Efficacy, Safety, and Tolerance of Gemtuzumab Ozogamicin Combined with FLAG/FLAG-Ida or Azacitidine in Relapsed/Refractory Acute Myeloblastic Leukemia

IG Budaeva, DV Zaitsev, AA Shatilova, EN Tochenaya, AV Petrov, RI Vabishchevich, DV Motorin, RSh Badaev, DB Zammoeva, VV Ivanov, SV Efremova, KV Bogdanov, YuV Mirolyubova, TS Nikulina, YuA Alekseeva, AYu Zaritskey, LL Girshova

VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Irina Garmaevna Budaeva, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(931)351-07-06; e-mail: irina2005179@mail.ru

For citation: Budaeva IG, Zaitsev DV, Shatilova AA, et al. Efficacy, Safety, and Tolerance of Gemtuzumab Ozogamicin Combined with FLAG/FLAG-Ida or Azacitidine in Relapsed/Refractory Acute Myeloblastic Leukemia. Clinical oncohematology. 2021;14(3):299–307. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-299-307


ABSTRACT

Aim. To assess the efficacy, safety, and tolerance of gemtuzumab ozogamicin (GO) combined with FLAG/FLAG-Ida chemotherapy or azacitidine in patients with relapsed/refractory acute myeloblastic leukemia (AML) in clinical practice.

Materials & Methods. The study included 32 patients (16 men and 16 women). The median age was 44 years (range 23–83 years). Among them there were 15 (46.8 %) patients with refractory and 17 (53.2 %) patients with relapsed AML. GO combined with FLAG/FLAG-Ida was administered to 15 (46.8 %) patients, whereas 17 (53.2 %) patients were treated with GO and azacitidine combination. Therapy safety was assessed according to CTCAE v. 5.0.

Results. Overall response rate including complete remission (CR), CR MRD–, CR with incomplete hematologic recovery, and morphologic leukemia-free status was 59.4 % (19/32). Refractoriness was observed in 31.25 % (10/32) of patients. Early mortality was 9.4 % (3/32). Overall response was 64.7 % (11/17) in the azacitidine and 53.3 % (8/15) in the FLAG/FLAG-Ida groups. In 4 (80 %) out of 5 patients with prior to FLAG treatment refractoriness, the response was achieved after GO + azacitidine therapy. In 58.9 % (10/17) of patients who received GO + azacitidine therapy, allogeneic hematopoietic stem cell transplantation (allo-HSCT) could be performed. The incidence of GO infusion complications in the tested groups did not significantly differ (= 0.72) and was 46.7 % (7/15) (40 % with grade 1/2 and 6.7 % with grade 3) in the GO + FLAG/FLAG-Ida group and 35.3 % (6/17) (29.4 % with grade 1/2 and 5.9 % with grade 4) in the GO + azacitidine group. In the GO + FLAG/FLAG-Ida group 5 (33.3 %) patients experienced serious adverse events (SAE) of sepsis. In the GO + azacitidine group SAEs were reported in 6 (35.3 %) patients: 4 (66.6 %) with sepsis, 1 (16.7 %) with acute cardiovascular failure, and 1 (16.7 %) with acute respiratory failure. The median (range) duration was 23 (10–39) days for neutropenia grade 4, 24 (11–38) days for neutropenia grade 3, 21 (11–41) days for thrombocytopenia grade 4, 26 (16–45) days for thrombocytopenia grade 3, and 25 (22–45) days for thrombocytopenia grade 1/2. Thrombocytopenia duration was longer in patients with GO + FLAG/FLAG-Ida therapy, however, no significant differences were identified. No cases of veno-occlusive liver disease were reported. Median overall survival (OS) for both groups (n = 32) was 31.4 months, median disease-free survival (n = 21) was 13.3 months. In the group of patients with effective treatment, the median OS was not reached. In non-responders, it was 18 months (= 0.0442).

Conclusion. GO combined with FLAG/FLAG-Ida chemotherapy or azacitidine proved effective in relapsed/refractory AML patients. Remission did not appear to be associated with ELN risk, gender, age, CD33 expression, number of prior therapy lines, or number of relapses. GO + azacitidine combination showed efficacy, safety, and good tolerance in patients with prior high-dose chemotherapy refractoriness as well as low ECOG performance status. That allowed for the subsequent allo-HSCT administration to these patients. There was no significant difference between the groups of patients in the incidence of hematologic, non-hematologic toxicity, and time to hematologic recovery. Thrombocytopenia duration was longer in patients with GO + FLAG/FLAG-Ida therapy which is consistent with literature data. GO-based effective treatment in relapsed/refractory AML considerably improves OS: during 36 months of follow-up the median was not reached.

Keywords: acute myeloblastic leukemia, relapse, refractoriness, gemtuzumab ozogamicin, FLAG/FLAG-Ida regimens, azacitidine, efficacy, safety, toxicity.

Received: February 5, 2021

Accepted: May 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Wang ES, Aplenc R, Chirnomas D, et al. Safety of gemtuzumab ozogamicin as monotherapy or combination therapy in an expanded-access protocol for patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma. 2020;61(12):1965–2973. doi: 10.1080/10428194.2020.1742897.
  2. Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. Blood. 2016;127(1):53–61. doi: 10.1182/blood-2015-08-604520.
  3. Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441. doi: 10.1038/bcj.2016.50.
  4. Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19(13):3244–54. doi: 10.1200/JCO.2001.19.13.3244.
  5. Zein N, Poncin M, Nilakantan R, et al. Calicheamicin gamma 1I and DNA: molecular recognition process responsible for site-specificity. Science. 1989;244(4905):697–9. doi: 10.1126/science.2717946.
  6. Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia. 2005;19(2):176–82. doi: 10.1038/sj.leu.2403598.
  7. Sievers EL, Appelbaum FR, Spielberger RT, et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: A phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood. 1999;93(11):3678–84. doi: 10.1182/blood.v93.11.3678.411k24_3678_3684.
  8. Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.
  9. Deangelo DJ, Liu D, Stone R, et al. Preliminary report of a phase 2 study of gemtuzumab ozogamicin in combination with cytarabine and daunorubicin in patients < 60 years of age with de novo acute myeloid leukemia. Proceed Am Soc Clin Oncol. 2003: Abstract 2325.
  10. Petersdorf SH, Kopecky KJ, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60. doi: 10.1182/blood-2013-01-466706.
  11. Caron PC, Jurcic JG, Scott AM, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood. 1994;83(7):1760–8. doi: 10.1182/blood.v83.7.1760.bloodjournal8371760.
  12. Castaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–16. doi: 10.1016/S0140-6736(12)60485-1.
  13. Lambert J, Pautas С. Terre Ch, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica. 2019;104(1):113–9. doi: 10.3324/haematol.2018.188888.
  14. Amadori S, Suciu S, Selleslag D, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9. doi: 10.1200/jco.2015.64.0060.
  15. Taksin AL, Legrand O, Raffoux E, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21(1):66–71. doi: 10.1038/sj.leu.2404434.
  16. Debureaux P-E, Labopin М, Mamez A-C, et al. Fractionated gemtuzumab ozogamicin in association with high dose chemotherapy: a bridge to allogeneic stem cell transplantation in refractory and relapsed acute myeloid leukemia. Bone Marrow Transplant. 2019;55(2):452–60. doi: 10.1038/s41409-019-0690-2.
  17. Chevallier P, Delaunay J, Turlure P, et al. Long-term disease-free survival after gemtuzumab, intermediate-dose cytarabine, and mitoxantrone in patients with CD33(+) primary resistant or relapsed acute myeloid leukemia. J Clin Oncol. 2008;26(32):5192–7. doi: 10.1200/jco.2007.15.9764.
  18. Medeiros BC, Tanaka TN, Balaian L, et al. A Phase I/II Trial of the Combination Azacitidine and Gemtuzumab Ozogamicin for Treatment of Relapsed Acute Myeloid Leukemia. Clin Lymphoma Myel Leuk. 2018;18(5):346–352.e5. doi: 10.1016/j.clml.2018.02.017.
  19. Walter RB, Medeiros BC, Gardner KM, et al. Gemtuzumab ozogamicin in combination with vorinostat and azacitidine in older patients with relapsed or refractory acute myeloid leukemia: a phase I/II study. Haematologica. 2013;99(1):54–9. doi: 10.3324/haematol.2013.096545.
  20. Arain S, Christian S, Patel PR. Safety and efficacy of gemtuzumab ozogamicin and venetoclax in patients with relapsed or refractory CD33+ acute myeloid leukemia: A phase Ib study. J Clin Oncol. 2020;38(15_suppl):TPS7566. doi: 10.1200/JCO.2020.38.15_suppl.TPS7566.
  21. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  22. Dohner H, Elihu H, Estey EH, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-235358.
  23. Зайцев Д.В., Гиршова Л.Л., Иванов В.В. и др. Гемтузумаб озогамицин в лечении пациентов с рефрактерным течением острого миелоидного лейкоза, находящихся в критическом состоянии (описание 3 клинических наблюдений). Клиническая онкогематология. 2020;13(1):67–74. doi: 10.21320/2500-2139-2020-13-1-67-74.
    [Zaitsev DV, Girshova LL, Ivanov VV, et al. Gemtuzumab Ozogamicin in the Treatment of Critical Patients with Refractory Acute Myeloid Leukemia (3 Case Reports). Clinical oncohematology. 2020;13(1):67–74. doi: 10.21320/2500-2139-2020-13-1-67-74. (In Russ)]
  24. Stone RM, Moser B, Sanford B, et al. High dose cytarabine plus gemtuzumab ozogamicin for patients with relapsed or refractory acute myeloid leukaemia: Cancer and Leukaemia Group B study 19902. Leuk Res. 2011;35(3):329–33. doi: 10.1016/j.leukres.2010.07.017.
  25. Hosono N, Ookura M, Araie H, et al. Clinical outcomes of gemtuzumab ozogamicin for relapsed acute myeloid leukemia: single-institution experience. Int J Hematol. 2020;113(3):362–9. doi: 10.1007/s12185-020-03023-4.
  26. Будаева И.Г., Гиршова Л.Л., Овсянникова Е.Г. и др. Прогнозирование эффективности режима FLAG ± Ida у пациентов с рецидивами и рефрактерным течением острых миелоидных лейкозов. Клиническая онкогематология. 2019;12(3):289–96. doi: 10.21320/2500-2139-2019-12-3-289-296.
    [Budaeva IG, Girshova LL, Ovsyannikova EG, et al. Prediction of FLAG ± Ida Regimen Efficacy in Patients with Relapsed/Refractory Acute Myeloid Leukemia. Clinical oncohematology. 2019;12(3):289–96. doi: 10.21320/2500-2139-2019-12-3-289-296. (In Russ)]
  27. Chantepie SP, Reboursiere E, Mear JB, et al. Gemtuzumab ozogamicin in combination with intensive chemotherapy in relapsed or refractory acute myeloid leukemia. Leuk Lymphoma. 2015;56(8):2326–30. doi: 3109/10428194.2014.986478.
  28. Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30(32):3924–31. doi: 10.1200/jco.2012.42.2964.

 

 

Chronic Lymphocytic Leukemia in Blood Relatives: Two Case Reports of Male Siblings

NV Kurkina1,2, EA Repina1

1 NP Ogarev National Research Mordovia State University, 68 Bolshevistskaya str., Saransk, Russian Federation, 430005

2 Republican Clinical Hospital No. 4, 32 Ul’yanova str., Saransk, Russian Federation, 430032

For correspondence: Nadezhda Viktorovna Kurkina, MD, PhD, 32 Ul’yanova str., Saransk, Russian Federation, 430032; e-mail: nadya.kurckina@yandex.ru

For citation: Kurkina NV, Repina EA. Chronic Lymphocytic Leukemia in Blood Relatives: Two Case Reports of Male Siblings. Clinical oncohematology. 2021;14(1):69–72. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-69-72


ABSTRACT

In recent years there are more and more evidences for a hereditary factor in malignant lymphoproliferative disorders. Various lymphoid tumors are diagnosed in blood relatives. This is most frequently observed in chronic lymphocytic leukemia: 13.3 % vs. 8.8 % in non-Hodgkin’s lymphoma and 5.9 % in Hodgkin’s lymphoma. This paper presents two case reports of chronic lymphocytic leukemia in blood relatives (male siblings). Besides, in one of them the efficacy of targeted therapy with ibrutinib is estimated.

Keywords: chronic lymphocytic leukemia, heredity, ibrutinib, refractoriness, relapse.

Received: June 25, 2020

Accepted: November 6, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Zenz T, Gribben JG, Hallek M, et al. Risk categories and refractory CLL in the era of chemoimmunotherapy. Blood. 2012;119(18):4101–7. doi: 10.1182/blood-2011-11-312421.
  2. Никитин Е.А., Судариков А.Б. Хронический лимфолейкоз высокого риска: история, определение, диагностика и лечение. Клиническая онкогематология. 2013;6(1):59–67.
    [Nikitin EA, Sudarikov AB. High­risk chronic lymphocytic leukemia: history, definition, diagnosis, and management. Klinicheskaya onkogematologiya. 2013;6(1):59–67. (In Russ)]
  3. Богданов А.Н., Кулибаба Т.Г. Острые и хронические лейкозы: учебное пособие. СПб.: Изд-во Санкт-Петербургского университета, 2019. 116 с.
    [Bogdanov AN, Kulibaba TG. Ostrye i khronicheskie leikozy: uchebnoe posobie. (Acute and chronic lymphocytic leukemias: Study guide.) Saint Petersburg: Sankt-Peterburgskii universitet Publ.; 2019. 116 p. (In Russ)]
  4. Клиническая гематология. Под ред. Шт. Берчану. М.: Медицинское издательство, 1985. 1224 с.
    [Berchanu Sht, ed. Klinicheskaya gematologiya. (Clinical hematology.) Moscow: Meditsinskoe izdatelstvo Publ.; 1224 p. (In Russ)]
  5. Лейкозы у детей: Клиническое пособие. Под ред. Г.Л. Менткевич, С.А. Маяковой. М.: Практическая медицина, 2009. 384 с.
    [Mentkevich GL, Mayakova SA, eds. Leikozy u detei: Klinicheskoe posobie. (Leukemias in children: Clinical guide.) Moscow: Prakticheskaya meditsina Publ.; 2009. 384 p. (In Russ)]
  6. Клиническая онкогематология: Руководство для врачей. Под ред. М.А. Волковой. М.: Медицина, 2001. 576 с.
    [Volkova MA, ed. Klinicheskaya onkogematologiya: Rukovodstvo dlya vrachei. (Clinical oncohematology: Guidelines for physicians.) Moscow: Meditsina Publ.; 2001. 576 p. (In Russ)]
  7. Медицинская энциклопедия INFO. Хронический миелолейкоз (электронный документ). Доступно по: http://meddaily.info/?cat=article&id=1311. Ссылка активна на 6.11.2020г.
    [MEDDAILY.INFO medical encyclopedia. Chronic myeloid leukemia. [Internet] Available from: http://meddaily.info/?cat=article&id=1311. (accessed 6.11.2020) (In Russ)]
  8. Балакирева Т.В., Андреева Н.Е. Макроглобулинемия Вальденстрема. Клиническая онкогематология. 2009;2(2):121–36.
    [Balakireva TV, Andreeva NE. Waldenstrom’s Klinicheskaya onkogematologiya. 2009;2(2):121–36. (In Russ)]
  9. NCCN Clinical Practice Guidelines in Oncology. Waldenstrom’s Macrogobulinemia/Lymphoplasmacytic Lymphoma. Version 2.2016. Available from: https://www.nccn.org/store/login/login.aspx?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/waldenstroms.pdf (accessed 6.11.2020).
  10. Brown JR, Neuberg D, Phillips K, et al. Prevalence of familial malignancy in a prospectively screened cohort of patients with lymphoproliferative disorders. Br J Haematology. 2008;143(3):361–8. doi: 10.1111/j.1365-2141.2008.07355.x.
  11. Программное лечение заболеваний системы крови: Сборник алгоритмов диагностики и протоколов лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2012. 1056 с.
    [Savchenko VG, ed. Programmnoe lechenie zabolevanii sistemy krovi: Sbornik algoritmov diagnostiki i protokolov lecheniya zabolevanii sistemy krovi. (Programmed treatment of hematological diseases: Collection of diagnostic algorithms and treatment protocols of hematological diseases.) Moscow: Praktika Publ.; 1056 p. (In Russ)]

Prediction of FLAG ± Ida Regimen Efficacy in Patients with Relapsed/Refractory Acute Myeloid Leukemia

IG Budaeva, EG Ovsyannikova, EN Goryunova, OV Kulemina, DV Zaitsev, DV Motorin, RSh Badaev, DB Zammoeva, VV Ivanov, KV Bogdanov, OS Pisotskaya, YuV Mirolyubova, TS Nikulina, YuA Alekseeva, AYu Zaritskey, LL Girshova

VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Irina Garmaevna Budaeva, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(931)351-07-06; e-mail: irina2005179@mail.ru

For citation: Budaeva IG, Ovsyannikova EG, Goryunova EN, et al. Prediction of FLAG ± Ida Regimen Efficacy in Patients with Relapsed/Refractory Acute Myeloid Leukemia. Clinical oncohematology. 2019;12(3):289-96 (In Russ).

doi: 10.21320/2500-2139-2019-12-3-289-296


ABSTRACT

Aim. To assess the efficacy of FLAG/FLAG-Ida regimen and to identify factors that influence remission, duration of disease-free survival (DFS) and overall survival (OS) of patients with relapsed/refractory acute myeloid leukemia (AML).

Materials & Methods. The trial included 54 patients (28 men and 26 women), median age was 37 years (range 18–70 years). 27 (50 %) out of 54 patients had refractory AML and 27 (50 %) patients had relapsed AML. FLAG and FLAG-Ida regimens were administered as induction therapy. 37 (68.5 %) patients received bone marrow transplantation. Molecular genetic and cytogenetic examinations were performed prior to therapy and on the 28th day after the start of treatment. WT1 gene expression was evaluated on the 14th–16th day of treatment.

Results. Complete remission (CR) was achieved in 42 (77.8 %) out of 54 patients. Refractoriness to therapy was observed in 9 (16.7 %) out of 54 patients, mortality was 5.5 % (3/54). Remission rate was higher in patients with relapsed AML compared with refractory AML: 85.2 % (23/27) and 70.4 % (19/27), respectively. On the 14th–16th day of treatment patients with blast cell count ≥ 10 % in bone marrow (BM) showed significantly lower CR rate (60 %) compared with the group of patients with < 10 % blast cells in BM (89.6 %; = 0.024) and shorter DFS (median 7.6 vs. 17.6 months, respectively; = 0.03). Median DFS in patients with WT1 expression reduction to < 1 log on the 14th–16th day was 5 vs. 18 months in patients without WT1 expression reduction (= 0.01). DFS varied in groups of patients with blast cell count < 10 % in BM on the 14th–16th day of treatment based on the level of WT1 expression reduction (= 0.04). MRD-negative patients (57.1 %) showed significantly longer DFS and OS compared with MRD-positive patients (median DFS was 17.6 vs. 5.2 months, respectively, = 0.02; median OS was 19 vs. 6.9 months, = 0.0002). Median DFS and OS were different only in ELN low- and high-risk groups (median not reached vs. 5.2 months, respectively, = 0.039; median not reached vs. 10.2 months, = 0.039).

Conclusion. FLAG and FLAG-Ida are effective and safe regimens in the treatment of relapsed/refractory AML. Achieving remission depends on neither the risk group nor the time of relapse occurrence. The blast cell count in BM on the 14th–16th day of FLAG/FLAG-Ida treatment is a prognostic factor determining achievement and duration of remission. WT1 expression level in the early post-induction period is a sensitive DFS marker. MRD status and molecular genetic risk (ELN) group affiliation are essential prognostic factors determining DFS and OS.

Keywords: acute myeloid leukemia, relapse, refractoriness, FLAG and FLAG-Ida regimens.

Received: November 2, 2018

Accepted: May 28, 2019

Read in PDF 


REFERENCES

  1. Papaemmanuil E, Gerstung M, Bullinger L. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. doi: 10.1056/NEJMoa1516192.

  2. Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003;21(24):4642–9. doi: 10.1200/JCO.2003.04.036.

  3. Dohner H, Elihu H, Estey EH, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-235358.

  4. Othus M, Appelbaum FR, Petersdorf SH, et al. Fate of patients with newly diagnosed acute myeloid leukemia who fail primary induction therapy. Biol Blood Marrow Transplant. 2015;21(3):559–64. doi: 10.1016/j.bbmt.2014.10.025

  5. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-733196.

  6. Elihu H, Estey E. Acute myeloid leukemia: 2016 Update on risk-stratification and management. Am J Hematol. 2016;91(8):824–46. doi: 10.1002/ajh.24439.

  7. Biggs JC, Horowitz MM, Gale RP, et al. Bone marrow transplants may cure patients with acute leukemia never achieving remission with chemotherapy. Blood. 1992;80(4):1090–3.

  8. Duval M, Klein JP, He W, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;28(23):3730–8. doi: 10.1200/JCO.2010.28.8852.

  9. Sureda A. Indications for allo- and auto-SCT for hematological diseases, solid tumours and immune disorders: current practice in Europe. Bone Marrow Transplant. 2015;50(8):1037–56. doi: 10.1038/bmt.2015.6.

  10. Araki D, Othus M, Walter RB, et al. Effect of allogeneic hematopoietic cell transplantation in first complete remission on post-relapse complete remission rate and survival in acute myeloid leukemia. Haematologica. 2015;100(7):254–6. doi: 10.3324/haematol.2014.

  11. Delia M, Pastore D, Carluccio P, et al. FLAG-Ida regimen as bridge therapy to allotransplant in refractory/relapsed AML patients. Clin Lymph Myel Leuk. 2017;17(11):767–773. doi: 10.1016/j.clml.2017.06.002.

  12. Estey E, Kornblau S, Pierce S, et al. A stratification system for evaluating and selecting therapies in patients with relapsed or primary refractory acute myelogenous leukemia. Blood. 1996;88(2):756.

  13. Estey EH. Treatment of relapsed and refractory acute myelogenous leukemia. Leukemia. 2000;14(3):476–9. doi: 10.1038/sj.leu.2401568.

  14. Estey E, Plunkett W, Gandhi V, et al. Fludarabine and arabinosylcytosine therapy for refractory and relapsed acute myelogenous leukemia. Leuk Lymphoma. 1993;9(4–5):343–50. doi: 10.3109/10428199309148532.

  15. Estey E, Thall P, Andreeff M, et al. Use of granulocyte colony-stimulating factor before, during, and after fludarabine plus cytarabine induction therapy of newly diagnosed acute myelogenous leukemia or myelodysplastic syndromes; comparison with fludarabine plus cytarabine without granulocyte colony-stimulating factor. J Clin Oncol. 1994;12(4):671–8. doi: 10.1200/JCO.1994.12.4.671.

  16. Gandhi V, Plunkett W. Modulation of arabinosylnucleoside metabolism by arabinosylnucleotides in human leukemia cells. Cancer Res. 1988;48(2):329–34.

  17. Gandhi V, Estey E, Keating MJ, et al. Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy. J Clin Oncol. 1993;11(1):116–24. doi: 10.1200/JCO.1993.11.1.116.

  18. Anderlini P. Idarubicin cardiotoxicity: A retrospective study in acute myeloid leukemia and myelodysplasia. J Clin Oncol. 1995;13(11):2827–34. doi: 10.1200/JCO.1995.13.11.2827.

  19. Lee SR, Yang DH, Ahn JS, et al. The Clinical outcome of FLAG chemotherapy without idarubicin in patients with relapsed or refractory acute myeloid leukemia. J Korean Med Sci. 2009;24(3):498–503. doi: 10.3346/jkms.2009.24.3.498.

  20. Dohner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373(12):1136–52. doi: 10.1056/NEJMra1406184.

  21. Patel JP, Gonen M, Figueroa ME. Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia. N Engl J Med. 2012;366(12):1079–89. doi: 10.1056/NEJMoa1112304.

  22. Wang LJ, Ding J, Zhu CY, et al. Clinic outcome of FLAG regimen treating patients with refractory and relapse acute myeloid leukemia. J Exper Hematol. 2016;24(1):19–24.

  23. Jun Xu, Ting-Ting Lv, Xiao-Fen Zhou, et al. Efficacy of common salvage chemotherapy regimens in patients with refractory or relapsed acute myeloid leukemia: A retrospective cohort study. Medicine. 2018;97(39): doi: 10.1097/MD.0000000000012102.

  24. Breems DA, Van Putten WL, Huijgens PC, et al. Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol. 2005;23(9):1969–78. doi: 10.1200/jco.2005.06.027.

  25. Carella AM, Cascavilla N, Greco MM, et al. Treatment of poor risk acute myeloid leukemia with fludarabine, cytarabine and G-CSF (flag regimen): a single center study. Leuk Lymphoma. 2001;40(3–4):295–303. doi: 10.3109/10428190109057928.

  26. Ferrara F, Palmieri S, Pocali B, et al. De novo acute myeloid leukemia with multilineage dysplasia: treatment results and prognostic evaluation from a series of 44 patients treated with fludarabine, cytarabine and G-CSF (FLAG). Eur J Haematol. 2002;68(4):203–9. doi: 10.1034/j.1600-0609.2002.01651.x.

  27. Bao Y, Zhao J, Li Z-Z. Comparison of clinical remission and survival between CLAG and FLAG induction chemotherapy in patients with refractory or relapsed acute myeloid leukemia: a prospective cohort study. Clin Transl Oncol. 2018;20(7):870–80. doi: 10.1007/s12094-017-1798-8.

  28. Ossenkoppele GJ, Graveland WJ, Sonneveld P, et al. The value of fludarabine in addition to ARA-C and G-CSF in the treatment of patients with high-risk myelodysplastic syndromes and AML in elderly patients. Blood. 2004;103(8):2908–13. doi: 10.1182/blood-2003-07-2195.

  29. Jackson G, Taylor P, Smith GM, et al. A multicentre, open, non-comparative phase II study of a combination of fludarabine phosphate, cytarabine and granulocyte colony-stimulating factor in relapsed and refractory acute myeloid leukaemia and de novo refractory anaemia with excess of blasts in transformation. Br J Haematol. 2001;112(1):127–37. doi: 1046/j.1365-2141.2001.02551.x.

  30. Virchis A, Koh M, Rankin P, et al. Fludarabine, cytosine arabinoside, granulocyte-colony stimulating factor with or without idarubicin in the treatment of high risk acute leukaemia or myelodysplastic syndromes. Br J Haematol. 2004;124(1):26–32. doi: 10.1046/j.1365-2141.2003.04728.x.

  31. Farooq MU, Mushtaq F, Farooq A, et al. FLAG vs FLAG-IDA: outcomes in relapsed/refractory acute leukemias. Cancer Chemother Pharmacol. 2019;83(2):1–2. doi: 10.1007/s00280-019-03792-8.

  32. Heinemann V, Murray D, Walters R, et al. Mitoxantrone-induced DNA damage in leukemia cells is enhanced by treatment with high-dose arabinosylcytosine. Cancer Chemother Pharmacol. 1988;22(3):205–10. doi: 10.1007/BF00273412.

  33. Loughlin S, Gandhi V, Plunkett W, et al. The effect of 9-beta-D-arabinofuranosyl-2-fluoroadenine and 1-beta-D-arabinofuranosylcytosine on the cell cycle phase distribution, topoisomerase II level, mitoxantrone cytotoxicity, and DNA strand break production in K562 human leukemia cells. Cancer Chemother Pharmacol. 1996;38(3):261–8. doi: 10.1007/s002800050480.

  34. Gabert J, Beillard E, Velden VH, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer program. Leukemia. 2003;17(12):2318–57. doi: 10.1038/sj.leu.2403135.

  35. Willasch AM, Gruhn B, Coliva T, et al. Combined usage of Wilms’ tumor gene quantitative analysis and multiparameter flow cytometry for minimal residual disease monitoring of acute myeloid leukemia patients after allogeneic hematopoietic stem cells transplantation. Exp Ther Med. 2018;15(2):1403–9. doi: 10.3892/etm.2017.5547.

  36. Богданов К.В., Моторин Д.В., Никулина Т.С. и др. Мониторинг донорского химеризма и минимальной остаточной болезни у онкогематологических больных после аллогенной трансплантации гемопоэтических стволовых клеток. Биомедицинская химия. 2017;63(6):570–81. doi: 10.18097/PBMC

    [Bogdanov KV, Motorin DV, Nikulina TS, et al. Donor chimerism and minimal residual disease monitoring in leukemia patients after allo-HSCT. Biomeditsinskaya khimiya. 2017;63(6):570–81. doi: 10.18097/PBMC20176306570. (In Russ)]

  37. Pastore D, Specchia G, Carluccio P, et al. FLAG-IDA in the treatment of refractory/relapsed acute myeloid leukemia: single-center experience. Ann Hematol. 2003;82(4):231–5. doi: 10.1007/s00277-003-0624-2.

  38. Montillo M, Mirto S, Petti MC, et al. Fludarabine, cytarabine, and G-CSF (FLAG) for the treatment of poor risk acute myeloid leukemia. Am J Hematol. 1998;58(2):105–9. doi: 1002/(sici)1096-8652(199806)58:2<105::aid-ajh3>3.0.co;2-w.

  39. Nokes TJ, Johnson S, Harvey D, et al. FLAG is a useful regimen for poor prognosis adult myeloid leukaemias and myelodysplastic syndromes. Leuk Lymphoma. 1997;27(1–2):93–101. doi: 10.3109/10428199709068275.

The Use of Ibrutinib in Refractory Chronic Lymphocytic Leukemia and in High-Risk Patients

NV Kurkina1,2, EA Repina1, NN Mashnina2

1 NP Ogarev Mordovia National Research State University, 68 Bol’shevistskaya str., Saransk, Republic of Mordovia, Russian Federation, 430032

2 Republican Clinical Hospital No. 4, 32 Ul’yanova str., Saransk, Republic of Mordovia, Russian Federation, 430032

For correspondence: Nadezhda Viktorovna Kurkina, MD, PhD, 68 Bol’shevistskaya str., Saransk, Republic of Mordovia, Russian Federation, 430032; e-mail: nadya.kurckina@yandex.ru

For citation: Kurkina NV, Repina EA, Mashnina NN. The Use of Ibrutinib in Refractory Chronic Lymphocytic Leukemia and in High-Risk Patients. Clinical oncohematology. 2019;12(3):278–81 (In Russ).

doi: 10.21320/2500-2139-2019-12-3-278-281


ABSTRACT

Despite advances in chemo-immunotherapy of chronic lymphocytic leukemia, a choice of therapy is a frequent challenge in patients with a refractory form of the disease, autoimmune hemolytic complications, and also in high-risk patients with cytogenetic changes. The use of ibrutinib, one of Bruton’s tyrosine kinase inhibitors, allows to overcome the resistance to anticancer therapy without adverse effects on patients’ quality of life.

Keywords: chronic lymphocytic leukemia, chemo-immunotherapy, ibrutinib, refractoriness, relapse.

Received: January 21, 2018

Accepted: May 10, 2019

Read in PDF 


REFERENCES

  1. Zenz T, Gribben JG, Hallek M, et al. Risk categories and refractory CLL in the era of chemoimmunotherapy. Blood. 2012;119(18):4101. doi: 10.1182/blood-2011-11-312421.

  2. Никитин Е.А., Судариков А.Б. Хронический лимфолейкоз высокого риска: история, определение, диагностика и лечение. Клиническая онкогематология. 2013;6(1):59–67.

    [Nikitin EA, Sudarikov AB. High­risk chronic lymphocytic leukemia: history, definition, diagnosis, and management. Klinicheskaya onkogematologiya. 2013;6(1):59–67. (In Russ)]

  3. Byrd JС, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi: 10.1056/nejmoa1215637.

  4. Kil LP, de Bruijn MJ, van Hulst JA, et al. Bruton’s tyrosine kinase mediated signaling enhances leukemogenesis in a mouse model for chronic lymphocytic leukemia. Am J Blood Res. 2013;3(1):71–83.

  5. Cheson BD, Byrd JC, Rai KR, et al. Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol. 2012;30(23):2820–2. doi: 10.1200/jco.2012.43.3748.

  6. Byrd JС, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506. doi: 10.1182/blood-2014-10-606038.

  7. Имбрувика® (инструкция по медицинскому применению). Джонсон & Джонсон (Россия). Доступно по: https://www.vidal.ru/drugs/imbruvica Ссылка активна на 21.01.2019.

    [Imbruvica® (package insert). Johnson & Johnson (Russia). Available from: https://www.vidal.ru/drugs/imbruvica__43861. (accessed 21.01.2019) (In Russ)]

  8. Chavez J, Sahakian E, Pinilla-Ibarz J. Ibrutinib: an evidence-based review of its potential in the treatment of advanced chronic lymphocytic leukemia. Core Evid. 2013;8:37–45. doi: 10.2147/CE.S34068.

  9. Программное лечение заболеваний системы крови: сборник алгоритмов диагностики и протоколов лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2012. 1056 с.

    [Savchenko VG, ed. Programmnoe lechenie zabolevanii sistemy krovi: sbornik algoritmov diagnostiki i protokolov lecheniya zabolevanii sistemy krovi. (Program treatment of blood system diseases: collection of diagnostic algorithms and treatment protocols for blood system diseases.) Moscow: Praktika Publ.; 1056 p. (In Russ)]

Bortezomib Combination Therapy of Relapsed and Refractory Acute Lymphoblastic Leukemia in Children

NA Batmanova, MA Shervashidze, AV Popa, LYu Grivtsova, IN Serebryakova, GL Mentkevich

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Natal’ya Andreevna Batmanova, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(925)321-26-42; e-mail: Batmanova_nataly@mail.ru

For citation: Batmanova NА, Shervashidze MА, Popa АV, et al. Bortezomib Combination Therapy of Relapsed and Refractory Acute Lymphoblastic Leukemia in Children. Clinical oncohematology. 2017;10(3):381–9 (In Russ).

DOI: 10.21320/2500-2139-2017-10-3-381-389


ABSTRACT

Background & Aims. Despite significant success in the treatment of acute lymphoblastic leukemia (ALL) in children, relapses and drug resistance to the standard therapy remain the main cause of treatment failure. The addition of bortezomib to the combination therapy of relapsed ALL to change the sensitivity of blast cells may be a perspective approach to cure patients. The aim was to evaluate the efficacy and toxicity of the anti-relapse ALL treatment protocols REZ BFM 95/96 without bortezomib and COG AALL07P1 with bortezomib in relapsed and refractory ALL in children.

Materials & Methods. The study included 54 children with a confirmed ALL of various localizations. From 1995 to 2011, ALL REZ BFM 95/96 treatment without bortezomib was administered to 26 patients. From 2011 to 2016, 28 children received COG AALL07P1 combination treatment with bortezomib.

Results. The immediate treatment efficacy significantly higher in patients treated with bortezomib (85.7 % vs 57.6 %) after induction chemotherapy with the ALL REZ BFM 95/96. The analysis of the long-term outcomes (disease-free, event-free, overall survival) showed no significant differences between the groups. The event-free survival of patients with isolated bone marrow relapses for a period of 2 years was 20.3 ± 17.5 %. The tolerability of the program was acceptable, complications developing during myelosuppression were not associated with the administration of bortezomib.

Conclusion. The intensification of induction chemotherapy in recurrent remission according to COG AALL07P1 protocol with the addition of bortezomib allowed to increase the number of complete remissions including MRD negative ones.

Keywords: acute lymphoblastic leukemia, refractoriness, relapses, bortezomib.

Received: February 24, 2017

Accepted: May 2, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Менткевич Г.Л., Маякова С.А. Лейкозы у детей. М.: Практическая медицина, 2009. 346 с.
    [Mentkevich GL, Mayakova SA. Leikozy u detei. (Leukemia in children.) Moscow: Prakticheskaya meditsina Publ.; 2009. 346 p. (In Russ)]
  2. Goto H. Childhood relapsed acute lymphoblastic leukemia: biology and recent treatment progress. Pediatr Intern. 2015;57(6):1059–66. doi: 10.1111/ped.12837.
  3. Pui CH, Carroll WL, Meshinchi S, Arceci R.J. Biology, risk stratification and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(36):551–65. doi: 10.1200/JCO.2010.30.7405.
  4. Pui CH, Evans EW. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50(3):185–96. doi: 10.1053/j.seminhematol.2013.06.007.
  5. Bailey LC, Lange BJ, Rheingold SR, Bunin N.J. Bone-marrow relapse in pediatric acute lymphoblastic leukaemia. Lancet Oncol. 2008;9(9):873–83. doi: 10.1016/S1470-2045(08)70229-8.
  6. Bhojwani D, Pui CH. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14(6):205–17. doi: 10.1016/S1470-2045(12)70580-6.
  7. Bhatla T. The biology of relapsed acute lymphoblastic leukemia: opportunities for therapeutic interventions. J Pediatr Hematol Oncol. 2014;36(6):413–8. doi: 10.1097/MPH.0000000000000179.
  8. Raetz AE, Bhatla T. Where do we stand in the treatment of relapsed acute lymphoblastic leukemia? Am Soc Hematol Educ Program. 2012;2012:129–36. doi: 10.1182/asheducation-2012.1.129.
  9. Gaynon PS. Childhood acute lymphoblastic leukaemia and relapse. Br J Haematol. 2005;131(5):579–87. doi: 10.1111/j.1365-2141.2005.05773.x.
  10. MacKezie A, Kasner M. Therapeutic developments in acute lymphoblastic leukemia. Blood Lymph Cancer: Targets Ther. 2012;2:145–58. doi: 10.2147/BLCTT.S24990.
  11. Ko RH, Barnette P, Bostrom B, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia consortium study. J Clin Oncol. 2010;28(4):648–54. doi: 10.1200/JCO.2009.22.2950.
  12. Milano A, Perry F, Caponigro F. The ubiquitin-proteasome system as a molecular target in solid tumors: an update on bortezomib. Onco Targets Ther. 2009;2:171–8. doi: 10.2147/OTT.S4503.
  13. Brown RE. Morphoproteomics and bortezomib/dexamethasone-induced response in relapsed acute lymphoblastic leukemia. Ann Clin Lab Sci. 2004;34(2):203–5.
  14. Du Xiao-Li, Chen Qi. Recent advancement of bortezomib in acute lymphoblastic leukemia treatment. Acta Haematol. 2013;129(4):207–14. doi: 10.1159/000345260.
  15. Horton TM. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol. 2006;58(13):13–23. doi: 10.1007/s00280-005-0135-z.
  16. Messinger Y, Gaynon P, Raetz E, et al. Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr Blood Cancer. 2010;55(2):254–9. doi: 10.1002/pbc.22456.
  17. Messinger YH, Gaynon PS, Sposto R, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood. 2012;120(2):285–90. doi: 10.1182/blood-2012-04-418640.

 

Treatment of Relapsed and Refractory Hodgkin’s Lymphoma in Children

NS Kulichkina, ES Belyaeva, GL Mentkevich, VK Boyarshinov, AS Levashov, IV Glekov, AV Popa

Scientific Research Institute of Pediatric Oncology and Hematology, N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Aleksandr Valentinovich Popa, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-55-03; e-mail: apopa@list.ru

For citation: Kulichkina NS, Belyaeva ES, Mentkevich GL, et al. Treatment of Relapsed and Refractory Hodgkin’s Lymphoma in Children. Clinical oncohematology. 2016;9(1):13–21 (In Russ).

DOI: 10.21320/2500-2139-2016-9-1-13-21


ABSTRACT

Background & Aims. Most children with Hodgkin’s lymphoma (HL) can be cured irrespective of the disease stage using modern risk adapted protocols. But 3–5 % of children develop relapse of the disease or refractoriness to the treatment performed. The aim of the study was to perform a comparative analysis of ViGePP vs ICE antitumor treatment regimens in patients with relapsed and refractory Hodgkin’s lymphoma, as well as to evaluate the need in auto-HSCT and the site for a combined chemoradiation therapy in this patient population.

Methods. From June, 2003, till December, 2014, 35 patients with relapsed (18) and refractory (17) HL received chemotherapy based on two regimes: ICE (n = 14; 40 %) and ViGePP (n = 14; 40 %). 7 (20 %) children were switched to another regimen due to a poor antitumor response to the first two courses of chemotherapy.

Results. The direct effectiveness of the therapy was significantly higher in patients on ViGePP as compared to ICE irrespective of the disease status (relapsed or refractory). A complete response was achieved more often in those children with relapse HL whose initial treatment included radiation therapy. Higher survival rates were registered in girls, as well as in children with a complete overall response to the antirelapse therapy. In case of relapses, delayed treatment effects (disease free survival and overall survival) were higher in children treated with 4 courses of ViGePP than 2 courses of ICE. High-dose chemotherapy with subsequent auto-HSCT is not able to overcome refractoriness to the chemotherapy.

Conclusion. Children with relapsed and refractory HL need an intensive antirelapse chemotherapy with subsequent HDC and auto-HSCT to achieve CR.


Keywords: Hodgkin’s lymphoma, children, relapse, refractoriness, auto-HSCT.

Received: November 9, 2015

Accepted: December 25, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Беляева Е.С. Современные подходы к лечению детей с распространенными стадиями лимфомы Ходжкина: Автореф. дис. … канд. мед. наук. М., 2009. С. 1–29.
    [Belyaeva ES. Sovremennye podkhody k lecheniyu detei s rasprostranennymi stadiyami limfomy Khodzhkina. (Modern approaches to treatment of children with advanced Hodgkin’s lymphoma.) [dissertation] Moscow; 2009. p. 1–29. (In Russ)]
  2. Schellong G, Dorfell W, Claviez A, et al. Salvage therapy of progressive and recurrent Hodgkin’s disease: results from a multicenter study of the pediatric DAL/GPOH-HD study group. J Clin Oncol. 2005;23:6181–9. doi: 10.1200/JCO.2005.07.930.
  3. Behrend H, Van Buningen BN, Van Leeuwen EF. Treatment of Hodgkin’s disease in children with or without radiotherapy. Cancer. 1987;59:1870–3. doi: 10.1002/1097-0142(19870601)59:11<1870::aid-cncr2820591105>3.0.co;2-d.
  4. Hudson MM, Krasin M, Link MP, et al. Risk-adapted combined-modality therapy with VAMP/COP and response-based, involved-field radiation for unfavorable pediatric Hodgkin’s disease. J Clin Oncol. 2004;22:4541–50. doi: 10.1200/jco.2004.02.139.
  5. Gorde-Grosjean S, Oberlin O, Leblanc T, et al. Outcome of children and adolescents with recurrent/refractory classical Hodgkin lymphoma, a study from the Societe Francaise de Lutte contre le Cancer des Enfants et des Adolescents (SFCE). Br J Haematol. 2012;158(5):649–56. doi: 10.1111/j.1365-2141.2012.09199.x.
  6. Metzger ML, Hudson MM, Rrasin MJ, et al. Initial Response to Salvage Therapy Determines Prognosis in Relapsed Pediatric Hodgkin Lymphoma Patient. Cancer. 2010;116(18):4376–84. doi: 10.1002/cncr.25225.
  7. Schellong G, Dorfell W, Clavez A, et al. Salvage therapy of progressive and recurrent Hodgkin’s disease: results from multicenter study of the pediatric DAL/GPOH-HD study group. J Clin Oncol. 2005;23:6181–9. doi: 10.1200/jco.2005.07.930.
  8. Stoneham S, Ashley S, Pincerton CR, et al. Outcome after autologous stem cell transplantation in relapse or refractory childhood Hodgkin’s disease. J Pediatr Hematol Oncol. 2004;26:740–5. doi: 10.1097/00043426-200411000-00010.
  9. Brice P, Bouabdallah R, Moreau P, et al. Prognostic factors for survival after high-doses therapy and autologous stem cell transplantation for patients with relapsing Hodgkin’s lymphoma: analysis of 280 patients from the French registry. Society Francaise de Greefe de Moelle. Bone Marrow Transplant. 1997;20:21–6. doi: 10.1038/sj.bmt.1700838.
  10. Harris RT, Termuhlen AM, Smith LM, et al. Autologous Stem Cell Transplantation in Children with Refractory and Relapsed Lymphoma: Results of Children’s Oncology Group Study A5962. Biol Blood Marrow Transplant. 2011;17(2):249–58. doi: 10.1016/j.bbmt.2010.07.002.
  11. Morschhauser F, Brice P, Ferme C, et al. Risk-Adapted Salvage Treatment With Single or Tandem Autologous Stem-Cell Transplantation for First Relapse/Refractory Hodgkin’s Lymphoma: Results of the Prospective Multicenter H96 Trial by the GELA/SFGM Study Group. J Clin Oncol. 2008;26(36):5980–7. doi: 10.1200/jco.2007.15.5887.
  12. Claviez A, Canals C, Dierickx D, et al. Allogenic Hematopoietic Stem Sells Transplantation in Children and Adolescents with Recurrent and Refractory Hodgkin Lymphoma: an Analysis of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(10):2060–7. doi: 10.1182/blood-2008-11-189399.
  13. Shafer JA, Heslop HE, Brenner MK, et al. Outcome of hematopoietic stem cell transplant as salvage therapy for Hodgkin’s lymphoma in adolescents and young adults at a single institution. Leuk Lymphoma. 2010;51(4):664–70. doi: 10.3109/10428190903580410.
  14. Okeley NM, Miyamoto JB, Zhang X, et al. Intracellular activation of SGN-35, a potent anti-CD30 antibody–drug conjugate. Clin Cancer Res. 2010;163:888–97. doi: 10.1158/1078-0432.ccr-09-2069.
  15. Bonthapally V, Yang H, Ayyagari R, et al. Brentuximab Vedotin Compared with Other Therapies in Relapsed/Refractory Hodgkin Lymphoma Post ASCT: Median Overall Survival Meta-Analysis. Curr Med Res Opin. 2015;7:1–48. doi: 10.1185/03007995.2015.1048208.