibrosis using human platelet lysate

Ye.N. Bulycheva, N.T. Siordiya, E.G. Lomaia, A.Yu. Zaritskiy, and P.A. Butylin

V.A. Almazov Federal Heart, Blood and Endocrinology Center, Saint Petersburg, Russian Federation


ABSTRACT

The development and studies of the myelofibrosis (MF) in vitro model is an important issue, since such model can lead to understanding of pathogenesis and identifying the new targets for therapy.

Objectives. Here, we studied the properties of mesenchymal stromal cells (MSCs) cultured in the medium containing the human platelet lysate (HPL).

Design and methods. Bone marrow MSCs from healthy donors and a patient with primary myelofibrosis (PMF) were cultured in the media containing various HPL concentrations. We measured the proliferative activity, the collagen type I and III expression, and capability to differentiate into the osteogenic or adipogenic lineages. The concentrations of the vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor beta (TGF-b), and hepatocyte growth factor (HGF) were measured in HPL from 17 patients with primary myelofibrosis or post-polycythemia vera myelofibrosis (post-PV MF) using the specific ELISA kits.

Results. The highest MSC proliferative rate was found in the cultures with high HPL concentrations (10–20 %). The ratio of collagen type III/collagen type I expression was the highest in the cultures containing 10 % HPL. The use of HPL for MSCs culturing caused no changes in their osteogenic differentiation capability, but the increase in the HPL concentration resulted in the decreased capability to differentiate into the adipogenic lineage. Further, we observed the significantly increased VEGF and bFGF concentrations in HPL from MF patients, compared to the age-matched healthy controls (2.5- and 2.4-fold, respectively, < 0.01), while the TGF-b and HGF concentrations showed the trend towards an increase, but with no significant difference from the controls. MSCs cultured with HPL from MF patients showed a higher proliferative rate compared to HPL from healthy donors. MSCs from the PMF patient tended to proliferate more actively compared to the cells from healthy donors.

Conclusion. MSCs culturing using varying HPL concentrations can be used as an adequate MF in vitro model, since it leads to pro-fibrotic changes in the bone marrow stromal cells.


Keywords: primary myelofibrosis, platelet lysate, mesenchymal stromal cells, myelofibrosis in vitro model.

Read in  PDF (RUS)pdficon


Refernces

  1. Kutti J., Ridell B. Epidemiology of the myeloproliferative disorders: essential thrombocythaemia, polycythaemia vera and idiopathic myelofibrosis. Biol. 2001; 49: 164–6.
  2. Johansson P., Kutti J., Andreasson B. et al. Trends in the incidence of chronic Philadelphia chromosome negative (Ph-) myeloproliferative disorders in the city of Goteborg, Sweden, during 1983–99. Inter. Med. 2004; 256: 161–5.
  3. Cervantes F., Dupriez B., Passamonti F. et al. Improving survival trends in primary myelofibrosis: an international study. Clin. Oncol. 2012; 30: 2981–7.
  4. Barosi G., Ambrosetti A., Finelli C. et al. The Italian Consensus Conferen ce on Diagnostic Criteria for Myelofibrosis with Myeloid Metaplasia. J. Haematol. 1999; 104(4): 730–7.
  5. Колосков А.В. Мегакариоциты и фиброз костного мозга. Гематол. и трансфузиол. 1997; 42: 29–31. [Koloskov A.V. Megakariotsity i fibroz kostnogo mozga (Megakaryocytes and bone marrow fibrosis. In: Hematol. & transfuziol.). Gematol. i transfuziol. 1997; 42: 29–31.]
  6. Reilly J.T. Idiopathic myelofibrosis: pathogenesis to treatment. Oncol. 2006; 24: 56–63.
  7. Le Bousse-Kerdiles M.-C., Martyre M.-C., Samson M. Cellular and molecular mechanisms underlying bone marrow and liver fibrosis: a review. Cytokine Netw. 2008; 19: 69–80.
  8. Yan X.Q., Lacey D., Fletcher F. et al. Chronic exposure to retroviral encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood 1995; 86; 4025–33.
  9. Vannucchi A.M., Bianchi L., Paoleti F. et al. Impaired GATA-1 expression and myelofibrosis in an animal model. Biol. 2004; 52: 275–9.
  10. Xing S., Wanting T.H., Zhao W. et al. Transgenic expression of Jak2V617F causes myeloproliferative disorders in mice. Blood 2008; 111: 5109–17.
  11. Wernig G., Mercher T., Okabe R. et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107: 4274–81.
  12. Kirabo A., Park S.O., Wamsley H.L. et al. The small molecule inhibitor G6 significantly reduces bone marrow fibrosis and the mutant burden in a mouse model of Jak2-mediated myelofibrosis. AJP 2012; 181: 858–65.
  13. Triviai I., Stubing Th., Niebuhr B. et al. A mouse model for human myelofibrosis. 18th Congress of EHA 2013: Abstract P248.
  14. Xia W., Li H., Wang Zh. et al. Human platelet lysate supports ex vivo expansion and enhances osteogenic differentiation of human bone
  15. Sankaranarayanan K., Chandana T., Gency Ponrose G. et al. Humanized substitutes for animal sera in human mesenchymal stem cell culture and differentiation. Cell Biol. Intern. 2011; Manuscript CBI20100649.
  16. Jenhani F., Durand V., Ben Azouna N. et al. Human cytokine expression profile in various conditioned media for in vitro expansion bone marrow and umbilical cord blood immunophenotyped mesenchymal stem cells. Proceed. 2011; 43: 639–43.
  17. Doucet Ch., Ernou I., Zhang Y. et al. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. Cell. Physiol. 2005; 205: 228–36.
  18. Horn P., Bokermann G., Cholewa D. et al. Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy 2010; 12: 888–98.
  19. Schmitt A., Jouault H., Guichard J. et al. Pathologic interaction between megacaryocytes and polymorphonuclear leukocytes in myelofibrosis. Blood 2000; 96: 1342–7.