Protocol ALL-IC BFM 2002: Outcomes of Pediatric Acute Lymphoblastic Leukemia Treatment under Multi-Center Clinical Trial

TT Valiev1, MA Shervashidze1, IV Osipova2, TI Burlutskaya3, NA Popova4, NS Osmulskaya5, GA Aleskerova6, SL Sabantsev7, ZS Gordeeva7, VYu Smirnov8, OA Poberezhnaya8, SN Yuldasheva9, IA Babich10, NA Batmanova1, SR Varfolomeeva1

1 Research Institute of Pediatric Oncology and Hematology, NN Blokhin National Medical Cancer Research Center, 23 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Pediatric Republican Clinical Hospital of Tatarstan, 140 Orenburgskii trakt, Kazan, Russian Federation, 420138

3 Pediatric Regional Clinical Hospital, 44 Gubkina ul., Belgorod, Russian Federation, 308036

4 Volgograd Regional Clinical Oncology Dispensary, 78 Zemlyachki ul., Volgograd, Russian Federation, 400138

5 Regional Pediatric Clinical Hospital, 77 Kuibysheva ul., Omsk, Russian Federation, 644001

6 Azerbaijan National Center for Oncology, 79b G. Zardabi ul., Baku, Azerbaijan, AZ1011

7 LI Sokolova Ioshkar-Ola Pediatric Municipal Hospital, 104 Volkova ul., Ioshkar-Ola, Russian Federation, 424004

8 Kaluga Regional Clinical Pediatric Hospital, 1 Vishnevskogo ul., Kaluga, Russian Federation, 248007

9 VK Gusak Institute of Emergency and Reconstructive surgery, 47 Leninskii pr-t, Donetsk, Donetsk People’s Republic, 83003

10 Regional Pediatric Hospital, 311 Lenina ul., Yuzhno-Sakhalinsk, Russian Federation, 693006

For correspondence: Prof. Timur Teimurazovich Valiev, MD, PhD, 23 Kashirskoye sh., Moscow, Russian Federation, 115478; e-mail: timurvaliev@mail.ru

For citation: Valiev TT, Shervashidze MA, Osipova IV, et al. Protocol ALL-IC BFM 2002: Outcomes of Pediatric Acute Lymphoblastic Leukemia Treatment under Multi-Center Clinical Trial. Clinical oncohematology. 2022;15(2):119–29. (In Russ).

DOI: 10.21320/2500-2139-2022-15-2-119-129


ABSTRACT

Background. Programs of pediatric acute lymphoblastic leukemia (ALL) treatment, developed by the BFM (Berlin-Frankfurt-Munster) Group in 2002, remain one the most effective in the world. Long-term (10–15 years) overall survival in ALL children is above 90 %. Great progress in ALL treatment provided ground for including the ALL-IC BFM 2002 protocol into the Clinical Guidelines in 2020 (ID: 529).

Aim. To present the outcomes of ALL treatment in children according to ALL-IC BFM 2002 under the multi-center clinical trial.

Materials & Methods. From 01.11.2003 to 12.10.2021 the multi-center retrospective-prospective trial included 433 patients with newly diagnosed ALL, aged between 3 months and 21 years. The patients were aged from 0 to 12 (n = 344), from 12 to 18 (n = 70), and older than 12 years (n = 19). All of them were treated with ALL-IC BFM 2002. Overall (OS), disease-free (DFS), and event-free (EFS) survivals were estimated as of 01.12.2021.

Results. In the vast majority of patients (97.9 %, n = 424) complete clinical hematological remission was reached by Day 33 of the ALL-IC BFM 2002 treatment. The 10-year OS was 91.8 ± 1.5 %, DFS was 87.4 ± 1.8 %, and EFS was 84.1 ± 1.9 %. The 10-year OS in the groups of standard- and intermediate-risk patients was 92.8 ± 1.7 % and 94.6 ± 2.6 %, respectively, whereas in high-risk ALL relapse patients it was 71.1 ± 11.1 %.

Conclusion. The ALL-IC BFM 2002 protocol for treating pediatric ALL is reproducible in federal and regional clinics. The outcomes of the ALL-IC BFM 2002 treatment appeared to be impressive. They are comparable to those achieved in leading European and American clinics. To improve survival of high-risk patients, additional stratifying criteria are required, one of which should be the assessment of minimal residual disease (MRD). MRD detection became a basis for prognostic risk stratification under ALL-IC BFM 2009, the results of which will be presented in 2022–2023.

Keywords: acute lymphoblastic leukemia, treatment, ALL-IC BFM 2002, children.

Received: January 17, 2022

Accepted: March 25, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Румянцев А.Г. Эволюция лечения острого лимфобластного лейкоза у детей: эмпирические, биологические и организационные аспекты. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2015;14(1):5–15.
    [Rumyantsev AG. Evolution of treatment of acute lymphoblastic leukemia in children: empirical, biological and organizational aspects. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2015;14(1):5–15. (In Russ)]
  2. Pinkel D. History and development of total therapy for acute lymphocytic leukemia. In: Murphy SB, Gilbert JR, eds. Leukemia research: advances in cell biology and treatment. New York: Elsevier Science Publ.; 1983. pp. 189–201.
  3. Riehm H, Gadner H, Henze G, et al. Acute lymphoblastic leukemia: treatment in three BFM studies (1970–1981). In: Murphy SB, Gilbert JR, eds. Leukemia research: advances in cell biology and treatment. New York: Elsevier Science Publ.; 1983. pp. 251–63.
  4. Langermann HJ, Henze G, Wulf M, Riehm H. Estimation of tumor cell mass in childhood acute lymphoblastic leukemia: prognostic significance and practical application. Klin 1982;194(4):209–13. doi: 10.1055/s-2008-1033807.
  5. Riehm H, Feickert HJ, Schrappe М, et al. Therapy results in five ALL-BFM studies since 1970: implications of risk factors for prognosis. Haematol Blood Transfus. 1987;30:139–46. doi: 10.1007/978-3-642-71213-5_21.
  6. Moricke A, Zimmermann M, Reiter A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24(2):265–84. doi: 10.1038/leu.2009.257.
  7. Sullivan МP, Chen Т, Dyment PG, et al. Equivalence of intrathecal chemotherapy and radiotherapy as central nervous system prophylaxis in children with acute lymphatic leukemia: a Pediatric Oncology Group study. Blood. 1982;60(4):948–58.
  8. Bleyer WA, Coccia PF, Sather HN, et al. Reduction of central nervous system leukemia with a pharmacokinetically derived intrathecal methotrexate dosage regimen. J Clin Oncol. 1983;1(5):317–25. doi: 10.1200/JCO.1983.1.5.317.
  9. Sackmann-Muriel F, Felice MS, Zubizarreta PA, et al. Treatment results in childhood acute lymphoblastic leukemia with a modified ALL-BFM’90 protocol: lack of improvement in high-risk group. Leuk Res. 1999;23(4):331–40. doi: 10.1016/s0145-2126(98)00162-3.
  10. Moricke A, Reiter A, Zimmermann M, et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. 2008;111(9):4477–89. doi: 10.1182/blood-2007-09-112920.
  11. Stary J, Zimmermann M, Campbell M, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol. 2014;32(3):174–84. doi: 10.1200/JCO.2013.48.6522.

Intermediate Results of Prospective, Randomized, Comparative Study of NHL BFM-90 and СНОЕР Efficacy in Primary ALK-Positive Anaplastic Large-Cell Lymphoma

LG Gorenkova1, SK Kravchenko1, EE Klebanova1, AM Kovrigina1, KA Sychevskaya1, EG Gemdzhian1, ES Nesterova1, YaK Mangasarova1, AU Magomedova1, AV Misyurin2, YuV Sidorova1, TN Obukhova1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Liliya Gamilevna Gorenkova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: l.aitova@mail.ru

For citation: Gorenkova LG, Kravchenko SK, Klebanova EE, et al. Intermediate Results of Prospective, Randomized, Comparative Study of NHL BFM-90 and СНОЕР Efficacy in Primary ALK-Positive Anaplastic Large-Cell Lymphoma. Clinical oncohematology. 2020;13(4):382–8. (In Russ).

DOI: 10.21320/2500-2139-2020-13-4-382-388


ABSTRACT

Aim. To compare NHL BFM-90 and CHOEP efficacy in adult patients with ALK-positive anaplastic large-cell lymphoma (ALK+ ALCL).

Materials & Methods. Within the period from June 2014 to December 2019 the prospective randomized comparative study at the National Research Center for Hematology in Moscow included 23 ALK+ ALCL patients. In one study arm (n = 11) CHOEP was administered, whereas the other one (n = 12) received high-dose chemotherapy (CT) according to NHL BFM-90 protocol. The median age of patients in both arms was 33 and 40 years, respectively.

Results. Overall survival (OS) and event-free survival (EFS) within 3 years were 91 % in the arm receiving CHOEP (this protocol was administered to all 11 patients), and 100 % in the arm receiving NHL BFM-90 (complete remission was achieved in all patients). Due to its toxicity NHL BFM-90 was fully implemented in 9 out of 12 patients. The 3-year OS and EFS in the CHOEP and NHL BFM-90 arms are comparable, and the difference between them is not significant.

Conclusion. In ALK+ ALCL treatment high-dose CT according to NHL BFM-90 protocol has no advantage in terms of the 3-year OS and EFS compared to less toxic regimen CHOEP. A larger sample of patients is required to achieve significant results, which will further lead to a final judgement on feasibility of high-dose regimens in the treatment of adult patients with ALK+ ALCL.

Keywords: ALK-positive anaplastic large-cell lymphoma, ALK+ ALCL, treatment, adults, CHOEP, NHL BFM-90, survival.

Received: April 8, 2020

Accepted: August 30, 2020

Read in PDF


REFERENCES

  1. Gorenkova L, Kravchenko S, Misurin A, et al. New characteristics of translocation in anaplastic large T-cell ALK-positive lymphoma. Blood. 2012;120(21):4419. doi: 10.1182/blood.v120.21.4419.4419.

  2. Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: Evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66(4):848–58. doi: 10.1182/blood.v66.4.848.848.

  3. Stansfeld AG, Diebold J, Noel H, et al. Updated Kiel classification for lymphomas. Lancet. 1988;331(8580):292–3. doi: 10.1016/s0140-6736(88)90367-4.

  4. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group. Blood. 1994;84(5):1361–92. doi: 10.1182/blood.v84.5.1361.1361.

  5. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017.

  6. O’Connor NT, Stein H, Gatter KC, et al. Genotypic analysis of large cell lymphomas which express the Ki-1 antigen. Histopathology. 1987;11(7):733–40. doi: 10.1111/j.1365-2559.1987.tb02687.x.

  7. Herbst H, Tippelmann G, Anagnostopoulos I, et al. Immunoglobulin and T-cell receptor gene rearrangements in Hodgkin’s disease and Ki-1-positive anaplastic large cell lymphoma: Dissociation between phenotype and genotype. Leuk Res. 1989,13(2):103–16. doi: 10.1016/0145-2126(89)90134-3.

  8. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4. doi: 10.1126/science.8122112.

  9. Swerdlow SH, Campo E, Harris N, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. Vol. 2.

  10. Savage KJ, Harris NL, Vose JM, et al. ALK– anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: Report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111(12):5496–504. doi: 10.1182/blood-2008-01-134270.

  11. Falini B, Pileri S, Zinzani, PL, et al. ALK+ lymphoma: Clinico-pathological findings and outcome. Blood. 1999;93(8):2697–706. doi: 10.1182/blood.V93.8.2697.408k25_2697_2706.

  12. Stein H, Foss HD, Durkop H, et al. CD30(+) anaplastic large cell lymphoma: A review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–95.

  13. Filippa DA, Ladanyi M, Wollner N, et al. CD30 (Ki-1)-positive malignant lymphomas: Clinical, immunophenotypic, histologic, and genetic characteristics and differences with Hodgkin’s disease. Blood. 1996;87(7):2905–17. doi: 10.1182/blood.v87.7.2905.bloodjournal8772905.

  14. Kadin ME, Carpenter C. Systemic and primary cutaneous anaplastic large cell lymphomas. Semin Hematol. 2003;40(3):244–56. doi: 10.1016/s0037-1963(03)00138-0.

  15. Ellin F, Landstrom J, Jerkeman M, Relander T. Central nervous system relapse in peripheral T-cell lymphomas: A Swedish Lymphoma Registry study. Blood. 2015;126(1):36–41. doi: 10.1182/blood-2014-12-616961.

  16. Nomura M, Narita Y, Miyakita Y, et al. Clinical presentation of anaplastic large-cell lymphoma in the central nervous system. Mol Clin Oncol. 2013;1(4):655–60. doi: 10.3892/mco.2013.110.

  17. Williams D, Mori T, Reiter A, et al. Central nervous system involvement in anaplastic large cell lymphoma in childhood: Results from a multicentre European and Japanese study. Pediatr Blood Cancer. 2013;60(10):E118–Е121. doi: 10.1002/pbc.24591.

  18. Onciu M, Behm FG, Raimondi SC, et al. ALK-positive anaplastic large cell lymphoma with leukemic peripheral blood involvement is a clinicopathologic entity with an unfavorable prognosis. Report of three cases and review of the literature. Am J Clin Pathol. 2003;120(4):617–25. doi: 10.1309/wh8pnu9pk4rrv852.

  19. Spiegel A, Paillard C, Ducassou S, et al. Paediatric anaplastic large cell lymphoma with leukaemic presentation in children: A report of nine French cases. Br J Haematol. 2014;165(4):545–51. doi: 10.1111/bjh.12777.

  20. Mussolin L, Pillon M, d’Amore ES, et al. Prevalence and clinical implications of bone marrow involvement in pediatric anaplastic large cell lymphoma. 2005;19(9):1643–7. doi: 10.1038/sj.leu.2403888.

  21. Damm-Welk C, Mussolin L, Zimmermann M, et al. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. 2014;123(3):334–7. doi: 10.1182/blood-2013-09-526202.

  22. Горенкова Л.Г., Кравченко С.К., Мисюрин А.В. и др. Клиническая и молекулярная оценки эффективности высокодозной химиотерапии при анаплазированной Т-крупноклеточной АЛК-позитивной лимфоме у взрослых. Гематология и трансфузиология. 2012;57(S3):43. [Gorenkova LG, Kravchenko SK, Misyurin AV, et al. Clinical and molecular evaluation of the efficacy of high-dose chemotherapy in adult patients with anaplastic large T-cell ALK-positive lymphoma. Gematologiya i transfuziologiya. 2012;57(S3):43. (In Russ)]

  23. Tsuyama N, Sakamoto K, Sakata S, et al. Anaplastic Large Cell Lymphoma: Pathology, Genetics, and Clinical Aspect. J Clin Exp Hematop. 2017;57(3):120–42. doi: 10.3960/jslrt.17023.

  24. Brugieres L, Deley MC, Pacquement H, et al. CD30(+) anaplastic large-cell lymphoma in children: Analysis of 82 patients enrolled in two consecutive studies of the French Society of Pediatric Oncology. Blood. 1998;92(10):3591–8. doi: 1182/blood.V92.10.3591.

  25. Rosolen A, Pillon M, Garaventa A, et al. Anaplastic large cell lymphoma treated with a leukemia-like therapy: Report of the Italian Association of Pediatric Hematology and Oncology (AIEOP) LNH-92 protocol. Cancer. 2005;104(10):2133–40. doi: 10.1002/cncr.21438.

  26. Seidemann K, Tiemann M, Schrappe M, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: A report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–706. doi: 10.1182/blood.v97.12.3699.

  27. Schmitz N, Trumper L, Ziepert M, et al. Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood. 2010;116(18):3418–25. doi: 10.1182/blood-2010-02-270785.

  28. Brugieres L, Le Deley MC, Rosolen A, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27(6):897–903. doi: 10.1200/jco.2008.18.1487.

  29. Wrobel G, Mauguen A, Rosolen A, et al. European Inter-Group for Childhood, Non-Hodgkin Lymphoma (EICNHL). Safety assessment of intensive induction therapy in childhood anaplastic large cell lymphoma: report of the ALCL99 randomised trial. Pediatr Blood Cancer. 2011;56(7):1071–7. doi: 10.1002/pbc.22940.

  30. Oeffinger KC, Mertens AC, Sklar CA, et al. Chronic Health Conditions in Adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–82. doi: 10.1056/nejmsa060185.

  31. Gorenkova L, Kravchenko SK, Kovrigina AM, et al. Late Events In Adult Patients With ALK-Positive Anaplastic Large Cell Lymphoma. 2017;130(S1):5176.

  32. Горенкова Л.Г., Кравченко С.К., Ковригина А.М. и др. Анапластические крупноклеточные лимфомы взрослых: влияние цитогенетических и молекулярно-генетических характеристик на результаты лечения (собственный опыт одного института). Гематология и трансфузиология. 2018;63(S1):56–7. [Gorenkova LG, Kravchenko SK, Kovrigina AM, et al. Anaplastic large-cell lymphomas in adult patients: effect of cytogenetic and molecular genetic characteristics on treatment outcomes (a single-institution experience). Gematologiya i transfuziologiya. 2018;63(S1):56–7. (In Russ)]

  33. Горенкова Л.Г. Клиническая и молекулярная оценка эффективности высокодозной химиотерапии анапластической крупноклеточной АЛК-позитивной лимфомы взрослых: Автореф. дис. … канд. мед. наук. М., 2013. [Gorenkova LG. Klinicheskaya i molekulyarnaya otsenka effektivnosti vysokodoznoi khimioterapii anaplasticheskoi krupnokletochnoi ALK-pozitivnoi limfomy vzroslykh. (Clinical and molecular assessment of high-dose chemotherapy efficacy in adult patients with ALK-positive anaplastic large-cell ) [dissertation] Moscow; 2013. (In Russ)]

  34. Broccoli А, Zinzani PL. Peripheral T-cell lymphoma, not otherwise specified. Blood. 2017;129(9):1103–12. doi: 10.1182/blood-2016-08-692566.

PD-1 Blockade with Nivolumab as a New Immunotherapy for Classical Hodgkin’s Lymphoma

EA Demina

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Prof. Elena Andreevna Demina, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; e-mail: drdemina@yandex.ru

For citation: Demina EA. PD-1 Blockade with Nivolumab as a New Immunotherapy for Classical Hodgkin’s Lymphoma. Clinical oncohematology. 2018;11(3):213–19.

DOI: 10.21320/2500-2139-2018-11-3-213-219


ABSTRACT

During the last two decades individualization of programmed treatment combined with intensified chemotherapy has proven to be effective treatment for the majority of classical Hodgkin’s lymphoma (cHL) patients. However, in 10–30 % of cases relapses and resistance to therapy still occur. Further intensification of therapy induces toxicity that leads to decrease in overall survival and quality of life. The standard second-line treatment with high-dose chemotherapy (HDCT) and autologous hematopoietic stem cell transplantation (auto-HSCT) allows for the achievement of long-term 5-year progression-free survival only in 50–60 % of patients with relapsed disease and not more than 40–45 % of patients with refractory disease. Approximately 50 % of patients relapse after HDCT and auto-HSCT. The median overall survival of relapsed patients does not exceed 2 years. Allogeneic HSCT improves treatment results to some extent, but is not an optimal strategy in all patients. A search for new treatment options has been made to improve effectiveness of relapsed and refractory cHL treatment and to reduce toxicity of highly effective programs. А new CD30-targeted conjugate brentuximab vedotin was developed to use anti-CD30 monoclonal antibodies against a specific marker of tumor Reed-Sternberg cells allowing for the transfer of the highly effective antitumor compound of monomethyl auristatin E directly to tumor cells. This drug showed high effectiveness, although failed to provide a complete solution to the problem. The development of anti-PD1 antibody nivolumab opened up new opportunities for cHL treatment. This paper reviews literature information on pharmacological data and antitumor mechanisms of the drug as well as the results of significant international randomised studies.

Keywords: nivolumab, Hodgkin’s lymphoma, relapse, resistance, treatment.

Received: February 5, 2018

Accepted: April 30, 2018

Read in PDF 


REFERENCES

  1. Engert A, Jounes A, Hematologic malignancies: Hodgkin lymphoma. A Comprehensive Overview. 2nd edition. Berlin, Heidelberg: Springer; 2015. pp. 437. doi: 10.1007/978-3-319-12505-3.
  2. Skoetz N, Trelle S, Rancea M, et al. Effect of initial treatment strategy on survival of patients with advanced-stage Hodgkin’s lymphoma: a systematic review and network meta-analysis. Lancet Oncol. 2013;14(10):943–52. doi:1016/s1470-2045(13)70341-3.
  3. Czyz J, Szydlo R, Knopinska-Posluszny W, et al. Treatment for primary refractory Hodgkin’s disease: a comparison of high-dose chemotherapy followed by ASCT with conventional therapy. Bone Marrow Transplant. 2004;33(12):1225–9. doi: 10.1038/sj.bmt.1704508.
  4. Gerrie AS, Power MM, Shepherd JD, et al. Chemoresistance can be overcome with high-dose chemotherapy and autologous stem-cell transplantation for relapsed and refractory Hodgkin lymphoma. Ann Oncol. 2014;25(11):2218–23. doi: 10.1093/annonc/mdu387.
  5. Sureda A, Constans M, Iriondo A, et al. Prognostic factors affecting long-term outcome after stem cell transplantation in Hodgkin’s lymphoma autografted after a first relapse. Ann Oncol. 2005;16(4):625–33. doi: 10.1093/annonc/mdi119.
  6. Brice P, Bouabdallah R, Moreau P, et al. Prognostic factors for survival after high-dose therapy and autologous stem cell transplantation for patients with relapsing Hodgkin’s disease: analysis of 280 patients from the French registry. Societe Francaise de Greffe de Moelle. Bone Marrow Transplant. 1997;20(1):21–6. doi: 10.1038/sj.bmt.1700838.
  7. Crump M. Management of Hodgkin lymphoma in relapse after autologous stem cell transplant. Hematology Am Soc Hematol Educ Program. 2008;2008(1):326–33. doi: 10.1182/asheducation-2008.1.326.
  8. Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an antiCD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102(4):1458–65. doi: 10.1182/blood-2003-01-0039.
  9. Sutherland MSK, Sanderson RJ, Gordon KA, et al. Lysosomal Trafficking and Cysteine Protease Metabolism Confer Target-specific Cytotoxicity by Peptide-linked Anti-CD30-Auristatin Conjugates. J Biol Chem. 2006;281(15):10540–7. doi: 10.1074/jbc.M510026200.
  10. Gopal AK, Chen R, Smith SE, et al. Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(8):1236–43. doi: 10.1182/blood-2014-08-595801.
  11. Arai S, Fanale M, DeVos S, et al. Defining a Hodgkin lymphoma population for novel therapeutics after relapse from autologous hematopoietic cell transplant. Leuk Lymphoma. 2013;54(11):2531–3. doi: 10.3109/10428194.2013.798868.
  12. Moskowitz CH, Nademanee A, Masszi T, et Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853–62. doi: 10.1016/S0140-6736(15)60165-9.
  13. Boussiotis VA. Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N Engl J Med. 2016;375(18):1767–78. doi: 10.1056/NEJMra1514296.
  14. Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. doi: 10.1056/NEJMoa1414428.
  15. Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N Engl J Med. 2016;375(19):1823–33. doi: 10.1056/NEJMoa1606774
  16. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med. 2015;373(19):1803–13. doi: 10.1056/NEJMoa1510665.
  17. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27. doi: 10.1038/nrc2542.
  18. Yamamoto R, Nishikori M, Kitawaki T, et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111(6):3220–4. doi: 1182/blood-2007-05-085159.
  19. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. doi: 10.1182/blood-2010-05-282780.
  20. Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J Clin Oncol. 2016;34(23):2690–7. doi: 10.1200/JCO.2016.66.4482.
  21. Green MR, Rodig S, Juszczynski P, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 2012;18(6):1611–8. doi: 1158/1078-0432.ccr-11-1942.
  22. Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19(13):3462–73. doi: 10.1158/1078-0432.CCR-13-0855.
  23. Merryman R, Armand Ph. Hodgkin lymphoma and PD-1 blockade: an unfinished story. Ann Lymphoma. 2017;1:4. doi: 10.21037/aol.2017.08.03.
  24. Ansell SM. Nivolumab in the Treatment of Hodgkin Lymphoma. Clin Cancer Res. 2017;23(7):1623–6. doi: 10.1158/1078-0432.CCR-16-1387.
  25. Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med. 2016;375(19):1856–67. doi: 10.1056/NEJMoa1602252.
  26. Sharma P, Retz M, Siefker-Radtke A, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22. doi: 10.1016/S1470-2045(17)30065-7.
  27. Borghaei H, Paz‑Ares L, Horn L, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N Engl J Med. 2015;373(17):1627–39. doi: 10.1056/NEJMoa1507643.
  28. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer. N Engl J Med. 2015;373(2):123–35. doi: 10.1056/NEJMoa1504627.
  29. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med. 2015;373(19):1803–13. doi: 10.1056/NEJMoa1510665.
  30. Wolchok JD, Rollin L, Larkin J. Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2017;377(25):2503–4. doi: 10.1056/NEJMc1714339.
  31. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9. doi: 10.1056/NEJMoa1411087.
  32. Armand P. Immune checkpoint blockade in hematologic malignancies. Blood. 2015;125(22):3393–400. doi: 10.1182/blood-2015-02-567453.
  33. Kasamon YL, De Carlo RA, Wang Y, et al. FDA Approval Summary: Nivolumab for the Treatment of Relapsed or Progressive Classical Hodgkin Lymphoma. 2017;22(5):585–91. doi: 10.1634/theoncologist.2017-0004.
  34. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/JCO.2006.09.2403.
  35. Fanale M, Engert A, Younes A. Nivolumab for relapsed/refractory classical Hodgkin lymphoma after autologous transplant: full results after extended follow-up of the phase 2 CheckMate 205 trail. Hematol Oncol. 2017;35:135–6. doi: 10.1002/hon.2437_124.
  36. Majhail NS, Weisdorf DJ, Defor TE, et al. Long-Term Results of Autologous Stem Cell Transplantation for Primary Refractory or Relapsed Hodgkin’s Lymphoma. Biol Blood Marrow 2006;12(10):1065–72. doi: 10.1016/j.bbmt.2006.06.006
  37. Merryman RW, Kim HT, Zinzani PL, et al. Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood. 2017;129(10):1380–8. doi: 10.1182/blood-2016-09-738385.
  38. Saha A, Aoyama K, Taylor PA, et al. Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood. 2013;122(17):3062–73. doi: 10.1182/blood-2013-05-500801.
  39. Ciurea SO, Zhang MJ, Bacigalupo AA, et al. Haploidentical transplant with posttransplant cyclophosphamidevs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126(8):1033–40. doi: 10.1182/blood-2015-04-639831.
  40. Опдиво® [инструкция по медицинскому применению]. Принстон, США: Bristol-Myers Squibb Company. Доступно по: https://www.vidal.ru/drugs/opdivo. Ссылка активна на 30.03.2018.
    [Opdivo® [package insert]. Princeton, NJ, USA: Bristol-Myers Squibb Company. Available from: https://www.vidal.ru/drugs/opdivo. (accessed 30.03.2018) (In Russ)]
  41. Hoppe RT, Advani RH, Ai WZ, et al. NCCN Clinical Practice Guidelines in Oncology. Hodgkin Lymphoma. Version 1.2018. Available from: https://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf (accessed 05.04.2018).
  42. Herrera AF, Moskowitz AJ, Bartlett NL, et al. Interim results from a phase 1/2 study of brentuximab vedotin in combination with relapsed or refractory Hodgkin lymphoma. Hematol Oncol. 2017;35:85–6. doi: 10.1002/hon.2437_73.
  43. Ramchandren R, Fanale MA, Rueda A, et al. Nivolumab for Newly Diagnosed Advanced-Stage Classical Hodgkin Lymphoma (cHL): Results from the Phase 2 CheckMate 205 Study. ASH Annual Meeting Abstracts. 2017: Abstract 651.
  44. Mikhailova N, Lepik K, Kondakova E, et al. Regaining the Tumor Control in Relapsed/Refractory Hodgkin Lymphoma after Nivolumab Failure with Addition of Another Antineoplastic Agent. ASH Annual Meeting Abstracts. 2017: Abstract

Non-Hodgkin’s Lymphomas in Children: 25-Year Clinical Experience

TT Valiev, AV Popa, AS Levashov, ES Belyaeva, NS Kulichkina, BV Kurdyukov, RS Ravshanova, GL Mentkevich

Scientific Research Institute of Pediatric Oncology and Hematology, NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Timur Teimurazovich Valiev, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-98-69; e-mail: timurvaliev@mail.ru

For citation: Valiev TT, Popa AV, Levashov AS, et al. Non-Hodgkin’s Lymphomas in Children: 25-Year Clinical Experience. Clinical oncohematology. 2016;9(4):420–37 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-420-437


ABSTRACT

Background & Aims. Current polychemotherapeutic protocols based on differentiated and risk-adopted approaches permitted to consider non-Hodgkin’s lymphomas (NHL) potentially curable diseases although they had been considered fatal previously. The aim of this study is to summarize and analyze outcomes of NHL therapy over a 25-year period.

Methods. 246 patients were enrolled in the study. They were treated in the department of chemotherapy of hemoblastoses in the Scientific Research Institute of Pediatric Oncology and Hematology under the NN Blokhin Russian Cancer Research Center over the period of 25 years: from April 1, 1991, till June 1, 2016. B-NHL-BFM 90/95 protocols and a modified B-NHL-BFM 95 protocol (with rituximab) were used for B-cell NHLs (n = 130). Patients with lymphocytic leukemia (n = 75) were treated using ALL-mBFM 90/95 and ALL IC-BFM 2002 protocols. 21 patients with anaplastic large cell lymphomas (ALCL) received treatment according to the B-NHL-BFM 90/95 protocol, and 20 patients received the НИИ ДОГ-АККЛ-2007 protocol.

Results. Taking into account clinical and immunological characteristics of ALCL, the authors invented an original НИИ ДОГ-АККЛ-2007 protocol. Special attention was paid to potential modification of standard treatment regimens for B-cell NHL by adding rituximab. The article demonstrates the evolution in prescription of rituximab for B-cell NHL and possibilities for reduction of the total number of polychemotherapy cycles for late-stage tumors without deterioration of treatment outcomes.

Conclusion. The obtained results permit to conclude that introduction of achievements of oncoimmunology, molecular biology, and cytogenetics will become the basis for further modification of existing treatment options for NHL.


Keywords: Burkitt lymphoma, diffuse large B-cell lymphoma, anaplastic large-cell lymphoma, primary mediastinal (thymic) large B-cell lymphoma, T- and B-cell lymphoblastic lymphomas, treatment, children.

Received: June 12, 2016

Accepted: June 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 439.
  2. Burkhardt B, Zimmermann M, Oschlies I, et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol. 2005;131(1):39–49. doi: 10.1111/j.1365-2005.05735.x.
  3. Hochberg J, Waxman IM, Kelly KM, et al. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science. Br J Haematol. 2009;144(1):24–40. doi: 10.1111/j.1365-2008.07393.x.
  4. Baccarani M, Corbelli G, Amadori S, et al. Adolescent and adult lymphoblastic leukemia: prognostic features outcome of therapy. А study of 293 patients. Blood. 1982;60(3):677–84.
  5. Gill PS, Meyer PR, Pavlova Z, et al. B-cell acute lymphoblastic leukemia in adults: clinical, morphologic and immunologic findings. J Clin Oncol. 1986;4(5):737–43.
  6. Bernstein JI, Coleman CN, Strickler JG, et al. Combined modality therapy for adult with small noncleaved cell lymphoma (Burkitt and Burkitt-like type). J Clin Oncol. 1986;4(6):847–58.
  7. Reiter A, Schrappe M, Tiemann M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM-90. Blood. 1999;94(10):3294–306.
  8. Patte C, J. Michon, Frappaz D, et al. Therapy of Burkitt and other B-cell acute lymphoblastic leukaemia and lymphoma: experience with the LMB protocols of the SFOP (French Paediatric Oncology Society) in children and adults. Bail Clin Haematol. 1994;7(2):339–48. doi: 10.1016/s0950-3536(05)80206-
  9. Patte C, Philip T, Rodary C, et al. High survival rate in advanced-stage B-cell lymphomas and leukemias without CNS involvement with a short intensive polychemotherapy: results from the French Pediatric Oncology Society of a randomized trial of 216 children. J Clin Oncol. 1991;9(1):123–32.
  10. Sun XF, Su YS, Liu DG, et al. Comparing CHOP, CHOP+HD-MTX, and BFM-90 regimens in the survival rate of children and adolescents with B cell non-Hodgkin’s lymphoma. Ai Zheng. 2004;23(8):933–8.
  11. Muller J, Csoka M, Jakab Z, et al. Hungarian experience with non-Hodgkin’s lymphoma in childhood. Magy Onkol. 2006;50(3):253–9.
  12. Cairo MS, Sposto R, Gerrard M, et al. Advanced stage, increased lactate dehydrogenase, and primary site, but not adolescent age (³ 15 years), are associated with an increased risk of treatment failure in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB LMB 96 study. J Clin Oncol. 2012;30(4):387–93. doi: 10.1200/jco.2010.33.3369.
  13. Schwenn M, Blattner S, Lynch E, et al. HiC-COM: a 2-month intensive chemotherapy regimen for children with stage III and IV Burkitt’s lymphoma and B-cell acute lymphoblastic leukemia. J Clin Oncol. 1991;9(1):133–8.
  14. Bowman WP, Shuster JJ, Cook B, et al. Improved survival for children with B-cell acute lymphoblastic leukemia and stage IV small noncleaved-cell lymphoma: a pediatric oncology group study. J Clin Oncol. 1996;14(4):1252–61.
  15. Magrath I, Adde M, Shad A, et al. Adults and children with small non-cleaved-cell lymphoma have similar excellent outcome when treated with the same chemotherapy regimen. J Clin Oncol. 1996;14(3):925–34.
  16. Atra A, Gerrard M, Hobson R, et al. Improved cure rate in children with B-cell acute lymphoblastic leukemia and IV stage B-cell non-Hodgkin lymphoma – results of the UKCCSG 9003 protocol. Br J Cancer. 1998;77(12):2281–5. doi: 10.1038/bjc.1998.379.
  17. Burkhardt B, Oschlies I, Klapper W, et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. Leukemia. 2011;25(1):153–60. doi: 10.1038/leu.2010.245.
  18. Patte C, Auperin A, Michon J, et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–9. doi: 10.1182/blood.v97.11.3370.
  19. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80. doi: 10.1182/blood-2006-07-
  20. Laver JH, Kraveka JM, Hutchison RE, et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. J Clin Oncol. 2005;23(3):541–7. doi: 10.1200/jco.2005.11.075.
  21. Woessmann W, Seidemann K, Mann G.et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948–58. doi: 10.1182/blood-2004-03-
  22. Gerrard M, Cairo MS, Weston C, et al. Excellent survival following two courses of COPAD chemotherapy. Br J Haematol. 2008;141(6):840–87. doi: 10.1111/j.1365-2008.07144.x.
  23. Seidemann K, Tiemann M, Lauterbach I, et al. Primary mediastinal large B-cell lymphoma with sclerosis in pediatric and adolescent patients: treatment and results from three therapeutic studies of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 2003;21(9):1782–19. doi: 10.1200/jco.2003.08.151.
  24. Akbayram S, Dogan M, Akgun C, et al. Use of rituximab in three children with relapsed/refractory Burkitt lymphoma. Target Oncol. 2010;5(4):291–4. doi: 10.1007/s11523-010-0161-
  25. Okur VF, Oguz A, Karadeniz C, et al. Refractoriness to rituximab monotherapy in a child with relapsed/refractory Burkitt non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2006;23(1):25–31. doi: 10.1080/08880010500313298.
  26. Holmberg LA, Maloney D, Bensinger W. Immunotherapy with rituximab/interleukin-2 after autologous stem cell transplantation as treatment for CD20+ non-Hodgkin’s lymphoma. Clin Lymph Myel. 2006;7(2):135–9. doi: 10.3816/clm.2006.n.051.
  27. Cooney-Qualter E, Krailo M, Angiolillo A.et al. A Phase I Study of 90Yttrium-Ibritumomab-Tiuxetan in Children and Adolescents with Relapsed/Refractory CD20-Positive Non-Hodgkin’s Lymphoma: A Children’s Oncology Group study. Clin Cancer Res. 2007;13(Suppl 18):5652–60. doi: 10.1158/1078-ccr-07-1060.
  28. Richard H, Termuhlen A, Smith L, et al. Autologous peripheral blood stem cell transplantation in children with refractory or relapsed lymphoma: results of Children’s Oncology Group Study A5962. Biol Blood Marrow Transplant. 2011;17(2):249–58. doi: 10.1016/j.bbmt.2010.07.002.
  29. Pinkel D, Johnson W, Aur RJ. Non-Hodgkin’s lymphoma in children. Br J Cancer. 1975;2:298–23.
  30. Wollner N, Exelby PR, Lieberman PH. Non-Hodgkin’s lymphoma in children: a progress report on the original patients treated with the LSA2-L2 protocol. Cancer. 1979;44(6):1990–9. doi: 10.1002/1097-0142(197912)44:6<1990::aid-cncr2820440605>3.0.co;2-
  31. Asselin BL, Devidas M, Wang C, et al. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood. 2011;118(4):874–83. doi: 10.1182/blood-2010-06-
  32. Wiernik P, Goldman J, Dutcher J. Neoplastic disease of the blood. Cambridge; 1216 p.
  33. Tubergen D, Krailo M, Meadows A, et al. Comparison of treatment regimens for pediatric lymphoblastic non-Hodgkin’s lymphoma: a Children’s Cancer Group study. J Clin Oncol Leuk. 1999;13(3):335–42.
  34. Amylon MD, Shuster J, Pullen J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma; Pediatr Oncol Group study. Leukemia. 1999;13(3):335–42. doi: 1038/sj.leu.2401310.
  35. Patte C, Philip T, Rodary C, et al. Improved survival rate in children with stage III-IV B-cell non-Hodgkin lymphoma and leukemia using multiagent chemotherapy: results of a study of 114 children from the French Pediatric Oncology Society. J Clin Oncol. 1986;4(8):1219–26.
  36. Reiter A, Schrappe M, Ludwig WD, et al. Favorable outcome of B-cell acute lymphoblastic leukemia in childhood: a report of three consecutive studies of the BFM group. Blood. 1992;80(10):2471–8.
  37. Reiter A, Schrappe M, Parwaresch R, et al. Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage – a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 1995;13(2):359–72.
  38. Nachman J, Sather HN, Cherlow JM, et al. Response of children with high-risk acute lymphoblastic leukemia treated with and without cranial irradiation: a report from the Children’s Cancer Group. J Clin Oncol. 1998;16(3):920–30.
  39. Tang JY, Xue HL, Chen J, et al. Multi-center trial based on SCMC-ALL-2005 for children’s acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi. 2013;51(7):495–501.
  40. Tallen G, Ratei R, Mann G, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol. 2010;28(14):2339–47. doi: 10.1200/jco.2009.25.1983.
  41. Dunsmore KP, Devidas M, Linda SB, et al. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(22):2753–9. doi: 10.1200/jco.2011.40.8724.
  42. Lambe CU, Averett DR, Paff MT, et al. 2-Amino-6-methoxypurine arabinoside: an agent for T-cell malignancies. Cancer Res. 1995;55(15):3352–6.
  43. Cooper TM, Razzouk BI, Gerbing R, et al. Phase I/II trial of clofarabine and cytarabine in children with relapsed/refractory acute lymphoblastic leukemia (AAML0523): a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2013;60(7):1141–7. doi: 10.1002/pbc.24398.
  44. Schroeder H, Garwicz S, Kristinsson J, et al. Outcome after first relapse in children with acute lymphoblastic leukemia: a population-based study of 315 patients from the Nordic Society of Pediatric Hematology and Oncology (NOPHO). Med Pediatr Oncol. 1995;25(5):372–8. doi: 10.1002/mpo.2950250503.
  45. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favourable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.
  46. Borgmann A, von Stackelberg A, Hartmann R, et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. 2003;101(10):3835–9. doi: 10.1182/blood.v101.10.3835.
  47. Wheeler K, Richards S, Bailey C, et al. Comparison of bone marrow transplant and chemotherapy for relapsed childhood acute lymphoblastic leukaemia: the MRC UKALL X experience. Medical Research Council Working Party on Childhood Leukaemia. Br J Haematol. 1998;101(1):94–103. doi: 10.1046/j.1365-2141.1998.00676.x.
  48. Stein H, Mason DY, Gerdes J, et al. The expression of Hodgkin’s disease associated antigen Ki-1 in reactive and neoplasic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from avtivated lymphoid cells. Blood. 1985;66(4):848–58.
  49. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-negative. Crit Rev Oncol Hematol. 2013;85(2):206–15. doi: 10.1016/j.critrevonc.2012.06.004.
  50. Sibon D, Fournier M, Briere J, et al. Prognostic Factors and Long Term Outcome of 138 Adults with Systemic Anaplastic Large-Cell Lymphoma: a Retrospective Study by the Groupe d’Etude Des Lymphomes De l’Adulte (GELA). Blood. 2010;116: Abstract 322.
  51. Park SJ, Kim S, Lee DH, et al. Primary Systemic Anaplastic Large Cell Lymphoma in Korean Adults: 11 Years’ Experience at Asan Medical Center. Yonsei Med J. 2008;49(4):601–9. doi: 10.3349/ymj.2008.49.4.601.
  52. Wang YF, Yang YL, Gao ZF, et al. Clinical and laboratory characteristics of systemic anaplastic large cell lymphoma in Chinese patients. J Hematol Oncol. 2012;5(1):38. doi: 10.1186/1756-8722-5-38.
  53. Amin HM, Lai R. Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood. 2007;110(7):2259–67. doi: 10.1182/blood-2007-04-060715.
  54. Moreno L, Garzon L, Bautista FJ, et al. Diagnosis of paediatric anaplastic large-cell lymphoma: a historical perspective from a single institution. Clin Transl Oncol. 2009;11(5):318–21. doi: 10.1007/s12094-009-0360-
  55. Le Deley MC, Reiter A, Williams D, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008;111(3):1560–6. doi: 10.1182/blood-2007-07-
  56. Pillon M, Gregucci F, Lombardi A, et al. Results of AIEOP LNH-97 protocol for the treatment of anaplastic large cell lymphoma of childhood. Pediatr Blood Cancer. 2012;59(5):828–33. doi: 10.1002/pbc.24125.
  57. Gascoyne RD, Aoun P, Wu D, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–21.
  58. Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral Tcell Lymphoma Project. Blood. 2008;111(12):5496–504. doi: 10.1182/blood-2008-01-
  59. Abramov D, Oschlies I, Zimmermann M, et al. Expression of CD8 is associated with non-common type morphology and outcome in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2013;98(10):1547–53. doi: 10.3324/haematol.2013.085837.
  60. Damm-Welk C, Mussolin L, Zimmermann M, et al. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2014;123(3):334–7. doi: 10.1182/blood-2013-09-
  61. Bonvini P, Gastaldi T, Falini B, et al. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK+ CD30+ lymphoma cells by Hsp90 antagonist 17-allylamino, 17-demethoxygeldanamycin. Cancer Res. 2002;62(5):1559–66.
  62. Ergin M, Denning MF, Izban KF, et al. Inhibition of tyrosine kinase activity induces caspase-dependent apoptosis in anaplastic large cell lymphoma with NPM-ALK (p80) fusion protein. Exp Hematol. 2001;29(9):1082–90. doi: 10.1016/s0301-472x(01)00688-
  63. Han Y, Amin HM, Franko B, et al. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteasome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood. 2006;108(8):2796–803. doi: 10.1182/blood-2006-04-
  64. Ogura M, Tobinai K, Hatake K, et al. Phase I/II study of brentuximab vedotin in Japanese patients with relapsed or refractory CD30-positive Hodgkin’s lymphoma or systemic anaplastic large-cell lymphoma. Cancer Sci. 2014;105(7):840–6. doi: 10.1111/cas.12435.
  65. Mosse YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–80. doi: 10.1016/s1470-2045(13)70095-
  66. Brugieres L, Le Deley MC, Rosolen A, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: a results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27(6):897–903. doi: 10.1200/jco.2008.18.1487.
  67. Seidemann K, Tiemann M, Schrappe M, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–706. doi: 10.1182/blood.v97.12.3699.
  68. Woessmann W, Zimmermann M, Lenhard M, et al. Relapsed or refractory anaplastic large-cell lymphoma in children and adolescents after Berlin-Frankfurt-Muenster (BFM)-type first-line therapy: a BFM-group study. J Clin Oncol. 2011;29(22):3065–71. doi: 10.1200/jco.2011.34.8417.
  69. Goldberg JD, Casulo C, Horwitz The role of hematopoietic stem cell transplantation in peripheral T-cell lymphomas. In: Non-Hodgkin Lymphoma Cancer Drug Discovery and Development. Springer; 2013. pp. 279–93. doi: 10.1007/978-1-4614-5851-7_16.
  70. Giulino-Roth L, Ricafort R, Kernan NA, et al. Ten-year follow-up of pediatric patients with non-Hodgkin lymphoma treated with allogeneic or autologous stem cell transplantation. Pediatr Blood Cancer. 2013;60(12):2018–24. doi: 10.1002/pbc.24722.
  71. Woessmann W, Peters C, Lenhard M. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents – a Berlin-Frankfurt-Munster group report. Br J Haematol. 2006;133(2):176–82. doi: 10.1111/j.1365-2141.2006.06004.x.
  72. Mori T, Takimoto T, Katano N, et al. Recurrent childhood anaplastic large cell lymphoma: a retrospective analysis of registered cases in Japan. Br J Haematol. 2006;132(5):594–7. doi: 10.1111/j.1365-2005.05910.x.
  73. Луговская С.А., Почтарь М.Е., Тупицын Н.Н. Иммунофенотипирование в диагностике гемобластозов. М.: Триада, 2005. 165 с.
    [Lugovskaya SA, Pochtar’ ME, Tupitsyn NN. Immunofenotipirovanie v diagnostike gemoblastozov. (Immunophenotyping in diagnosis of hemoblastoses.) Moscow: Triada Publ.; 2005. 165 p. (In Russ)]
  74. Курильников А.Я. Мабтера — первые моноклональные антитела в терапии неходжкинских лимфом. Современная онкология. 2002;4(1):25–8.
    [Kuril’nikov AYa. Mabtera: first monoclonal antibodies in therapy of non-Hodgkin’s lymphomas. Sovremennaya onkologiya. 2002;4(1):25–8. (In Russ)]
  75. Reff M, Carner C, Chambers K, et al. Depletion of B-cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–45.
  76. Okur FV, Oguz A, Karadeniz C, et al. Refractoriness to rituximab monotherapy in a child with relapsed/refractory Burkitt non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2006;23(1):25–31. doi: 10.1080/08880010500313298.
  77. Marcus R, Hagenbeek A. The therapeutic use of rituximab in non-Hodgkin’s lymphoma. Eur J Haematol. 2007;78(s67):5–14. doi: 10.1111/j.1600-0609.2006.00789.x.
  78. Plosker GL, Figgitt DP. Rituximab. Drugs. 2003;63(8):803–43. doi: 10.2165/00003495-200363080-
  79. Михайлова Н.Б. Роль ритуксимаба в лечении неходжкинских лимфом (реферативный обзор рандомизированных клинических исследований). Современная онкология. 2009;11(3):28–31.
    [Mikhailova NB. Role of rituximab in treatment of non-Hodgkin’s lymphomas (abstract review of randomized clinical trials). Sovremennaya onkologiya. 2009;11(3):28–31. (In Russ)]
  80. Li X, Liu Z, Cao J, et al. Rituximab in combination with CHOP chemotherapy for the treatment of diffuse large B cell lymphoma in China: a 10-year retrospective follow-up analysis of 437 cases from Shanghai Lymphoma Research Group. Ann Hematol. 2012;91(6):837–45. doi: 10.1007/s00277-011-1375-
  81. Thomas DA, Faderl S, O’Brien S, et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. 2006;106(7):1569–80. doi: 10.1002/cncr.21776.
  82. Fayad L, Thomas D, Romaguera J. Update of the M. D. Anderson Cancer Center experience with hyper-CVAD and rituximab for the treatment of mantle cell and Burkitt-type lymphomas. Clin Lymph Myel. 2007;8(2):57–62. doi: 10.3816/clm.2007.s.034.
  83. Meinhardt A, Burkhardt B, Zimmermann M, et al. Phase II Window Study on Rituximab in Newly Diagnosed Pediatric Mature B-Cell Non-Hodgkin’s Lymphoma and Burkitt Leukemia. J Clin Oncol. 2010;28(19):3115–21. doi: 10.1200/jco.2009.26.6791.
  84. Bilic E, Femenic R, Conja J, et al. CD20-positive childhood B-non-Hodgkin lymphoma: morphology, immunophenotype and a novel treatment approach: a single center experience. Coll Antropol. 2010;34(1):171–5.
  85. Смирнова Н.В., Мякова Н.В., Белогурова М.Б. и др. Лечение зрелоклеточных В-клеточных неходжкинских лимфом с использованием комбинированной иммунохимиотерапии: возможности оптимизации терапевтической стратегии. Онкогематология. 2015;10(4):15–24. doi: 10.17650/1818-8346-2015-10-4-15-24.
    [Smirnova NV, Myakova NV, Belogurova MB, et al. Treatment of B-cells non-Hodgkin lymphomas with combined immunochemotherapy: ability to treatment optimization. Oncohematology. 2015;10(4):15–24. doi: 10.17650/1818-8346-2015-10-4-15-24. (In Russ)]
  86. Miyamoto KI, Kobayashi Y, Maeshima AM, et al. Clinicopathological prognostic factors of 24 patients with B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. Int J Hematol. 2016;103(6):693–702. doi: 1007/s12185-016-1989-z.
  87. Gerrard M, Cairo MS, Weston C, et al. Excellent survival following two courses of COPAD chemotherapy. Br J Haematol. 2008;141(6):840–7. doi: 10.1111/j.1365-2008.07144.x.
  88. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80. doi: 10.1182/blood-2006-07-
  89. Stary J, Zimmermann M, Campbell M, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol. 2014;32(3):174–84. doi: 10.1200/jco.2013.48.6522.

Stevens-Johnson Syndrome after Treatment of Female Patient with Small Lymphocytic B-Cell Lymphoma, Autoimmune Hemolytic Anemia and Antiphospholipid Antibody Syndrome with Rituximab

AL Melikyan, IN Subortseva, AM Kovrigina, TI Kolosheinova, EK Egorova, EI Pustovaya

Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Irina Nikolaevna Subortseva, PhD, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-44-71; e-mail: soubortseva@yandex.ru

For citation: Melikyan AL, Subortseva IN, Kovrigina AM, et al. Stevens-Johnson Syndrome after Treatment of Female Patient with Small Lymphocytic B-Cell Lymphoma, Autoimmune Hemolytic Anemia and Antiphospholipid Antibody Syndrome with Rituximab Clinical oncohematology. 2017;10(1): 120–7 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-120-127


ABSTRACT

Stevens-Johnson syndrome is a severe delayed type systemic allergic reaction which affects the skin and mucous membranes. In adults, Stevens-Johnson syndrome is usually caused by the administration of drugs or a malignant process. The paper presents a case of Stevens-Johnson syndrome after the treatment of a female patient with small lymphocytic B-cell lymphoma, autoimmune hemolytic anemia and antiphospholipid antibody syndrome with rituximab. A rare combination of Stevens-Johnson syndrome and small lymphocytic B-cell lymphoma of small lymphocytes, as well as the development of severe delayed type systemic allergic reaction to introduction of rituximab are of special interest. A detailed medical history and the clinical manifestations of the disease allowed to diagnose Stevens-Johnson syndrome at early stages and prescribe an adequate therapy. As a result of the treatment, the patient’s condition has improved considerably. Symptoms of general toxicity were arrested completely; there was a complete epithelization of erosive defects. Therefore, the presented clinical observation shows that timely diagnosis, complex drug therapy, and comprehensive care can cure the diseases as soon as possible and prevent complications.

Keywords: Stevens-Johnson syndrome, pathogenesis, clinical manifestations, diagnosis, treatment, rituximab.

Received: July 28, 2016

Accepted: December 6, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Mockenhaupt M. The current understanding of Stevens-Johnson syndrome and toxic epidermal necrolysis. Expert Rev Clin Immunol. 2011;7(6):803–13. doi: 10.1586/eci.11.66.
  2. Gerull R, Nelle M, Schaible T. Toxic epidermal necrolysis and Stevens-Johnson syndrome: A review. Crit Care Med. 2011;39(6):1521–32. doi: 10.1097/CCM.0b013e31821201ed.
  3. Yamane Y, Matsukura S, Watanabe Y, et al. Retrospective analysis of Stevens-Johnson syndrome and toxic epidermal necrolysis in 87 Japanese patients—Treatment and outcome. Allergol Int. 2016;65(1):74–81. doi: 10.1016/j.alit.2015.09.001.
  4. Teh LK, Selvaraj M, Bannur Z, et al. Coupling Genotyping and Computational Modeling in Prediction of Anti-epileptic Drugs that cause Stevens Johnson Syndrome and Toxic Epidermal Necrolysis for Carrier of HLA-B*15:02. J Pharm Pharm Sci. 2016;19(1):147–60. doi: 10.18433/J38G7X.
  5. Chung W-H, Hung S-I. Genetic Markers and Danger Signals in Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Allergol Int. 2010;59(4):325–332 doi: 10.2332/allergolint.10-rai-0261.
  6. Chantaphakul H, Sanon T, Klaewsongkram J. Clinical characteristics and treatment outcome of Stevens-Johnson syndrome and toxic epidermal necrolysis. Exp Ther Med. 2015;10(2):519–24. doi: 10.3892/etm.2015.2549.
  7. Rzany B, Mockenhaupt M, Baur S, et al. Epidemiology of erythema exsudativum multiforme majus, Stevens-Johnson syndrome and toxic epidermal necrolysis in Germany (1990–1992): Structure and results of a population-based registry. J Clin Epidemiol. 1996;49(7):769–73. doi: 10.1016/0895-4356(96)00035-2.
  8. Schneck J, Fagot JP, Sekula P, et al. Effects of treatments on the mortality of Stevens-Johnson syndrome and toxic epidermal necrolysis: A retrospective study on patients included in the prospective EuroSCAR study. J Am Acad Dermatol. 2008;58(1):33–40. doi: 10.1016/j.jaad.2007.08.039.
  9. Bastuji-Garin S, Fouchard N, Bertocchi M, et al. SCORTEN: A severity-of-illness score for toxic epidermal necrolysis. J Invest Dermatol. 2000;115(2):149–53. doi: 10.1046/j.1523-1747.2000.00061.x.
  10. Creamer D, Walsh SA, Dziewulski P, et al. UK guidelines for the management of Stevens-Johnson syndrome/toxic epidermal necrolysis in adults 2016. J Plast Reconstr Aesthet Surg. 2016;69(6):736–41. doi: 10.1016/j.bjps.2016.04.018.
  11. Tripathi A, Ditto AM, Grammer LC, et al. Corticosteroid therapy in an additional 13 cases of Stevens–Johnson syndrome: a total series of 67 cases. Allergy Asthma Proc. 2000;21(2):101–5. doi: 10.2500/108854100778250914.
  12. Kardaun SH, Jonkman MF. Dexamethasone pulse therapy for Stevens–Johnson syndrome/toxic epidermal necrolysis. Acta Derm Venereol. 2007;87(2):144–8. doi: 10.2340/00015555-0214.
  13. Viard I, Wehrli P, Bullani R, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282(5388):490–3. doi: 10.1126/science.282.5388.490.
  14. French LE, Trent JT, Kerdel FA. Use of intravenous immunoglobulin in toxic epidermal necrolysis and Stevens–Johnson syndrome: our current understanding. Int Immunopharmacol. 2006;6(4):543–9. doi: 10.1016/j.intimp.2005.11.012.
  15. Prins C, Kerdel FA, Padilla RS, et al. TEN-IVIG Study Group. Treatment of toxic epidermal necrolysis with high-dose intravenous immunoglobulins: multicenter retrospective analysis of 48 consecutive cases. Arch Dermatol. 2003;139(1):26–32. doi: 10.1001/archderm.139.1.26.
  16. Kim KJ, Lee DP, Suh HS, et al. Toxic epidermal necrolysis: analysis of clinical course and SCORTEN-based comparison of mortality rate and treatment modalities in Korean patients. Acta Derm Venereol. 2005;85:497–502.
  17. Bamichas G, Natse T, Christidou F, et al. Plasma exchange in patients with toxic epidermal necrolysis. Ther Apher. 2002;6(3):225–8. doi: 10.1046/j.1526-0968.2002.00409.x.
  18. Egan CA, Grant WJ, Morris SE, et al. Plasmapheresis as an adjunct treatment in toxic epidermal necrolysis. J Am Acad Dermatol. 1999;40(3):458–61. doi: 10.1016/S0190-9622(99)70497-4.
  19. Kamanabroo D, Schmitz-Landgraf W, Czarnetzki BM. Plasmapheresis in severe drug-induced toxic epidermal necrolysis. Arch Dermatol. 1985;121(12):1548–9. doi: 10.1001/archderm.1985.01660120074023.
  20. Kasi PM, Tawbi HA, Oddis CV, Kulkarni HS. Clinical review: Serious adverse events associated with the use of rituximab – a critical care perspective. Crit Care. 2012;16(4):231. doi: 10.1186/cc11304.
  21. Lowndes S, Darby A, Mead G, Lister A. Stevens-Johnson syndrome after treatment with rituximab. Ann Oncol. 2002;13(12):1948–50. doi: 10.1093/annonc/mdf350.
  22. Johnson PW, Glennie MJ. Rituximab: mechanisms and applications. Br J Cancer. 2001;85(11):1619–23. doi: 10.1054/bjoc.2001.2127.
  23. Суборцева И.Н. Клинико-биологические особенности первичной экстранодальной диффузной В-крупноклеточной лимфомы: Дис. ¼ канд. мед. наук. М., 2013. 138 с.
    [Subortseva IN. Kliniko-biologicheskie osobennosti pervichnoi ekstranodal’noi diffuznoi B-krupnokletochnoi limfomy. (Clinical and biological features of the primary extranodal diffuse large B-cell lymphoma.) [dissertation] Moscow; 2013. 138 р. (In Russ)]
  24. Foran JM, Gupta RK, Cunningham D, et al. A UK multicentre phase II study of rituximab in patients with follicular lymphoma, with PCR monitoring of molecular response. Br J Haematol. 2000;109(1):81–8. doi: 10.1046/j.1365-2141.2000.01965.x.
  25. Davis TA, White CA, Grillo-Lopez AJ, et al. Single agent monoclonal antibody efficacy in bulky non-Hodgkin’s lymphoma. J Clin Oncol. 1999;17(6):1851–7.
  26. Maloney DG, Grillo-Lopez AJ, White CA, et al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90(6):2188–95.
  27. Piro LD, White CA, Grillo-Lopez AJ, et al. Extended rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1999;10:655–61.
  28. Byrd JC, Murphy T, Howard RS, et al. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukaemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J Clin Oncol. 2001;19(8):2153–64.
  29. Suzan F, Ammor M, Ribrag V. Fatal reactivation of cytomegalovirus infection after use of rituximab for a post-transplantation lymphoproliferative disorder. N Engl J Med. 2001;345(13):1000. doi: 10.1056/NEJM200109273451315.
  30. Walewski J, Kraszewska E, Mioduszewska O, et al. Rituximab (MabtheraTM, RituxanTM) in patients with recurrent indolent lymphoma. Med Oncol. 2001;18(2):141–8. doi: 10.1385/mo:18:2:141.
  31. Palmieri TL, Greenhalgh DG, Saffle JR, et al. A multicenter review of toxic epidermal necrolysis treated in U.S. Burn centers at the end of the twentieth century. J Burn Care Rehabil. 2002;23(2):87–96. doi: 10.1097/00004630-200203000-00004.
  32. Cummins DL, Mimouni D, Tzu J, et al. Lichenoid paraneoplastic pemphigus in the absence of detectable antibodies. J Am Acad Dermatol. 2007;56(1):153–9. doi: 10.1016/j.jaad.2006.06.007.

 

Primary Mediastinal (Thymic) Large B-Cell Lymphoma

GS Tumyan, IZ Zavodnova, MYu Kichigina, EG Medvedovskaya

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Gayane Sergeevna Tumyan, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-98-29; e-mail: gaytum@mail.ru

For citation: Tumyan GS, Zavodnova IZ, Kichigina MYu, Medvedovskaya EG. Primary Mediastinal (Thymic) Large B-Cell Lymphoma. Clinical oncohematology. 2017;10(1):13–24 (In Russ).

DOI: 10.21320/2500-2139-2017-10-1-13-24


ABSTRACT

Primary mediastinal (thymic) large B-cell lymphoma (PMBCL) is one of the primary extranodal tumors and originates from thymic medulla B cells. The disease is more common in young women and declares itself by mainly locally advanced growth within the anterior upper mediastinum with frequent involvement of chest organs. PMBCL has specific morphological, immunological, and genetic characteristics that permit to differentiate it from other similar diseases: diffuse large В-cell lymphoma, nodular sclerosis Hodgkin’s lymphoma, and mediastinal gray zone lymphoma. Immunochemotherapy with subsequent irradiation of the residual mediastinal tumor is the standard treatment of PMBCL. No benefits of one drug therapy over another have been demonstrated to date in controlled studies. Application of new imaging techniques (PET/CT) may result in withdrawal of the radiotherapy in some PMBCL patients without impairment of delayed survival rates.

Keywords: primary mediastinal (thymic) large B-cell lymphoma, primary extranodal lymphomas, diagnosis, pathogenesis, morphological, immunological/genetic characteristics, treatment.

Received: August 22, 2016

Accepted: December 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Benjamin SP, McCormack LJ, Effler DB, et al. Primary lymphatic tumors of the mediastinum. Cancer. 1972;30(3):708–12. doi: 10.1002/1097-0142(197209)30:3<708::AID-CNCR2820300318>3.0.CO;2–5.
  2. Lichtenstein AK, Levine A, Taylor CR, et al. Primary mediastinal lymphoma in adults. Am J Med. 1980;68(4):509–14. doi: 10.1016/0002-343(80)90294-6.
  3. National Cancer Institute sponsored study of classifications of non-Hodgkin’s lymphomas: summary and description of a working formulation for clinical usage. The Non-Hodgkin’s Lymphoma Pathologic Classification Project. Cancer. 1982;49(10):2112–35. doi: 10.1002/1097-0142(19820515)49:10<2112::AID-CNCR2820491024>3.0.CO;2–2.
  4. Stansfeld AG, Diebold J, Noel H, et al. Updated Kiel classification for lymphomas. Lancet. 1988;1(8580):292–3. doi: 10.1016/S0140-6736(88)90367-4.
  5. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84(5):1361–92. doi: 10.1016/S0968-6053(00)80051-4.
  6. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. doi: 10.1002/9781118853771.ch51.
  7. Cazals-Hatem D, Lepage E, Brice P, et al. Primary mediastinal large B-cell lymphoma. A clinicopathologic study of 141 cases compared with 916 nonmediastinal large B-cell lymphomas, a GELA (“Groupe d’Etude des Lymphomes de l’Adulte”) study. Am J Surg Pathol. 1996;20(7):877–88. doi: 10.1097/00000478-199607000-00012.
  8. Harris NL. Shades of gray between large B-cell lymphomas and Hodgkin lymphomas: differential diagnosis and biological implications. Mod Pathol. 2013;26(Suppl 1):S57–70. doi: 10.1038/modpathol.2012.182.
  9. Kanavaros P, Gaulard P, Charlotte F, et al. Discordant expression of immunoglobulin and its associated molecule mb-1/CD79a is frequently found in mediastinal large B cell lymphomas. Am J Pathol. 1995;146(3):735–41.
  10. Pileri SA, Zinzani PL, Gaidano G, et al. Pathobiology of primary mediastinal B-cell lymphoma. Leuk Lymphoma. 2003;44(Suppl 3):S21–6. doi: 10.1080/10428190310001623810.
  11. Loddenkemper C, Anagnostopoulos I, Hummel M, et al. Differential Emu enhancer activity and expression of BOB.1/OBF.1, Oct2, PU.1, and immunoglobulin in reactive B-cell populations, B-cell non-Hodgkin lymphomas, and Hodgkin lymphomas. J Pathol. 2004;202(1):60–9. doi: 10.1002/path.1485.
  12. De Leval L, Ferry JA, Falini B, et al. Expression of bcl-6 and CD10 in primary Mediastinal large B-cell lymphoma: evidence for derivation from germinal center B cells? Am J Surg Pathol. 2001;25(10):1277–82. doi: 10.1097/00000478-200110000-00008.
  13. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 2003;198(6):851–62. doi: 10.1084/jem.20031074.
  14. CopieBergman C, Plonquet A, Alonso MA, et al. MAL expression in lymphoid cells: further evidence for MAL as a distinct molecular marker of primary mediastinal large B-cell lymphomas. Mod Pathol. 2002;15:1172–80. doi: 10.1097/01.MP.0000032534.81894.B3.
  15. Joos S, Otano-Joos MI, Ziegler S, et al. Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood. 1996;87(4):1571–8.
  16. Feuerhake F, Kutok JL, Monti S, et al. NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood. 2005;106(4):1392–9. doi: 10.1182/blood-2004-12-4901.
  17. Zhang B, Wang Z, Li T, et al. NF-kappaB2 mutation targets TRAF1 to induce lymphomagenesis. Blood. 2007;110(2):743–51. doi: 10.1182/blood-2006-11-058446.
  18. Meier C, Hoeller S, Bourgau C, et al. Recurrent numerical aberrations of JAK2 and deregulation of the JAK2-STAT cascade in lymphomas. Mod Pathol. 2009;22(3):476–87. doi: 10.1038/modpathol.2008.207.
  19. Rossi D, Cerri M, Capello D, et al. Aberrant somatic hypermutation in primary mediastinal large B-cell lymphoma. Leukemia. 2005;19(12):2363–6. doi: 10.1038/sj.leu.2403982.
  20. Steidl C, Gascoyne RD. The molecular pathogenesis of primary mediastial large B-cell lymphoma. Blood. 2011;118(10):2659–69. doi: 10.1182/blood-2011-05-326538.
  21. Martelli M, Di Rocco A, Russo E, et al. Primary mediastinal lymphoma: diagnosis and treatment options. Expert Rev Hematol. 2014;8(2):173–86. doi: 10.1586/17474086.2015.994604.
  22. Eberle FC, Salaverria I, Steidl C, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97. doi: 10.1038/modpathol.2011.116.
  23. Eberle FC, Rodriguez-Canales J, Wei L, et al. Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical Hodgkin’s lymphoma and primary mediastinal large B-cell lymphoma. Haematologica. 2011;96(4):558–66. doi: 10.3324/haematol.2010.033167.
  24. Moller P, Lammler B, Herrmann B, et al. The primary mediastinal clear cell lymphoma of B-cell type has variable defects in MHC antigen expression. Immunology. 1986;59(3):411–7. doi: 10.1007/bf00705408.
  25. Hamlin PA, Portlock CS, Straus DJ, et al. Primary mediastinal large B-cell lymphoma: optimal therapy and prognostic factor analysis in 141 consecutive patients treated at Memorial Sloan Kettering from 1980 to 1999. Br J Haematol. 2005;130(5):691–9. doi: 10.1111/j.1365-2141.2005.05661.x.
  26. Jacobson JO, Aisenberg AC, Lamarre L, et al. Mediastinal large cell lymphoma. An uncommon subset of adult lymphoma curable with combined modality therapy. Cancer. 1988;62(9):1893–8. doi: 10.1002/1097-0142(19881101)62:9<1893::AID-CNCR2820620904>3.0.CO;2-X.
  27. Zinzani PL, Martelli M, Magagnoli M, et al. Treatment and clinical management of primary mediastinal large B-cell lymphoma with sclerosis: MACOP-B regimen and mediastinal radiotherapy monitored by (67)Gallium scan in 50 patients. Blood. 1999;94(10):3289–93.
  28. Bishop PC, Wilson WH, Pearson D, et al. CNS involvement in primary mediastinal large B-cell lymphoma. J Clin Oncol. 1999;17(8):2479–85.
  29. Savage K, Al-Rajhi N, Voss N, et al. Favorable outcome of primary mediastinal large B-cell lymphoma in a single institution: the British Columbia experience. Ann Oncol. 2006;17:123–30. doi: 10.1016/s0360-3016(00)80463-0.
  30. Zinzani PL, Martelli M, Bertini M, et al. Induction chemotherapy strategies for primary mediastinal large B-cell lymphoma with sclerosis: a retrospective multinational study on 426 previously untreated patients. Haematologica. 2002;87(12):1258–6. doi: 10.3816/clm.2009.n.074.
  31. Fisher RI, Gaynor ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N Engl J Med. 1993;328(14):1002–6. doi: 10.1056/NEJM199304083281404.
  32. Levitt LJ, Aisenberg AC, Harris NL, et al. Primary non-Hodgkin’s lymphoma of the mediastinum. Cancer. 1982;50(11):2486–92. doi: 10.1002/1097-0142(19821201)50:11<2486::AID-CNCR2820501138>3.0.CO;2-G.
  33. Todeschini G, Ambrosetti A, Meneghini V, et al. Mediastinal large-B-cell lymphoma with sclerosis: a clinical study of 21 patients. J Clin Oncol. 1990;8(5):804–8.
  34. Bertini M, Orsucci L, Vitolo U, et al. Stage II large B-cell lymphoma with sclerosis treated with MACOP-B. Ann Oncol. 1991;2(10):733–7.
  35. Falini B, Venturi S, Martelli M, et al. Mediastinal large B-cell lymphoma: clinical and immunohistological findings in 18 patients treated with different third-generation regimens. Br J Haematol. 1995;89(4):780–9. doi: 10.1111/j.1365-2141.1995.tb08415.x.
  36. van Besien K, Kelta M, Bahaguna P. Primary mediastinal B-cell lymphoma: a review of pathology and management. J Clin Oncol. 2001;19(6):1855–64.
  37. Zinzani PL, Martelli M, Bendandi M, et al. Primary mediastinal large B-cell lymphoma with sclerosis: a clinical study of 89 patients treated with MACOP-B chemotherapy and radiation therapy. Haematologica. 2001;86(2):187–91.
  38. Zinzani PL, Stefoni V, Finolezzi E, et al. Rituximab combined with MACOP-B or VACOP-B and radiation therapy in primary mediastinal large B-cell lymphoma: a retrospective study. Clin Lymph Myel. 2009;9(5):381–5. doi: 10.3816/CLM.2009.n.074.
  39. Dunleavy K, Pittaluga S, Maeda LS, et al. Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med. 2013;368(15):1408–16. doi: 10.1056/NEJMoa1214561.
  40. Moskowitz CH, Schoder H, Teruya-Feldstein J, et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in Advanced-stage diffuse large B-Cell lymphoma. J Clin Oncol. 2010;28(11):1896–903. doi: 10.1200/JCO.2009.26.5942.
  41. Savage KJ, Yenson PR, Shenkier T, et al. The outcome of primary mediastinal large B-cell lymphoma (PMBCL) in the R-CHOP treatment era. Blood. 2012;120(Suppl 1–2): Abstract 303.
  42. Martelli M, Ceriani L, Zucca E, et al. [18F]fluorodeoxyglucose positron emission tomography predicts survival after chemoimmunotherapy for primary mediastinal large B-cell lymphoma: results of the International Extranodal Lymphoma Study Group IELSG-26 Study. J Clin Oncol. 2014;32(17):1769–75. doi: 10.1200/JCO.2013.51.7524.
  43. Pinnix CC, Dabaja B, Ahmed MAet al. Single-institution experience in the treatment of primary mediastinal B cell lymphoma treated with immunochemotherapy in the setting of response assessment by 18fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys. 2015;92(1):113–21. doi: 10.1016/j.ijrobp.2015.02.006.
  44. Sehn LH, Antin JH, Shulman LN, et al. Primary diffuse large B-cell lymphoma of the mediastinum: outcome following high-dose chemotherapy and autologous hematopoietic cell transplantation. Blood. 1998;91(2):717–23.
  45. Kuruvilla J, Pintilie M, Tsang R, et al. Salvage chemotherapy and autologous stem cell transplantation are inferior for relapsed or refractory primary mediastinal large B-cell lymphoma compared with diffuse large B-cell lymphoma. Leuk Lymphoma. 2008;49(7):1329–36. doi: 10.1080/10428190802108870.
  46. Hao Y, Chapuy B, Monti S, Sun HH. Selective JAK2 inhibition specifically decreases Hodgkin lymphoma and mediastinal large B-cell lymphoma growth in vitro and in vivo. Clin Cancer Res. 2014;20(10):2674–83. doi: 10.1158/1078-0432.CCR-13-3007.
  47. Dunleavy K, Wilson W. Primary mediastinal B-cell lymphoma and mediastinal gray zone lymphoma: do they require a unique therapeutic approach? Blood. 2015;125(1):33–9. doi: 10.1182/blood-2014-05-575092.
  48. Berger R, Rotem-Yehudar R, Slama G, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51. doi: 10.1158/1078-0432.CCR-07-4079.

Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region

VI Bakhtina1,2, IV Demko2, AN Narkevich2, DS Gushchin3

1 Regional Clinical Hospital, 3а Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

2 Professor VF Voyno-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

3 Norilsk Inter-District Hospital No. 1, Solnechnyi pr-d, 7a Norilsk, Russian Federation, 663300

For correspondence: Varvara Ivanovna Bakhtina, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022; Tel: +7(923)357-57-77; е-mail: doctor.gem@mail.ru

For citation: Bakhtina VI, Demko IV, Narkevich AN, Gushchin DS. Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region. Clinical oncohematology. 2016;9(4):413–419 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-413-419


ABSTRACT

Background & Aims. B-cellular chronic lymphocytic leukemia (CLL) is a disease with heterogeneous clinical manifestations and biological characteristics. The age of 70 % of patients is more than 65 years by the date of the diagnosis; most of them have several comorbidities. The aim of the study is to identify factors affecting the survival, as well as to determine causes of mortality in CLL patients (according to data from hematological hospitals of Krasnoyarsk Region).

Methods. In order to identify the most significant factors affecting the course and the outcome of CLL, a retrospective analysis of data on patients who died in hematological hospitals was carried out. 45 cases with the lethal outcome were registered within six years. All patients were under hematologist’s supervision after diagnosing the disease, and they were followed throughout the treatment period up to the lethal outcome.

Results. Тhe overall and progression-free survival depended, first of all, on the type of the first line therapy and its efficacy. The progression of the underlying disease and infectious complications became the main reason of the lethal outcome in CLL patients.

Conclusion. Most patients received ineffective treatment as first line therapy. The analysis of the comorbidities showed that a more effective chemotherapy could be performed with achievement of longer complete remissions.


Keywords: chronic lymphocytic leukemia, oncohematological diseases, comorbidities, survival, treatment.

Received: May 16, 2016

Accepted: June 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Gribben JG. How I treat CLL up front. Blood. 2010;115(2):187– doi: 10.1182/blood-2009-08-207126.
  2. Lee JS, Dixon DO, Kantarjian H, et al. Prognosis of chronic lymphocytic leukemia: a multivariate regression analysis of 325 untreated patients. Blood. 1987;69(3):929–36.
  3. Molica S. Infections in chronic lymphocytic leukemia: risks factors and impact on survival and treatment. Leuk Lymphoma. 1994;13(3–4):203–14. doi: 10.3109/10428199409056283.
  4. Albertsen PC, Moore DF, Shih W, et al. Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol. 2011;29(10):1335–41. doi: 10.1200/jco.2010.31.2330.
  5. Etienne A, Esterni B, Charbonnier A, et al. Comorbidity is an independent predictor of complete remission in elderly patients receiving induction chemotherapy for acute myeloid leukemia. Cancer. 2007;109(7):1376– doi: 10.1002/cncr.22537.
  6. Kos FT, Yazici O, Civelek B, et al. Evaluation of the effect of comorbidity on survival in pancreatic cancer by using “Charlson Comorbidity Index” and “Cumulative Illness Rating Scale”. Wien Klin Wochenschr. 2014;126(1–2):36– doi: 10.1007/s00508-013-0453-9.
  7. Della Porta MG, Malcovati L. Clinical relevance of extra-hematologic comorbidity in the management of patients with myelodysplastic syndrome. Haematologica. 2009;94(5):602– doi: 10.3324/haematol.2009.005702.
  8. Wang S, Wong ML, Hamilton N, et al. Impact of age and comorbidity on non-small-cell lung cancer treatment in older veterans. J Clin Oncol. 2012;30(13):1447–55. doi: 11200/jco.2011.39.5269.
  9. Strati P, Chaffe K, Achenbach S, et al. Comorbidity and cause of death in patients with chronic lymphocytic leukemia (CLL). Cancer Res. 2015;75(15): Abstract 5267. doi: 10.1158/1538-7445.am2015-5267.
  10. Goede V, Paula Cramer P, Busch R, et al. Interactions between comorbidity and treatment of chronic lymphocytic leukemia: results of German Chronic Lymphocytic Leukemia Study Group trials. 2014;99(6):1095–100. doi: 10.3324/haematol.2013.096792.
  11. Thurmes P, Call T, Slager S, et al. Comorbid conditions and survival in unselected, newly diagnosed patients with chronic lymphocyticleukemia. Leuk Lymphoma. 2008;49(1):49–56. doi: 10.1080/10428190701724785.
  12. Linn BS, Linn MW, Gurel L. Cumulative illness rating scale. J Am Geriatr Soc. 1968;16(5):622–6. doi: 10.1111/j.1532-5415.1968.tbx.
  13. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. 2010;376(9747):1164–74. doi: 10.1016/S0140-6736.
  14. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 10.1016/0021-9681(87)90171-8.
  15. Anaissie EJ, Kontoyiannis DP, O’Brien S, et al. Infections in patients with chronic lymphocytic leukemia treated with fludarabine. Ann Intern Med. 1998;129(7):559– doi: 10.7326/0003-4819-129-7-199810010-00010.
  16. Badoux XC, Keating MJ, Wang X, et al. Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. 2011;117(11):3016–24. doi: 10.1182/blood-2010-08-304683.
  17. Catovsky D, Richards S, Matutes E, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet. 2007;370(9583):230–9. doi: 10.1016/s0140-6736(07)61125-8.
  18. Bouvet E, Borel C, Oberic L, et al. Impact of dose intensity on outcome of fludarabine, cyclophosphamide, and rituximab regimen given in the first-line therapy for chronic lymphocytic leukemia. 2013;98(1):65–70. doi: 10.3324/haematol.2012.070755.
  19. Miller MD, Paradis CF, Houck PR, et al. Rating chronic medical illness burden in geropsychiatric practice and research: application of the Cumulative Illness Rating Scale. Psychiatry Res. 1992;41(3):237–48. doi: 10.1016/0165-1781(92)90005-n.
  20. Parmlee PA, Thuras PD, Katz IR, et al. Validation of Cumulative Index Rating Scale in a geriatric residential population. J Am Geriatr Soc. 1995;43(2):130–7. doi: 10.1111/j.1532-5415.1995.tb06377.x.
  21. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 1016/0021-9681(87)90171-8.

Brentuximab Vedotin: New Possibilities for Treatment of Relapses and Refractory Hodgkin’s Lymphomas

EA Demina

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Elena Andreevna Demina, DSci, Professor, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7 (499)324-90-89; e-mail: drdemina@yandex.ru

For citation: Demina EA. Brentuximab Vedotin: New Possibilities for Treatment of Relapses and Refractory Hodgkin’s Lymphomas. Clinical oncohematology. 2016;9(4):398–405 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-398-405


ABSTRACT

The concept of total curability of Hodgkin’s lymphoma was introduced as early as in 1970s. However, 10–30 % of patients develop relapses; in addition, resistant tumors cannot be excluded. A high-dose chemotherapy with autologous hematopoietic stem cell transplantation is a modern treatment standard for relapses and refractory Hodgkin’s lymphomas. However, long-term remissions are achieved only in a half of these patients. The toxicity of effective first-line treatment regimens and insufficient effectiveness of regimens prescribed for relapses and refractory disease are the reason for further search of new therapeutic options for this malignant tumor. Invention of an immunoconjugate, brentuximab vedotin, became one of the new steps in the treatment of Hodgkin’s lymphomas. This review presents data on the pharmacological properties of the drug, the mechanism of the anti-tumor effect, as well as results of large international, randomized clinical trials.


Keywords: brentuximab vedotin, Hodgkin’s lymphoma, relapse, treatment.

Received: June 14, 2016

Accepted: June 17, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. De Vita VT. The consequences of the chemotherapy of Hodgkin’s disease: the 10th David A. Karnofsky memorial lecture. Cancer. 1981;47(1):1–13. doi: 10.1002/1097-0142(19810101)47:1<1::AID-CNCR2820470102>3.0.co;2-2.
  2. Engert A, Younes A, eds. Hematologic malignancies: Hodgkin lymphoma. 2nd edition. A Comprehensive Update on Diagnostics and Clinics. Berlin Heidelberg: Springer; 2015. doi: 10.1007/978-3-319-12505-3.
  3. Horning S, Fanale M, deVos S, et al. Defining a population of Hodgkin lymphoma patients for novel therapeutics: An international effort. Ann Oncol. 2008;19(Suppl 4): Abstract 118.
  4. Falini B, Pileri S, Pizzolo G, et al. CD30 (Ki-1) molecule: A new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood. 1995;85(1):1–14.
  5. Matsumoto K, Terakawa M, Miura K, et al. Extremely rapid and intense induction of apoptosis in human eosinophils by anti-CD30 antibody treatment in vitro. J Immunol. 2004;172(4):2186–93. doi: 10.4049/jimmunol.172.4.2186.
  6. Ansell SM, Horwitz SM, Engert A, et al. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin’s lymphoma and anaplastic large-cell lymphoma. J Clin Oncol. 2007;25(19):2764–9. doi: 10.1200/jco.2006.07.8972.
  7. Forero-Torres A, Leonard JP, Younes A, et al. A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol. 2009;146(2):171–9. doi: 10.1111/j.1365-2009.07740.x.
  8. Dosio F, Brusa P and Cattel L Immunotoxins and Anticancer Drug Conjugate Assemblies: The Role of the Linkage between Components. 2011;3(12):848–83. doi: 10.3390/toxins3070848.
  9. Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. 2003;102(4):1458–65. doi: 10.1182/blood-2003-01-0039.
  10. Sutherland MSK, Sanderson RJ, Gordon KA, et al. Lysosomal Trafficking and Cysteine Protease Metabolism Confer Target-specific Cytotoxicity by Peptide-linked Anti-CD30-Auristatin Conjugates. J Biol Chem. 2006;281(15):10540–7. doi: 10.1074/jbc.M510026200.
  11. Katz J, Janik JA, Yones A. Brentuximab vedotin (SGN-35). Clin Cancer Res. 2011;17(20):6428–36. doi: 10.1158/1078-0432.CCR-11-0488.
  12. Chen R, Gopal AK, Smith SE, et al. Five-year survival data demonstrating durable responses from a pivotal phase 2 study of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;126(Suppl 23): Abstract 2736. doi: 10.1182/blood-2016-02-699850.
  13. Gardai SJ, Epp A, Law C-L. Brentuximab vedotin-mediated immunogenic cell death. Cancer Res. 2015;75(15): Abstract 2469. doi: 10.1158/1538-7445.am2015-2469.
  14. Oflazoglu E, Stone IJ, Gordon KA. Macrophages contribute to the antitumor activity of the anti-CD30 antibody SGN-30. Blood. 2007;110(13):4370–2. doi: 10.1182/blood-2007-06-097014.
  15. Fu L, Xinqun Z, Kim E, et al. Relationship between in vivo antitumor activity of ADC and payload release in preclinical models. Cancer Res. 2014;74(19): Abstract 3694. doi: 10.1158/1538-am2014-3694.
  16. Kim YH, Tavallaee M, Sundram U, et al. Phase II Investigator-Initiated Study of Brentuximab Vedotin in Mycosis Fungoides and Sezary Syndrome With Variable CD30 Expression Level: A Multi-Institution Collaborative Project. J Clin Oncol. 2015;33(32):3750–8. doi: 10.1200/jco.2014.60.3969.
  17. Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9. doi: 10.1200/jco.2011.38.0410.
  18. Arai S, Fanale M, DeVos S, et al. Defining a Hodgkin lymphoma population for novel therapeutics after relapse from autologous hematopoietic cell Leuk Lymphoma. 2013;54(11):2531–3. doi: 10.3109/10428194.2013.798868.
  19. Gopal AK, Chen R, Smith SE, et al. Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(8):1236–43. doi: 10.1182/blood-2014-08-595801.
  20. Lee JJ, Swain SM. Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol. 2006;24(10):1633–42. doi: 10.1200/jco.2005.04.0543.
  21. Swain SM, Arezzo JC. Neuropathy associated with microtubule inhibitors: Diagnosis, incidence, and management. Clin Adv Hematol Oncol. 2008;6(6):455–67.
  22. Zinzani PL, Corradini P, Gianni AM, et al. Brentuximab Vedotin in CD30-Positive Lymphomas: A SIE, SIES, and GITMO Position Paper. Clin Lymph Myel Leuk. 2015;15(9):507–13. doi: 10.1016/j.clml.2015.06.008.
  23. Rothe A, Sasse S, Goergen H, et al. Brentuximab vedotin for relapsed or refractory CD30 hematologic malignancies: the German Hodgkin Study Group experience. Blood. 2012;120(7):1470–2. doi: 10.1182/blood-2012-05-430918.
  24. Gibb A, Jones C, Bloor A, et al. Brentuximab vedotin in refractory CD30 lymphomas: a bridge to allogeneic transplantation in approximately one quarter of patients treated on a Named Patient Programme at a single UK center. Haematologica. 2013;98(4):611–4. doi: 10.3324/haematol.2012.069393.
  25. Zinzani PL, Viviani S, Anastasia A, et al. Brentuximab vedotin in relapsed/refractory Hodgkin’s lymphoma: the Italian experience and results of its use in daily clinical practice outside clinical trials. Haematologica. 2013;98(8):1232–6. doi: 10.3324/haematol.2012.083048.
  26. Perrot A, Monjanel H, Bouabdallah R, et al. Brentuximab vedotin as single agent in refractory or relapsed CD30-positive Hodgkin lymphoma: the French name patient program experience in 241 patients. Haematologica. 2014;99(s1):498, abstr. S1293.
  27. Perrot A, Monjanel H, Bouabdallah R, et al. Lymphoma Study Association (LYSA). Impact of post-brentuximab vedotin consolidation on relapsed/refractory CD30+ Hodgkin lymphomas: a large retrospective study on 240 patients enrolled in the French Named-Patient Program. 2016;101(4):466–73. doi: 10.3324/haematol.2015.134213. Epub 2016 Jan 14.
  28. Moskowitz CH, Yahalom J, Zelenetz AD, et al. High-Dose Chemo-Radiotherapy for Relapsed or Refractory Hodgkin Lymphoma and the Significance of Pre-transplant Functional Imaging. Br J Haematol. 2010;148(6):890–7. doi: 10.1111/j.1365-2141.2009.08037.x.
  29. Moskowitz AJ, Schoder H, Gerecitano JF. FDG-PET Adapted Sequential Therapy with Brentuximab Vedotin and Augmented ICE Followed By Autologous Stem Cell Transplant for Relapsed and Refractory Hodgkin Lymphoma. Blood (ASH Annual Meeting Abstracts). 2013;122(21): Abstract 2099.
  30. Moskowitz AJ, Hamlin PA Jr, Perales M-A, et al. Phase II Study of Bendamustine in Relapsed and Refractory Hodgkin Lymphoma. J Clin Oncol. 2013;31(4):456–60. doi: 10.1200/jco.2012.45.3308.
  31. LaCasce A, Sawas A, Bociek RG, et al. A phase 1/2 single-arm, open-label study to evaluate the safety and efficacy of brentuximab vedotin in combination with bendamustine for patients with Hodgkin lymphoma in the first salvage setting: interim results. Biol Blood Marrow Transplant. 2014;20(2):S161. doi: 10.1016/j.bbmt.2013.12.257.
  32. Aparicio J, Segura A. Garcera S, et al. ESHAP is an Active Regimen for Relapsing Hodgkin’s Disease. Ann Oncol. 1999;10(5):593–5. doi: 10.1023/A:1026454831340.
  33. Garcia-Sanz R, Sureda A, Alonso-Alvarez S, et al. Evaluation of the Regimen Brentuximab Vedotin Plus ESHAP (BRESHAP) in Refractory or Relapsed Hodgkin Lymphoma Patients: Preliminary Results of a Phase I-II Trial from the Spanish Group of Lymphoma and Bone Marrow Transplantation (GELTAMO). Blood. 2015: Abstract 582.
  34. Bartlett NL, Chen R, Fanale MA, et al. Retreatment with brentuximab vedotin in CD30-positive hematologic malignancies. J Hematol Oncol. 2014;7(1):24. doi: 10.1186/1756-8722-7-24.
  35. Batlevi CL, Younes A. Novel therapy for Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2013;2013(1):394–9. doi: 10.1182/asheducation-2013.1.394.
  36. Majhail NS, Weisdorf DJ, Defor TE, et al. Long-term results of autologous stem cell transplantation for primary refractory or relapsed Hodgkin’s lymphoma. Biol Blood Marrow Transplant. 2006;12(10):1065–72. doi: 10.1016/j.bbmt.2006.06.006.
  37. Moskowitz CH, Paszkiewicz-Kozik E, Nadamanee A, et al. Analysis of primary-refractory Hodgkin lymphoma pts in a randomized, placebo-controlled study of brentuximab vedotin consolidation after autologous stem cell transplant. Hematol Oncol. 2015;33:165, abstr. 120.
  38. Moskowitz CH, Nademanee A, Masszi T, et Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853–62. doi: 10.1016/S0140-6736(15)60165-9.
  39. Walewski JA, Nademanee A, Masszi T, et al. Multivariate analysis of PFS from the AETHERA trial: a phase 3 study of brentuximab vedotin consolidation after autologous stem cell transplant for HL. J Clin Oncol. 2015;33(Suppl): Abstract 8519.
  40. Sweetenham JW, Walewski J, Nadamanee A, et al. Updated Efficacy and Safety Data from the AETHERA Trial of Consolidation with Brentuximab Vedotin after Autologous Stem Cell Transplant (ASCT) in Hodgkin Lymphoma Patients at High Risk of Relapse. Biol Blood Marrow Transplant. 2016;22(3):S19e–S481, abstr. 24. doi: 10.1016/j.bbmt.2015.11.315.
  41. Bonthapally V, Ma E, Viviani S, et al. Healthcare utilization in the AETHERA trial: phase 3 study of brentuximab vedotin in patients at increased risk of residual Hodgkin lymphoma post-ASCT. Hematol Oncol. 2015;33:193, abstr. 177.
  42. Kuruvilla J, Connors JM, Sawas A, et al. A phase 1 study of brentuximab vedotin (BV) and bendamustine (B) in relapsed or refractory Hodgkin lymphoma (HL) and anaplastic large T-cell lymphoma (ALCL). Hematol Oncol. 2015;33:148, abstr. 090.
  43. Theurich S, Malcher J, Wennhold K, et al. Brentuximab Vedotin Combined With Donor Lymphocyte Infusions for Early Relapse of Hodgkin Lymphoma After Allogeneic Stem-Cell Transplantation Induces Tumor-Specific Immunity and Sustained Clinical Remission. J Clin Oncol. 2013;31(5):e59–e63. doi: 10.1200/jco.2012.43.6832.
  44. Vaklavas C, Forero-Torres A. Safety and efficacy of brentuximab vedotin in patients with Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Ther Adv Hematol. 2012;3(4):209–25. doi: 10.1177/2040620712443076.

Non-Hodgkin’s Lymphomas in Children: 25-Year Clinical Experience

TT Valiev, AV Popa, AS Levashov, ES Belyaeva, NS Kulichkina, BV Kurdyukov, RS Ravshanova, GL Mentkevich

Scientific Research Institute of Pediatric Oncology and Hematology, NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Timur Teimurazovich Valiev, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: +7(499)324-98-69; e-mail: timurvaliev@mail.ru

For citation: Valiev TT, Popa AV, Levashov AS, et al. Non-Hodgkin’s Lymphomas in Children: 25-Year Clinical Experience. Clinical oncohematology. 2016;9(4):420–37 (In Russ).

DOI: http://dx.doi.org/10.21320/2500-2139-2016-9-4-420-437


ABSTRACT

Background & Aims. Current polychemotherapeutic protocols based on differentiated and risk-adopted approaches permitted to consider non-Hodgkin’s lymphomas (NHL) potentially curable diseases although they had been considered fatal previously. The aim of this study is to summarize and analyze outcomes of NHL therapy over a 25-year period.

Methods. 246 patients were enrolled in the study. They were treated in the department of chemotherapy of hemoblastoses in the Scientific Research Institute of Pediatric Oncology and Hematology under the NN Blokhin Russian Cancer Research Center over the period of 25 years: from April 1, 1991, till June 1, 2016. B-NHL-BFM 90/95 protocols and a modified B-NHL-BFM 95 protocol (with rituximab) were used for B-cell NHLs (n = 130). Patients with lymphocytic leukemia (n = 75) were treated using ALL-mBFM 90/95 and ALL IC-BFM 2002 protocols. 21 patients with anaplastic large cell lymphomas (ALCL) received treatment according to the B-NHL-BFM 90/95 protocol, and 20 patients received the НИИ ДОГ-АККЛ-2007 protocol.

Results. Taking into account clinical and immunological characteristics of ALCL, the authors invented an original НИИ ДОГ-АККЛ-2007 protocol. Special attention was paid to potential modification of standard treatment regimens for B-cell NHL by adding rituximab. The article demonstrates the evolution in prescription of rituximab for B-cell NHL and possibilities for reduction of the total number of polychemotherapy cycles for late-stage tumors without deterioration of treatment outcomes.

Conclusion. The obtained results permit to conclude that introduction of achievements of oncoimmunology, molecular biology, and cytogenetics will become the basis for further modification of existing treatment options for NHL.

Keywords: Burkitt lymphoma, diffuse large B-cell lymphoma, anaplastic large-cell lymphoma, primary mediastinal (thymic) large B-cell lymphoma, T- and B-cell lymphoblastic lymphomas, treatment, children.

Received: June 12, 2016

Accepted: June 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 439.
  2. Burkhardt B, Zimmermann M, Oschlies I, et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol. 2005;131(1):39–49. doi: 10.1111/j.1365-2005.05735.x.
  3. Hochberg J, Waxman IM, Kelly KM, et al. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science. Br J Haematol. 2009;144(1):24–40. doi: 10.1111/j.1365-2008.07393.x.
  4. Baccarani M, Corbelli G, Amadori S, et al. Adolescent and adult lymphoblastic leukemia: prognostic features outcome of therapy. А study of 293 patients. Blood. 1982;60(3):677–84.
  5. Gill PS, Meyer PR, Pavlova Z, et al. B-cell acute lymphoblastic leukemia in adults: clinical, morphologic and immunologic findings. J Clin Oncol. 1986;4(5):737–43.
  6. Bernstein JI, Coleman CN, Strickler JG, et al. Combined modality therapy for adult with small noncleaved cell lymphoma (Burkitt and Burkitt-like type). J Clin Oncol. 1986;4(6):847–58.
  7. Reiter A, Schrappe M, Tiemann M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM-90. Blood. 1999;94(10):3294–306.
  8. Patte C, J. Michon, Frappaz D, et al. Therapy of Burkitt and other B-cell acute lymphoblastic leukaemia and lymphoma: experience with the LMB protocols of the SFOP (French Paediatric Oncology Society) in children and adults. Bail Clin Haematol. 1994;7(2):339–48. doi: 10.1016/s0950-3536(05)80206-
  9. Patte C, Philip T, Rodary C, et al. High survival rate in advanced-stage B-cell lymphomas and leukemias without CNS involvement with a short intensive polychemotherapy: results from the French Pediatric Oncology Society of a randomized trial of 216 children. J Clin Oncol. 1991;9(1):123–32.
  10. Sun XF, Su YS, Liu DG, et al. Comparing CHOP, CHOP+HD-MTX, and BFM-90 regimens in the survival rate of children and adolescents with B cell non-Hodgkin’s lymphoma. Ai Zheng. 2004;23(8):933–8.
  11. Muller J, Csoka M, Jakab Z, et al. Hungarian experience with non-Hodgkin’s lymphoma in childhood. Magy Onkol. 2006;50(3):253–9.
  12. Cairo MS, Sposto R, Gerrard M, et al. Advanced stage, increased lactate dehydrogenase, and primary site, but not adolescent age (³ 15 years), are associated with an increased risk of treatment failure in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB LMB 96 study. J Clin Oncol. 2012;30(4):387–93. doi: 10.1200/jco.2010.33.3369.
  13. Schwenn M, Blattner S, Lynch E, et al. HiC-COM: a 2-month intensive chemotherapy regimen for children with stage III and IV Burkitt’s lymphoma and B-cell acute lymphoblastic leukemia. J Clin Oncol. 1991;9(1):133–8.
  14. Bowman WP, Shuster JJ, Cook B, et al. Improved survival for children with B-cell acute lymphoblastic leukemia and stage IV small noncleaved-cell lymphoma: a pediatric oncology group study. J Clin Oncol. 1996;14(4):1252–61.
  15. Magrath I, Adde M, Shad A, et al. Adults and children with small non-cleaved-cell lymphoma have similar excellent outcome when treated with the same chemotherapy regimen. J Clin Oncol. 1996;14(3):925–34.
  16. Atra A, Gerrard M, Hobson R, et al. Improved cure rate in children with B-cell acute lymphoblastic leukemia and IV stage B-cell non-Hodgkin lymphoma – results of the UKCCSG 9003 protocol. Br J Cancer. 1998;77(12):2281–5. doi: 10.1038/bjc.1998.379.
  17. Burkhardt B, Oschlies I, Klapper W, et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. Leukemia. 2011;25(1):153–60. doi: 10.1038/leu.2010.245.
  18. Patte C, Auperin A, Michon J, et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–9. doi: 10.1182/blood.v97.11.3370.
  19. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80. doi: 10.1182/blood-2006-07-
  20. Laver JH, Kraveka JM, Hutchison RE, et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. J Clin Oncol. 2005;23(3):541–7. doi: 10.1200/jco.2005.11.075.
  21. Woessmann W, Seidemann K, Mann G.et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948–58. doi: 10.1182/blood-2004-03-
  22. Gerrard M, Cairo MS, Weston C, et al. Excellent survival following two courses of COPAD chemotherapy. Br J Haematol. 2008;141(6):840–87. doi: 10.1111/j.1365-2008.07144.x.
  23. Seidemann K, Tiemann M, Lauterbach I, et al. Primary mediastinal large B-cell lymphoma with sclerosis in pediatric and adolescent patients: treatment and results from three therapeutic studies of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 2003;21(9):1782–19. doi: 10.1200/jco.2003.08.151.
  24. Akbayram S, Dogan M, Akgun C, et al. Use of rituximab in three children with relapsed/refractory Burkitt lymphoma. Target Oncol. 2010;5(4):291–4. doi: 10.1007/s11523-010-0161-
  25. Okur VF, Oguz A, Karadeniz C, et al. Refractoriness to rituximab monotherapy in a child with relapsed/refractory Burkitt non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2006;23(1):25–31. doi: 10.1080/08880010500313298.
  26. Holmberg LA, Maloney D, Bensinger W. Immunotherapy with rituximab/interleukin-2 after autologous stem cell transplantation as treatment for CD20+ non-Hodgkin’s lymphoma. Clin Lymph Myel. 2006;7(2):135–9. doi: 10.3816/clm.2006.n.051.
  27. Cooney-Qualter E, Krailo M, Angiolillo A.et al. A Phase I Study of 90Yttrium-Ibritumomab-Tiuxetan in Children and Adolescents with Relapsed/Refractory CD20-Positive Non-Hodgkin’s Lymphoma: A Children’s Oncology Group study. Clin Cancer Res. 2007;13(Suppl 18):5652–60. doi: 10.1158/1078-ccr-07-1060.
  28. Richard H, Termuhlen A, Smith L, et al. Autologous peripheral blood stem cell transplantation in children with refractory or relapsed lymphoma: results of Children’s Oncology Group Study A5962. Biol Blood Marrow Transplant. 2011;17(2):249–58. doi: 10.1016/j.bbmt.2010.07.002.
  29. Pinkel D, Johnson W, Aur RJ. Non-Hodgkin’s lymphoma in children. Br J Cancer. 1975;2:298–23.
  30. Wollner N, Exelby PR, Lieberman PH. Non-Hodgkin’s lymphoma in children: a progress report on the original patients treated with the LSA2-L2 protocol. Cancer. 1979;44(6):1990–9. doi: 10.1002/1097-0142(197912)44:6<1990::aid-cncr2820440605>3.0.co;2-
  31. Asselin BL, Devidas M, Wang C, et al. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood. 2011;118(4):874–83. doi: 10.1182/blood-2010-06-
  32. Wiernik P, Goldman J, Dutcher J. Neoplastic disease of the blood. Cambridge; 1216 p.
  33. Tubergen D, Krailo M, Meadows A, et al. Comparison of treatment regimens for pediatric lymphoblastic non-Hodgkin’s lymphoma: a Children’s Cancer Group study. J Clin Oncol Leuk. 1999;13(3):335–42.
  34. Amylon MD, Shuster J, Pullen J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma; Pediatr Oncol Group study. Leukemia. 1999;13(3):335–42. doi: 1038/sj.leu.2401310.
  35. Patte C, Philip T, Rodary C, et al. Improved survival rate in children with stage III-IV B-cell non-Hodgkin lymphoma and leukemia using multiagent chemotherapy: results of a study of 114 children from the French Pediatric Oncology Society. J Clin Oncol. 1986;4(8):1219–26.
  36. Reiter A, Schrappe M, Ludwig WD, et al. Favorable outcome of B-cell acute lymphoblastic leukemia in childhood: a report of three consecutive studies of the BFM group. Blood. 1992;80(10):2471–8.
  37. Reiter A, Schrappe M, Parwaresch R, et al. Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage – a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 1995;13(2):359–72.
  38. Nachman J, Sather HN, Cherlow JM, et al. Response of children with high-risk acute lymphoblastic leukemia treated with and without cranial irradiation: a report from the Children’s Cancer Group. J Clin Oncol. 1998;16(3):920–30.
  39. Tang JY, Xue HL, Chen J, et al. Multi-center trial based on SCMC-ALL-2005 for children’s acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi. 2013;51(7):495–501.
  40. Tallen G, Ratei R, Mann G, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol. 2010;28(14):2339–47. doi: 10.1200/jco.2009.25.1983.
  41. Dunsmore KP, Devidas M, Linda SB, et al. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(22):2753–9. doi: 10.1200/jco.2011.40.8724.
  42. Lambe CU, Averett DR, Paff MT, et al. 2-Amino-6-methoxypurine arabinoside: an agent for T-cell malignancies. Cancer Res. 1995;55(15):3352–6.
  43. Cooper TM, Razzouk BI, Gerbing R, et al. Phase I/II trial of clofarabine and cytarabine in children with relapsed/refractory acute lymphoblastic leukemia (AAML0523): a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2013;60(7):1141–7. doi: 10.1002/pbc.24398.
  44. Schroeder H, Garwicz S, Kristinsson J, et al. Outcome after first relapse in children with acute lymphoblastic leukemia: a population-based study of 315 patients from the Nordic Society of Pediatric Hematology and Oncology (NOPHO). Med Pediatr Oncol. 1995;25(5):372–8. doi: 10.1002/mpo.2950250503.
  45. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favourable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.
  46. Borgmann A, von Stackelberg A, Hartmann R, et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. 2003;101(10):3835–9. doi: 10.1182/blood.v101.10.3835.
  47. Wheeler K, Richards S, Bailey C, et al. Comparison of bone marrow transplant and chemotherapy for relapsed childhood acute lymphoblastic leukaemia: the MRC UKALL X experience. Medical Research Council Working Party on Childhood Leukaemia. Br J Haematol. 1998;101(1):94–103. doi: 10.1046/j.1365-2141.1998.00676.x.
  48. Stein H, Mason DY, Gerdes J, et al. The expression of Hodgkin’s disease associated antigen Ki-1 in reactive and neoplasic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from avtivated lymphoid cells. Blood. 1985;66(4):848–58.
  49. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-negative. Crit Rev Oncol Hematol. 2013;85(2):206–15. doi: 10.1016/j.critrevonc.2012.06.004.
  50. Sibon D, Fournier M, Briere J, et al. Prognostic Factors and Long Term Outcome of 138 Adults with Systemic Anaplastic Large-Cell Lymphoma: a Retrospective Study by the Groupe d’Etude Des Lymphomes De l’Adulte (GELA). Blood. 2010;116: Abstract 322.
  51. Park SJ, Kim S, Lee DH, et al. Primary Systemic Anaplastic Large Cell Lymphoma in Korean Adults: 11 Years’ Experience at Asan Medical Center. Yonsei Med J. 2008;49(4):601–9. doi: 10.3349/ymj.2008.49.4.601.
  52. Wang YF, Yang YL, Gao ZF, et al. Clinical and laboratory characteristics of systemic anaplastic large cell lymphoma in Chinese patients. J Hematol Oncol. 2012;5(1):38. doi: 10.1186/1756-8722-5-38.
  53. Amin HM, Lai R. Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood. 2007;110(7):2259–67. doi: 10.1182/blood-2007-04-060715.
  54. Moreno L, Garzon L, Bautista FJ, et al. Diagnosis of paediatric anaplastic large-cell lymphoma: a historical perspective from a single institution. Clin Transl Oncol. 2009;11(5):318–21. doi: 10.1007/s12094-009-0360-
  55. Le Deley MC, Reiter A, Williams D, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008;111(3):1560–6. doi: 10.1182/blood-2007-07-
  56. Pillon M, Gregucci F, Lombardi A, et al. Results of AIEOP LNH-97 protocol for the treatment of anaplastic large cell lymphoma of childhood. Pediatr Blood Cancer. 2012;59(5):828–33. doi: 10.1002/pbc.24125.
  57. Gascoyne RD, Aoun P, Wu D, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–21.
  58. Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral Tcell Lymphoma Project. Blood. 2008;111(12):5496–504. doi: 10.1182/blood-2008-01-
  59. Abramov D, Oschlies I, Zimmermann M, et al. Expression of CD8 is associated with non-common type morphology and outcome in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2013;98(10):1547–53. doi: 10.3324/haematol.2013.085837.
  60. Damm-Welk C, Mussolin L, Zimmermann M, et al. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2014;123(3):334–7. doi: 10.1182/blood-2013-09-
  61. Bonvini P, Gastaldi T, Falini B, et al. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK+ CD30+ lymphoma cells by Hsp90 antagonist 17-allylamino, 17-demethoxygeldanamycin. Cancer Res. 2002;62(5):1559–66.
  62. Ergin M, Denning MF, Izban KF, et al. Inhibition of tyrosine kinase activity induces caspase-dependent apoptosis in anaplastic large cell lymphoma with NPM-ALK (p80) fusion protein. Exp Hematol. 2001;29(9):1082–90. doi: 10.1016/s0301-472x(01)00688-
  63. Han Y, Amin HM, Franko B, et al. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteasome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood. 2006;108(8):2796–803. doi: 10.1182/blood-2006-04-
  64. Ogura M, Tobinai K, Hatake K, et al. Phase I/II study of brentuximab vedotin in Japanese patients with relapsed or refractory CD30-positive Hodgkin’s lymphoma or systemic anaplastic large-cell lymphoma. Cancer Sci. 2014;105(7):840–6. doi: 10.1111/cas.12435.
  65. Mosse YP, Lim MS, Voss SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–80. doi: 10.1016/s1470-2045(13)70095-
  66. Brugieres L, Le Deley MC, Rosolen A, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: a results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27(6):897–903. doi: 10.1200/jco.2008.18.1487.
  67. Seidemann K, Tiemann M, Schrappe M, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–706. doi: 10.1182/blood.v97.12.3699.
  68. Woessmann W, Zimmermann M, Lenhard M, et al. Relapsed or refractory anaplastic large-cell lymphoma in children and adolescents after Berlin-Frankfurt-Muenster (BFM)-type first-line therapy: a BFM-group study. J Clin Oncol. 2011;29(22):3065–71. doi: 10.1200/jco.2011.34.8417.
  69. Goldberg JD, Casulo C, Horwitz The role of hematopoietic stem cell transplantation in peripheral T-cell lymphomas. In: Non-Hodgkin Lymphoma Cancer Drug Discovery and Development. Springer; 2013. pp. 279–93. doi: 10.1007/978-1-4614-5851-7_16.
  70. Giulino-Roth L, Ricafort R, Kernan NA, et al. Ten-year follow-up of pediatric patients with non-Hodgkin lymphoma treated with allogeneic or autologous stem cell transplantation. Pediatr Blood Cancer. 2013;60(12):2018–24. doi: 10.1002/pbc.24722.
  71. Woessmann W, Peters C, Lenhard M. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents – a Berlin-Frankfurt-Munster group report. Br J Haematol. 2006;133(2):176–82. doi: 10.1111/j.1365-2141.2006.06004.x.
  72. Mori T, Takimoto T, Katano N, et al. Recurrent childhood anaplastic large cell lymphoma: a retrospective analysis of registered cases in Japan. Br J Haematol. 2006;132(5):594–7. doi: 10.1111/j.1365-2005.05910.x.
  73. Луговская С.А., Почтарь М.Е., Тупицын Н.Н. Иммунофенотипирование в диагностике гемобластозов. М.: Триада, 2005. 165 с.
    [Lugovskaya SA, Pochtar’ ME, Tupitsyn NN. Immunofenotipirovanie v diagnostike gemoblastozov. (Immunophenotyping in diagnosis of hemoblastoses.) Moscow: Triada Publ.; 2005. 165 p. (In Russ)]
  74. Курильников А.Я. Мабтера — первые моноклональные антитела в терапии неходжкинских лимфом. Современная онкология. 2002;4(1):25–8.
    [Kuril’nikov AYa. Mabtera: first monoclonal antibodies in therapy of non-Hodgkin’s lymphomas. Sovremennaya onkologiya. 2002;4(1):25–8. (In Russ)]
  75. Reff M, Carner C, Chambers K, et al. Depletion of B-cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–45.
  76. Okur FV, Oguz A, Karadeniz C, et al. Refractoriness to rituximab monotherapy in a child with relapsed/refractory Burkitt non-Hodgkin lymphoma. Pediatr Hematol Oncol. 2006;23(1):25–31. doi: 10.1080/08880010500313298.
  77. Marcus R, Hagenbeek A. The therapeutic use of rituximab in non-Hodgkin’s lymphoma. Eur J Haematol. 2007;78(s67):5–14. doi: 10.1111/j.1600-0609.2006.00789.x.
  78. Plosker GL, Figgitt DP. Rituximab. Drugs. 2003;63(8):803–43. doi: 10.2165/00003495-200363080-
  79. Михайлова Н.Б. Роль ритуксимаба в лечении неходжкинских лимфом (реферативный обзор рандомизированных клинических исследований). Современная онкология. 2009;11(3):28–31.
    [Mikhailova NB. Role of rituximab in treatment of non-Hodgkin’s lymphomas (abstract review of randomized clinical trials). Sovremennaya onkologiya. 2009;11(3):28–31. (In Russ)]
  80. Li X, Liu Z, Cao J, et al. Rituximab in combination with CHOP chemotherapy for the treatment of diffuse large B cell lymphoma in China: a 10-year retrospective follow-up analysis of 437 cases from Shanghai Lymphoma Research Group. Ann Hematol. 2012;91(6):837–45. doi: 10.1007/s00277-011-1375-
  81. Thomas DA, Faderl S, O’Brien S, et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. 2006;106(7):1569–80. doi: 10.1002/cncr.21776.
  82. Fayad L, Thomas D, Romaguera J. Update of the M. D. Anderson Cancer Center experience with hyper-CVAD and rituximab for the treatment of mantle cell and Burkitt-type lymphomas. Clin Lymph Myel. 2007;8(2):57–62. doi: 10.3816/clm.2007.s.034.
  83. Meinhardt A, Burkhardt B, Zimmermann M, et al. Phase II Window Study on Rituximab in Newly Diagnosed Pediatric Mature B-Cell Non-Hodgkin’s Lymphoma and Burkitt Leukemia. J Clin Oncol. 2010;28(19):3115–21. doi: 10.1200/jco.2009.26.6791.
  84. Bilic E, Femenic R, Conja J, et al. CD20-positive childhood B-non-Hodgkin lymphoma: morphology, immunophenotype and a novel treatment approach: a single center experience. Coll Antropol. 2010;34(1):171–5.
  85. Смирнова Н.В., Мякова Н.В., Белогурова М.Б. и др. Лечение зрелоклеточных В-клеточных неходжкинских лимфом с использованием комбинированной иммунохимиотерапии: возможности оптимизации терапевтической стратегии. Онкогематология. 2015;10(4):15–24. doi: 10.17650/1818-8346-2015-10-4-15-24.
    [Smirnova NV, Myakova NV, Belogurova MB, et al. Treatment of B-cells non-Hodgkin lymphomas with combined immunochemotherapy: ability to treatment optimization. Oncohematology. 2015;10(4):15–24. doi: 10.17650/1818-8346-2015-10-4-15-24. (In Russ)]
  86. Miyamoto KI, Kobayashi Y, Maeshima AM, et al. Clinicopathological prognostic factors of 24 patients with B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. Int J Hematol. 2016;103(6):693–702. doi: 1007/s12185-016-1989-z.
  87. Gerrard M, Cairo MS, Weston C, et al. Excellent survival following two courses of COPAD chemotherapy. Br J Haematol. 2008;141(6):840–7. doi: 10.1111/j.1365-2008.07144.x.
  88. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80. doi: 10.1182/blood-2006-07-
  89. Stary J, Zimmermann M, Campbell M, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol. 2014;32(3):174–84. doi: 10.1200/jco.2013.48.6522.

 

Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region

VI Bakhtina1,2, IV Demko2, AN Narkevich2, DS Gushchin3

1 Regional Clinical Hospital, 3а Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

2 Professor VF Voyno-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

3 Norilsk Inter-District Hospital No. 1, Solnechnyi pr-d, 7a Norilsk, Russian Federation, 663300

For correspondence: Varvara Ivanovna Bakhtina, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022; Tel: +7(923)357-57-77; е-mail: doctor.gem@mail.ru

For citation: Bakhtina VI, Demko IV, Narkevich AN, Gushchin DS. Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region. Clinical oncohematology. 2016;9(4):413–419 (In Russ).

DOI: http://dx.doi.org/10.21320/2500-2139-2016-9-4-413-419


ABSTRACT

Background & Aims. B-cellular chronic lymphocytic leukemia (CLL) is a disease with heterogeneous clinical manifestations and biological characteristics. The age of 70 % of patients is more than 65 years by the date of the diagnosis; most of them have several comorbidities. The aim of the study is to identify factors affecting the survival, as well as to determine causes of mortality in CLL patients (according to data from hematological hospitals of Krasnoyarsk Region).

Methods. In order to identify the most significant factors affecting the course and the outcome of CLL, a retrospective analysis of data on patients who died in hematological hospitals was carried out. 45 cases with the lethal outcome were registered within six years. All patients were under hematologist’s supervision after diagnosing the disease, and they were followed throughout the treatment period up to the lethal outcome.

Results. Тhe overall and progression-free survival depended, first of all, on the type of the first line therapy and its efficacy. The progression of the underlying disease and infectious complications became the main reason of the lethal outcome in CLL patients.

Conclusion. Most patients received ineffective treatment as first line therapy. The analysis of the comorbidities showed that a more effective chemotherapy could be performed with achievement of longer complete remissions.

Keywords: chronic lymphocytic leukemia, oncohematological diseases, comorbidities, survival, treatment.

Received: May 16, 2016

Accepted: June 17, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. Gribben JG. How I treat CLL up front. Blood. 2010;115(2):187– doi: 10.1182/blood-2009-08-207126.
  2. Lee JS, Dixon DO, Kantarjian H, et al. Prognosis of chronic lymphocytic leukemia: a multivariate regression analysis of 325 untreated patients. Blood. 1987;69(3):929–36.
  3. Molica S. Infections in chronic lymphocytic leukemia: risks factors and impact on survival and treatment. Leuk Lymphoma. 1994;13(3–4):203–14. doi: 10.3109/10428199409056283.
  4. Albertsen PC, Moore DF, Shih W, et al. Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol. 2011;29(10):1335–41. doi: 10.1200/jco.2010.31.2330.
  5. Etienne A, Esterni B, Charbonnier A, et al. Comorbidity is an independent predictor of complete remission in elderly patients receiving induction chemotherapy for acute myeloid leukemia. Cancer. 2007;109(7):1376– doi: 10.1002/cncr.22537.
  6. Kos FT, Yazici O, Civelek B, et al. Evaluation of the effect of comorbidity on survival in pancreatic cancer by using “Charlson Comorbidity Index” and “Cumulative Illness Rating Scale”. Wien Klin Wochenschr. 2014;126(1–2):36– doi: 10.1007/s00508-013-0453-9.
  7. Della Porta MG, Malcovati L. Clinical relevance of extra-hematologic comorbidity in the management of patients with myelodysplastic syndrome. Haematologica. 2009;94(5):602– doi: 10.3324/haematol.2009.005702.
  8. Wang S, Wong ML, Hamilton N, et al. Impact of age and comorbidity on non-small-cell lung cancer treatment in older veterans. J Clin Oncol. 2012;30(13):1447–55. doi: 11200/jco.2011.39.5269.
  9. Strati P, Chaffe K, Achenbach S, et al. Comorbidity and cause of death in patients with chronic lymphocytic leukemia (CLL). Cancer Res. 2015;75(15): Abstract 5267. doi: 10.1158/1538-7445.am2015-5267.
  10. Goede V, Paula Cramer P, Busch R, et al. Interactions between comorbidity and treatment of chronic lymphocytic leukemia: results of German Chronic Lymphocytic Leukemia Study Group trials. 2014;99(6):1095–100. doi: 10.3324/haematol.2013.096792.
  11. Thurmes P, Call T, Slager S, et al. Comorbid conditions and survival in unselected, newly diagnosed patients with chronic lymphocyticleukemia. Leuk Lymphoma. 2008;49(1):49–56. doi: 10.1080/10428190701724785.
  12. Linn BS, Linn MW, Gurel L. Cumulative illness rating scale. J Am Geriatr Soc. 1968;16(5):622–6. doi: 10.1111/j.1532-5415.1968.tbx.
  13. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. 2010;376(9747):1164–74. doi: 10.1016/S0140-6736.
  14. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 10.1016/0021-9681(87)90171-8.
  15. Anaissie EJ, Kontoyiannis DP, O’Brien S, et al. Infections in patients with chronic lymphocytic leukemia treated with fludarabine. Ann Intern Med. 1998;129(7):559– doi: 10.7326/0003-4819-129-7-199810010-00010.
  16. Badoux XC, Keating MJ, Wang X, et al. Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. 2011;117(11):3016–24. doi: 10.1182/blood-2010-08-304683.
  17. Catovsky D, Richards S, Matutes E, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet. 2007;370(9583):230–9. doi: 10.1016/s0140-6736(07)61125-8.
  18. Bouvet E, Borel C, Oberic L, et al. Impact of dose intensity on outcome of fludarabine, cyclophosphamide, and rituximab regimen given in the first-line therapy for chronic lymphocytic leukemia. 2013;98(1):65–70. doi: 10.3324/haematol.2012.070755.
  19. Miller MD, Paradis CF, Houck PR, et al. Rating chronic medical illness burden in geropsychiatric practice and research: application of the Cumulative Illness Rating Scale. Psychiatry Res. 1992;41(3):237–48. doi: 10.1016/0165-1781(92)90005-n.
  20. Parmlee PA, Thuras PD, Katz IR, et al. Validation of Cumulative Index Rating Scale in a geriatric residential population. J Am Geriatr Soc. 1995;43(2):130–7. doi: 10.1111/j.1532-5415.1995.tb06377.x.
  21. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 1016/0021-9681(87)90171-8.