WT1 Gene Overexpression in Oncohematological Disorders: Theoretical and Clinical Aspects (Literature Review)

NN Mamaev, YaV Gudozhnikova, AV Gorbunova

R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Nikolai Nikolaevich Mamaev, DSci, Professor, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +(7)911-760-50-86; e-mail: nikmamaev524@gmail.com

For citation: Mamaev NN, Gudozhnikova YaV, Gorbunova AV. WT1 Gene Overexpression in Oncohematological Disorders: Theoretical and Clinical Aspects (Literature Review). Clinical oncohematology. 2016;9(3):257-64 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-257-264


ABSTRACT

The article discusses recent data on the WT1 gene overexpression phenomenon in patients with acute leukemias, myelodysplastic syndromes, chronic myeloid leukemia, non-Hodgkin’s lymphomas, and multiple myeloma. It demonstrates that monitoring of the WT1 gene overexpression proves to be effective during the posttransplantation period, as well as after the induction chemotherapy. This approach may be applied in diagnosing the minimal residual disease and early detection of leukemia relapses, as well as their timely and controlled treatment. There are other promising fields of research, such as testing autografts for the presence or absence of tumor elements, as well as evaluation of the efficacy of induction chemotherapy in high risk patients.


Keywords: WT1 gene overexpression phenomenon, hematopoietic stem cell transplantation, chemotherapy, molecular treatment monitoring.

Received: February 8, 2016

Accepted: March 30, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Call KM, Glaser T, Ito CI, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor gene locus. Cell. 1990;60(3):509–20. doi: 10.1016/0092-8674(90)90601-a.
  2. Rose EA, Glaser T, Jones C, et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene. Cell. 1990;60(3):495–508. doi: 10.1016/0092-8674(90)90600-j.
  3. Miwa H, Beran M, Saunders GF. Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia. 1992;6(5):405–9.
  4. Inoue K, Ogawa H, Sonoda Y, et al. Aberrant overexpression of the Wilms’ tumour gene (WT1) in human leukemia. Blood. 1997;88(4):1405–12.
  5. Абдулкадыров К.М., Грицаев С.В., Капустин С.И. и др. Экспрессия гена опухоли Вилмса (WT1) в клетках крови больных миелодиспластическим синдромом. Вопросы онкологии. 2004;50(6):668–71.
    [Abdulkadyrov KM, Gritsaev SV, Kapustin SI, et al. Wilms’ tumor gene (WT1) expression in blood cells of patients with myelodysplastic syndrome. Voprosy oncologii. 2004;50(6):668–71. (In Russ)]
  6. Yang L, Han Y, Suarez Saiz F, et al. A tumor suppressor and oncogene: The WT1 story. Leukemia. 2007;21(5):868–76. doi: 1038/sj.leu.2404624.
  7. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при миелодиспластических синдромах и клиническое значение гиперэкспрессии гена WT1. Клиническая онкогематология. 2014;7(4):551–63.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and clinical significance of WT1 gene overexpression. Klinicheskaya onkogematologiya. 2014;7(4):551–63. (In Russ)]
  8. Мамаев Н.Н., Горбунова А.В., Бархатов И.М. и др. Молекулярный мониторинг течения острых миелоидных лейкозов по уровню экспрессии гена WT1 после аллогенной трансплантации гемопоэтических столовых клеток. Клиническая онкогематология. 2015;8(3):309–20. doi: 10.21320/2500-2139-2015-8-3-309-320.
    [Mamaev NN, Gorbunova AV, Barkhatov IM, et al. Molecular monitoring of WT1 gene expression level in acute myeloid leukemias after allogeneic hematopoietic stem cell transplantation. Clinical oncohematology. 2015;8(3):309–20. doi: 10.21320/2500-2139-2015-8-3-309-320. (In Russ)]
  9. Israyelyan A, Goldstein L, Tsai W, et al. Real-time assessment of relapse risk based on the WT1 marker in acute leukemia and myelodysplastic syndrome patients after hematopoietic cell transplantation. Bone Marrow Transplant. 2015;50(1):26–33. doi: 10.1038/bmt.2014.209.
  10. Iwasaki T, Sugisaki Ch, Nagata K, et al. Wilms’ tumor 1 message and protein expression in bone marrow failure syndrome and acute leukemia. Pathol Int. 2007;57(10):645–51. doi: 10.1111/j.1440-2007.02153.x.
  11. Tatsumi N, Hojo N, Yamada O, et al. Deficiency in WT1-targeting microRNA-125a leads to myeloid malignancies and urogenital abnormalities. Oncogene. 2015;35(8):1003–14. doi: 10.1038/onc.2015.154.
  12. Inoue K, Sugiyama H, Ogawa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84(9):3071–9.
  13. Drakos E, Rassidakis GZ, Tsioli F, et al. Differential expression of WT1 gene product in non-Hodgkin lymphomas. Appl Immunohistochem. Mol Morphol. 2005;13(2):132–7. doi: 10.1097/01.pai.0000143786.62974.66.
  14. Hatta Y, Takeuchi J, Saitoh T, et al. WT1 expression level and clinical factors in multiple myeloma. J Exp Clin Cancer Res. 2005;24(4):595–9.
  15. Na I-K, Kreuzer K-A, Lupberger J, et al. Quantitative RT-PCR of Wilms tumor gene transcripts(WT1) for the molecular monitoring of patients with accelerated phase bcr/abl + CML. Leuk Res. 2005;29(3):343–5. doi: 10.1016/j.leukres.2004.08.003.
  16. Chiusa L, Francia di Celle P, Campisi P, et al. Prognostic value of quantitative analysis of WT1 gene transcripts in adult acute lymphoblastic leukemia. Haematologica. 2006;91(2):270–1. doi: 10.0000/www.haematologica.org/content/91/2/270.short.
  17. Radich JP, Dai H, Mao M, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA. 2006;103(8):2794–7. doi: 10.1073/pnas.0510423103.
  18. Cao X, Gu WY, Chen ZX, et al. Bone marrow WT1 gene expression and clinical significance in chronic myelogenous leukemia. Zhonghua Nei Ke Za Zhi. 2007;46(4):277–9.
  19. Otahalova E, Ullmannova-Benson V, Klamova FI, et al. WT1 expression in peripheral leukocytes of patients with chronic myeloid leukemia serves for the prediction of imatinib resistance. Neoplasma. 2009;56(5):393–7. doi: 10.4149/neo_2009_05_393.
  20. Heesch S, Goekbuget N, Stroux A, et al. Prognostic implications and expression of the Wilms tumor 1 (WT1) gene in adult T-lymphoblastic leukemia. 2010;95(6):942–9. doi: 10.3324/haematol.2009.016386.
  21. Аксенова Е.В. Стандартизированное исследование экспрессии генов BCR-ABL, PRAME и WT1 у больных хроническим миелолейкозом: Диc. ¼ канд. мед. наук. М., 2011. 138 с.
    [Aksyenova EV. Standartizirovannoe issledovanie expressii genov BCR-ABL, PRAME I WT1 u bolnykh chronicheskim myeloleukosom. (Standardized evaluation of the BCR-ABL, PRAME and WT1 gene expression in patients with chronic myeloid leukemia.) [dissertation] Moscow; 2011. 138 p. (In Russ)]
  22. Гапонова Т.В. Экспрессия опухолеассоциированных генов PRAME, WT1 и XIAP у больных множественной миеломой в процессе интенсивной терапии и аутотрансплантации: Диc. ¼ канд. мед. наук. М., 2011. 141 с.
    [Gaponova TV. Expressia opucholeassocirovannykh genov PRAME, WT1 i XIAP u bolnykh mnozhestvennoi myelomoi v processe intensivnoi therapii I autotransplantacii. (Tumor-associated PRAME, WT1 and XIAP gene expression in patients with multiple myeloma during intensive therapy and autografting.) [dissertation] Moscow; 2011. 141 p. (In Russ)]
  23. Tyler EM, Jungbluth AA, O’Reilly RJ, Koehne G. WT1-specific responses in high-risk multiple myeloma patients undergoing allogeneic T-cell-depleted hematopoietic stem cell transplantation and donor lymphocyte infusions. 2012;121(2):308–17. doi: 10.1182/blood-2012-06-435040.
  24. Ujj Z, Buglyo G, Udvardy M, et al. WT1 overexpression affecting clinical outcome in non-Hodgkin lymphomas and adult acute lymphoblastic leukemia. Pathol Oncol Res. 2013;20(3):565–70. doi: 10.1007/s12253-013-9729-
  25. Inoue K, Ogawa H, Yamagami T, et al. Long–term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood. 1996;88(6):2267–78.
  26. Kletzel N, Olzewski M, Huang W, et al. Utility of WT1 as a reliable tool for the detection of minimal disease in children with leukemia. Pediatr Dev Pathol. 2002;5(3):269–75. doi: 10.1007/s10024-001-0208-x.
  27. Cilloni D, Gottardi E, De Micheli D, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring residual disease in acute leukemia patients. 2002;16(10):2115–21. doi: 10.1038/sj.leu.2402675.
  28. Cilloni D, Giuseppe S, Gottardi E, et al. WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Hematol. 2004;112(1–2):79–84. doi: 10.1159/000077562.
  29. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: A European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–201. doi: 10.1200/jco.2009.22.4865.
  30. Weisser M, Kern W, Rauhut S, et al. Prognostic impact of RTPCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. 2005;19(8):1416–23. doi: 10.1038/sj.leu.2403809.
  31. Candoni A, Toffoletti E, Gallina R, et al. Monitoring of minimal residual disease by quantitative WT1 gene expression following reduced intensity conditioning allogeneic stem cell transplantation in acute myeloid leukemia. Clin Transplant. 2011;25(2):308–16. doi: 10.1111/j.1399-0012.2010.01251.x.
  32. Gray JX, McMillen L, Mollee P, et al. WT1 expression as a marker of minimal residual disease predicts outcome in acute myeloid leukemia when measured post-transplantation. Leuk Res. 2012;36(4):453–8. doi: 10.1016/j.leukres.2011.09.005.
  33. Kwon M, Martinez-Laperche C, Infante M, et al. Evaluation of minimal residual disease by real-time quantitative PCR of Wilms’ Tumor 1 expression in patients with acute myelogenous leukemia after allogeneic stem cell trans-plantation: Correlation with flow cytometry and chimerism. Biol Blood Marrow Transplant. 2012;18(8):1235–42. doi: 10.1016/j.bbmt.2012.01.012.
  34. Polak J, Hajkova H, Haskovec C, et al. Quantitative monitoring of WT1 expression in peripheral blood before and after allogeneic stem cell transplantation for acute myeloid leukemia – a useful tool for early detection of minimal residual disease. 2013;60(1):74–82. doi: 10.4149/neo_2013_011.
  35. Cilloni D, Messa F, Arruga F, et al. Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica. 2008;93(6):921–4. doi: 10.3324/haematol.12165.
  36. Andersson C, Li X, Lorenz F, et al. Reduction in WT1 gene expression during early treatment predicts the outcome in patients with acute myeloid leukemia. Diagn Mol Pathol. 2012;21(4):225–33. doi: 10.1097/pdm.0b013e318257ddb9.
  37. Mossallam GI, Hamid TM, Mahmoud HK, et al. Prognostic significance of WT1 expression at diagnosis and end of induction in Egyptian adult acute myeloid leukemia patients. Hematology. 2013;18(2):69–73. doi: 10.1179/1607845412Y.0000000048.
  38. Ujj Z, Buglyo G, Udvardy M, et al. WT1 expression in adult acute myeloid leukemia: Assessing its presence, magnitude and temporal changes as prognostic factors. Pathol Oncol Res. 2015;22(1):217–21. doi: 10.1007/s12253-015-0002-
  39. Rein LAM, Chao NJ. WT1 vaccination in acute myeloid leukemia: new methods of implementing adoptive immunotherapy. Expert Opin Invest Drugs. 2014;23(3):417–26. doi: 10.1517/13543784.2014.889114.
  40. Paschka P, Marcucci G, Ruppert A.S, et al. Wilms’ tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: A Cancer and Leukemia Group B Study. J Clin Oncol. 2008;26(28):4595–602. doi: 10.1200/jco.2007.15.2058.
  41. Sugiyama H. WT1 (Wilms’ tumor gene 1): biology and cancer immunotherapy. Jpn J Clin Oncol. 2010;40(5):377–87. doi: 10.1093/jjco/hyp194.
  42. Vidovic K, Svensson T, Nilsson B, et al. Wilms’ tumor gene 1 protein represses the expression of the tumor suppressor interferon regulatory factor 8 in human hematopoietic progenitors and in leukemic cells. Leukemia. 2010;24(5):9982–1000. doi: 10.1038/leu.2010.33.
  43. Essafi A, Webb A, Berry RL, et al. A WT1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev Cell. 2011;21(3):559–74. doi: 10.1016/j.devcel.2011.07.014.
  44. Huff V. Wilms’ tumours: about tumour suppressor genes, an oncogene and chameleon gene. Nat Rev Cancer. 2001;11(2):111–21. doi: 10.1038/nrc3002.
  45. Morrison AA, Viney RL, Landomery MR. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophys Acta. 2008;1785(1):55–62. doi: 10.1016/j.bbcan.2007.10.002.
  46. Owen C, Fitzgibbon J, Paschka P. The clinical relevance of Wilms Tumour 1 (WT1) gene mutations in acute leukemias. Hematol Onc 2010;28(1):13–9. doi: 10.1002/hon.931.
  47. Haber DA, Sohn RL, Buckler AJ, et al. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci USA. 1991;88(21):9618–22. doi: 10.1073/pnas.88.21.9618.
  48. Keilholz U, Menssen HD, Gaiger A, et al. Wilms’ tumor gene 1(WT1) in human neoplasia. 2005;19(8):1318–23. doi: 10.1038/sj.leu.2403817.
  49. Hosen N, Shirakata T, Nishida S, et al. The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia. 2007;21(8):1783–91. doi: 10.1038/sj.leu.2404752.
  50. Miller-Hodges E, Hohenstein P. WT1 in disease: shifting the epithelial-mesenchymal balance. J Pathol. 2012;226(2):229–40. doi: 10.1002/path.2977.
  51. Cunningham TJ, Palumbo I, Grosso M, et al. WT1 regulates murine hematopoiesis via maintenance of VEGF isoform ratio. Blood. 2013;122(2):188–92. doi: 10.1182/blood-2012-11-466086.
  52. Patmasirivat P, Fraizer G, Kantarjian H, Saunders GF. WT1 and GATA1 expression in myelodysplastic syndrome and acute leukemia. Leukemia. 1999;13(6):891–900. doi: 10.1038/sj.leu.2401414.
  53. Gaiger A, Linnerth B, Mann G, et al. Wilms’ tumour gene (wt1) expression at diagnosis has no prognostic relevance in childhood acute lymphoblastic leukemia treated by an intensive chemotherapy protocol. Eur J Haematol. 2009;63(2):86–93. doi: 10.1111/j.1600-0609.1999.tb01121.x.
  54. Arlyaratana S, Loeb DM. The role of the Wilms tumour gene (WT1) in normal and malignant hematopoiesis. Expert Rev Mol Med. 2007;9(14):1–17. doi: 10.1017/s1462399407000336.
  55. Ellisen LW, Carlesso N, Cheng T, et al. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J. 2001;20(8):1897–909. doi: 10.1093/emboj/20.8.1897.
  56. Scharnhorst V, van den Eb AJ, Jochemsen AG. WT1 proteins: functions in growth and differentiation. Gene. 2001;273(2):141–61. doi: 10.1016/s0378-1119(01)00593-5.
  57. Baird PN, Simmons PJ. Expression of the Wllms’ tumor gene (WT1) in normal hematopoiesis. Eur Haematol. 1997;25(4):312–20.
  58. Lange T, Hubmann M, Burkhard R, et al. Monitoring of WT1 expression in PB and CD34+ donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. 2011;25(3):498–505. doi: 10.1038/leu.2010.283.
  59. Schmid D, Heinze G, Linnert B, et al. Prognostic significance of WT1 gene expression at diagnosis in adult de novo acute myeloid leukemia. Leukemia. 1997;11(5):639–43. doi: 10.1038/sj.leu.2400620.
  60. Lyu X, Xin Y, Mi R, et al. Overexpression of Wilms’ Tumor 1 gene as a negative prognostic indicator in acute myeloid leukemia. PLoS One. 2014;9(3):e92470. doi: 10.1371/journal.pone.0092470.
  61. Wochlecke C, Wittig S, Arndt C, Gruhn B. Prognostic impact of WT1 expression prior to hematopoietic stem cell transplantation in children with malignant hematological diseases. J Cancer Res Clin. Oncol. 2014;141(3):523–9. doi: 10.1007/s00432-014-1832-y.
  62. Zhao X-S, Jin S, Zhu H-H, et al. Wilms’ tumor gene 1 expression: an independent acute leukemia prognostic indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2011;47(4):499–507. doi: 10.1038/bmt.2011.121.
  63. Nomdedeu JF, Hoyos M, Carricondo M, et al. Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML. Leukemia. 2013;27(11):2157–64. doi: 10.1038/leu.2013.111.
  64. Alonso-Domingues JM, Tenorio M, Velasco D, et al. Correlation of WT1 expression with the burden of total and residual leukemic blasts in bone marrow samples of acute myeloid leukemia patients. Cancer Genet. 2012;205(4):190–1. doi: 10.1016/j.cancergen.2012.02.008.
  65. Tamaki H, Ogawa H, Inoue K, et al. Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia. Blood. 1996;88(11):4396–8.
  66. Frairia C, Aydin S, Riera L, et al. WT1 expression in аcute myeloid leukaemia: a useful marker for improving therapy response evaluation. 2013;122(21):2588 (abstract).
  67. Willasch AM, Gruhn B, Coliva T, et al. Standartization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. 2009;23(8):1472–9. doi: 10.1038/leu.2009.51.
  68. Lapillonne H, Renneville A, Auvrignon A, et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol. 2006;24(10):1507–15. doi: 10.1200/jco.2005.03.5303.
  69. Liu J, Wang Yu, Xu L-P, et al. Monitoring mixed lineage leukemia expression may help identify patients with mixed lineage leukemia-rearranged acute leukemia who are at high risk of relapse after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(7):929–36. doi: 10.1016/j.bbmt.2014.03.008.
  70. Ogawa H, Tamaki H, Ikegame K, et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood. 2003;101(5):1698–704. doi: 10.1182/blood-2002-06-
  71. Yoon JH, Kim HJ, Shin SH, et al. BAALC and WT1 expression from diagnosis to hematopoietic stem cell transplantation: consecutive monitoring in adult patients with core-binding-factor-positive AML. Eur J Haematol. 2013;91(2):112–21. doi: 10.1111/ejh.12142.
  72. Yoon JH, Kim H-J, Kim J-W, et al. Identification of molecular and cytogenetic risk factors for unfavorable core-binding factor-positive adult AML with post-remission treatment outcome analysis including transplantation. Bone Marrow Transplant. 2014;49(12):1466–74. doi: 10.1038/bmt.2014.180.
  73. Miyagi T, Ahuja H, Kudota T, et al. Expression of the candidate Wilms’ tumor gene, WT1, in human leukemia cells. Leukemia. 1993;7(7):970–7.
  74. Miyawaki S, Hatsumi N, Tamaki T, et al. Prognostic potential of detection of WT1 mRNA level in peripheral blood in adult acute myeloid leukemia. Leuk Lymphoma. 2010;51(10):1855–61. doi: 10.3109/10428194.2010.507829.
  75. Little M, Wells C. A clinical overview of WT1 gene mutations. Hum Mutat. 1997;9(3):209–25. doi: 10.1002/(sici)1098-1004(1997)9:3<209::aid-humu2>3.0.co;2-2.
  76. Mori N, Okada M, Motoji T, et al. Mutation of the WT1 gene in myelodysplastic syndrome and acute myeloid leukemia post myelodysplastic syndrome. Br J Haematol. 1999;105(3):844–5. doi: 10.1046/j.1365-1999.01497.x.
  77. Damm F, Heuser M, Morgan M, et al. Single nucleotide polymorphism in the mutational hotspot of WT1 predicts a favorable outcome in patients with cytogenetically normal acute myeloid leukemia. J Clin Oncol. 2010;28(4):578–85. doi: 10.1200/jco.2009.23.0342.
  78. Hou HA, Huang TC, Lin LI, et al. WT1 mutation in 470 adult patients with acute myeloid leukemia: stability during disease evolution and implication of its incorporation into a survival scoring system. Blood. 2010;115(25):5222–31. doi: 10.1016/s1040-1741(10)79528-
  79. Shen Y, Zhu Y-M, Fan X, et al. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood. 2011;118(20):5593–603. doi: 10.1182/blood-2011-03-
  80. Luo S, Yu K, Yan QX, et al. Analysis of WT1 mutations, expression levels and single nucleotide polymorphism rs16754 in de novo non-M3 acute myeloid leukemia. Leuk Lymphoma. 2014;56(2):349–57. doi: 10.3109/10428194.2013.791985.
  81. Park SH, Lee HJ, Kim I-S, et al. Incidences and prognostic impact of c-KIT, WT1, CEBPA, and CBL mutations, and mutations associated with epigenetic modification in core binding factor acute myeloid leukemia: a multicenter study in Korean population. Ann Lab Med. 2015;35(3):288–97. doi: 10.3343/alm.2015.35.3.288.
  82. Rampal R, Alkalin A, Madzo J, et al. DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep. 2014;9(5):1841–55. doi: 10.1016/j.celrep.2014.11.004.
  83. Zhang Q, Zhang Q, Li Q. Monitoring of WT1 and its target gene IRF8 expression in acute myeloid leukemia and their significance. Int J Lab Hematol. 2015;37(4):e67–71. doi: 10.1111/ijlh.12309.
  84. Brieger J, Weidmann E, Fenchel K, et al. The expression of the Wilms’ tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells. Leukemia. 1994;8(12):2138.
  85. Brieger J, Weidmann E, Maurer U, et al. The Wilms’ tumor gene is frequently expressed in acute myeloblastic leukemia and may provide a marker for residual blast cells detectable by PCR. Ann Oncol. 1995;6(8):811–66.
  86. Bergmann L, Miething C, Maurer U, et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood. 1997;90(3):1217–25.
  87. Ogawa H, Ikegame K, Kawakami M, Tamaki H. WT1 gene transcript assay for relapse in acute leukemia after transplantation. Leuk Lymphoma. 2004;45(9):1747–53. doi: 10.1080/10428190410001687503.
  88. Rodrigues PC, Oliveira SN, Vaina MB, et al. Prognostic significance of WT1 gene expression in pediatric acute myeloid leukemia. Pediatr Blood Cancer. 2007;49(2):133–8. doi: 10.1002/pbc.20953.
  89. Miglino M, Colombo N, Pica C, et al. Wt1 overexpression at diagnosis may predict favorable outcome in patients with de novo non-M3 acute myeloid leukemia. Leuk Lymphoma. 2011;52(10):1961–9. doi: 10.3109/10428194.2011.585673.
  90. Zhao BR, Tang XW, Cen JN, et al. Correlation between clinical outcome and WT1 detection after hematopoietic stem cell transplantation in acute leukemia. Zhonghua Yi Xue Za Zhi. 2011;91(20):1375–8.
  91. Gaiger A, Schmid D, Heinze G, et al. Detection of the WT1 transcript by RT-PCR in complete remission has no prognostic relevance in de novo acute myeloid leukemia. Leukemia. 1998;12(12):1886–94. doi: 10.1038/sj.leu.2401213.
  92. Barragan E, Cervera J, Bolufer P, et al. Prognostic implications of Wilms’ tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica. 2004;89(8):926–33.
  93. Yi-ning Y, Xiao-rui W, Chu-xian Z, et al. Prognostic significance of diagnosed WT1 level in acute myeloid leukemia: a meta-analyse. Ann Hematol. 2015;94(6):929–38. doi: 10.1007/s00277-014-2295-
  94. Nowakowska-Kopera A, Sacha T, Florek I, et al. Wilms’ tumor gene 1 expression analysis by real-time quantitative polymerase chain reaction for monitoring of minimal residual disease in acute leukemia. Leuk Lymphoma. 2009;50(8):1326–32. doi: 10.1080/10428190903050021.
  95. Guillaumet-Adkins A, Richter J, Odera MD, et al. Hypermethylation of the alternative AWT1 promotor in hematological malignancies is a highly specific marker for acute myeloid leukemias despite high expression levels. J Hematol Oncol. 2014;7(1):4. doi: 10.1186/1756-8722-7-4.
  96. Capelli D, Attolico I, Saraceli F, et al Early cumulative incidence of relapse in 80 acute myeloid leukemia patients after chemotherapy and transplant post-consolidation treatment: prognostic role of post-induction WT1. 40th EBMT Meeting; 2014 30 March – 2 April; Milan, Italy; 2014: Abstract P287.
  97. Messina C, Candoni A, Carraba MG, et al. Wilms’ tumor gene 1 transcript levels in leukopheresis on peripheral blood hematopoietic cells predict relapse risk in patients autografted for acute myeloid leukemia. Biol Blood Marrow Transpl. 2014;20(10):1586–91. doi: 10.1016/j.bbmt.2014.06.017.
  98. Messina C, Sala E, Carrabba M, et al. Early post-allogeneic transplantation WT1 transcript positivity predicts AML relapse. 40th EBMT Meeting; 2014 30 March – 2 April; Milan, Italy; 2014: Abstract P239.
  99. Gianfaldoni G, Mannelli F, Ponziani V, et al. Early reduction of WT1 transcripts during induction chemotherapy predicts for longer disease free and overall survival in acute myeloid leukemia. Haematologica. 2010;95(5):833–6. doi: 10.3324/haematol.2009.011908.
  100. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Трансплантация гемопоэтических стволовых клеток при остром миелоидном лейкозе с транслокацией t(8;21)(q22;q22). Клиническая онкогематология. 2013;6(4):439–44.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Hemopoietic stem cell transplantation in AML patients with t(8;21)(q22;q22) translocation. Klinicheskaya onkogematologiya. 2013;6(4):439–44. (In Russ)]
  101. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Стойкое восстановление донорского гемопоэза у больной с посттрансплантационным рецидивом острого миеломонобластного лейкоза с inv(3)(q21q26), моносомией 7 и экспрессией онкогена EVI1 после трансфузий донорских лимфоцитов и использования гипометилирующих агентов. Клиническая онкогематология. 2014;7(1):71–5.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Stable donor hematopoiesis reconstitution after post-transplantation relapse of acute myeloid leukemia in patient with inv(3)(q21q26), –7 and EVI1 oncogene overexpression treated by donor lymphocyte infusions and hypomethylating agents. Klinicheskaya onkogematologiya. 2014;7(1):71–5. (In Russ)]
  102. Barragan E, Pajuelo JC, Ballester S, et al. Minimal residual disease detection in acute myeloid leukemia by mutant nucleophosmin (NPM1): comparison with WT1 gene expression. Clin Chim Acta. 2008;395(1–2):120–3. doi: 10.1016/j.cca.2008.05.021.
  103. Ostergaard M, Olesen LH, Hasle H, et al. WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukemia patients – results from a single-centre study. Br J Haematol. 2004;125(5):590–600. doi: 10.1111/j.1365-2004.04952.x.
  104. Zhao XS, Yan CH, Liu DH, et al. Combined use of WT1 and flow cytometry monitoring can promote sensitivity of predicting relapse after allogeneic HSCT without affecting specificity. Ann Hematol. 2013;92(8):1111–9. doi: 10.1007/s00277-013-1733-
  105. Candoni A, Tiribelli M, Toffoletti E, et al. Quantitative assessment of WT1 gene expression after allogeneic stem cell transplantation is a useful tool for monitoring minimal residual disease in acute myeloid leukemia. Eur J Haematol. 2009;82(1):61–8. doi: 10.1111/j.1600-2008.01158.x.
  106. Ommen HB, Nyvold CG, Braendstrup K, et al. Relapse prediction in acute myeloid leukemia patients in complete remission using WT1 as a molecular marker: development of a mathematical model to predict time from molecular to clinical relapse and define optimal sampling intervals. Br J Haematol. 2008;141(6):782–991. doi: 10.1111/j.1365-2008.07132.x.
  107. Yamauchi T, Negoro E, Lee S, et al. Detectable Wilms’ tumor-1 transcription at treatment completion is associated with poor prognosis of acute myeloid leukemia: a single institution’s experience. Anticancer Res. 2013;33(8):3335–40.
  108. Woehlecke C, Wittig S, Sanft J, et al. Detection of relapse after hematopoietic stem cell transplantation in childhood by monitoring of WT1 expression and chimerism. J Cancer Res Clin Oncol. 2015;141(7):1283–90. doi: 10.1007/s00432-015-1919-
  109. Jin S, Liu DH, Xu LP, et al. The significance of dynamic detection of WT1 expression on patients of hematologic malignancy following allogeneic hematopoietic stem cell transplantation. Zhonghua Nei Ke Za Zhi. 2008;47(7):578–81.
  110. Rossi G, Minervini MM, Carella AM, et al. Comparison between multiparameter flow cytometry and WT1-RNA quantification in monitoring minimal residual disease in acute myeloid leukemia without specific molecular targets. Leuk Res. 2012;36(4):401–6. doi: 10.1016/j.leukres.2011.11.020.
  111. Zhao Q, Zhao Q, Li Q, et al. Monitoring of WT1 and its target gene IRF8 expression in acute myeloid leukemia and their significance. Int J Lab Hematol. 2014;37(4):e67–71. doi: 10.1111/ijlh.12309.
  112. Mear J-B, Salaun V, Dina N, et al. WT1 and flow cytometry minimal residual disease follow-up after allogeneic transplantation in practice. 40th EBMT Meeting; 2014 30 March – 2 April; Milan, Italy; 2014: Abstract P655.
  113. Tamaki H, Ogawa H, Ohyashiki K, et al. The Wilms’ tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. 1999;13(3):393–9. doi: 10.1038/sj.leu.2401341.
  114. Cilloni D, Gottardi E, Messa F, et al. Significant correlation between the degree of WT1 expression and the International Scoring System score in patients with myelodysplastic syndromes. J Clin Oncol. 2003;21(10):1988–95. doi: 10.1200/jco.2003.10.503.
  115. Bader P, Niemeyer C, Weber G, et al. WT1 gene expression: useful marker for minimal residual disease in childhood myelodysplastic syndromes and juvenile myelomonocytic leukemia. Eur J Haematol. 2004;73(1):25–8. doi: 10.1111/j.1600-2004.00260.x.
  116. Tamura H, Dan K, Yokose N, et al. Prognostic significance of WT1 mRNA and antiWT1 antibody levels in peripheral blood in patients with myelodysplastic syndromes. Leuk Res. 2010;34(8):986–90. doi: 10.1016/j.leukres.2009.11.029.
  117. Yamauchi T, Matsuda Y, Takai M, et al. Wilms’ tumor-1 transcript in peripheral blood helps diagnose acute myeloid leukemia and myelodysplastic syndrome in patients with pancytopenia. Anticancer Res. 2012;32(10):4479–83.
  118. Qin Y-Z, Zhu H-H, Liu Y-R, et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leuk Lymphoma. 2013;54(7):1442–9. doi: 10.3109/10428194.2012.743656.
  119. Ueda Y, Mizutani C, Nannya Y, et al. Clinical evaluation of WT1 mRNA expression levels in peripheral blood and bone marrow in patients with myelodysplastic syndromes. Leuk Lymphoma. 2013;54(7):1450–18. doi: 10.3109/10428194.2012.745074.
  120. Minetto P, Guolo F, Clavio M, et al. Combined assessment of WT1 and BAALC gene expression at diagnosis may improve leukemia-free survival prediction in patients with myelodysplastic syndrome. Leuk Res. 2015;39(8):866–73. doi: 10.1016/j.leukres.2015.04.011.
  121. Santamaria C, Ramos F, Puig N, et al. Simultaneous analysis of the expression of 14 genes with individual prognostic value in myelodysplastic syndrome patients at diagnosis: WT1 detection in peripheral blood adversely affects survival. Ann Hematol. 2012;91(12):1887–95. doi: 10.1007/s00277-012-1538-
  122. Menssen HD, Renkl HJ, Rodeck U, et al. Presence of Wilms’ tumor gene wt1 transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia. 1995;9(6):1060–7.
  123. He YZ, Liang Z, Wu MR, et al. Overexpression of EPS8 is associated with poor prognosis in patients with acute lymphoblastic leukemia. Leuk Res. 2015;39(6):575–81. doi: 10.1016/j.leukres.2015.03.007.
  124. Xu B, Song S, Yip NC, et al. Simultaneous detection of MDR and WT1 gene expression to predict the prognosis of adult acute lymphoblastic leukemia. Hematology. 2010;15(2):74–80 doi: 10.1179/ 102453310X12583347009937.
  125. Azuma T, Otsuki T, Kuzushima K, et al. Myeloma cells are highly sensitive to the granule exocytosis pathway mediated by WT1-specific cytotoxic T lymphocytes. Clin Cancer Res. 2004;10(21):7402–12. doi: 10.1158/1078-ccr-04-0825.
  126. Hamalainen MM, Kairisto V, Junonen V, et al. Wilms tumour gene 1 overexpression in bone marrow as a marker for minimal residual disease in acute myeloid leukemia. Eur J Haematol. 2008;80(3):201–7. doi: 10.1111/j.1600-2007.01009.x.
  127. Wartheim GB, Bagg A. Minimal residual disease testing to predict relapse following transplant for AML and high-grade myelodysplastic syndromes. Expert Rev Mol Drug. 2011;11(4):361–6. doi: 10.1586/erm.11.19.
  128. Lambert J, Lambert J, Niboured O, et al. MRD assessed by WT1 and NPM1 transcript levels identifies distinct outcomes in AML patients and is influenced by gemtuzumab ozogamicin. Oncotarget. 2014;5(15):6280–8. doi: 10.18632/oncotarget.2196.
  129. Steinbach D, Bader P, Willasch A, et al. Prospective validation of a new method of monitoring minimal residual disease in childhood acute myeloid leukemia. Clin Cancer Res. 2014;21(6):1353–9. doi: 10.1158/1078-ccr-14-1999.
  130. Gray JX, McMillen L, Mollee P, et al. WT1 expression as a marker of minimal residual disease predicts outcome in acute myeloid leukemia when measured post-consolidation. Leuk Res. 2012;36(4):453–8. doi: 10.1016/j.leukres.2011.09.005.
  131. Noronha SA, Farrar JE, Alonzo TA, et al. WT1 expression at diagnosis does not predict survival in pediatric AML: a report from the children’s oncology group. Pediatr Blood Cancer. 2009;53(6):1136–9. doi: 10.1002/pbc.22142.
  132. Kim HJ, Choi EJ, Sohn HJ, et al. Combinatorial molecular marker assays of WT1, survivin, and TERT at initial diagnosis of adult acute myeloid leukemia. Eur J Haematol. 2013;91(5):411–22. doi: 10.1111/ejh.12167.
  133. Niavarani A, Currie E, Reyal Y, et al. APOBEC3A is implicated in a novel class of G-to-A mRNA editing in WT1 transcripts. PloS One. 2015;10(3):e0120089. doi: 10.1371/journal.pone.0120089.
  134. Taira C, Matsuda K, Kamijyo Y, et al. Quantitative monitoring of single nucleotide mutations by allele-specific quantitative PCR can be used for the assessment of minimal residual disease in patients with hematological malignancies throughout their clinical course. Clin Chim Acta. 2011;412(1–2):53–8. doi: 10.1016/j.cca.2010.09.011.
  135. Morita Y, Heike1 Y, Kawakami M, et al. Monitoring of WT1-specific cytotoxic T lymphocytes after allogeneic hematopoietic stem cell transplantation. Int J Cancer. 2006;119(6):1360–7. doi: 10.1002/ijc.21960.
  136. Tsuboi A, Oka Y, Nakajima H, et al. Wilms tumor gene WT1 peptide-based immunotherapy induced a minimal response in a patient with advanced therapy-resistant multiple myeloma. Int J Hematol. 2007;86(5):414–7. doi: 10.1007/bf02983998.
  137. Narita M, Masuko M, Kurasaki T, et al. WT1 peptide vaccination in combination with imatinib for a patient with CML in the chronic phase. Int J Med Sci. 2010;7(2):72–81. doi: 10.7150/ijms.7.72.

Genetic Mutations in Acute Myeloid Leukemia

OV Blau

Charite Clinic, Berlin Medical University, 30 Hindenburgdamm, Berlin, Germany, 12200

For correspondence: Ol’ga Vladimirovna Blau, DSci, Department of Hematology, Oncology and Tumorimmunology, Charite University School of Medicine, Hindenburgdamm 30, 12200, Berlin, Germany; e-mail: olga.blau@charite.de.

For citation: Blau OV. Genetic Mutations in Acute Myeloid Leukemia. Clinical oncohematology. 2016;9(3):245-56 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-245-256


ABSTRACT

Acute myeloid leukemia (AML) is a clonal malignancy characterized by ineffective hematopoiesis. Most AML patients present different cytogenetic and molecular defects associated with certain biologic and clinical features of the disease. Approximately 50–60 % of de novo AML and 80–95 % of secondary AML patients demonstrate chromosomal aberrations. Structural chromosomal aberrations are the most common cytogenetic abnormalities in about of 40 % of de novo AML patients. A relatively large group of intermediate risk patients with cytogenetically normal (CN) AML demonstrates a variety of outcomes. Current AML prognostic classifications include only some mutations with known prognostic value, namely NPM1, FLT3 and C/EBPa. Patients with NPM1 mutation, but without FLT3-ITD or C/EBPa mutations have a favorable prognosis, whereas patients with FLT3-ITD mutation have a poor prognosis. A new class of mutations affecting genes responsible for epigenetic mechanisms of genome regulations, namely for DNA methylation and histone modification, was found recently. Among them, mutations in genes DNMT3A, IDH1/2, TET2 and some others are the most well-studied mutations to date. A number of studies demonstrated an unfavorable prognostic effect of the DNMT3A mutation in AML. The prognostic significance of the IDH1/2 gene is still unclear. The prognosis is affected by a number of biological factors, including those associated with cytogenetic aberrations and other mutations, especially FLT3 and NPM1. The number of studies of genetic mutations in AML keeps growing. The data on genetic aberrations in AML obtained to date confirm their role in the onset and development of the disease.


Keywords: acute myeloid leukemia, AML, karyotype, cytogenetic aberrations, gene mutation, prognosis.

Received: January 23, 2016

Accepted: April 4, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Renneville A, Roumier С., Biggio V, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia. 2008;22(5):915–31. doi: 10.1038/leu.2008.19.
  2. Knudson AG. Mutation and Cancer: Statistical Study of Retinoblastoma. Proc Natl Acad Sci USA. 1971;68(4):820–3. doi: 10.1073/pnas.68.4.820.
  3. Tucker T, Friedman JM. Pathogenesis of hereditary tumors: beyond the “two-hit” hypothesis. Clin Genet. 2002;62(5):345–57. doi: 10.1034/j.1399-0004.2002.620501.x.
  4. Park S, Koh Y, Yoon SS. Effects of Somatic Mutations Are Associated with SNP in the Progression of Individual Acute Myeloid Leukemia Patient: The Two-Hit Theory Explains Inherited Predisposition to Pathogenesis. Genom Inform. 2013;11(1):34–7. doi: 10.5808/gi.2013.11.1.34.
  5. Genovese G, Kahler AK, Handsaker RE, et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N Engl J Med. 2014;371(26):2477–87. doi: 10.1056/nejmoa1409405.
  6. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11. doi: 10.1038/35102167.
  7. Grimwade D. The changing paradigm of prognostic factors in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2012;25(4):419–25. 10.1016/j.beha.2012.10.004.
  8. Patel JP, Gonen M, Figueroa ME, et al. Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia. N Engl J Med. 2012;366(12):1079–89. doi: 10.1056/nejmoa1112304.
  9. Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-235358.
  10. Frehlick LJ, Eirin-Lopez JM, Ausio J. New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. Bioessays. 2007;29(1):49–59. doi: 10.1002/bies.20512.
  11. Kurki S, Peltonen K, Latonen L, et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cell. 2004;5(5):465–75. doi: 10.1016/s1535-6108(04)00110-2.
  12. Lindstrom MS. NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochem Res Int. 2011;2011:1–16. doi: 10.1155/2011/195209.
  13. Falini B, Bolli NI, Martelli MP, et al. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. 2007;92(4):519–32. doi: 10.3324/haematol.11007.
  14. Falini B, Bigerna B, Pucciarini A, et al. Aberrant subcellular expression of nucleophosmin and NPM-MLF1 fusion protein in acute myeloid leukaemia carrying t(3;5): a comparison with NPMc+ AML. Leukemia. 2006;20(2):368–71. doi: 10.1038/sj.leu.2404068.
  15. Redner R, Rush EA, Faas S, et al. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. 1996;87(3):882–6.
  16. Sportoletti P, Varasano E, Rossi R, et al. Mouse models of NPM1-mutated acute myeloid leukemia: biological and clinical implications. 2015;29(2):269–78. doi: 10.1038/leu.2014.257.
  17. Grisendi S, Mecucci C, Falini B, Pandolfi PP. Nucleophosmin and cancer. Nat Rev Cancer. 2006;6(7):493–505. doi: 10.1038/nrc1885.
  18. Sportoletti P, Grisendi S, Majid SM, et al. Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood; 2008;111(7):3859–62. doi: 10.1182/blood-2007-06-098251.
  19. Ferrara F, Schiffer CA. Acute myeloid leukaemia in adults. The Lancet. 2013;381(9865):484–95. doi: 10.1016/s0140-6736(12)61727-9.
  20. Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic Nucleophosmin in Acute Myelogenous Leukemia with a Normal Karyotype. N Engl J Med. 2005;352(3):254–66. doi: 10.1056/nejmoa041974.
  21. Falini B, Martelli MP, Pileri SA, Mecucci C. Molecular and alternative methods for diagnosis of acute myeloid leukemia with mutated NPM1: flexibility may help. 2010;95(4):529–34. doi: 10.3324/haematol.2009.017822.
  22. Falini B, Albiero E, Bolli N, et al. Aberrant cytoplasmic expression of C-terminal-truncated NPM leukaemic mutant is dictated by tryptophans loss and a new NES motif. Leukemia. 2007;21(9):2052–4. doi: 10.1038/sj.leu.2404839.
  23. Schlenk RF, Dohner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358(18):1909–18. doi: 10.1056/nejmoa074306.
  24. Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 Mutations Are Frequent Genetic Alterations in Acute Myeloid Leukemia and Confer Adverse Prognosis in Cytogenetically Normal Acute Myeloid Leukemia With NPM1 Mutation Without FLT3 Internal Tandem Duplication. J Clin Oncol. 2010. 28(22):3636–43. doi: 10.1200/jco.2010.28.3762.
  25. Dvorakova D, Racil Z, Jeziskova I, et al. Monitoring of minimal residual disease in acute myeloid leukemia with frequent and rare patient-specific NPM1 mutations. Am J Hematol. 2010;85(12):926–9. doi: 10.1002/ajh.21879.
  26. Schnittger S, Kern W, Tschulik C, et al. Minimal residual disease levels assessed by NPM1 mutation–specific RQ-PCR provide important prognostic information in AML. Blood. 2009;114(11):2220–31. doi: 10.1182/blood-2009-03-213389.
  27. Stahl T, Badbaran A, Kroger N, et al. Minimal residual disease diagnostics in patients with acute myeloid leukemia in the post-transplant period: comparison of peripheral blood and bone marrow analysis. Leuk Lymphoma. 2010;51(10):1837–43. doi: 10.3109/10428194.2010.508822.
  28. Kronke J, Schlenk RF, Jensen KO, et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol. 2011;29(19):2709–16. doi: 10.1200/jco.2011.35.0371.
  29. Rosnet O, Schiff C, Pebusque MJ, et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood. 1993;82(4):1110–9.
  30. Meshinchi S, Appelbaum FR. Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin Cancer Res. 2009;15(13):4263–9. doi: 10.1158/1078-0432.ccr-08-1123.
  31. Sitnicka E, Buza-Vidas N, Larsson S, et al. Human CD34+ hematopoietic stem cells capable of multilineage engrafting NOD/SCID mice express flt3: distinct flt3 and c-kit expression and response patterns on mouse and candidate human hematopoietic stem cells. Blood. 2003;102(3):881–6. doi: 10.1182/blood-2002-06-1694.
  32. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532–42. doi: 10.1182/blood-2002-02-0492.
  33. Adolfsson J, Borge OJ, Bryder D, et al. Upregulation of Flt3 Expression within the Bone Marrow Lin–Sca1+c-kit+ Stem Cell Compartment Is Accompanied by Loss of Self-Renewal Capacity. Immunity. 2001;15(4):659–69. doi: 10.1016/s1074-7613(01)00220-5.
  34. Griffith J, Black J, Faerman C, et al. The Structural Basis for Autoinhibition of FLT3 by the Juxtamembrane Domain. Mol Cell. 2004;13(2):169–78. doi: 10.1016/s1097-2765(03)00505-7.
  35. Gale RE, Green C, Allen C, et al. The impact of FLT3 internal tandem duplication mutant level, number, size and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111(5):2776–84. doi: 10.1182/blood-2007-08-109090.
  36. Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–9. doi: 10.1182/blood.v98.6.1752.
  37. Marcucci G, Haferlach T, Dohner H. Molecular Genetics of Adult Acute Myeloid Leukemia: Prognostic and Therapeutic Implications. J Clin Oncol. 2011;29(5):475–86. doi: 10.1200/jco.2010.30.2554.
  38. Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. 2002;100(1):59–66. doi: 10.1182/blood.v100.1.59.
  39. Breitenbuecher F, Schnittger S, Grundler R, et al. Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood. 2009;113:4074–7. doi: 10.1182/blood-2007-11-125476.
  40. Kayser S, Schlenk RF, Londono MC, et al. Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood. 2009;114(12):2386–92. doi: 10.1182/blood-2009-03-209999.
  41. Schlenk RF, Kayser S, Bullinger L, et al. Differential impact of allelic ratio and insertion site in FLT3-ITD–positive AML with respect to allogeneic transplantation. Blood. 2014;124(23):3441–9. doi: 10.1182/blood-2014-05-578070.
  42. Gu TL, Nardone J, Wang Y, et al. Survey of Activated FLT3 Signaling in Leukemia. PLoS One, 2011;6(4):e19169. doi: 10.1371/journal.pone.0019169.
  43. Rocnik JL, Okabe R, Yu JC, et al. Roles of tyrosine 589 and 591 in STAT5 activation and transformation mediated by FLT3-ITD. Blood. 2006;108(4):1339–45. doi: 10.1182/blood-2005-11-011429.
  44. Blau O, Berenstein R, Sindram A, Blau IW. Molecular analysis of different FLT3-ITD mutations in acute myeloid leukemia. Leuk Lymphoma. 2013;54(1):145–52. doi: 10.3109/10428194.2012.704999.
  45. Frohling S, Schlenk RF, Breitruck J, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002;100(13):4372–80. doi: 10.1182/blood-2002-05-1440.
  46. Mrozek K, Marcucci G, Paschka P, et al. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109(2):431–48. doi: 10.1182/blood-2006-06-001149.
  47. Sengsayadeth SM, Jagasia M, Engelhardt BG, et al. Allo-SCT for high-risk AML-CR1 in the molecular era: impact of FLT3/ITD outweighs the conventional markers. Bone Marrow Transplant. 2012;47(12):1535–7. doi: 10.1038/bmt.2012.88.
  48. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97(8):2434–9. doi: 10.1182/blood.v97.8.2434.
  49. Mead AJ, Linch DC, Hills RK, et al. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood. 2007;110(4):1262–70. doi: 10.1182/blood-2006-04-015826.
  50. Whitman SP, Ruppert AS, Radmacher MD, et al. FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood. 2008;111(3):1552–9. doi: 10.1182/blood-2007-08-107946.
  51. Ozeki K, Kiyoi H, Hirose Y, et al. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood. 2004;103(5):1901–8. doi: 10.1182/blood-2003-06-1845.
  52. Ley TJ, Miller C, Ding L, et al. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. N Engl J Med. 2013;368(22):2059–74. doi: 10.1056/nejmoa1301689.
  53. Gaidzik VI, Schlenk RF, Paschka P, et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood. 2013;121(23):4769–77. doi: 10.1182/blood-2012-10-461624.
  54. Kottaridis PD, Gale RE, Langabeer SE, et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002;100(7):2393–8. doi: 10.1182/blood-2002-02-0420.
  55. Shih LY, Huang CF, Wu JH, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood. 2002;100(7):2387–92. doi: 10.1182/blood-2002-01-0195.
  56. Chu SH, Small D. Mechanisms of resistance to FLT3 inhibitors. Drug Resist Update. 2009;12(1–2):8–16. doi: 10.1016/j.drup.2008.12.001.
  57. Moore AS, Faisal A, Gonzalez de Castro D, et al. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns. Leukemia. 2012;26(7):1462–70. doi: 10.1038/leu.2012.52.
  58. Mead AJ, Gale RE, Kottaridis PD, et al. Acute myeloid leukaemia blast cells with a tyrosine kinase domain mutation of FLT3 are less sensitive to lestaurtinib than those with a FLT3 internal tandem duplication. Br J Haematol. 2008;141(4):454–60. doi: 10.1111/j.1365-2141.2008.07025.x.
  59. Koschmieder S, Halmos B, Levantini E, Tenen DG. Dysregulation of the C/EBPa Differentiation Pathway in Human Cancer. J Clin Oncol. 2009;27(4):619–28. doi: 10.1200/jco.2008.17.9812.
  60. Wang H, Iakova P, Wilde M, et al. C/EBPa Arrests Cell Proliferation through Direct Inhibition of Cdk2 and Cdk4. Mol Cell. 2001;8(4):817–28. doi: 10.1016/s1097-2765(01)00366-5.
  61. Radomska HS, Huettner CS, Zhang P, et al. CCAAT enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol. 1998;18(7):4301–14. doi: 10.1128/mcb.18.7.4301.
  62. Zhang DE, Zhang P, Wang ND, et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein a-deficient mice. Proc Natl Acad Sci USA. 1997;94(2):569–74. doi: 10.1073/pnas.94.2.569.
  63. Umek RM, Friedman AD, McKnight SL. CCAAT-enhancer binding protein: a component of a differentiation switch. Science. 1991;251(4991):288–92. doi: 10.1126/science.1987644.
  64. Watkins PJ, Condreay JP, Huber BE, et al. Proliferation and tumorigenicity induced by CCAAT/enhancer-binding protein. Cancer Res. 1996;56(5):1063–7.
  65. Pabst T, Mueller BU, Zhang P, et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-[alpha] (C/EBP [alpha]), in acute myeloid leukemia. Nat Genet. 2001;27(3):263–70. doi: 10.1038/85820.
  66. Nerlov C. C/EBP [alpha] mutations in acute myeloid leukaemias. Nat Rev Cancer. 2004;4(5):394–400. doi: 10.1038/nrc1363.
  67. Wouters BJ, Jorda MA, Keeshan K, et. al. Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood. 2007;110(10):3706–14. doi: 10.1182/blood-2007-02-073486.
  68. Taskesen E, Bullinger L, Corbacioglu A, et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood. 2011;117(8):2469–75. doi: 10.1182/blood-2010-09-307280.
  69. Kirstetter P, Schuster MB, Bereshchenko O, et al. Modeling of C/EBPa Mutant Acute Myeloid Leukemia Reveals a Common Expression Signature of Committed Myeloid Leukemia-Initiating Cells. Cancer Cell. 2008;13(4):299–310. doi: 10.1016/j.ccr.2008.02.008.
  70. Shih LY, Liang DC, Huang CF, et al. AML patients with CEBP [alpha] mutations mostly retain identical mutant patterns but frequently change in allelic distribution at relapse: a comparative analysis on paired diagnosis and relapse samples. Leukemia. 2006;20(4):604–9. doi: 10.1038/sj.leu.2404124.
  71. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, et al. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009;113(13):3088–91. doi: 10.1182/blood-2008-09-179895.
  72. Cagnetta A, Adamia S, Acharya C, et al. Role of genotype-based approach in the clinical management of adult acute myeloid leukemia with normal cytogenetics. Leuk Res. 2014;38(6):649–59. doi: 10.1016/j.leukres.2014.03.006.
  73. Wouters BJ, Sanders MA, Lugthart S, et al. Segmental uniparental disomy as a recurrent mechanism for homozygous CEBPA mutations in acute myeloid leukemia. Leukemia. 2007;21(11):2382–4. doi: 10.1038/sj.leu.2404795.
  74. Valk PJM, Verhaak RG, Beijen MA, et al. Prognostically Useful Gene-Expression Profiles in Acute Myeloid Leukemia. N Engl J Med. 2004;350(16):1617–28. doi: 10.1056/nejmoa040465.
  75. Marceau-Renaut A, Guihard S, Castaigne S, et al. Classification of CEBPA mutated acute myeloid leukemia by GATA2 mutations. Am J Hematol. 2015;90(5):E93–4. doi: 10.1002/ajh.23949.
  76. Pabst T, Mueller BU. Transcriptional dysregulation during myeloid transformation in AML. Oncogene. 2007;26(47):6829–37. doi: 10.1038/sj.onc.1210765.
  77. Frohling S, Schlenk RF, Krauter J, et al. Acute myeloid leukemia with deletion 9q within a noncomplex karyotype is associated with CEBPA loss-of-function mutations. Genes Chromos Cancer. 2005;42(4):427–32. doi: 10.1002/gcc.20152.
  78. Green CL, Koo KK, Hills RK, et al. Prognostic Significance of CEBPA Mutations in a Large Cohort of Younger Adult Patients With Acute Myeloid Leukemia: Impact of Double CEBPA Mutations and the Interaction With FLT3 and NPM1 Mutations. J Clin Oncol. 2010;28(16):2739–47. doi: 10.1200/jco.2009.26.2501.
  79. Behdad A, Weigelin HC, Elenitoba-Johnson KS, Betz BL. A Clinical Grade Sequencing-Based Assay for CEBPA Mutation Testing: Report of a Large Series of Myeloid Neoplasms. J Mol Diagn. 2015;17(1):76–84. doi: 10.1016/j.jmoldx.2014.09.007.
  80. Bienz M, Ludwig M, Leibundgut EO, et al. Risk Assessment in Patients with Acute Myeloid Leukemia and a Normal Karyotype. Clin Cancer Res. 2005;11(4):1416–24. doi: 10.1158/1078-0432.ccr-04-1552.
  81. Frohling S, Schlenk RF, Stolze I, et al. CEBPA Mutations in Younger Adults With Acute Myeloid Leukemia and Normal Cytogenetics: Prognostic Relevance and Analysis of Cooperating Mutations. J Clin Oncol. 2004;22(4):624–33. doi: 10.1200/jco.2004.06.060.
  82. Preudhomme C, Sagot C, Boissel N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100(8):2717–23. doi: 10.1182/blood-2002-03-0990.
  83. Pastore F, Kling D, Hoster E, et al. Long-term follow-up of cytogenetically normal CEBPA-mutated AML. J Hematol Oncol. 2014;7(1):55. doi: 10.1186/s13045-014-0055-7.
  84. Park SH, Chi H-S, Cho Y-U, et al. CEBPA single mutation can be a possible favorable prognostic indicator in NPM1 and FLT3-ITD wild-type acute myeloid leukemia patients with intermediate cytogenetic risk. Leuk Res. 2013;37(11):1488–94. doi: 10.1016/j.leukres.2013.08.014.
  85. Renneville A, Boissel N, Gachard N, et al. The favorable impact of CEBPA mutations in patients with acute myeloid leukemia is only observed in the absence of associated cytogenetic abnormalities and FLT3 internal duplication. Blood. 2009;113(21):5090–3. doi: 10.1182/blood-2008-12-194704.
  86. Taniuchi I, Littman DR. Epigenetic gene silencing by Runx proteins. Oncogene. 2004;23(24):4341–5. doi: 10.1038/sj.onc.1207671.
  87. Yoshida H, Kitabayashi I. Chromatin regulation by AML1 complex. Int J Hematol. 2008;87(1):19–24. doi: 10.1007/s12185-007-0004-0.
  88. Tang JL, Hou HA, Chen CY, et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. 2009;114(26):5352–61. doi: 10.1182/blood-2009-05-223784.
  89. Dicker F, Haferlach C, Sundermann J, et al. Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia. 2010;24(8):1528–32. doi: 10.1038/leu.2010.124.
  90. Gaidzik VI, Bullinger L, Schlenk RF, et al. RUNX1 Mutations in Acute Myeloid Leukemia: Results From a Comprehensive Genetic and Clinical Analysis From the AML Study Group. J Clin Oncol. 2011;29(10):1364–72. doi: 10.1200/jco.2010.30.7926.
  91. Dicker F, Haferlach C, Kern W, et al. Trisomy 13 is strongly associated with AML1/RUNX1 mutations and increased FLT3 expression in acute myeloid leukemia. Blood. 2007;110:1308–16. doi: 10.1182/blood-2007-02-072595.
  92. Matsuno N, Osato M, Yamashita N, et al. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia. 2003;17(12):2492–9. doi: 10.1038/sj.leu.2403160.
  93. Mendler JH, Maharry K, Becker H, et al. In rare acute myeloid leukemia patients harboring both RUNX1 and NPM1 mutations, RUNX1 mutations are unusual in structure and present in the germline. 2013;98(8):e92–4. doi: 10.3324/haematol.2013.089904.
  94. Fasan A, Haferlach C, Kohlmann A, et al. Rare coincident NPM1 and RUNX1 mutations in intermediate risk acute myeloid leukemia display similar patterns to single mutated cases. Haematologica. 2014;99(2):e20–1. doi: 10.3324/haematol.2013.099754.
  95. Fernandez-Medarde A, Santos E. Ras in Cancer and Developmental Diseases. Genes Cancer. 2011;2(3):344–58. doi: 10.1177/1947601911411084.
  96. Stites EC, Ravichandran KS. A Systems Perspective of Ras Signaling in Cancer. Clin Cancer Res. 2009;15(5):1510–3. doi: 10.1158/1078-0432.ccr-08-2753.
  97. Johnson DB, Smalley KSM, Sosman JA. Molecular Pathways: Targeting NRAS in Melanoma and Acute Myelogenous Leukemia. Clin Cancer Res. 2014;20(16):4186–92. doi: 10.1158/1078-0432.ccr-13-3270.
  98. Fedorenko IV, Gibney GT, Smalley KSM. NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene. 2013;32(25):3009–18. doi: 10.1038/onc.2012.
  99. Reuter CM, Krauter J, Onono FO, et al. Lack of noncanonical RAS mutations in cytogenetically normal acute myeloid leukemia. Ann Hematol. 2014;93(6):977–82. doi: 10.1007/s00277-014-2061-9.
  100. Bacher U, Haferlach T, Schoch C, et al. Implications of NRAS mutations in AML: a study of 2502 patients. Blood. 2006;107(10):3847–53. doi: 10.1182/blood-2005-08-3522.
  101. Padua RA, West RR. Oncogene mutation and prognosis in the myelodysplastic syndromes. Br J Haematol. 2000;111(3):873–4. doi: 10.1111/j.1365-2141.2000.02472.x.
  102. Berman JN, Gerbing RB, Alonzo TA, et al. Prevalence and clinical implications of NRAS mutations in childhood AML: a report from the Children’s Oncology Group. 2011;25(6):1039–42. doi: 10.1038/leu.2011.31.
  103. Bowen DT, Frew ME, Hills R, et al. RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood. 2005;106(6):2113–9. doi: 10.1182/blood-2005-03-0867.
  104. Roskoski R Jr. Structure and regulation of Kit protein-tyrosine kinase–The stem cell factor receptor. Biochem Biophys Res Commun. 2005;338(3):1307–15. doi: 10.1016/j.bbrc.2005.09.150.
  105. Yarden Y, Ullrich A. Growth Factor Receptor Tyrosine Kinases. Ann Rev Biochem. 1988:57(1):443–78. doi: 10.1146/annurev.bi.57.070188.002303.
  106. Paschka P, Marcucci G, Ruppert AS, et al. Adverse Prognostic Significance of KIT Mutations in Adult Acute Myeloid Leukemia With inv(16) and t(8;21): A Cancer and Leukemia Group B Study. J Clin Oncol. 2006;24(24):3904–11. doi: 10.1200/jco.2006.06.9500.
  107. Riera L, Marmont F, Toppino D, et al. Core binding factor acute myeloid leukaemia and c-KIT mutations. Oncol Rep. 2013;29(5):1867–72. doi: 10.3892/or.2013.2328.
  108. Cairoli R, Beghini A, Grillo G, et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood. 2006;107(9):3463–8. doi: 10.1182/blood-2005-09-3640.
  109. Park SH, Chi HS, Min SK, et al. Prognostic impact of c-KIT mutations in core binding factor acute myeloid leukemia. Leuk Res. 2011;35(10):1376–83. doi: 10.1016/j.leukres.2011.06.003.
  110. Hoyos M, Nomdedeu JF, Esteve J, et al. Core binding factor acute myeloid leukemia: the impact of age, leukocyte count, molecular findings, and minimal residual disease. Eur J Haematol. 2013;91(3):209–18. doi: 10.1111/ejh.12130.
  111. Schnittger S, Kohl TM, Haferlach T, et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood. 2006;107(5):1791–9. doi: 10.1182/blood-2005-04-1466.
  112. Jiao B, Wu CF, Liang Y, et al. AML1-ETO9a is correlated with C-KIT overexpression/mutations and indicates poor disease outcome in t(8;21) acute myeloid leukemia-M2. Leukemia. 2009;23(9):1598–604. doi: 10.1038/leu.2009.104.
  113. Qin YZ, Zhu HH, Jiang Q, et al. Prevalence and prognostic significance of c-KIT mutations in core binding factor acute myeloid leukemia: A comprehensive large-scale study from a single Chinese center. Leuk Res. 2014;38(12):1435–40. doi: 10.1016/j.leukres.2014.09.017.
  114. O’Donnell MR, Tallman MS, Abboud CN, et al. Acute Myeloid Leukemia, Version 2.2013. J Natl Compr Canc Netw. 2013;11(9):1047–55.
  115. Tokumasu M, Murata C, Shimada A, et al. Adverse prognostic impact of KIT mutations in childhood CBF-AML: the results of the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 trial. Leukemia. 2015;29(12):2438–41. doi: 10.1038/leu.2015.121.
  116. Ito S, D’Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129–33. doi: 10.1038/nature09303.
  117. Chen Q, Chen Y, Bian C, et al. TET2 promotes histone O-GlcNAcylation during gene transcription. 2013;493(7433):561–4. doi: 10.1038/nature11742.
  118. Aslanyan M, Kroeze LI, Langemeijer SM, et al. Clinical and biological impact of TET2 mutations and expression in younger adult AML patients treated within the EORTC/GIMEMA AML-12 clinical trial. Ann Hematol. 2014;93(8):1401–12. doi: 10.1007/s00277-014-2055-7.
  119. Chou WC, Chou SC, Liu CY, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011;118(14):3803–10. doi: 10.1182/blood-2011-02-339747.
  120. Metzeler KH, Maharry K, Radmacher MD, et al. TET2 Mutations Improve the New European LeukemiaNet Risk Classification of Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. J Clin Oncol. 2011;29(10):1373–81. doi: 10.1200/jco.2010.32.7742.
  121. Gaidzik VI, Paschka P, Spath D, et al. TET2 Mutations in Acute Myeloid Leukemia (AML): Results From a Comprehensive Genetic and Clinical Analysis of the AML Study Group. J Clin Oncol. 2012;30(12):1350–7. doi: 10.1200/jco.2011.39.2886.
  122. Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. 2010;468(7325):839–43. doi: 10.1038/nature09586.
  123. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67. doi: 10.1016/j.ccr.2010.11.015.
  124. Moran-Crusio K, Reavie L, Shih A, et al. Tet2 Loss Leads to Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation. Cancer Cell. 2011;20(1):11–24. doi: 10.1016/j.ccr.2011.06.001.
  125. Quivoron C, Couronne L, Della Valle V, et al. TET2 Inactivation Results in Pleiotropic Hematopoietic Abnormalities in Mouse and Is a Recurrent Event during Human Lymphomagenesis. Cancer Cell. 2011;20(1):25–38. doi: 10.1016/j.ccr.2011.06.003.
  126. Nibourel O, Kosmider O, Cheok M, et al. Incidence and prognostic value of TET2 alterations in de novo acute myeloid leukemia achieving complete remission. Blood. 2010;116(7):1132–5. doi: 10.1182/blood-2009-07-234484.
  127. Weissmann S, Alpermann T, Grossmann V, et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 2012;26(5):934–42. doi: 10.1038/leu.2011.326.
  128. Reitman ZJ, Yan H. Isocitrate Dehydrogenase 1 and 2 Mutations in Cancer: Alterations at a Crossroads of Cellular Metabolism. J Natl Cancer Inst. 2010;102(13):932–41. doi: 10.1093/jnci/djq187.
  129. Molenaar RJ, Radivoyevitch T, Maciejewski JP, et al. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim Biophys Acta. 2014;1846(2):326–41. doi: 10.1016/j.bbcan.2014.05.004.
  130. Emadi A, Faramand R, Carter-Cooper B, et al. Presence of isocitrate dehydrogenase (IDH) mutations may predict clinical response to hypomethylating agents in patients with acute myeloid leukemia (AML). Am J Hematol. 2015;90(5):E77–9. doi: 10.1002/ajh.23965.
  131. Abbas S, Lugthart S, Kavelaars FG, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116(12):2122–6. doi: 10.1182/blood-2009-11-250878.
  132. Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 Gene Mutations Identify Novel Molecular Subsets Within De Novo Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. J Clin Oncol. 2010;28(14):2348–55. doi: 10.1200/jco.2009.27.3730.
  133. Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med. 2010;16(9):387–97. doi: 10.1016/j.molmed.2010.07.002.
  134. Horbinski C. What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol. 2013;125(5):621–36. doi: 10.1007/s00401-013-1106-9.
  135. Chotirat S, Thongnoppakhun W, Wanachiwanawin W, Auewarakul CU. Acquired somatic mutations of isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) in preleukemic disorders. Blood Cells Mol Dis. 2015;54(3):286–91. doi: 10.1016/j.bcmd.2014.11.017.
  136. Green CL, Evans CM, Zhao L, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood. 2011;118(2):409–12. doi: 10.1182/blood-2010-12-322479.
  137. Zhou KG, Jiang LJ, Shang Z, et al. Potential application of IDH1 and IDH2 mutations as prognostic indicators in non-promyelocytic acute myeloid leukemia: a meta-analysis. Leuk Lymphoma. 2012;53(12):2423–9. doi: 10.3109/10428194.2012.695359.
  138. Marcucci G, Metzeler KH, Schwind S, et al. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J Clin Oncol. 2012;30(7):742–50. doi: 10.1200/jco.2011.39.2092.
  139. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi: 10.1056/nejmoa1005143.
  140. Zhang Y, Chen FQ, Sun YH, et al. Effects of DNMT1 silencing on malignant phenotype and methylated gene expression in cervical cancer cells. J Exp Clin Cancer Res. 2011;30(1):98. doi: 10.1186/1756-9966-30-98.
  141. Jasielec J, Saloura V, Godley LA. The mechanistic role of DNA methylation in myeloid leukemogenesis. Leukemia. 2014;28(9):1765–73. doi: 10.1038/leu.2014.163.
  142. Li KK, Luo LF, Shen Y, et al. DNA methyltransferases in hematologic malignancies. Semin Hematol. 2013;50(1):48–60. doi: 10.1053/j.seminhematol.2013.01.005.
  143. O’Brien EC, Brewin J, Chevassut T. DNMT3A: the DioNysian MonsTer of acute myeloid leukaemia. Ther Adv Hematol. 2014;5(6):187–96. doi: 10.1177/2040620714554538.
  144. Holz-Schietinger C, Matje DM, Reich NO. Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation. J Biol Chem. 2012;287(37):30941–51. doi: 10.1074/jbc.m112.366625.
  145. Russler-Germain DA, Spencer DH, Young MA, et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell. 2014;25(4):442–54. doi: 10.1016/j.ccr.2014.02.010146.
  146. McDevitt MA. Clinical applications of epigenetic markers and epigenetic profiling in myeloid malignancies. Semin Oncol. 2012;39(1):109–22. doi: 10.1053/j.seminoncol.2011.11.003.
  147. Berenstein R, Blau IW, Suckert N, et al. Quantitative detection of DNMT3A R882H mutation in acute myeloid leukemia. J Exp Clin Cancer Res. 2015;34(1):55. doi: 10.1186/s13046-015-0173-2.
  148. Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506(7488):328–33. doi: 10.1038/nature13038.
  149. Corces-Zimmerman MR, Hong WJ, Weissman IL, et al. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA. 2014;111(7):2548–53. doi: 10.1073/pnas.1324297111.
  150. Thol F, Damm F, Ludeking A, et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol. 2011;29(21):2889–96. doi: 10.1200/jco.2011.35.4894.
  151. Ribeiro AF, Pratcorona M, Erpelinck-Verschueren C, et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood. 2012;119(24):5824–31. doi: 10.1182/blood-2011-07-367961.
  152. Ibrahem L, Mahfouz R, Elhelw L, et al. Prognostic significance of DNMT3A mutations in patients with acute myeloid leukemia. Blood Cells Mol Dis. 2014;54(1):84–9. doi: 10.1016/j.bcmd.2014.07.015.
  153. Shivarov V, Gueorguieva R, Stoimenov A, Tiu R. DNMT3A mutation is a poor prognosis biomarker in AML: results of a meta-analysis of 4500 AML patients. Leuk Res. 2013;37(11):1445–50. doi: 10.1016/j.leukres.2013.07.032.
  154. Wakita S, Yamaguchi H, Omori I, et al. Mutations of the epigenetics-modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in de novo acute myeloid leukemia. Leukemia. 2013;27(5):1044–52. doi: 10.1038/leu.2012.317.
  155. Hou HA, Kuo YY, Liu CY, et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012;119(2):559–68. doi: 10.1182/blood-2011-07-369934.
  156. Ploen GG, Nederby L, Guldberg P, et al. Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol. 2014;167(4):478–86. doi: 10.1111/bjh.13062.
  157. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98. doi: 10.1056/nejmoa1408617.

Monoclonal Antibodies: from Development to Clinical Application

YuI Budchanov

Tver’ Medical University, 4 Sovetskaya str., Tver’, Russian Federation, 170000

For correspondence: Yurii Ivanovich Budchanov, 3 1st per. Krasnoi Slobody, Tver’, Russian Federation, 170001; e-mail: budjur@mail.ru

For citation: Budchanov YuI. Monoclonal Antibodies: from Development to Clinical Application. Clinical oncohematology. 2016;9(3):237-44 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-237-244


ABSTRACT

The development of monoclonal antibodies (MABs) resulted in revolutionary achievements in diagnosing and treating of oncohematological disorders. The review dwells on the history of the development and improved technologies for production of monoclonal antibodies illustrated by anti-CD20-MABs which recognize different epitopes of the CD20 antigens and have a higher antitumor activity. Engineering techniques can contribute to understanding the effector mechanisms of the application of the novel anti-CD20-MABs and are intended for further improvement of the treatment results.


Keywords: monoclonal antibodies, rituximab, ofatumumab, obinutuzumab, hybridoma technology.

Received: January 13, 2016

Accepted: March 17, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7. doi: 10.1038/256495a0.
  2. Galfre G. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977;266(5602):550–2. doi: 10.1038/266550a0.
  3. Гордеева О.Б., Семикина Е.Л. Современные возможности определения группы крови и резус-принадлежности в педиатрической практике. Вопросы диагностики в педиатрии. 2010;2(4):9–16.
    [Gordeeva OB, Semikina EL. Current capabilities of the blood group and Rhesus factor typing in pediatric practice. Voprosy diagnostiki v pediatrii. 2010;2(4):9–16. (In Russ)]
  4. Рагимов А.А., Дашкова Н.Г. Трансфузионная иммунология. М.: МИА, 2004. С. 270.
    [Ragimov AA, Dashkova NG. Transfuzionnaya immunologiya. (Transfusion immunology.) Moscow: MIA Publ.; 2004. pp. 270. (In Russ)]
  5. Freedman A. Follicular lymphoma: 2014 update on diagnosis and management. Am J Hematol. 2014;89(4):429–36. doi: 10.1002/ajh.23674.
  6. Preijers FW, Huys E, Moshaver B. OMIP-010: a new 10-color monoclonal antibody panel for polychromatic immunophenotyping of small hematopoietic cell samples. Cytometry A. 2012;81A(6):453–5. doi: 10.1002/cyto.a.22056.
  7. Тупицын Н.Н., Гривцова Л.Ю., Купрышина Н.А. Иммунодиагностика опухолей крови на основании многоцветных (8 цветов панелей) европейского консорциума по проточной цитометрии (EURO-FLOW). Иммунология гемопоэза. 2015;13(1):31–62.
    [Tupitsyn NN, Grivtsova LYu, Kupryshina NA. Haematopoietic malignancies immune diagnostics based on Euroflow Consortium proposals: 8-color flow cytometry. Immunologiya gemopoeza. 2015;13(1):31–62. (In Russ)]
  8. Тупицын Н.Н. Иммунология клеток крови. В кн.: Гематология. Национальное руководство. Под ред. О.А. Рукавицына. М.: ГЭОТАР-Медиа, 2015. С. 69–79.
    [Tupitsyn NN. Blood cell immunology. In: Rukavitsyn OA, ed. Gematologiya. Natsional’noe rukovodstvo. (Hematology. National guidelines.) Moscow: GEOTAR-Media Publ.; 2015. pp. 69–79. (In Russ)]
  9. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6:343–57. doi: 10.1038/nri1837.
  10. Riley JK, Sliwkowski MX. CD20: a gene in search of a function. Semin Oncol. 2000;27(12):17–24.
  11. Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today. 1994;15(9):450–4. doi: 10.1016/0167-5699(94)90276-3.
  12. Renaudineau Y, Devauchelle-Pensec V, Hanrotel C, et al. Monoclonal anti-CD20 antibodies: mechanisms of action and monitoring of biological effects. Joint Bone Spine. 2009;76(5):458–63. doi: 10.1016/j.jbspin.2009.03.010.
  13. Martin P, Furman RR, Coleman M, Leonard JP. Phase I to III trials of anti-B cell therapy in non-Hodgkin’s lymphoma. Clin Cancer Res. 2007;13(18):5636–42. doi: 10.1158/1078-0432.ccr-07-1085.
  14. St Clair EW. Novel targeted therapies for autoimmunity. Curr Opin Immunol. 2009;21(6):648–57. doi: 10.1016/j.coi.2009.09.008.
  15. Gurcan H, Keskin D, Stern J, et al. A review of the current use of rituximab in autoimmune diseases. Int Immunopharmacol. 2009;9(1):10–25. doi: 10.1016/j.intimp.2008.10.004.
  16. Castillo-Trivino T, Braithwaite D, Bacchetti P, Waubant E. Rituximab in relapsing and progressive forms of multiple sclerosis: a systematic review. PLoS One. 2013;8(7):e66308. doi: 10.1371/journal.pone.0066308.
  17. Otukesh H, Hoseini R, Rahimzadeh N, Fazel M. Rituximab in the treatment of nephrotic syndrome: a systematic review. Iran J Kidney Dis. 2013;7(4):249–56. doi: 10.13172/2053-0293-1-1-480.
  18. Morrison VA. Immunosuppression associated with novel chemotherapy agents and monoclonal antibodies. Clin Infect Dis. 2014;59(5):360–4. doi: 10.1093/cid/ciu592.
  19. Rosman Z, Shoenfeld Y, Zandman-Goddard G. Biologic therapy for autoimmune diseases: an update. BMC Med. 2013;11(1):88. doi: 10.1186/1741-7015-11-88.
  20. Bhandari PR, Pai VV. Novel applications of Rituximab in dermatological disorders. Indian Dermatol Online J. 2014;5(3):250–9. doi: 10.4103/2229-5178.137766.
  21. Cang S, Mukhi N, Wang K, Liu D. Novel CD20 monoclonal antibodies for lymphoma therapy. J Hematol Oncol. 2012;5(1):64. doi: 10.1186/1756-8722-5-64.
  22. Rioufol C, Salles G. Obinutuzumab for chronic lymphocytic leukemia. Expert Rev Hematol. 2014;7(5):533–43. doi: 10.1586/17474086.2014.953478.
  23. Owen CJ, Stewart DA. Obinutuzumab for the treatment of patients with previously untreated chronic lymphocytic leukemia: overview and perspective. Ther Adv Hematol. 2015;6(4):161–70. doi: 10.1177/2040620715586528.
  24. Shah A. Obinutuzumab: A Novel Anti-CD20 Monoclonal Antibody for Previously Untreated Chronic Lymphocytic Leukemia. Ann Pharmacother. 2014;48(10):1356–61. doi: 10.1177/1060028014543271.
  25. Golay J, Da Roit F, Bologna L, et al. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood. 2013;122(20):3482–91. doi: 10.1182/blood-2013-05-504043.
  26. Shah A. New developments in the treatment of chronic lymphocytic leukemia: role of obinutuzumab. Ther Clin Risk Manage. 2015;11:1113–22. doi: 10.2147/TCRM.S71839.
  27. Cerquozzi S, Owen C. Clinical role of obinutuzumab in the treatment of naive patients with chronic lymphocytic leukemia. Biol Targ Ther. 2015;9:13–22. doi: 10.2147/BTT.S61600.
  28. Seiter K, Mamorska-Dyga A. Obinutuzumab treatment in the elderly patient with chronic lymphocytic leukemia. Clin Interv Aging. 2015;12(10):951–61. doi: 10.2147/cia.s69278.
  29. Алексеев С.М., Капланов К.Д., Иванов Р.А., Черняева Е.В. Современный подход к разработке и исследованию биоаналогов на примере первого российского препарата моноклональных антител — Ацеллбия® (ритуксимаб). Исследования и практика в медицине. 2015;2(1):8–12. doi: 10.17709/2409-2231-2015-2-1-8-12.
    [Alekseev SM, Kaplanov KD, Ivanov RA, Chernyaeva EV. Current approach to development of biosimilar products containing monoclonal antibodies as an active substance – non-clinical studies of the first Russian rituximab biosimilar, Acellbia®. Research’n Practical Medicine Journal. 2015;2(1):8–12. doi: 10.17709/2409-2231-2015-2-1-8-12. (In Russ)]
  30. Tada M, Tatematsu K-I, Ishii-Watabe A, et al. Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori). mAbs. 2015;7(6):1138–50. doi: 10.1080/19420862.2015.1078054.
  31. Gonzalez-Gonzalez E, Alvarez MM, Marquez-Ipina AR, et al. Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead. Crit Rev Biotechnol. 2015;26:1–16. doi: 10.3109/07388551.2015.1114465.

 

Polycythemia Vera: New Diagnostic Concept and Its Types

AM Kovrigina1, VV Baikov2

1 Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 12 Rentgena str., Saint Petersburg, Russian Federation, 197022

For correspondence: Alla Mikhailovna Kovrigina, DSci, Professor, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

For citation: Kovrigina AM, Baikov VV. Polycythemia Vera: New Diagnostic Concept and Its Types. Clinical oncohematology. 2016;9(2):115–22 (In Russ).

DOI: 10.21320/2500-2139-2016-9-2-115-122


ABSTRACT

Polycythemia vera (PV) is a clonal Ph-negative myeloproliferative disorder characterized by excessive myeloid proliferation of three hematopoietic cell lineages leading to ineffective myelopoiesis. According to WHO classification (2008), hemoglobin and hematocrit values are listed among the major diagnostic criteria. However, in many PV patients the levels may be below the diagnostic level, thus leading to underdiagnosis of PV. At present, three clinical types of the disease are recognized: 1) masked (latent/prodromal), 2) classic (overt), and 3) PV with progression/transformation into myelofibrosis. The masked form is most difficult for diagnosis, being highly heterogeneous with regard to clinical manifestations, laboratory data, medical history, and the course of the disease. It includes early stages, some of them with very high platelet count, imitating essential thrombocythemia, cases with abdominal thrombosis, and latent PV. Bone marrow trephine biopsy appears to be the most reliable method for diagnosis of masked PV. Findings typical for PV are readily visible, including hypercellular bone marrow with three-lineage myeloid proliferation, excess of megakaryocytes with mild to moderate cellular atypia and polymorphism. Gradi

 

ng of reticulin fibrosis has impact on prognosis and reflects the risk of progression into myelofibrosis. In revised edition of WHO classification (2016), the typical bone marrow histopathology will be included among the major criteria for the diagnosis of PV, meaning that bone marrow trephine biopsy is a mandatory diagnostic procedure in patients with borderline levels of hemoglobin and hematocrit.


Keywords: polycythemia vera, myeloproliferative disorder, diagnosis of polycythemia vera, types of polycythemia vera.

Received: January 19, 2015

Accepted: February 1, 2016

Read in  PDF( RUS) pdficon


REFERNCES

  1. Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 2015;5(11):e366. doi: 10.1038/bcj.2015.95.
  2. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. doi 10.1056/nejmoa051113.
  3. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97. doi: 10.1016/j.ccr.2005.03.023.
  4. Chloe J, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.
  5. Baxter EJ, Scott LM, Campbell PJ, et al. Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. The Lancet. 2005;365(9464):1054–61. doi: 10.1016/s0140-6736(05)71142-9.
  6. Wang YL, Vandris K, Jones A, et al. JAK2 Mutations are present in all cases of polycythemia vera. Leukemia. 2008;22(6):1289. doi: 10.1038/sj.leu.2405047.
  7. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.
  8. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi:  10.1056/NEJMoa1312542.
  9. Broseus J, Park JH, Carillo S, et al. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood. 2014;124(26):3964–6. doi: 10.1182/blood-2014-06-583161.
  10. Fairbanks VF, Klee GG, Wiseman GA, et al. Measurement of Blood volume and Red Cell Mass: re-examination of 51Cr and 125I methods. Blood Cells Mol Dis. 1996;22(15):169–86. doi: 10.1006/bcmd.1996.0024.
  11. Lorberboym M, Rahimi-Levene N, Lipszyc H, et al. Analysis of Red Cell Mass and Plasma Volume in Patients With Polycythemia. Arch Pathol Lab Med. 2005;129:89–91.
  12. Murphy S. Diagnostic criteria and prognosis in polycythemia vera and essential thrombocythemia. Semin Hematol. 1999;36(1 Suppl 2):9–13.
  13. Alvarez-Larran A, Ancochea A, Angona A, et al. Red cell mass measurement in patients with clinically suspected diagnosis of polycythemia vera or essential thrombocythemia. Haematologica. 2012;97(11):1704–7. doi: 10.3324/haematol.2012.067348.
  14. Tefferi A. Polycythemia vera and essential thrombocythemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol. 2012;87(3):285–93. doi: 10.1002/ajh.23135.
  15. Johansson PL, Safai-Kutti S, Kutti J. An elevated venous haemoglobin concentration cannot be used as a surrogate marker for absolute erythrocytosis: a study of patients with polycythaemia vera and apparent polycythaemia. Br J Haematol. 2005;129(5):701–5. doi: – 10.1111/j.1365-2141.2005.05517.x.
  16. Thiele J, Kvasnicka HM, Orazi A, et al. Polycythaemia vera. In: Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 40–43.
  17. Silver RT, Chow W, Orazi A, et al. Evaluation of WHO criteria for diagnosis of polycythemia vera: a prospective analysis. Blood. 2013;122(11):1881–6. doi: 10.1182/blood-2013-06-508416.
  18. Berk PD, Wasserman LR, Fruchtman SM, et al. Treatment of polycythemia vera: a summary of clinical trials conducted by the polycythemia vera study group. In: Wasserman LR, Berk PD, Berlin NI, eds. Polycythemia Vera and the Myeloproliferative Disorders. Philadelphia: WB Saunders; 1995. pp. 166–94.
  19. McMullin MF, Bareford D, Campbell P, et al. Guidelines for the diagnosis, investigation and management of polycythaemia/erythrocytosis. Br J Haematol. 2005;130(2):174–95. doi: 10.1111/j.1365-2141.2005.05535.x.
  20. McMullin MF, Reilly JT, Campbell P, et al. Amendment to the guideline for diagnosis and investigation of polycythaemia/erythrocytosis. Br J Haematol. 2007;138(6):821–2. doi: 10.1111/j.1365-2141.2007.06741.x.
  21. McMullin MF. The classification and diagnosis of erythrocytosis. Int J Lab Hematol. 2008;30(6):447–59. doi: 10.1111/j.1751-553X.2008.01102.x.
  22. Shih LY, Lee CT. Identification of masked polycythemia vera from patients with idiopathic marked thrombocytosis by endogenous erythroid colony assay. Blood. 1994;83(3):744–8.
  23. Thiele J, Kvasnicka HM, Diehl V. Initial (latent) polycythaemia vera with thrombocytosis mimicking essential thrombocythaemia. Acta Haematol. 2005;113(4):213–9. doi: 10.1159/000084673.
  24. Thiele J, Kvasnicka HM. Diagnostic impact of bone marrow histopathology in polycythemia vera (PV). Histol Histopathol. 2005;20:317–28.
  25. Kvasnicka HM, Thiele J. Prodromal myeloproliferative neoplasms: The 2008 WHO classification. Am J Hematol. 2010;85(1):62–9. doi: 10.1002/ajh.21543.
  26. Barbui T, Thiele J, Gisslinger H, et al. Masked polycythemia vera (mPV): results of an international study. Am J Hematol. 2014;89(1):52–4. doi: 10.1002/ajh.23585.
  27. Barbui T, Thiele J, Carobbio A, et al. Discriminating between essential thrombocythemia and masked polycythemia vera in JAK2 mutated patients. Am J Hematol. 2014;89(6):588–90. doi: 10.1002/ajh.23694.
  28. Barbui T, Thiele J, Vannucchi AM, et al. Rethinking the diagnostic criteria of polycythemia vera. Leukemia. 2014;28(6):1191–5. doi: 10.1038/leu.2013.380.
  29. Barbui T, Thiele J, Carobbio A, et al. Masked polycythemia vera diagnosed according to WHO and BCSH classification. Am J Hematol. 2014;89(2):199–202. doi: 10.1002/ajh.23617.
  30. Chu D, Cho Y-U, Jang S, et al. Straightforward Identification of Masked Polycythemia Vera Based on Proposed Revision of World Health Organization Diagnostic Criteria for BCR-ABL1-Negative Myeloproliferative Neoplasms. Ann Lab Med. 2015;35(6):651–3. doi: 10.3343/alm.2015.35.6.651.
  31. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Rationale for revision and proposed changes of the WHO diagnostic criteria for polycythemia vera, essential thrombocythemia and primary myelofibrosis. Blood Cancer J. 2015;5(8):e337. doi: 10.1038/bcj.2015.64.
  32. Harrison CN, Campbell PJ, Buck G, et al. United Kingdom Medical Research Council Primary Thrombocythemia 1 Study. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005;353(1):33–45.
  33. Gisslinger H, Gotic M, Holowiecki J, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121(10):1720–8. doi: 10.1182/blood-2012-07-443770.
  34. Thiele J, Kvasnicka HM. Chronic myeloproliferative disorders with thrombocythemia: a comparative study of two classification systems (PVSG, WHO) on 839 patients. Ann Hematol. 2003;82(3):148–52.
  35. Ковригина А.М., Байков В.В. Патоморфологическая дифференциальная диагностика первичного миелофиброза. Учебное пособие для врачей-патологоанатомов. М., 2014. 64 с.
    [Kovrigina AM, Baikov VV. Patomorfologicheskaya differentsial’naya diagnostika pervichnogo mielofibroza. Uchebnoe posobie dlya vrachei-patologoanatomov. (Pathomorphological differential diagnosis of primary myelofibrosis. Manual for pathologists.) Moscow; 2014. 64 p. (In Russ)]
  36. Thiele J, Kvasnicka HM, Zankovich R, Diehl V. The value of bone marrow histology in differentiating between early stage polycythemia vera and secondary (reactive) polycythemias. Haematologica. 2001;86(4):368–74.
  37. Gianelli U, Iurlo A, Vener C. et al. The Significance of Bone Marrow Biopsy and JAK2V617F Mutation in the Differential Diagnosis Between the “Early” Prepolycythemic Phase of Polycythemia Vera and Essential Thrombocythemia. Am J Clin Pathol. 2008;130(3):336–42. doi: 10.1309/6BQ5K8LHVYAKUAF4.

Epstein-Barr Virus and Classical Hodgkin’s Lymphoma

VE Gurtsevich

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Vladimir Eduardovich Gurtsevich, DSci, Professor, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-25-64; e-mail: gurvlad532@yahoo.com

For citation: Gurtsevitch VE. Epstein-Barr Virus and Classical Hodgkin’s Lymphoma. Clinical oncohematology. 2016;9(2):101–14 (In Russ).

DOI: 10.21320/2500-2139-2016-9-2-101-114


ABSTRACT

Among other oncogenic human viruses, the Epstein-Barr virus (EBV) drew special attention due to its unique properties. Being widespread among the population of the planet, the virus is also a leader in the number of associated different benign and malignant neoplasms of lymphoid and epithelial origin. The oncogenic potential of EBV is related to its ability to infect and transform human lymphocytes. In cases, when the interaction between reproduction of EBV, its latent state and immune control of the body is impaired, conditions for long-term proliferation of EBV-infected cells and their malignant transformation are formed. According to some investigators, the molecular mechanisms of EBV-associated carcinogenesis are due to the ability of the viral genome to promote the expression of series of products that simulate a number of growth factors and transcription and produce an anti-apoptotic effect. These products impair EBV-encoded signaling pathways that regulate a variety of cellular functions of homeostasis giving a cell the ability to proliferate indefinitely. However, the exact mechanism by which the EBV initiates tumor formation is not clear. The review provides summarized information on the structure and oncogenic potential of EBV, morphological and clinical cases of Hodgkin’s lymphoma (HL), and the role of EBV in the pathogenesis of types of HL associated with the virus. The review also dwells on the latest data on the use of EBV DNA plasma levels of patients with HL as a biomarker reflecting the effectiveness of the treatment performed and the prognosis of the disease.


Keywords: Epstein-Barr virus, EBV, latent membrane protein 1, LMP1, Hodgkin’s lymphoma, copies of EBV DNA.

Received: February 5, 2016

Accepted: February 8, 2016

Read in PDF (RUS) pdficon


REFERENCES

  1. Zur Hausen H, de Villiers EM. Reprint of: cancer “causation” by infections—individual contributions and synergistic networks. Semin Oncol. 2015;42(2):207–22. doi: 10.1053/j.seminoncol.2015.02.019.
  2. Santos-Juanes J, Fernandez-Vega I, Fuentes N, et al. Merkel cell carcinoma and Merkel cell polyomavirus: a systematic review and meta-analysis. Br J Dermatol. 2015;173(1):42–9. doi: 10.1111/bjd.13870.
  3. Rickinson AB, Young LS, Rowe M. Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J Virol. 1987;61(5):1310–7.
  4. Rickinson AB, Long HM, Palendira U, et al. Cellular immune controls over Epstein-Barr virus infection: new lessons from the clinic and the laboratory. Trends Immunol. 2014;35(4):159–69. doi: 10.1016/j.it.2014.01.003.
  5. Woodman CB, Collins SI, Vavrusova N, et al. Role of sexual behavior in the acquisition of asymptomatic Epstein-Barr virus infection: a longitudinal study. Pediatr Infect Dis J. 2005;24(6):498–502. doi: 10.1097/01.inf.0000164709.40358.b6.
  6. Henle G, Henle W, Diehl V. Relation of Burkitt’s tumor-associated herpes-type virus to infectious mononucleosis. Proc Natl Acad Sci USA. 1968;59(1):94–101. doi: 10.1073/pnas.59.1.94.
  7. Tanner J, Weis J, Fearon D, et al. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell. 1987;50(2):203–13. doi:10.1016/0092-8674(87)90216-9.
  8. Connolly SA, Jackson JO, Jardetzky TS, et al. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol. 2011;9(5):369–81. doi: 10.1038/nrmicro2548.
  9. Janz A, Oezel M, Kurzeder C, et al. Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol. 2000;74(21):10142–52. doi: 10.1128/jvi.74.21.10142-10152.2000.
  10. Ogembo JG, Kannan L, Ghiran I, et al. Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 2013;3(2):371–85. doi:10.1016/j.celrep.2013.01.023.
  11. Kempkes B, Robertson ES. Epstein-Barr virus latency: current and future perspectives. Curr Opin Virol. 2015;14:138–44. doi: 10.1016/j.coviro.2015.09.007.
  12. Sample J, Kieff E. Transcription of the Epstein-Barr virus genome during latency in growth-transformed lymphocytes. J Virol. 1990;64(4):1667–74.
  13. Babcock GJ, Decker LL, Volk M, et al. EBV persistence in memory B cells in vivo. Immunity. 1998;9(3):395–404. doi: 10.1016/S1074-7613(00)80622-6.
  14. Shannon-Lowe C, Adland E, Bell AI, et al. Features distinguishing Epstein-Barr virus infections of epithelial cells and B cells: viral genome expression, genome maintenance, and genome amplification. J Virol. 2009;83(15):7749–60. doi: 10.1128/JVI.00108-09.
  15. Rickinson A. Epstein-Barr virus. Virus Res. 2002;82(1–2):109–13. doi: 10.1016/s0168-1702(01)00436-1.
  16. Rowe M, Lear AL, Croom-Carter D, et al. Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol. 1992;66(1):122–31.
  17. Portis T, Dyck P, Longnecker R. Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;102(12):4166–78. doi: 10.1182/blood-2003-04-1018.
  18. Sample J, Young L, Martin B, et al. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol. 1990;64(9):4084–92.
  19. Sixbey JW, Shirley P, Chesney PJ, et al. Detection of a second widespread strain of Epstein-Barr virus. The Lancet. 1989;2(8666):761–5. doi: 10.1016/s0140-6736(89)90829-5.
  20. Gratama JW, Ernberg I. Molecular epidemiology of Epstein-Barr virus infection. Adv Cancer Res. 1995;67:197–255. doi: 10.1016/s0065-230x(08)60714-9.
  21. Young LS, Dawson CW, Eliopoulos AG. The expression and function of Epstein-Barr virus encoded latent genes. Mol Pathol. 2000;53(5):238–47. doi: 10.1136/mp.53.5.238.
  22. Mosialos G, Birkenbach M, Yalamanchili R, et al. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 1995;80(3):389–99. doi: 10.1016/0092-8674(95)90489-1.
  23. Nitta T, Chiba A, Yamashita A, et al. NF-kappaB is required for cell death induction by latent membrane protein 1 of Epstein-Barr virus. Cell Signal. 2003;15(4):423–33. doi: 10.1016/S0898-6568(02)00141-9.
  24. Aviel S, Winberg G, Massucci M, Ciechanover A. Degradation of the Epstein-Barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway. Targeting via ubiquitination of the N-terminal residue. J Biol Chem. 2000;275(31):23491–9. doi: 10.1074/jbc.M002052200.
  25. Gires O, Kohlhuber F, Kilger E, et al. Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J. 1999;18(11):3064–73. doi: 10.1093/emboj/18.11.3064.
  26. Bentz GL, Whitehurst CB, Pagano JS. Epstein-Barr virus latent membrane protein 1 (LMP1) C-terminal-activating region 3 contributes to LMP1-mediated cellular migration via its interaction with Ubc9. J Virol. 2011;85(19):10144–53. doi: 10.1128/JVI.05035-11.
  27. Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985;43(3):831–40. doi: 10.1016/0092-8674(85)90256-9.
  28. Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol. 2012;22(2):144–53. doi: 10.1016/j.semcancer.2012.01.004.
  29. Смирнова К.В., Дидук С.В., Сенюта Н.Б., Гурцевич В.Э. Молекулярно-биологические свойства гена LMP1 вируса Эпштейна—Барр: структура, функции и полиморфизм. Вопросы вирусологии. 2015;60(3):5–13.
    [Smirnova KV, Diduk SV, Senyuta NB, Gurtsevich VE. Molecular biological properties of the Epstein-Barr virus LMP1 gene: structure, function, and polymorphism. Voprosy virusologii. 2015;60(3):5–13. (In Russ)]
  30. Vockerodt M, Morgan SL, Kuo M, et al. The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin’s Reed-Sternberg-like phenotype. J Pathol. 2008;216(1):83–92. doi: 10.1002/path.2384.
  31. Raab-Traub N. Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol. 2002;12:431–41. doi: 10.1016/s1044579x0200086x.
  32. Raab-Traub N. Novel mechanisms of EBV-induced oncogenesis. Curr Opin Virol. 2012;2(4):453–8. doi: 10.1016/j.coviro.2012.07.001.
  33. Soni V, Cahir-McFarland E, Kieff E. LMP1 TRAFficking activates growth and survival pathways. Adv Exp Med Biol. 2007;597:173–87. doi: 10.3390/v5041131.
  34. Man C, Rosa J, Lee LT, et al. Latent membrane protein 1 suppresses RASSF1A expression, disrupts microtubule structures and induces chromosomal aberrations in human epithelial cells. Oncogene. 2007;26(21):3069–80. doi: 10.1038/sj.onc.1210106.
  35. Guo L, Tang M, Yang L, et al. Epstein-Barr virus oncoprotein LMP1 mediates surviving upregulation by p53 contributing to G1/S cell cycle progression in nasopharyngeal carcinoma. Int J Mol Med. 2012;29(4):574–80. doi: 10.3892/ijmm.2012.889.
  36. Horikawa T, Yoshizaki T, Kondo S, et al. Epstein-Barr Virus latent membrane protein 1 induces Snail and epithelial-mesenchymal transition in metastatic nasopharyngeal carcinoma. Br J Cancer. 2011;104(7):1160–7. doi: 10.1038/bjc.2011.38.
  37. Xiao L, Hu ZY, Dong X, et al. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene. 2014;33(37):4568–78. doi: 10.1038/onc.2014.32.
  38. Sun W, Liu DB, Li WW, et al. Interleukin-6 promotes the migration and invasion of nasopharyngeal carcinoma cell lines and upregulates the expression of MMP-2 and MMP-9. Int J Oncol. 2014;44(5):1551–60. doi: 10.3892/ijo.2014.2323.
  39. Tzellos S, Farrell PJ. Epstein-Barr virus sequence variation-biology and disease. Pathogens. 2012;1(2):156–74. doi: 10.3390/pathogens1020156.
  40. Walling DM, Shebib N, Weaver SC, et al. The molecular epidemiology and evolution of Epstein-Barr virus: sequence variation and genetic recombination in the latent membrane protein-1 gene. J Infect Dis. 1999;179(4):763–74. doi: 10.1086/314672.
  41. Hu LF, Zabarovsky ER, Chen F, et al. Isolation and sequencing of the Epstein-Barr virus BNLF-1 gene (LMP1) from a Chinese nasopharyngeal carcinoma. J Gen Virol. 1991;72(Pt 10):2399–409. doi: 10.1099/0022-1317-72-10-2399.
  42. Nitta T, Chiba A, Yamamoto N, et al. Lack of cytotoxic property in a variant of Epstein-Barr virus latent membrane protein-1 isolated from nasopharyngeal carcinoma. Cell Signal. 2004;16(9):1071–81. doi: 10.1016/s0898-6568(04)00032-4.
  43. da Costa VG, Marques-Silva AC, Moreli ML. The Epstein-Barr virus latent membrane protein-1 (LMP1) 30-bp deletion and XhoI-polymorphism in nasopharyngeal carcinoma: a meta-analysis of observational studies. Syst Rev. 2015;4(1):46. doi: 10.1186/s13643-015-0037-z.
  44. Rowe M, Peng-Pilon M, Huen DS, et al. Upregulation of bcl-2 by the Epstein-Barr virus latent membrane protein LMP1: a B-cell-specific response that is delayed relative to NF-kappaB activation and to induction of cell surface markers. J Virol. 1994;68(9):5602–12.
  45. Trivedi P, Hu LF, Chen F, et al. Epstein-Barr virus (EBV)-encoded membrane protein LMP1 from a nasopharyngeal carcinoma is non-immunogenic in a murine model system, in contrast to a B cell-derived homologue. Eur J Cancer. 1994;30(1):84–8. doi: 10.1016/s0959-8049(05)80024-3.
  46. Knecht H, Bachmann E, Brousset P, et al. Deletions within the LMP1 oncogene of Epstein-Barr virus are clustered in Hodgkin’s disease and identical to those observed in nasopharyngeal carcinoma. Blood. 1993;82(10):2937–42.
  47. Miller WE, Edwards RH, Walling DM, et al. Sequence variation in the Epstein-Barr virus latent membrane protein 1. J Gen Virol. 1994;75(Pt 10):2729–40. doi: 10.1099/0022-1317-75-10-2729.
  48. Weiss LM. Epstein-Barr virus and Hodgkin’s disease. Curr Oncol Rep. 2000;2(2):199–204. doi: 10.1007/s11912-000-0094-9.
  49. Ковригина А.М., Пробатова Н.А. Лимфома Ходжкина и крупноклеточные лимфомы. М.: МИА, 2007.
    [Kovrigina AM, Probatova NA. Limfoma Khodzhkina i krupnokletochnye limfomy. (Hodgkin’s lymphomas and large cell lymphomas.) Moscow: MIA Publ.; 2007. (In Russ)]
  50. Клиническая онкогематология: Руководство для врачей, 2-е изд. Под ред. М.А. Волковой. М.: Медицина, 2007.
    [Volkova MA, ed. Klinicheskaya  onkogematologiya: Rukovodstvo dlya vrachei. (Clinical oncohematology: manual for physicians.) 2nd edition. Moscow: Meditsina Publ.; 2007. (In Russ)]
  51. Dorsett Y, Robbiani DF, Jankovic M, et al. A role for AID in chromosome translocations between c-myc and the IgH variable region. J Exp Med. 2007;204(9):2225–32. doi: 10.1084/jem.20070884.
  52. Stein H. Hodgkin lymphoma – introduction. In: Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 321–34.
  53. Diehl V, Stein H, Hummel M, et al. Hodgkin’s lymphoma: biology and treatment strategies for primary, refractory, and relapsed disease. Hematology Am Soc Hematol Educ Program. 2003;1:225–47. doi: 10.1182/asheducation-2003.1.225.
  54. Chapman AL, Rickinson AB. Epstein-Barr virus in Hodgkin’s disease. Ann Oncol. 1998;9(Suppl 5):S5–16. doi: 10.1093/annonc/9.suppl_5.s5.
  55. Deacon EM, Pallesen G, Niedobitek G, et al. Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med. 1993;177(2):339–49. doi: 10.1084/jem.177.2.339.
  56. Kuppers R, Rajewsky K, Zhao M, et al. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci USA. 1994;91(23):10962–6. doi: 10.1073/pnas.91.23.10962.
  57. Thomas RK, Re D, Wolf J, et al. Part I: Hodgkin’s lymphoma—molecular biology of Hodgkin and Reed-Sternberg cells. Lancet Oncol. 2004;5(1):11–8. doi: 10.1016/S1470-2045(03)01319-6.
  58. Cartwright RA, Watkins G. Epidemiology of Hodgkin’s disease: a review. Hematol Oncol. 2004;22(1):11–26. doi: 10.1002/hon.723.
  59. Jarrett AF, Armstrong AA, Alexander E. Epidemiology of EBV and Hodgkin’s lymphoma. Ann Oncol. 1996;7(Suppl 4):5–10. doi: 10.1093/annonc/7.suppl_4.s5.
  60. Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70(4):375–82. doi: 10.1002/(sici)1097-0215(19970207)70:4<375::aid-ijc1>3.0.co;2-t.
  61. Cader FZ, Kearns P, Young L, et al. The contribution of the Epstein-Barr virus to the pathogenesis of childhood lymphomas. Cancer Treat Rev. 2010;36(4):348–53. doi: 10.1016/j.ctrv.2010.02.011.
  62. Jarrett RF, Gallagher A, Jones DB, et al. Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. J Clin Pathol. 1991;44(10):844–8. doi: 10.1136/jcp.44.10.844.
  63. Armstrong AA, Alexander FE, Cartwright R, et al. Epstein-Barr virus and Hodgkin’s disease: further evidence for the three disease hypothesis. Leukemia. 1998;12(8):1272–6. doi: 10.1038/sj.leu.2401097.
  64. Oyama T, Ichimura K, Suzuki R, et al. Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol. 2003;27(1):16–26. doi: 10.1097/00000478-200301000-00003.
  65. Oyama T, Yamamoto K, Asano N, et al. Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res. 2007;13(17):5124–32. doi: 10.1158/1078-0432.ccr-06-2823.
  66. Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med. 2004;350(13):1328–37. doi: 10.1056/NEJMra032015.
  67. Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5(4):251–62. doi: 10.1038/nrc1589.
  68. Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8(1):22–33. doi: 10.1038/nri2217.
  69. Caldwell RG, Wilson JB, Anderson SJ, et al. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9(3):405–11. doi: 10.1016/s1074-7613(00)80623-8.
  70. Gires O, Zimber-Strobl U, Gonnella R, et al. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 1997;16(20):6131–40. doi: 10.1093/emboj/18.11.3064.
  71. Laichalk LL, Thorley-Lawson DA. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol. 2005;79(2):1296–307. doi: 10.1128/JVI.79.2.1296-1307.2005.
  72. Alexander FE, Jarrett RF, Lawrence D, et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer. 2000;82(5):1117–21. doi: 10.1054/bjoc.1999.1049.
  73. Mueller N, Evans A, Harris NL, et al. Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med. 1989;320(11):689–95. doi: 10.1056/nejm198903163201103.
  74. Weiss LM, Strickler JG, Warnke RA, et al. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol. 1987;129(1):86–91.
  75. Anagnostopoulos I, Herbst H, Niedobitek G, et al. Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood. 1989;74(2):810–6.
  76. Re D, Kuppers R, Diehl V. Molecular pathogenesis of Hodgkin’s lymphoma. J Clin Oncol. 2005;23(26):6379–86. doi: 10.1200/JCO.2005.55.013.
  77. Mancao C, Altmann M, Jungnickel B, et al. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood. 2005;106(13):4339–44. doi: 10.1182/blood-2005-06-2341.
  78. Chaganti S, Bell AI, Pastor NB, et al. Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood. 2005;106(13):4249–52. doi: 10.1182/blood-2005-06-2327.
  79. Kapatai G, Murray P. Contribution of the Epstein Barr virus to the molecular pathogenesis of Hodgkin lymphoma. J Clin Pathol. 2007;60(12):1342–9. doi: 10.1136/jcp.2007.050146.
  80. Kuppers R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol. 2003;3(10):801–12. doi: 10.1038/nri1201.
  81. Huen DS, Henderson SA, Croom-Carter D, et al. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene. 1995;10:549–60.
  82. Kieser A, Kilger E, Gires O, et al. Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J. 1997;16(21):6478–85. doi: 10.1093/emboj/16.21.6478.
  83. Kube D, Holtick U, Vockerodt M, et al. STAT3 is constitutively activated in Hodgkin cell lines. Blood. 2001;98(3):762–70. doi: 10.1182/blood.V98.3.762.
  84. Dutton A, Reynolds GM, Dawson CW, et al Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol. 2005;205(4):498–506. doi: 10.1002/path.1725.
  85. Brielmeier M, Mautner J, Laux G, et al. The latent membrane protein 2 gene of Epstein-Barr virus is important for efficient B cell immortalization. J Gen Virol. 1996;77(Pt 11):2807–18. doi: 10.1099/0022-1317-77-11-2807.
  86. Casola S, Otipoby KL, Alimzhanov M, et al. B cell receptor signal strength determines B cell fate. Nat Immunol. 2004;5(3):317–27. doi: 10.1038/ni1036.
  87. Engels N, Yigit G, Emmerich CH, et al. Epstein-Barr virus LMP2A signaling in statu nascendi mimics a B cell antigen receptor-like activation signal. Cell Commun Signal. 2012;10(1):9. doi: 10.1186/1478-811X-10-9.
  88. Portis T, Dyck P, Longnecker R. Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;102(12):4166–78. doi: 10.1182/blood-2003-04-1018.
  89. Portis T, Longnecker R. Epstein-Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene. 2004;23(53):8619–28. doi: 10.1038/sj.onc.1207905.
  90. Farrell K, Jarrett RF. The molecular pathogenesis of Hodgkin lymphoma. Histopathology. 2011;58(1):15–25. doi: 10.1111/j.1365-2559.2010.03705.x.
  91. Herbst H, Foss HD, Samol J, et al. Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin’s disease. Blood. 1996;87:2918–29.
  92. Hsu SM, Lin J, Xie SS, et al. Abundant expression of transforming growth factor-beta 1 and -beta 2 by Hodgkin’s Reed-Sternberg cells and by reactive T lymphocytes in Hodgkin’s disease. Hum Pathol. 1993;24(3):249–55. doi: 10.1016/0046-8177(93)90034-e.
  93. Kapp U, Yeh WC, Patterson B, et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med. 1999;189(12):1939–46. doi: 10.1084/jem.189.12.1939.
  94. Munz C, Moormann A. Immune escape by Epstein-Barr virus associated malignancies. Semin Cancer Biol. 2008;18(6):381–7. doi: 10.1016/j.semcancer.2008.10.002.
  95. Lichtenstein AV, Melkonyan HS, Tomei LD, et al. Circulating nucleic acids and apoptosis. Ann NY Acad Sci. 2001;945(1):239–49. doi: 10.1111/j.1749-6632.2001.tb03892.x.
  96. Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer. 2002;2(3):210–9. doi: 10.1038/nrc755.
  97. Skvortsova TE, Rykova EY, Tamkovich SN, et al. Cell-free and cell-bound circulating DNA in breast tumours: DNA quantification and analysis of tumour-related gene methylation. Br J Cancer. 2006;94(10):1492–5. doi: 10.1038/sj.bjc.6603117.
  98. Lo YM, Chan LY, Lo KW, et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res. 1999;59(6):1188–91.
  99. Hou X, Zhao C, Guo Y, et al. Different Clinical Significance of Pre- and Post-treatment Plasma Epstein-Barr Virus DNA Load in Nasopharyngeal Carcinoma Treated with Radiotherapy. Clin Oncol. (R Coll Radiol) 2011;23(2):128–33. doi: 10.1016/j.clon.2010.09.001.
  100. Wang WY, Twu CW, Chen HH, et al. Plasma EBV DNA clearance rate as a novel prognostic marker for metastatic/recurrent nasopharyngeal carcinoma. Clin Cancer Res. 2010;16(3):1016–24. doi: 10.1158/1078-0432.ccr-09-2796.
  101. Lo YM, Chan AT, Chan LY, et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA. Cancer Res. 2000;60:6878–81.
  102. Lo YM, Chan LY, Chan AT, et al. Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res. 1999;59:5452–5.
  103. Au WY, Pang A, Choy C, et al. Quantification of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients. Blood. 2004;104(1):243–9. doi: 10.1182/blood-2003-12-4197.
  104. Wang ZY, Liu QF, Wang H, et al. Clinical implications of plasma Epstein-Barr virus DNA in early-stage extranodal nasal-type NK/T-cell lymphoma patients receiving primary radiotherapy. Blood. 2012;120(10):2003–10. doi: 10.1182/blood-2012-06-435024.
  105. Kasamon YL, Jacene HA, Gocke CD, et al. Phase 2 study of rituximab-ABVD in classical Hodgkin lymphoma. Blood. 2012;119(18):4129–32. doi: 10.1182/blood-2012-01-402792.
  106. Kanakry JA, Li H, Gellert LL, et al. Plasma Epstein-Barr virus DNA predicts outcome in advanced Hodgkin lymphoma: correlative analysis from a large North American cooperative group trial. Blood. 2013;121(18):3547–53. doi: 10.1182/blood-2012-09-454694.
  107. Hohaus S, Santangelo R, Giachelia M, et al. The viral load of Epstein-Barr virus (EBV) DNA in peripheral blood predicts for biological and clinical characteristics in Hodgkin lymphoma. Clin Cancer Res. 2011;17(9):2885–92. doi: 10.1158/1078-0432.ccr-10-3327.
  108. Dinand V, Sachdeva A, Datta S, et al. Plasma Epstein Barr Virus (EBV) DNA as a Biomarker for EBV associated Hodgkin lymphoma. Indian Pediatr. 2015;52(8):681–5. doi: 10.1007/s13312-015-0696-9.
  109. Vockerodt М, Yap L-F, Shannon-Lowe C, et al. The Epstein-Barr virus and the pathogenesis of lymphoma. J Pathol. 2015;235(2):312–22. doi: 10.1002/path.4459.
  110. Grywalska E, Markowicz J, Grabarczyk P, et al. Epstein-Barr virus-associated lymphoproliferative disorders. Postepy Hig Med Dosw (Online). 2013;67:481–90. doi 10.5604/17322693.1050999.

Iron Metabolism in Normal and Pathological Conditions

E.A. Lukina, A.V. Dezhenkova

Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Elena Alekseevna Lukina, DSci, Professor, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-09-23; e-mail: elenalukina02@gmail.com

For citation: Lukina EA, Dezhenkova AV. Iron Metabolism in Normal and Pathological Conditions. Clinical oncohematology. 2015;8(4):355–361 (In Russ).

DOI: 10.21320/2500-2139-2015-8-4-362-367


ABSTRACT

This review describes modern conceptions of the physiological and pathological roles of iron, as well as the main mechanisms of iron metabolism regulation. In recent years, it has been shown that both deficiency and excess of iron can have damaging effects on the body, and the existence of homeostatic mechanisms controlling the total iron content of the body has been proved. The body of an average healthy adult human contains 3 to 5 g iron, most of which is contained in blood cells, bone marrow and liver; it is bound to proteins and this is important for prevention of cytotoxic effects of free iron ions. This review summarizes data on the main proteins involved in iron metabolism and their role in iron homeostasis. The processes of iron recirculation and the functional role of hepcidin, the key protein regulating extracellular iron concentration, are emphasized. The review provides brief data on pathogenic mechanisms of functional iron deficiency development and its role in anemia of chronic disease, as well as the pathogenesis, diagnostics and management of secondary iron overload.


Keywords: iron metabolism, ferritin, hepcidin, iron recirculation, anemia of chronic disease, iron overload.

Received: July 1, 2015

Accepted: November 9, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Петров В.Н. Физиология и патология обмена железа. Львов: Наука, 1982. 224 c.
    [Petrov VN. Fiziologiya i patologiya obmena zheleza. (Physiology and pathology of iron metabolism.) L’vov: Nauka Publ.; 1982. 224 p. (In Russ)]
  2. Finch CA, Huebers HA. Iron metabolism. Clin Physiol Biochem. 1986;4:5–15.
  3. Richardson DR. Role of iron in cell cycle progression and cellular proliferation. Book of Abstracts. BioIron; 2005:7.
  4. Roetto A, Camaschella C. New insights into iron homeostasis through the study of non-HFE hereditary haemochromatosis. Best Pract Res Clin Haematol. 2005;18:235–50. doi: 10.1016/j.beha.2004.09.004.
  5. Sussman HH. Iron in cancer. Pathobiology. 1992;60:2–9. doi: 10.1159/000163690.
  6. Идельсон Л.И., Воробьев А.И. Железодефицитная анемия. Руководство по гематологии. Под ред. А.И. Воробьева. В 3 томах. М.: Ньюдиамед, 2005. Т. 2. С. 171–90.
    [Idel’son LI, Vorob’ev AI. Iron-deficiency anemia. In: Vorob’ev AI, ed. Rukovodstvo po gematologii. (Manual of Hematology.) In 3 vol. Moscow: Newdiamed Publ.; 2005. Vol. 2. p. 171–90. (In Russ)]
  7. Porter JB. Monitoring and treatment of iron overload: state of the art and new approaches. Sem Hematol. 2005;42(2 Suppl. 1):14–8. doi: 10.1053/j.seminhematol.2005.01.004.
  8. Kuntz E, Kuntz H-D. Haemochromatosis. In: Hepatology – Principles and Practice. Berlin: Springer-Verlag; 2002. p. 556–65.
  9. Ilickstein H, El RB, Shvartsman M, Cabantchik ZY. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood. 2005;106:3242–50. doi: 10.1182/blood-2005-02-0460.
  10. Corce V, Renaud St, Cannie I, et al. Tumoral vectorization of new iron chelators for antiproliferative activity: biological properties of polyaminoquinolines. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #230.
  11. Guyader CD, Thirouard A-S, Erdtmann L, et al. Liver iron is surrogate marker of severe fibrosis in chronic hepatitis. J Hepatol. 2007;46:587–96. doi: 10.1016/j.jhep.2006.09.021.
  12. Camaschella C. Iron and hepcidin: a story of recycling and balance. Hematol Am Soc Hematol Educ Program. 2013;2013:1–8. doi: 10.1182/asheducation-2013.1.1.
  13. Sikorska K, Romanowski T, Stalke P, et al. Association of Hepcidin mRNA Expression With Hepatocyte Iron Accumulation and Effects of Antiviral Therapy in Chronic Hepatitis C Infection. Hepat Mon. 2014;14(11):e21184. doi:10.5812/hepatmon.21184.
  14. Raha AA, Vaishnav RA, Friedland RP, et al. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease. BMC Neuroscience. 2015;16(1):24. doi: 10.1186/2051-5960-1-55.
  15. Xu X, Pin S, Gathinji M, et al. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostais. Ann N Y Acad Sci. 2004;1012:299–305. doi: 10.1196/annals.1306.024.
  16. Moreau C, Devedjian J, Kluza J, et al. Targeting brain chelatable iron as therapeutic strategy for parkinson’s disease. Translational and clinical studies. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #52.
  17. Collingwood J, Finnegan M, Visanji N, et al. Brain iron and MRI in Alzheimer’s disease, Parkinson’s disease, and Multiple System Atrophy. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #67.
  18. Долгов В.В., Луговская С.А., Почтарь М.Е. Лабораторная диагностика нарушений метаболизма железа. СПб.: Vital Diagnostics, 2002. 51 c.
    [Dolgov VV, Lugovskaya SA, Pochtar’ ME. Laboratornaya diagnostika narushenii metabolizma zheleza. (Laboratory diagnosis of impaired iron metabolism.) Saint Petersburg: Vital Diagnostics Publ.; 2002. 51 p. (In Russ)]
  19. Cabantchik ZY, Brener W, Zanninelili G. LPI-labile plasma iron in iron overload. Best Pract Res Clin Haematol. 2005;18:277–87. doi: 10.1016/j.beha.2004.10.003.
  20. Cheng Y, Zak O, Aisen P, et al. Structure of the human transferring receptor-transferrin complex. Cell. 2004;116:483–5. doi: 10.1016/s0092-8674(04)00130-8.
  21. Левина А.А., Андреева А.П., Замчий А.А. Определение концентрации ферритина в сыворотке крови радиоиммунным методом. Гематология и трансфузиология. 1984;5:57–60.
    [Levina AA, Andreeva AP, Zamchii AA. Evaluation of serum ferritin levels using radioimmunoassay technique. Gematologiya i transfuziologiya. 1984;5:57–60. (In Russ)]
  22. Lukina EA, Levina AA, Mokeeva NA. The diagnostic significance of serum ferritin indices in patients with malignant and reactive histiocytoses. Br J Haematol. 1993;83:326–9. doi: 10.1111/j.1365-2141.1993.tb08289.x.
  23. Denz H, Orth B, Huber P, et al. Immune activation and anemia of chronic disorders. Blood. 1993;81:1404–9.
  24. Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of mammalian proton-coupled metal-ion transporter gene. Nature. 1997;388:482–8. doi: 10.1038/41343.
  25. Mims MP, Guan Y, Pospisilova D, et al. Identification of a human mutation of DMT1 in a patient with microcytic anemia and iron overload. Blood. 2005;105(3):1337–42. doi: 10.1182/blood-2004-07-2966.
  26. Napier I, Ponka P, Richardson DR. Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood. 2005;105:1867–974. doi: 10.1182/blood-2004-10-3856.
  27. D’Angelo G. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res. 2013;48(1):10–5. doi: 10.5045/br.2013.48.1.10.
  28. Hellman N, Gitlin JD. Ceruloplasmin metabolism and function. Ann Rev Nutr. 2002;22:439–58. doi: 10.1146/annurev.nutr.22.012502.114457.
  29. Fuqua B, Darshan D, Frazer D, et al. Severe defects in iron metabolism in mice with double knockout of the multicopper ferroxidases hephaestin and ceruloplasmin. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #24.
  30. Krause A, Neitz S, Magert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibit antimicrobial activity. FEBS Lett. 2000;480(2):147–50. doi: 10.1016/s0014-5793(00)01920-7.
  31. Park CH, Valore EV, Waring AJ, et al. Hepcidin: a urinary antibacterial peptide synthesized in the liver. J Biol Chem. 2001;276:7806–10. doi: 10.1074/jbc.m008922200.
  32. Ganz T. Hepcidin – a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol. 2005;18:171–82. doi: 10.1016/j.beha.2004.08.020.
  33. Pigeon C, Ilyin G, Courselaud B, et al. A new mouseт liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276(4):7811–9. doi: 10.1074/jbc.m008923200.
  34. Hunter HN, Fulton DB, Vogel HJ. The solution structure of human hepcidin, a antibicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem. 2002;277:37597–603. doi: 10.1074/jbc.m205305200.
  35. Harrison-Findik D, Lu S, Zmijewski E. Regulation of hepcidin transcription by reactive oxygen species and hypoxia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #6.
  36. Luo Q, Cheng Ch, Wang D, et al. Regulation of intracellular iron homeostasis under hypoxia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #166.
  37. Means RT, Krantz SB. Progress in understanding the pathogenesis of anemia of chronic disease. Blood. 1992;80:1639–44.
  38. Gardenghi S, Casu C, Renaud T, et al. Investigating the role of cytokines and hepcidin in anemia of inflammation. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #138.
  39. Nairz M, Ferring-Appel D, Schroll A, et al. Iron regulatory proteins mediate macrophage innate immunity against salmonella. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #34.
  40. Kautz L, Nemeth E, Ganz T. The erythroid factor erythroferrone and its role in iron homeostasis. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #30.
  41. Frazer D, Wilkins S, Whitelaw N, et al. Hepcidin-independent iron recycling in a mouse model of haemolytic anaemia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #32.
  42. Gerhard G, Still Ch, Wood C, et al. Primary hepatic iron overload in extreme obesity is common and not associated with metabolic abnormalities. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #58.
  43. Miyanishi K, Tanaka Sh, Kobune M, et al. Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #227.
  44. Kobune M, Kikuchi S, Iyama S, et al. Iron chelation therapy improves oxidative DNA damage in hematopoietic cells derived from transfusion-dependent myelodysplastic syndrome. The abstract book of 5th Congress of the International Bioiron Society; 2013. Poster #93.
  45. Jones E, Allen A, Evans P, et al. Differences in hepcidin regulation distinguish mild and severe phenotypes of e-beta thalassaemia. The abstract book of 5th Congress of the International Bioiron Society; 2013. Podium #27.

Epigenetics in Oncohematology: Brief Review

AD Shirin, GI Kaletin, OYu Baranova

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Shirin Anton Dmitrievich, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-28-24; e-mail: shirin-anton@mail.ru

For citation: Shirin AD, Kaletin GI, Baranova OYu. Epigenetics in Oncohematology: Brief Review. Clinical oncohematology. 2015;8(1):26–30 (In Russ).


ABSTRACT

Objective. To discuss historical aspects of epigenetics as an independent branch of biology, as well as to describe post-translational modifications of DNA and histones (PTMs) as epigenetic events.

Methods. Review of fundamentals of epigenetics in topical articles and abstracts: DNA methylation, histones acetylation, phosphorylation, methylation, ubiquitination, and SUMOylation in the development of oncological disorders. The effect of so-called interfering RNA on epigenetic processes has drawn much attention in recent years. The RNA interference (RNAi) can be used to detect epigenetic regulators for the purpose of potential pharmacologic effect on tumor cells. The significance of small I-BET and JQ1 molecules in the antitumor response is considered. The role of BET proteins in hematologic malignancies is discussed separately.

Conclusions. At present, DNA methyltransferase inhibitors (hypomethylating agents) and histone deacetylase inhibitors (which represent a brand new approach, an epigenetic therapy) are used for the treatment of hematopoietic neoplasms.


Keywords: epigenetics, RNA interference, BET proteins, methylation, deacetylation.

Received: December 2, 2014

Accepted: December 12, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Уоддингтон К.Х. Основные биологические концепции. В кн.: На пути к теоретической биологии. Часть I. Пролегомены. М.: Мир, 1970:11–38. [Waddington CH. Basic ideas of biology. In: Waddington CH, ed. Na puti k teoreticheskoi biologii. Chast’ I. Prolegomeny. (Towards a theoretical biology. Part I. Prolegomena.) Moscow: Mir Publ.; 1970. pp. 11–38. (In Russ)]
  2. Shannon K, Armstrong SA. Genetics, epigenetics, and leukemia. N Engl J Med. 2010;363(25):2460–1. doi: 10.1056/NEJMe1012071.
  3. Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene Rev. 2001;20(40):5695–707. doi: 10.1038/sj.onc.1204639.
  4. Daser A, Rabbitts TH. Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes Dev. 2004;18(9):965–74. doi: 10.1101/gad.1195504.
  5. Manodoro F, Marzec J, Chaplin T, et al. Loss of imprinting at the 14q32 domain is associated with microRNA overexpression in acute promyelocytic leukemia. Blood. 2014;123(13):2066–74. doi: 10.1182/blood-2012-12-469833.
  6. Huntly BJP, Johnson PWM. Targeting Epigenetic Readers in Hematologic Malignancies: A Good BET? The Hematologist. 2012;10(2). http://www.hematology.org/Thehematologist/Mini-Review/1181.aspx.
  7. Wu SY, Chiang CM. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem. 2007;282(18):13141–5. doi: 10.1074/jbc.r700001200.
  8. Fowler T, Sen R, Roy AL. Regulation of primary response genes. Mol Cell. 2011;44(3):348–60. doi: 10.1016/j.molcel.2011.09.014.
  9. Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–73. doi: 10.1038/nature09504.
  10. Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468(7327):1119–23. doi: 10.1038/nature09589.
  11. Dawson MA, Prinjha RK, Dittmann A, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478(7370):529–33. doi: 10.1038/nature10509.
  12. Smith E, Lin C, Shilatifard A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 2011;25(7):661–72. doi: 10.1101/gad.2015411.
  13. Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524–8. doi: 10.1038/nature10334.
  14. Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146(6):904–17. doi: 10.1016/j.cell.2011.08.017.
  15. Mertz JA, Conery AR, Bryant BM, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA. 2011;108(40):16669–74. doi: 10.1073/pnas.1108190108.
  16. Thompson CB. Targeting Metabolic Inputs into Epigenetic Regulations of Acute Leukemia. Blood. 2013;122: Abstract SCI-26.
  17. http://medbiol.ru/medbiol/epigenetica/0005e8fd.htm.
  18. http://moikompas.ru/compas/modification_histones.
  19. Mai A, Altucci L. Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol. 2009;41(1):199–213. doi: 10.1016/j.biocel.2008.08.020.
  20. Чехун В. Эпигенетика рака. Колонка главного редактора. Онкология. 2008;10(3):301–2. [Chekhun V. Epigenetics of cancer. Editorial column. Onkologiya. 2008;10(3):301–2. (In Russ)]
  21. http://moikompas.ru/compas/avaiserman.

Positron Emission Tomography in Modern Management of Lymphomas

IP Aslanidi, OV Mukhortova, TA Katunina, IV Ekaeva, MG Shavman

A.N. Bakulev Scientific Center of Cardiovascular Surgery, 135 Rublevskoe sh., Moscow, Russian Federation, 121552

For correspondence: Ol’ga Valentinovna Mukhortova, DSci, 135 Rublevskoe sh., Moscow, Russian Federation, 121552; Tel.: +7(495)414-77-31; e-mail: olgamukhortova@yandex.ru

For citation: Aslanidi IP, Mukhortova OV, Katunina TA, et al. Positron Emission Tomography in Modern Management of Lymphomas. Clinical oncohematology. 2015;8(1):13–25 (In Russ).


ABSTRACT

Objective. The objective is to determine areas of effective application of positron emission tomography (PET) with fluorodeoxyglucose labeled with 18-fluorine (18F-FDG) in patients with lymphomas.

Methods. 56 scientific papers published in 2005–2014 were examined. They analyzed results of recent large studies of PET in patients with lymphomas.

Results. 18F-FDG PET has become an essential part of a diagnostic algorithm for patients with lymphomas which are characterized by active accumulation of 18F-FDG. High precision of PET in patients with some types of lymphomas permit to use this method effectively in clinical practice for staging of the disease, assessment of the treatment efficacy, more precise diagnosis of the relapse prevalence, assessment of results of the anti-relapse therapy, as well as in case of suspected lymphoma transformation. The use of PET at other stages of treatment of lymphoma patients is still pending further scientific research. In case of indolent lymphomas with known low glycolytic activity or lymphomas of rare histological types, PET is used for assessment of the treatment efficacy only if baseline study results (before initiation of treatment) are available. The Deauville five-score scale criteria should be used for assessment of the treatment efficacy. Timely examination during antitumor treatment permits to increase the precision of the PET diagnosing significantly. Solitary foci found by PET are crucial for the choice of treatment and they should be verified by other diagnostic techniques. It is considered unreasonable to use PET for follow-up observation over patients in remission.

Conclusions. PET is a gold standard for staging and assessing the treatment efficacy of lymphomas characterized by active accumulation of 18F-FDG.


Keywords: PET, lymphoma, international guidelines, Deauville five-score scale.

Received: November 14, 2014

Accepted: November 18, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Wood KA, Hoskin PJ, Saunders MI. Positron Emission Tomography in Oncology: A Review. Clin Oncol. 2007;19(4):237–55. doi: 10.1016/j.clon.2007.02.001.
  2. Cheson BD. Role of functional imaging in the management of lymphoma. J Clin Oncol. 2011;29(14):1844–54. doi: 10.1200/jco.2010.32.5225.
  3. Collins CD. PET in lymphoma. Cancer Imaging. 2006;6:S63–S70. doi: 10.1102/1470-7330.2006.9013.
  4. Boellaard R, O’Doherty MJ, Weber WA, et al. FDG PET and PET/CT: EANM procedure guidelines for tumor PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(7):181–200. doi: 10.1007/s00259-010-1459-4.
  5. Weiler-Sagie M, Bushelev O, Epelbaum R, et al. (18)F-FDG avidity in lymphoma readdressed: A study of 766 patients. J Nucl Med. 2010;51(1):25–30. doi: 10.2967/jnumed.109.067892.
  6. Kostakoglu L, Cheson D. State-of-the-art research on Lymphomas: role of molecular imaging for staging, prognostic evaluation, and treatment response. Front Oncol. 2013;3:212. doi: 10.3389/fonc.2013.00212.
  7. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J Clin Oncol. 2014;32(27):3059–67. doi: 10.1200/jco.2013.54.8800.
  8. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of Imaging in the Staging and Response Assessment of Lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58. doi: 10.1200/jco.2013.53.5229.
  9. Engert A, Haverkamp H, Kobe C, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): A randomised, open-label, phase 3 non-inferiority trial. The Lancet. 2012;379(9828):1791–9. doi: 10.1016/s0140-6736(11)61940-5.
  10. Thomson KJ, Kayani I, Ardeshna K, et al. A response-adjusted PET-based transplantation strategy in primary resistant and relapsed Hodgkin lymphoma. Leukemia. 2013;27(6):1419–22. doi: 10.1038/leu.2012.318.
  11. Hutchings M. FDG-PET response-adapted therapy: is 18F-fluorodeoxyglucose positron emission tomography a safe predictor for a change of therapy? Hematol Oncol Clin North Am. 2014;28(1):87–103. doi: 10.1016/j.hoc.2013.10.008.
  12. Radford J, Barrington S, Counsell N, et al. Involved field radiotherapy vs no further treatment in patients with clinical stages IA and IIA Hodgkin lymphoma and a ‘negative’ PET scan after 3 cycles ABVD: results of the UK NCRI RAPID trial. Blood. 2012;120(21):547.
  13. Barrington SF, Mikhaeel NG. When should FDG-PET be used in the modern management of lymphoma? Br J Haematol. 2014;164(3):315–28. doi: 10.1111/bjh.12601.
  14. Omur O, Baran Y, Oral A, et al. Fluorine-18 fluorodeoxyglucose PET-CT for extranodal staging of non-Hodgkin and Hodgkin lymphoma. Diagn Interv Radiol. 2014;20(2):185–92. doi: 10.5152/dir.2013.13174.
  15. Luminari S, Biasoli I, Arcaini L, et al. The use of FDG-PET in the initial staging of 142 patients with follicular lymphoma: A retrospective study from the FOLL05 randomized trial of the Fondazione Italiana Linfomi. Ann Oncol. 2013;24(8):2108–12. doi: 10.1093/annonc/mdt137.
  16. Pelosi E, Pregno P, Penna D, et al. Role of whole-body [18F] fluorodeoxyglucose positron emission tomography/computed tomography (FDGPET/CT) and conventional techniques in the staging of patients with Hodgkin and aggressive non Hodgkin lymphoma. Radiol Med. 2008;113(4):578–90. doi: 10.1007/s11547-008-0264-7.
  17. Casulo C, Schoder H, Feeney J, et al. FDG PET in the staging and prognosis of T cell lymphoma. Leuk Lymphoma. 2013;54(10):2163–7. doi: 10.3109/10428194.2013.767901.
  18. Scott AM, Gunawardana DH, Wong J, et al. Positron emission tomography changes management, improves prognostic stratification and is superior to gallium scintigraphy in patients with low-grade lymphoma: results of a multicentre prospective study. Eur J Nucl Med Mol Imaging. 2009;36(3):347–53. doi: 10.1007/s00259-008-0958-z.
  19. Cortes-Romera M, Sabate-Llobera A, Mercadal-Vilchez S, et al. Bone marrow evaluation in initial staging of lymphoma: 18F-FDG PET/CT versus bone marrow biopsy. Clin Nucl Med. 2014;39(1):e46–52. doi: 10.1097/rlu.0b013e31828e9504.
  20. Adams HJ, Kwee TC, Vermoolen MA, et al. Whole-body MRI for the detection of bone marrow involvement in lymphoma: prospective study in 116 patients and comparison with FDG-PET. Eur Radiol. 2013;23(8):2271–8. doi: 10.1007/s00330-013-2835-9.
  21. Castellucci P, Nanni C, Farsad M, et al. Potential pitfalls of 18F-FDG PET in a large series of patients treated for malignant lymphoma: prevalence and scan interpretation. Nucl Med Comm. 2005;26(8):689–94. doi: 10.1097/01.mnm.0000171781.11027.bb.
  22. Storto G, Di Giorgio E, De Renzo A, et al. Assessment of metabolic activity by PET-CT with F-18-FDG in patients with T-cell lymphoma. Br J Haematol. 2010;151(2):195–7. doi: 10.1111/j.1365-2141.2010.08335.x.
  23. Ansell SM, Armitage JO. Positron Emission Tomographic Scans in Lymphoma: Convention and Controversy. Mayo Clin Proc. 2012;87(6):571–80. doi: 10.1016/j.mayocp.2012.03.006.
  24. Araf S, Montoto S. The use of interim 18F-fluorodeoxyglucose PET to guide therapy in lymphoma. Fut Oncol. 2013;9(6):807–15. doi: 10.2217/fon.13.55.
  25. Zinzani PL, Rigacci L, Stefoni V, et al. Early interim 18F-FDG PET in Hodgkin’s lymphoma: Evaluation on 304 patients. Eur J Nucl Med Mol Imaging. 2012;39(1):4–12. doi: 10.1007/s00259-011-1916-8.
  26. Moulin-Romsee G, Hindie E, Cuenca X, et al. (18) F-FDG PET/CT bone/bone marrow findings in Hodgkin’s lymphoma may circumvent the use of bone marrow trephine biopsy at diagnosis staging. Eur J Nucl Med Mol Imaging. 2010;37(6):1095–105. doi: 10.1007/s00259-009-1377-5.
  27. Hamilton R, Andrews I, McKay P, et al. Loss of utility of bone marrow biopsy as a staging evaluation for Hodgkin lymphoma in the positron emission tomography-computed tomography era: a West of Scotland study. Leuk Lymphoma. 2014;55(5):1049–52. doi: 10.3109/10428194.2013.821201.
  28. Berthet L, Cochet A, Kanoun S, et al. In newly diagnosed diffuse large B-cell lymphoma, determination of bone marrow involvement with 18F-FDG PET/CT provides better diagnostic performance and prognostic stratification than does biopsy. J Nucl Med. 2013;54(8):1244–50. doi: 10.2967/jnumed.112.114710.
  29. El-Galaly TC, d’Amore F, Mylam KJ, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol. 2012;30(36):4508–14. doi: 10.1200/jco.2012.42.4036.
  30. El-Galaly TC, Hutchings M, Mylam KJ, et al. Impact of 18F-FDG PET/CT Staging in Newly Diagnosed Classical Hodgkin Lymphoma: Less Cases with Stage I Disease and More with Skeletal Involvement. Leuk Lymphoma. 2014;55(10):2349–55. doi: 10.3109/10428194.2013.875169.
  31. Cheng G, Alavi A. Value of 18F-FDG PET versus iliac biopsy in the initial evaluation of bone marrow infiltration in the case of Hodgkin’s disease: a meta-analysis. Nucl Med Commun. 2013;34(1):25–31. doi: 10.1097/mnm.0b013e32835afc19.
  32. Chen YK, Yeh CL, Tsui CC, et al. F-18 FDG PET for evaluation of bone marrow involvement in non-Hodgkin lymphoma: A meta-analysis. Clin Nucl Med. 2011;36(7):553–9. doi: 10.1097/rlu.0b013e318217aeff.
  33. Мухортова О.В., Асланиди И.П., Шурупова И.В. и др. Применение позитронно-эмиссионной томографии для оценки поражения костного мозга у больных злокачественными лимфомами. Медицинская радиология и радиационная безопасность. 2010;2:43–52.
    [Mukhortova OV, Aslanidi IP, Shurupova IV, et al. Use of positron emission tomography for assessment of bone marrow damage in patients with malignant lymphomas. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’. 2010;2:43–52. (In Russ)]
  34. Kashyap R, Lau E, George A, et al. High FDG activity in focal fat necrosis: a pitfall in interpretation of posttreatment PET/CT in patients with non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2013;40(9):1330–6. doi: 10.1007/s00259-013-2429-4.
  35. Hutchings M, Barrington SF. PET/CT for Therapy Response Assessment in Lymphoma. J Nucl Med. 2009;50(Suppl 1):21S–30S. doi: 10.2967/jnumed.108.05719.
  36. Dabaja BS, Phan J, Mawlawi O, et al. Clinical implications of positron emission tomography – negative residual computed tomography masses after chemotherapy for diffuse large B-cell lymphoma. Leuk Lymphoma. 2013;54(12):2631–8. doi: 10.3109/10428194.2013.784967.
  37. Gallamini A, Barringtom S, Biggi A, et al. The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale. Haematologica. 2014;99(6):1107–13. doi: 10.3324/haematol.2013.103218.
  38. Fuertes S, Setoain X, Lopez-Guillermo A, et al. Interim FDG PET/CT as a prognostic factor in diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2013;40(4):496–504. doi: 10.1007/s00259-012-2320-8.
  39. Bodet-Milin C, Touzeau C, Leux C, et al. Prognostic impact of 18F-fluorodeoxyglucose positron emission tomography in untreated mantle cell lymphoma: a retrospective study from the GOELAMS group. Eur J Nucl Med Mol Imaging. 2010;37(9):1633–42. doi: 10.1007/s00259-010-1469-2.
  40. Cahu X, Bodet-Milin C, Brissot E, et al. 18F-fluorodeoxyglucose-positron emission tomography before, during and after treatment in mature T/NK lymphomas: a study from the GOELAMS group. Ann Oncol. 2011;22(3):705–11. doi: 10.1093/annonc/mdq415.
  41. Lee H, Kim SK, Kim YI, et al. Early Determination of Prognosis by Interim 3¢-Deoxy-3¢-18F-Fluorothymidine PET in Patients with Non-Hodgkin Lymphoma. J Nucl Med. 2014;55(2):216–22. doi: 10.2967/jnumed.113.124172.
  42. Le Dortz L, De Guibert S, Bayat S, et al. Diagnostic and prognostic impact of 18F-FDG PET/CT in follicular lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(12):2307–14. doi: 10.1007/s00259-010-1539-5.
  43. Lopci E, Zanoni L, Chiti A, et al. FDG PET/CT predictive role in follicular lymphoma. Eur J Nucl Med Mol Imaging. 2012;39(5):864–71. doi: 10.1007/s00259-012-2079-y.
  44. Oki Y, Chuang H, Chasen B, et al. The prognostic value of interim positron emission tomography scan in patients with classical Hodgkin lymphoma. Br J Haematol. 2014;165(1):112–6. doi: 10.1111/bjh.12715.
  45. Bodet-Milin C, Eugene T, Gastinne T. FDG-PET in Follicular Lymphoma Management. J Oncol. 2012:370272. doi: 10.1155/2012/370272.
  46. Sucak GT, Ozkurt ZN, Suyani E, et al. Early post-transplantation positron emission tomography in patients with Hodgkin lymphoma is an independent prognostic factor with an impact on overall survival. Ann Hematol. 2011;90(11):1329–36. doi: 10.1007/s00277-011-1209-0.
  47. Biggi A, Gallamini A, Chauvie S, et al. International validation study for interim PET in ABVD-treated, advanced-stage Hodgkin lymphoma: Interpretation criteria and concordance rate among reviewers. J Nucl Med. 2013;54(5):683–90. doi: 10.2967/jnumed.112.110890.
  48. Nols N, Mounier N, Bouazza S, et al. Quantitative and qualitative analysis of metabolic response at interim PET-scan combined with IPI is highly predictive of outcome in diffuse large B-cell lymphoma. Leuk Lymphoma. 2014;55(4):773–80. doi: 10.3109/10428194.2013.831848.
  49. Gallamini A, Kostakoglu L. Positron emission tomography/computed tomography surveillance in patients with lymphoma: a fox hunt? Haematologica. 2012;97(6):797–9. doi: 10.3324/haematol.2012.063909.
  50. Yoo C, Lee DH, Kim JE, et al. Limited role of interim PET/CT in patients with diffuse large B-cell lymphoma treated with R-CHOP. Ann Hematol. 2011;90(7):797–802. doi: 10.1007/s00277-010-1135-6.
  51. Pregno P, Chiappella A, Bello M, et al. Interim 18-FDG-PET/CT failed to predict the outcome in diffuse large B-cell lymphoma patients treated at the diagnosis with rituximab-CHOP. Blood. 2012;119(9):2066–73. doi: 10.1182/blood-2011-06-359943.
  52. Safar V, Dupuis J, Itti E, et al. Interim [18F]fluorodeoxyglucose positron emission tomography scan in diffuse large B-cell lymphoma treated with anthracycline-based chemotherapy plus rituximab. J Clin Oncol. 2012;30(2):184–90. doi: 10.1200/JCO.2011.38.2648.
  53. Terasawa T, Dahabreh IJ, Nihashi T. Fluorine-18-Fluorodeoxyglucose positron emission tomography in response assessment before high-dose chemotherapy for lymphoma: a systematic review and meta-analysis. The Oncologist. 2010;15(7):750–9. doi: 10.1634/theoncologist.2010-0054.
  54. Sucak GT, Ozkurt ZN, Suyani E, et al. Early post-transplantation positron emission tomography in patients with Hodgkin lymphoma is an independent prognostic factor with an impact on overall survival. Ann Hematol. 2011;90(11):1329–36. doi: 10.1007/s00277-011-1209-0.
  55. Von Tresckow B, Engert A. The emerging role of PET in Hodgkin lymphoma patients receiving autologous stem cell transplant. Expert Rev Hematol. 2012;5(5):483–6. doi: 10.1586/ehm.12.41.
  56. Bodet-Milin C, Kraeber-Bodere F, Moreau P, et al. Investigation of FDG-PET/CT imaging to guide biopsies in the detection of histological transformation of indolent lymphoma. Haematologica. 2008;93(3):471–2. doi: 10.3324/haematol.12013.

MicroRNA: Small Molecules of Great Significance

VN Aushev

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Vasilii Nikolaevich Aushev, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-17-64; e-mail: vaushev@gmail.com

For citation: Aushev VN. MicroRNA: Small Molecules of Great Significance. Clinical oncohematology. 2015;8(1):1–12 (In Russ).


ABSTRACT

Background. MicroRNAs were first discovered as antisense transcripts in Caenorhabditis elegans nematodes, where they inhibited expression of genes containing complementary sequences in mRNAs. Therefore, these molecules, along with the short interfering microRNAs are main mediators of RNA interference, which is a universal mechanism of regulation of the expression.

Results. MicroRNAs are small molecules transcribed from genomic DNA, undergoing further processing and exported to the cytoplasm. They can be a part of protein-coding transcripts or may be transcribed from non-coding areas. Primary processing can also be realized either by the specialized enzyme complex, or as a part of standard mRNA splicing. After exporting to the cytoplasm, intermediate RNA product undergoes final processing resulting in formation of an active RNA-protein complex capable of binding to complementary sequences of target mRNAs. Ultimate effect of such binding is the suppression of translation from the target mRNA; the latter can often be split due to the RNase activity of the complex.

Conclusions. Several thousand microRNAs are encoded in human genome, forming a large regulatory network involved in various signaling pathways and cellular processes. Malfunction of microRNA regulation are typical for a wide range of diseases and all types of malignancies. MicroRNAs are of great importance in oncology, including oncohematology as perspective cancer biomarkers and potential therapeutic agents. Involvement of some microRNAs in the development of a broad range of hematopoietic diseases has been demonstrated to date. In a number of cases it is recommended to use these molecules for molecular diagnosing and for determining prognosis of the disease.


Keywords: microRNA, regulation of expression, tumor biomarkers.

Received: July 16, 2014

Accepted: October 7, 2014

Read in PDF (RUS)pdficon


REFERENCES

  1. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12(11):847–65. doi: 10.1038/nrd4140.
  2. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. doi: 10.1016/0092-8674(93)90529-y.
  3. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62. doi: 10.1016/0092-8674(93)90530-4.
  4. Lee R, Feinbaum R, Ambros V. A short history of a short RNA. Cell. 2004;116(2 Suppl):S89–S92. doi: 10.1016/s0092-8674(04)00035-2.
  5. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31. doi: 10.1038/nrg1379.
  6. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6. doi: 10.1038/35002607.
  7. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of Novel Genes Coding for Small Expressed RNAs. Science. 2001;294(5543):853–8. doi: 10.1126/science.1064921.
  8. Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62. doi: 10.1126/science.1065062.
  9. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of Novel Genes Coding for Small Expressed RNAs. Science. 2001;294(5543):855–8. doi: 10.1126/science.1064921.
  10. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524–9.
  11. Ambros V. A uniform system for microRNA annotation. RNA. 2003;9(3):277–9. doi: 10.1261/rna.2183803.
  12. Griffiths-Jones S, Grocock RJ, van Dongen S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res. 2006;34(Database issue):D140–4. doi: 10.1093/nar/gkj112.
  13. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucl Acids Res. 2011;39(Database issue):D152–7. doi: 10.1093/nar/gkq1027.
  14. Lei EP, Silver PA. Protein and RNA export from the nucleus. Dev Cell. 2002;2(3):261–72. doi: 10.1016/s1534-5807(02)00134-x.
  15. Behm-Ansmant I, Rehwinkel J, Doerks T, et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006;20(14):1885–98. doi: 10.1101/gad.1424106.
  16. Nishihara T, Zekri L, Braun JE, et al. miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucl Acids Res. 2013;41(18):8692–705. doi: 10.1093/nar/gkt619.
  17. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4. doi: 10.1126/science.1149460.
  18. Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Ann Rev Biophys. 2013;42:217–39. doi: 10.1146/annurev-biophys-083012-130404.
  19. Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. doi: 10.1101/gr.082701.108.
  20. Cobb BS, Hertweck A, Smith J, et al. A role for Dicer in immune regulation. J Exp Med. 2006;203(11):2519–27. doi: 10.1084/jem.20061692.
  21. O’Carroll D, Mecklenbrauker I, Das PP, et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 2007;21(16):1999–2004. doi: 10.1101/gad.1565607.
  22. Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA. 2005;102(50):18081–6. doi: 10.1073/pnas.0506216102.
  23. Wang Q, Huang Z, Xue H, et al. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood. 2008;111(2):588–95. doi: 10.1182/blood-2007-05-092718.
  24. Elton TS, Selemon H, Elton SM, et al. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532(1):1–12. doi: 10.1016/j.gene.2012.12.009.
  25. Dagan LN, Jiang X, Bhatt S, et al. miR-155 regulates HGAL expression and increases lymphoma cell motility. Blood. 2012;119(2):513–20. doi: 10.1182/blood-2011-08-370536.
  26. Teng G, Hakimpour P, Landgraf P, et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity. 2008;28(5):621–9. doi: 10.1016/j.immuni.2008.03.015.
  27. Bissels U, Bosio A, Wagner W. MicroRNAs are shaping the hematopoietic landscape. Haematologica. 2012;97(2):160–7. doi: 10.3324/haematol.2011.051730.
  28. Listowski MA, Heger E, Boguslawska DM, et al. microRNAs: fine tuning of erythropoiesis. Cell Mol Biol Lett. 2013;18(1):34–46. doi: 10.2478/s11658-012-0038-z.
  29. Lawrie CH. MicroRNAs in hematological malignancies. Blood Rev. 2013;27(3):143–54. doi: 10.1016/j.blre.2013.04.002.
  30. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102(39):13944–9. doi: 10.1073/pnas.0506654102.
  31. Fabbri M, Bottoni A, Shimizu M, et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011;305(1):59–67. doi: 10.1001/jama.2010.1919.
  32. Pekarsky Y, Santanam U, Cimmino A, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006;66(24):11590–3. doi: 10.1158/0008-5472.can-06-3613.
  33. Starczynowski DT, Morin R, McPherson A, et al. Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood. 2011;117(2):595–607. doi: 10.1182/blood-2010-03-277012.
  34. Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010;16(1):49–58. doi: 10.1038/nm.2054.
  35. Bousquet M, Quelen C, Rosati R, et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med. 2008;205(11):2499–506. doi: 10.1084/jem.20080285.
  36. Chapiro E, Russell LJ, Struski S, et al. A new recurrent translocation t(11;14)(q24;q32) involving IGH@ and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia. Leukemia. 2010;24(7):1362–4. doi: 10.1038/leu.2010.93.
  37. Bousquet M, Harris MH, Zhou B, et al. MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci USA. 2010;107(50):21558–63. doi: 10.1073/pnas.1016611107.
  38. Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res. 2008;6(12):1830–40. doi: 10.1158/1541-7786.mcr-08-0167.
  39. Bueno MJ, Perez de Castro I, Gomez de Cedron M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13(6):496–506. doi: 10.1016/j.ccr.2008.04.018.
  40. Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood. 2007;109(10):4399–405. doi: 10.1182/blood-2006-09-045104.
  41. Xu C, Fu H, Gao L, et al. BCR-ABL/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia. Oncogene. 2014:33(1):44–54. doi: 10.1038/onc.2012.557.
  42. Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA. 2007;104(50):19971–6. doi: 10.1073/pnas.0709313104.
  43. Schotte D, De Menezes RX, Akbari Moqadam F, et al. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica. 2011;96(5):703–11. doi: 10.3324/haematol.2010.026138.
  44. Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156(6):744–56. doi: 10.1111/j.1365-2141.2011.09013.x.
  45. Dorsett Y, McBride KM, Jankovic M, et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity. 2008;28(5):630–8. doi: 10.1016/j.immuni.2008.04.002.
  46. Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA. 2006;103(18):7024–9. doi: 10.1073/pnas.0602266103.
  47. Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol. 2005;207(2):243–9. doi: 10.1002/path.1825.
  48. Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005;102(10):3627–32. doi: 10.1073/pnas.0500613102.
  49. Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer. 2007;121(5):1156–61. doi: 10.1002/ijc.22800.
  50. O’Connell RM, Chaudhuri AA, Rao DS, et al. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA. 2009;106(17):7113–8. doi: 10.1073/pnas.0902636106.
  51. Yamanaka Y, Tagawa H, Takahashi N, et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 2009;114(15):3265–75. doi: 10.1182/blood-2009-06-222794.
  52. Pedersen IM, Otero D, Kao E, et al. Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas. EMBO Mol Med. 2009;1(5):288–95. doi: 10.1002/emmm.200900028.
  53. O’Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205(3):585–94. doi: 10.1084/jem.20072108.
  54. Roehle A, Hoefig KP, Repsilber D, et al. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol. 2008;142(5):732–44. doi: 10.1111/j.1365-2141.2008.07237.x.
  55. Lawrie CH, Chi J, Taylor S, et al. Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J Cell Mol Med. 2009;13(7):1248–60. doi: 10.1111/j.1582-4934.2008.00628.x.
  56. Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA. 2008;105(35):12885–90. doi: 10.1073/pnas.0806202105.
  57. Loffler D, Brocke-Heidrich K, Pfeifer G, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007;110(4):1330–3.
  58. Wang X, Li C, Ju S, et al. Myeloma cell adhesion to bone marrow stromal cells confers drug resistance by microRNA-21 up-regulation. Leuk Lymphoma. 2011;52(10):1991–8. doi: 10.3109/10428194.2011.591004.
  59. Dimopoulos K, Gimsing P, Gronbaek K. Aberrant microRNA expression in multiple myeloma. Eur J Haematol. 2013;91(2):95–105. doi: 10.1111/ejh.12124.
  60. Chen RW, Bemis LT, Amato CM, et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood. 2008;112(3):822–9. doi: 10.1182/blood-2008-03-142182.
  61. Deshpande A, Pastore A, Deshpande AJ, et al. 3¢UTR mediated regulation of the cyclin D1 proto-oncogene. Cell Cycle. 2009;8(21):3592–600. doi: 10.4161/cc.8.21.9993.
  62. Rao E, Jiang C, Ji M, et al. The miRNA-17 approximately 92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia. 2012;26(5):1064–72. doi: 10.1038/leu.2011.305.
  63. Van Vlierberghe P, De Weer A, Mestdagh P, et al. Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+ B-cells reveals a distinct subset of differentially expressed miRNAs. Br J Haematol. 2009;147(5):686–90. doi: 10.1111/j.1365-2141.2009.07909.x.
  64. Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 2004;101(32):11755–60. doi: 10.1073/pnas.0404432101.
  65. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–801. doi: 10.1056/nejmoa050995.
  66. Moussay E, Palissot V, Vallar L, et al. Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia. Mol Cancer. 2010;9(1):115. doi: 10.1186/1476-4598-9-115.
  67. Li Z, Lu J, Sun M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA. 2008;105(40):15535–40. doi: 10.1073/pnas.0808266105.
  68. Jongen-Lavrencic M, Sun SM, Dijkstra MK, et al. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood. 2008;111(10):5078–85. doi: 10.1182/blood-2008-01-133355.
  69. Maki K, Yamagata T, Sugita F, et al. Aberrant expression of MIR9 indicates poor prognosis in acute myeloid leukaemia. Br J Haematol. 2012;158(2):283–5. doi: 10.1111/j.1365-2141.2012.09118.x.
  70. Ishida M, Selaru FM. miRNA-Based Therapeutic Strategies. Curr Anesth Rep. 2013;1(1):63–70. doi: 10.1007/s40139-012-0004-5.
  71. Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucl Acids Res. 2003;31(11):2705–16. doi: 10.1093/nar/gkg393.
  72. Davis S, Propp S, Freier SM, et al. Potent inhibition of microRNA in vivo without degradation. Nucl Acids Res. 2009;37(1):70–7. doi: 10.1093/nar/gkn904.
  73. Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94. doi: 10.1056/nejmoa1209026.
  74. Qiu Z, Dai Y. Roadmap of miR-122-related clinical application from bench to bedside. Expert Opin Invest Drugs. 2014;23(3):347–55. doi: 10.1517/13543784.2014.867327.
  75. Di Martino MT, Campani V, Misso G, et al. In Vivo Activity of MiR-34a Mimics Delivered by Stable Nucleic Acid Lipid Particles (SNALPs) against Multiple Myeloma. PloS One. 2014;9(2):e90005. doi: 10.1371/journal.pone.0090005.
  76. Velu CS, Chaubey A, Phelan JD, et al. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. J Clin Invest. 2014;124(1):222–36. doi: 10.1172/jci66005.
  77. Huang X, Schwind S, Yu B, et al. Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin Cancer Res. 2013;19(9):2355–67. doi: 10.1158/1078-0432.CCR-12-3191.
  78. Gong JN, Yu J, Lin HS, et al. The role, mechanism and potentially therapeutic application of microRNA-29 family in acute myeloid leukemia. Cell Death Differ. 2014;21(1):100–12. doi: 10.1038/cdd.2013.133.
  79. Ito M, Teshima K, Ikeda S, et al. MicroRNA-150 inhibits tumor invasion and metastasis by targeting the chemokine receptor CCR6 in advanced cutaneous T-cell lymphoma. Blood. 2014;123:1499–511. doi: 10.1182/blood-2013-09-527739.

Treatment of Advanced Stage Hodgkin’s Lymphoma: Literature Review

AA Leonteva, EA Demina

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Anna Aleksandrovna Leont’eva, graduate student, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-90-89; e-mail: aurevoir-nut@yandex.ru

For citation: Leont’eva AA, Demina EA. Treatment of Advanced Stage Hodgkin’s Lymphoma: Literature Review. Clinical oncohematology. 2015;8(3):255–66 (In Russ).


ABSTRACT

Over the past decade, major research centers with large databases in Europe and the USA have conducted a comprehensive analysis of the effectiveness of treatment programs, delayed treatment-related complications and long-term survival of patients with advanced stage Hodgkin’s lymphoma. This analysis allowed us to develop new, more effective programs and introduce them into practical medicine, as well as to start searching for less toxic treatment options. However, in Russian scientific literature, this complex analysis has not been presented. Available publications and scientific investigations cover only some aspects of diagnosis and treatment of Hodgkin’s lymphoma or selectively discuss the problem of complications. The proposed literature review allows the reader to see the changes in the approach to management of advanced-stage Hodgkin’s lymphoma over the last 75 years: from absolutely pessimistic prognosis for the disease to modern high achievements with further improvement of treatment options for this disease.


Keywords: Hodgkin’s lymphoma, advanced stages, treatment, effectiveness of treatment, toxicity.

Received: February 20, 2015

Accepted: May 28, 2015

Read in PDF (RUS)pdficon


REFERENCES

  1. Hodgkin T. On some morbid appearances of the absorbent glands and spleen. Med Chir Trans. 1832;17:68–114. doi: 10.1177/095952873201700106.
  2. Bonadonna G. Historical review of Hodgkin’s disease. Br J Haematol. 2000;110(3):504–11. doi: 10.1046/j.1365-2141.2000.02197.x.
  3. Diehl V, guest ed. Bailliere’s Clinical Haematology. International Practice and Research. Hodgkin’s Disease. London, Philadelphia, Sydney: Bailliere Tindall; 1996.
  4. Переслегин И.А., Филькова Е.М. Лимфогранулематоз. М.: Медицина, 1975.
    [Pereslegin IA, Fil‘kova EM. Limfogranulematoz. (Lymphogranulomatosis.) Moscow: Meditsina Publ.; 1975. (In Russ)]
  5. Sternberg C. Uber eine Eigenartige, unter dem Bilde der Pseudoleukemie verlaufende Tuberkulose des lymphatische Apparates. Zschr F Heilkunde. 1898;19:21–90.
  6. Reed D. On the pathological changes in Hodgkin’s disease, with especial reference to its relation to tuberculosis. Johns Hopkins Hosp Bull. 1902;10:133–96.
  7. Diehl V, ed. 25 Years German Hodgkin Study Group. Medizin & Wissen; 2004.
  8. Hjalgrim H, Askling J, Sorensen P, et al. Risk of Hodgkin’s disease and other cancer after infectious mononucleosis. J Natl Cancer Inst. 2000;92(18):1522–8. doi: 10.1093/jnci/92.18.1522.
  9. Демина Е.А. Современная терапия первичных больных лимфомой Ходжкина: Автореф. дис. ¼ д-ра мед. наук. М., 2006.
    [Demina EA. Sovremennaya terapiya pervichnykh bol’nykh limfomoi Khodzhkina. (Modern management of primary Hodgkin’s lymphoma patients.) [dissertation] Moscow; 2006. (In Russ)]
  10. Lukes RJ, Butler JJ, Hicks ED. Natural history of Hodgkin’s disease as related to its pathologic picture. Cancer. 1966;19(3):317–44. doi: 10.1002/1097-0142(196603)19:3<317::aid-cncr2820190304>3.0.co;2-o.
  11. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  12. Engert A, Horning SJ, eds. Hematologic malignancies: Hodgkin lymphoma. A Comprehensive Update on Diagnostics and Clinics. Berlin, Heidelberg: Springer; 2011. pp. 65–76.
  13. Давыдов М.И., Аксель Е.М. Статистика злокачественных новообразований в России и странах СНГ в 2009 г. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2011;22(3, прил. 1).
    [Davydov MI, Aksel’ EM. Cancer statistica in Russia and CIS in 2009. Vestnik RONTs im. N.N. Blokhina RAMN. 2011;22(3 Suppl 1). (In Russ)]
  14. Granger W, Whitaker R. Hodgkin’s disease in bone with special reference to periosteal reaction. Br J Radiol. 1967;40(480):939–48. doi: 10.1259/0007-1285-40-480-939.
  15. Bichel J. The alcohol-intolerance syndrome in Hodgkin’s disease. Acta Med Scand. 1959;164(2):105–12. doi: 10.1111/j.0954-6820.1959.tb00168.x.
  16. James AH. Hodgkin’s disease with and without alcohol-induced pain. A clinical and histological comparison. Q J Med. 1960;29:47–66.
  17. Winiwarter A. Du lymphome malin et du lymphosarcome et de leur traitement. Arch F Arch Klin Chir. 1875;18:98–102.
  18. Pussey WA. Cases of sarcoma and of Hodgkin’s disease treated by exposures to X-rays: preliminary report. JAMA. 1902;98:166–9. doi: 10.1001/jama.1902.62480030024001h.
  19. Gilbert R. La roengentherapie de la granulematise maligne. J Radiol Electrol. 1925;9:509–14.
  20. Демина Е.А. Лимфома Ходжкина: от Томаса Ходжкина до наших дней. Клиническая онкогематология. 2008;1(2):114–8.
    [Demina EA. Hodgkin’s lymphoma: from Thomas Hodgkin till present days. Klinicheskaya onkogematologiya. 2008;1(2):114–8. (In Russ)]
  21. Hoppe RT, Hanlon A, Hanks G, et al. Progress in treatment of Hodgkin’s disease in the United States, 1973 versus 1983: the patterns of care study. Cancer. 1994;74(12):3198–203. doi: 10.1002/1097-0142(19941215)74:12<3198::aid-cncr2820741219>3.0.co;2-9.
  22. Hoppe RT. Radiation therapy in the management of Hodgkin’s disease. Semin Oncol. 1990;17(6):704–15.
  23. Peters MV. A study of survivals in Hodgkin’s disease treated radiologically. Am J Roent. 1950;63:299–311.
  24. Kaplan H. The radical radiotherapy of Hodgkin’s disease. Radiology. 1962;78(4):553–61. doi: 10.1148/78.4.553.
  25. Самочатова Е.В., Владимирская Е.Б., Жесткова Н.М. и др. Болезнь Ходжкина у детей. М.: Алтус, 1997.
    [Samochatova EV, Vladimirskaya EB, Zhestkova NM, et al. Bolezn’ Khodzhkina u detei. (Hodgkin’s disease in children.) Moscow: Altus Publ.; 1997. (In Russ)]
  26. Hoppe RT, Mauch PT, Armitage JO, et al. Hodgkin Lymphoma. 2nd edition. Philadelphia: Lippincott Williams & Wilkins; 2007.
  27. Prosnitz LR, Farber LR, Fisher JJ, et al. Long term remissions with combined modality therapy for advanced Hodgkin’s disease. Cancer. 1976;37(6):2826–33. doi: 10.1002/1097-0142(197606)37:6<2826::aid-cncr2820370638>3.0.co;2-f.
  28. Goodman LS, Wintrobe MM, Dameshek W, et al. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc. 1946;132:126–32.
  29. DeVita VT Jr, Carbone PP. Treatment of Hodgkin’s disease. Med Ann Dist Columbia. 1967;36(4):232–4.
  30. DeVita VT, Serpick AA, et al. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med. 1970;73(6):881–95. doi: 10.7326/0003-4819-73-6-881.
  31. Longo DL, Young RC, Wesley M, et al. Twenty years of MOPP therapy for Hodgkin’s disease. J Clin Oncol. 1986;4:1295–306.
  32. Bonadonna G, Valagussa P, Santoro A. Alternating non-cross-resistant combination chemotherapy or MOPP in stage IV Hodgkin’s disease. A report of 8-year results. Ann Intern Med. 1986;104(6):739–46. doi: 10.7326/0003-4819-104-6-739.
  33. Даценко П.В., Паньшин Г.А., Сотников В.М. и др. Новые программы комбинированного лечения лимфомы Ходжкина. Онкогематология. 2007;4:27–35.
    [Datsenko PV, Pan’shin GA, Sotnikov VM, et al. New programs of combined treatment of Hodgkin’s lymphoma. Onkogematologiya. 2007;4:27–35. (In Russ)]
  34. Goldman AJ, Goldie JH. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep. 1979;63(11–12):1727–33.
  35. Santoro A, Bonadonna G, Valagussa P, et al. Long-term results of combined chemotherapy-radiotherapy approach in Hodgkin’s disease: superiority of ABVD plus radiotherapy versus MOPP plus radiotherapy. J Clin Oncol. 1987;5(1):27–37.
  36. Canellos GP, Anderson JR, Propert KJ, et al. Chemotherapy of advanced Hodgkin’s disease with MOPP, ABVD, or MOPP alternating with ABVD. N Engl J Med. 1992;327(21):1478–84. doi: 10.1056/nejm199211193272102.
  37. Stefan DC, Stones D. How much does it cost to treat children with Hodgkin lymphoma in Africa? Leuk Lymphoma. 2009;50(2):196–9. doi: 10.1080/10428190802663205.
  38. Canellos GP, Niedzwiecki D. Long-term follow-up of Hodgkin’s disease trial. N Engl J Med. 2002;346(18):1417–8. doi: 10.1056/nejm200205023461821.
  39. Mauch PV, Armitage JO, Diehl V, et al. Hodgkin’s disease. Philadelphia: Lippincott Williams & Wilkins; 1999.
  40. Specht L. Prognostic factors in Hodgkin’s disease. Cancer Treat Rev. 1991;18(1):21–53. doi: 10.1016/0305-7372(91)90003-i.
  41. DeVita VT, Hellman S, Rosenberg SA. Cancer. Principles & Practice of Oncology. 4th edition. Philadelphia; 1993;1819–58.
  42. Richardson SE, McNamara C. The management of classical Hodgkin’s lymphoma: past, present, and future. Adv Hematol. 2011;2011:865870. doi: 10.1155/2011/865870.
  43. Horning SJ, Hoppe RT, Breslin S, et al. Stanford V and radiotherapy for locally extensive and advanced Hodgkin’s disease: mature results of a prospective clinical trial. J Clin Oncol. 2002;20(3):630–7. doi: 10.1200/jco.20.3.630.
  44. Hoskin PJ, Lowry L, Horwich A, et al. Randomized comparison of the Stanford V regimen and ABVD in the treatment of advanced Hodgkin’s Lymphoma: United Kingdom National Cancer Research Institute Lymphoma Group Study ISRCTN 64141244. J Clin Oncol. 2009;27(32):5390–6. doi: 10.1200/jco.2009.23.3239.
  45. Diehl V, Franklin J, Pfreundschuh M, et al. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348(24):2386–95. doi: 10.1056/nejmoa022473.
  46. Engert A, Diehl V, Franklin J, et al. Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin’s lymphoma: 10 years of follow-up of the GHSG HD9 study. J Clin Oncol. 2009;27(27):4548–54. doi: 10.1200/jco.2008.19.8820.
  47. Ларина Ю.В., Миненко С.В., Биячуев Э.Р. и др. Лечение распространенных форм лимфомы Ходжкина у подростков и молодых взрослых. Проблема эффективности и токсичности. Онкогематология. 2014;1:11–8.
    [Larina YuV, Minenko SV, Biyachuev ER, et al. Treatment of advance stage Hodgkin’s lymphomas in adolescents and young adults. Efficacy and toxicity problem. Onkogematologiya. 2014;1:11–8. (In Russ)]
  48. Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N Engl J Med. 1998;339(21):1506–14.
  49. Diehl V. German Hodgkin Study Group. Haematologica. 2007;92(s5):21, abstract I071.
  50. Богатырева Т.И., Столбовой А.В., Копп М.Ю. и др. Лимфома Ходжкина: трудности на пути реализации стандартов лечения и их преодоление. Врач. 2011;12:34–40.
    [Bogatyreva TI, Stolbovoi AV, Kopp MYu, et al. Hodgkin’s lymphoma: difficulties in implementing treatment standards and ways to overcome them. Vrach. 2011;12:34–40. (In Russ)]
  51. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Эффективность программ химиотерапии первой линии при различных стадиях лимфомы Ходжкина. Клиническая онкогематология. 2012;5(1):22–9.
    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. Efficacy of first line chemotherapy programs for different stages of Hodgkin’s lymphomas. Klinicheskaya onkogematologiya. 2012;5(1):22–9. (In Russ)]
  52. Borchmann P, Diehl V, Goergen H, et al. Combined modality treatment with intensified chemotherapy and dose-reduced involved field radiotherapy in patients with early unfavourable Hodgkin Lymphoma: final analysis of the German Hodgkin Study Group HD 11 trial. Blood. 2009;114:299–300.
  53. Thomas J, Ferm C, Noordijk E, et al. Results of the EORTC-GELA H9 randomized trials: the H9-F trials (comparing 3 radiation dose levels) and H9-U trials (comparing 3 chemotherapy schemes) in patients with favorable or unfavorable early stage Hodgkin’s lymphoma (HL). Haematologica. 2007;92(s5):27.
  54. Skoetz N, Trelle S, Rancea M, et al. Effect of initial treatment strategy on survival of patients with advanced-stage Hodgkin’s lymphoma: a systematic review and network meta-analysis. Lancet Oncol. 2013;14(10):943–52. doi: 10.1016/s1470-2045(13)70341-3.
  55. Kobe C, Dietlein M, Franklin J, et al. Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first-line chemotherapy in advanced-stage Hodgkin lymphoma. Blood. 2008;112(10):3989–94. doi: 10.1182/blood-2008-06-155820.
  56. Chesson B, Pfistner B, Juweid M, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/jco.2006.09.2403.
  57. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8. doi: 10.1200/jco.2006.08.2305.
  58. Шахтарина С.В., Павлов В.В., Даниленко А.А., Афанасова Н.В. Лечение больных лимфомой Ходжкина с локальными стадиями: опыт медицинского радиологического научного центра. Онкогематология. 2007;4:36–46.
    [Shakhtarina SV, Pavlov VV, Danilenko AA, Afanasova NV. Treatment of patients with local stages Hodgkin’s lymphomas: experience of medical radiological scientific center. Onkogematologiya. 2007;4:36–46. (In Russ)]
  59. Gallamini A, Hutchings M, Rigacci I, et al. Early interim FDG-PET overshadows the prognostic role of IPS in advanced-stage Hodgkin’s lymphoma treated by conventional ABVD therapy. Haematologica. 2007;32(s5): Abstract C022.
  60. Hoppe RT. Hodgkin’s disease: Second cancer after treatment Hodgkin’s disease: Complications of therapy and excess mortality. Ann Oncol. 1997;8(1):115.
  61. Шахтарина С.В., Даниленко А.А., Павлов В.В. Злокачественные новообразования у больных лимфомой Ходжкина после лучевой терапии по радикальной программе и комбинированной химиолучевой терапии. Клиническая онкогематология. 2008;1(3):246–51.
    [Shakhtarina SV, Danilenko AA, Pavlov VV. Malignant neoplasms in Hodgkin’s lymphoma patients after radiation therapy (according to radical program) and combined chemoradiation therapy. Klinicheskaya onkogematologiya. 2008;1(3):246–51. (In Russ)]
  62. Ильин Н.В., Виноградова Ю.Н. Поздние осложнения терапии больных лимфомой Ходжкина. Практическая онкология. 2007;8(2):96–101.
    [Il’in NV, Vinogradova YuN. Delayed treatment complications in Hodgkin’s lymphoma patients. Prakticheskaya onkologiya. 2007;8(2):96–101. (In Russ)]
  63. Поддубная И.В. Неходжкинские лимфомы. В кн.: Клиническая онкогематология. Под ред. М.А. Волковой. М.: Медицина, 2007. C. 724–71.
    [Poddubnaya IV. Non-Hodgkin’s lymphomas. In: Volkova MA, ed. Klinicheskaya onkogematologiya. (Clinical oncohematology.) Moscow: Meditsina Publ.; 2007. pp. 724–71. (In Russ)]
  64. Поддубная И.В. Обоснование лечебной тактики при неходжкинских лимфомах. Современная онкология. 2002;4(1):3–7.
    [Poddubnaya IV. Rationale for therapeutic management of non-Hodgkin’s lymphoma. Sovremennaya onkologiya. 2002;4(1):3–7. (In Russ)]
  65. Federico M, Luminari S, Iannitto E, et al. ABVD compared with BEACOPP compared with CEC for the initial treatment of patients with advanced Hodgkin’s lymphoma: results from the HD2000 Gruppo Italiano per lo Studio dei Limfomi Trial. J Clin Oncol. 2009;27(5):805–11. doi: 10.1200/jco.2008.17.0910.
  66. Engert A, Haverkamp H, Kobe C, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. The Lancet. 2012;379(9828):1791–9. doi: 10.1016/S0140-6736(11)61940-5.
  67. Bovelli D, Plataniotis G, Roila F. Кардиологическая токсичность химиотерапевтических препаратов и заболевания сердца, обусловленные проведением лучевой терапии. В кн.: Минимальные клинические рекомендации Европейского общества медицинской онкологии. М., 2010. C. 423–33.
    [Bovelli D, Plataniotis G, Roila F. Cardiac toxicity of chemotherapeutic agents and radiotherapy-associated heart diseases. In: Minimal’nye klinicheskie rekomendatsii Evropeiskogo obshchestva meditsinskoi onkologii. (European Society for Medical Oncology (ESMO) Minimum Clinical Recommendations.) Moscow; 2010. pp. 423–33. (In Russ)]
  68. Поддубная И.В., Орел Н.Ф. Кардиотоксичность. В кн.: Руководство по химиотерапии опухолевых заболеваний. Под ред. Н.И. Переводчиковой. М.: Практическая медицина, 2011. С. 435–6.
    [Poddubnaya IV, Orel NF. Cardiac toxicity. In: Perevodchikova NI, ed. Rukovodstvo po khimioterapii opukholevykh zabolevanii. (Guidelines for chemotherapy of tumors.) Moscow: Prakticheskaya Meditsina Publ.; 2011. pp. 435–6. (In Russ)]
  69. Емелина Е.И. Состояние сердечно-сосудистой системы у больных лимфопролиферативными заболеваниями, получавших антрациклиновые антибиотики: Дис. ¼ канд. мед. наук. М., 2007. С. 10–36.
    [Emelina EI. Sostoyanie serdechno-sosudistoi sistemy u bol’nykh limfoproliferativnymi zabolevaniyami, poluchavshikh antratsiklinovye antibiotiki. (Condition of the cardiovascular system inpatients with lymphoproliferative disorders treated with anthracycline antibiotics.) [dissertation] Moscow; 2007. pp. 10–36. (In Russ)]
  70. Матяш М.Г., Кравчук Т.Л., Высоцкая В.В. и др. Индуцированная антрациклинами кардиотоксичность: механизмы развития и клинические проявления. Сибирский онкологический журнал. 2008;6(30):66–75.
    [Matyash MG, Kravchuk TL, Vysotskaya VV, et al. Anthracycline-induced cardiac toxicity: mechanisms of development and clinical manifestations. Sibirskii onkologicheskii zhurnal. 2008;6(30):66–75. (In Russ)]
  71. Семенова А.Е. Кардио- и нейротоксичность противоопухолевых препаратов (патогенез, клиника, профилактика и лечение). Практическая онкология. 2009;10(3):168–76.
    [Semenova AE. Cardiac and neurotoxicity of anti-tumor agents (pathogenesis, clinical presentation, prevention, and treatment). Prakticheskaya onkologiya. 2009;10(3):168–76. (In Russ)]
  72. Brana I, Tabernero J. Cardiotoxicity. Ann Oncol. 2010;21(Suppl 7):173–9. doi: 10.1093/annonc/mdq295.
  73. Гендлин Г.Е., Сторожаков Г.И., Шуйкова К.В. и др. Острые сердечно-сосудистые события во время применения противоопухолевых химиопрепаратов: клинические наблюдения. Клиническая онкогематология. 2011;4(2):155–64.
    [Gendlin GE, Storozhakov GI, Shuikova KV, et al. Acute cardiovascular events during treatment with anti-tumor chemotherapeutic agents: clinical observations. Klinicheskaya onkogematologiya. 2011;4(2):155–64. (In Russ)]
  74. Allen A. The cardiotoxicity of chemotherapeutic drugs. Semin Oncol. 1992;19(5):529–42.
  75. Gewlling M, Mertens L, Moerman P, et al. Idiopathic restrictive cardiomyopathy in childhood. Eur Heart J. 1996;17(9):1413–20. doi: 10.1093/oxfordjournals.eurheartj.a015076.
  76. Матяш М.Г., Кравчук Т.Л., Высоцкая В.В. и др. Неантрациклиновая кардиотоксичность. Сибирский онкологический журнал. 2009;5(35):73–82.
    [Matyash MG, Kravchuk TL, Vysotskaya VV, et al. Non-anthracycline-related cardiac toxicity. Sibirskii onkologicheskii zhurnal. 2009;5(35):73–82. (In Russ)]
  77. Escoto H, Ringewald J, Kalpatthi R. Etoposide-related cardiotoxicity in a child with haemophagocytic lymphohistiocytosis. J Cardiol Young. 2010;20(1):105–7. doi: 10.1017/s1047951109991272.
  78. Calvo-Romero JM, Fernandez-Soria-Pantoja R, Arrebola-Garcia JD. Ischemic heart disease associated with vincristine and doxorubicin chemotherapy. Ann Pharmacother. 2001;35(11):1403–5. doi: 10.1345/aph.10358.
  79. Bovelli D, Plataniotis G, Roila F. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO Clinical Practice Guidelines. Ann Oncol. 2010;21(Suppl 5):277–82. doi: 10.1093/annonc/mdq200.
  80. Meirow D, Lewis H, Nugent D, Epstein M. Subclinical depletion of primordial follicular reserve in mice treated with cyclophosphamide: clinical importance and proposed accurate investigative tool. Hum Reprod. 1999;14(7):1903–7. doi: 10.1093/humrep/14.7.1903.
  81. Шахтарина С.В., Даниленко А.А., Щелконогова Л.Н., Павлов В.В. Беременность, роды и состояние здоровья детей, родившихся у женщин с лимфомой Ходжкина после лучевого или комбинированного химиолучевого лечения. Клиническая онкогематология. 2012;5(3):218–24.
    [Shakhtarina SV, Danilenko AA, Shchelkonogova LN, Pavlov VV. Pregnancy, delivery, and health state of children born to women with Hodgkin’s lymphoma after radiation or combined chemoradiation therapy. Klinicheskaya onkogematologiya. 2012;5(3):218–24. (In Russ)]
  82. Familiary G, Caggiani A, Nottola SA, et al. Ultrastructure of human ovarian primordial follicles after combination chemotherapy for Hodgkin’s disease. Hum Reprod. 1993;8(12):2080–7.
  83. Zhang Y, Xiao Z, Wang Y, et al. Gonadotropin-releasing hormone for preservation of ovarian function during chemotherapy in lymphoma patients of reproductive age: a summary based on 434 patients. PLoS One. 2013;8(11):e80444. doi: 10.1371/journal.pone.0080444.
  84. Huser M, Crha I, Ventruba P, et al. Prevention of ovarian function damage by a GnRh analogue during chemotherapy in Hodgkin lymphoma patients. Hum Reprod. 2008;23(4):863–8. doi: 10.1093/humrep/den005.
  85. Kulkarni SS, Sastry PS, Saikia TK, et al. Gonadal function following ABVD therapy for Hodgkin’s disease. J Clin Oncol. 1997;20(4):354–7. doi: 10.1097/00000421-199708000-00006.
  86. Пивник А.В., Расстригин Н.А., Моисеева Т.Н. и др. Результаты лечения лимфогранулематоза по протоколу МОРР-ABVD в сочетании с лучевой терапией (десятилетнее наблюдение). Терапевтический архив. 2006;8:57–62.
    [Pivnik AV, Rasstrigin NA, Moiseeva TN, et al. Results of treatment of lymphogranulematosis according to the МОРР-ABVD protocol in combination with radiation therapy (10-year follow-up). Terapevticheskii arkhiv. 2006;8:57–62. (In Russ)]
  87. Redman JR, Bajorunas DR, Goldstein MC, et al. Semen cryopreservation and artificial insemination for Hodgkin’s disease. J Clin Oncol. 1987;5(2):233–8.
  88. Винокуров А.А., Варфоломеева С.Р., Тарусин Д.И. Гонадотоксичность терапии лимфомы Ходжкина у подростков и молодых мужчин: актуальность проблемы и пути решения (обзор литературы). Онкогематология. 2011;2:12–8.
    [Vinokurov AA, Varfolomeeva SR, Tarusin DI. Gonadal toxicity of treatment for Hodgkin’s lymphoma in adolescents and young adults: topicality of the problem and ways of its solution (literature review). Onkogematologiya. 2011;2:12–8. (In Russ)]
  89. Sieniawski M, Reineke T, Nogova L, et al. Fertility in male patients with advanced Hodgkin’s lymphoma treated with BEACOPP: a report of the German Hodgkin Study Group (GHSG). Blood. 2008;111(1):71–6. doi: 10.1182/blood-2007-02-073544.
  90. Винокуров А.А., Варфоломеева С.Р., Тарусин Д.И., Моисеева Т.Н. Оценка гонадотоксичности терапии по схеме ВЕАСОРР-14 у молодых мужчин, излеченных от лимфомы Ходжкина. Клиническая онкогематология. 2011;4(3):235–9.
    [Vinokurov AA, Varfolomeeva SR, Tarusin DI, Moiseeva TN. Evaluation of gonadal toxicity of ВЕАСОРР-14 treatment regimen in young males cured from Hodgkin’s lymphoma. Klinicheskaya onkogematologiya. 2011;4(3):235–9. (In Russ)]
  91. Даниленко А.А., Шахтарина С.В., Афанасова Н.В., Павлов В.В. Изменения в легких у больных лимфомой Ходжкина после химиотерапии по схемам СОРР, ABVD, ВЕАСОРР и облучения средостения в суммарной очаговой дозе 20–30 Грей. Клиническая онкогематология. 2010;3(4):354–8.
    [Danilenko AA, Shakhtarina SV, Afanasova NV, Pavlov VV. Changes in lugs of patients with Hodgkin’s lymphoma after chemotherapy according to СОРР, ABVD, ВЕАСОРР and radiation of mediastinum (total focal dose of 20–30 Gray). Klinicheskaya onkogematologiya. 2010;3(4):354–8. (In Russ)]
  92. Даценко П.В. Сбалансированное сочетание лучевого и лекарственного компонентов при комплексном лечении лимфогранулематоза: Автореф. дис. ¼ д-ра мед. наук. М., 2004.
    [Datsenko PV. Sbalansirovannoe sochetanie luchevogo i lekarstvennogo komponentov pri kompleksnom lechenii limfogranulematoza. (Balanced combination of radiation and chemotherapy in complex treatment of lymphogranulematosis.) [dissertation] Moscow; 2004. (In Russ)]
  93. Duggan DB, Petroni GR, Johnson JL, et al. Randomized comparison of ABVD and MOPP/ABV hybrid for the treatment of advanced Hodgkin’s disease: Report of an intergroup trial. J Clin Oncol. 2003;21(4):607–14. doi: 10.1200/jco.2003.12.086.
  94. Diehl V, Franklin J, Pfreundschuh M, et al. Standard and increased dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348(24):2386–95. doi: 10.1056/nejmoa022473.
  95. Onuma T, Holland JF, Hosi S, et al. Microbiological assay of bleomycin: inactivation, tissue distribution, and clearance. Cancer. 1974;33(5):1230–8. doi: 10.1002/1097-0142(197405)33:5<1230::aid-cncr2820330507>3.0.co;2-c.
  96. Santrach PJ, Askin FB, Wells RJ, et al. Nodular form of bleomycin-related pulmonary injury in patients with osteogenic sarcoma. Cancer. 1989;64(4):806–11. doi: 10.1002/1097-0142(19890815)64:4<806::aid-cncr2820640407>3.0.co;2-x.
  97. Holoye PY, Luna MH, Mackay B, et al. Bleomycin hypersensitivity pneumonitis. Ann Intern Med. 1978;88(1):47–9. doi: 10.7326/0003-4819-88-1-47.
  98. Martin WG, Ristow KM, Habermann TM, et al. Bleomycin pulmonary toxicity has a negative impact on the outcome of patients with Hodgkin’s lymphoma. J Clin Oncol. 2005;23(30):7614–20. doi: 10.1200/jco.2005.02.7243.
  99. Carlson RW, Sikic BJ. Continuous infusion or bolus injection in cancer chemotherapy. Ann Intern Med. 1983;99(6):823–33. doi: 10.7326/0003-4819-99-6-823.
  100. Samuals MI, Johnson PE, Holoye PY, et al. Large-dose bleomycin therapy and pulmonary toxicity. JAMA. 1976;235(11):1117–20. doi: 10.1001/jama.1976.03260370025026.
  101. Catravas LD, Laza JS, Dobuker KJ, et al. Pulmonary endothelial dysfunction in the presence or absence of interstitial injury induced by intratracheally injected bleomycin in rabbits. Am Rev Respir Dis. 1983;128(4):740–6.
  102. Simpson AB, Paul J, Graham J, et al. Fatal bleomycin pulmonary toxicity in the west of Scotland 1991–95; a review of patients with germ cells tumors. Br J Cancer. 1998;78(8):1061–6. doi: 10.1038/bjc.1998.628.
  103. Lower EE, Strohofer S, Baughman RP. Bleomycin causes alveolar macrophages from cigarette smokers to release hydrogen peroxide. Am J Med Sci. 1988;295(3):193–7. doi: 10.1097/00000441-198803000-00006.
  104. Boll B, Gorgen H, Fuchs M, et al. Feasibility and efficacy of ABVD in elderly Hodgkin lymphoma patients: analysis of two randomized prospective multicenter trials of the German Hodgkin Study Group (HD10 and HD11). Blood (ASH Annual Meeting Abstracts). 2010;116:418.
  105. Proctor SJ, Wilkinson J, Culligan D, et al. Comparative clinical responses of three chemotherapy schedules (VEPEMB, ABVD, CLVPP) in 175 Hodgkin lymphoma patients over 60 YS evaluated as part of the SHIELD (Hodgkin Elderly) study. Ann Oncol. 2011;22(4):117–8.
  106. Evens AM, Hong F, Gordon LI, et al. Efficacy and tolerability of ABVD and Stanford V for Elderly Advanced-Stage Hodgkin-Lymphoma (HL): analysis from the Phase III Randomized US Intergroup Trial E2496. Ann Oncol. 2011;22(4):118.
  107. Behringer K, Goergen H, Borchmann P, et al. Impact of bleomycin and dacarbazine within the ABVD regimen in the treatment of early-stage favorable Hodgkin lymphoma: final results of the GHSG HD13 trial. EHA. 2014: Abstract S1290.
  108. Hirsch A, Vander EN, Straus DJ, et al. Effect of ABVD chemotherapy with and without mantle or mediastinal irradiation on pulmonary function and symptoms in early-stage Hodgkin’s disease. J Clin Oncol. 1996;14(4):1297–305.
  109. Horning SJ, Adhikary A, Rizk N, et al. Effect of treatment for Hodgkin’s disease on pulmonary function: results of a prospective study. J Clin Oncol. 1994;12(2):297–305.
  110. Kaplan HS. Hodgkin’s Disease. 2nd edition. Cambridge: Harvard University Press; 1980.
  111. Prosnitz LR, Farber LR, Fisher JJ, et al. Long term remissions with combined modality therapy for advanced Hodgkin’s disease. Cancer. 1976;37(6):2826–33. doi: 10.1002/1097-0142(197606)37:6<2826::aid-cncr2820370638>3.0.co;2-f.
  112. Mauch PV, Armitage JO, Diehl V, et al, eds. Hodgkin’s disease. Philadelphia; 1999.
  113. Brincker H, Bentzen SM. A re-analysis of available dose-response and time-dose data in Hodgkin’s disease. J Radiother Oncol. 1994;30(3):227–30. doi: 10.1016/0167-8140(94)90462-6.
  114. Loeffler M, Diehl V, Pfreundschuh M, et al. Dose-response relationship of complementary radiotherapy following four cycles of combination chemotherapy in intermediate-stage Hodgkin’s disease. J Clin Oncol. 1997;15(6):2275–87. doi: 10.1016/s1278-3218(98)89074-4.
  115. Ярмоненко С.П., Вайнсон А.А. Радиобиология человека и животных. М.: Высшая школа, 2004.
    [Yarmonenko SP, Vainson AA. Radiobiologiya cheloveka i zhivotnykh. (Radiobiology of human and animal.) Moscow: Vysshaya shkola Publ.; 2004. (In Russ)]
  116. Jakobsson PA, Littbrand B. Fractionation scheme with low individual tumor doses and high total dose. Actа Radiol Ther Phys Biol. 1973;12(4):337–46. doi: 10.3109/02841867309131099.
  117. Акимов А.А., Ильин Н.В. Некоторые биологические аспекты лимфомы Ходжкина и новые подходы к ее терапии. Вопросы онкологии. 2003;49(1):31–40.
    [Akimov AA, Il’in NV. Some biological aspects of Hodgkin’s lymphoma and new approaches to its treatment. Voprosy onkologii. 2003;49(1):31–40. (In Russ)]
  118. Hall EJ. Clinical response of normal tissues. In: Hall EJ, ed. Radiobiology for the Radiologist. 5th edition. Philadelphia: Lippincott Williams &Wilkins, 2000. pp. 352.
  119. Ильин Н.В., Виноградова Ю.Н., Николаева Е.Н., Смирнова Е.В. Значение мультифракционирования дозы радиации при первичном лучевом лечении больных лимфомой Ходжкина. Онкогематология. 2007;4:47–52.
    [Il’in NV, Vinogradova YuN, Nikolaeva EN, Smirnova EV. Value of multifractionation radiotherapy dose for primary treatment of patients with Hodgkin’s lymphoma. Onkogematologiya. 2007;4:47–52. (In Russ)]
  120. Magagnoli M, Marzo K, Balzarotti M, et al. Dimension of Residual CT Scan Mass in Hodgkin’s Lymphoma (HL) Is a Negative Prognostic Factor in Patients with PET Negative After Chemo +/– Radiotherapy. Blood (ASH Annual Meeting Abstracts). 2011;118:93.
  121. Russo F, Corazzelli G, Frigeri F, et al. A phase II study of dose-dense and dose-intense ABVD (ABVDDD-DI) without consolidation radiotherapy in patients with advanced Hodgkin lymphoma. Br J Haematol. 2014;166(1):118–29. doi: 10.1111/bjh.12862.
  122. Laskar S, Kumar DP, Khanna N, et al. Radiation therapy for early stage unfavorable Hodgkin lymphoma: is dose reduction feasible? Leuk Lymphoma. 2014;55(10):2356–61. doi: 10.3109/10428194.2013.871631.
  123. Boll B, Bredenfeld H, Gorgen H, et al. Phase 2 study of PVAG (prednisone, vinblastine, doxorubicin, gemcitabine) in elderly patients with early unfavorable or advanced stage Hodgkin lymphoma. Blood. 2011;118(24):6292–8. doi: 10.1182/blood-2011-07-368167.
  124. Younes A, Oki Y, McLaughlin P, et al. Phase 2 study of rituximab plus ABVD in patients with newly diagnosed classical Hodgkin lymphoma. Blood. 2012;119(18):4123–8. doi: 10.1182/blood-2012-01-405456.
  125. Engert A, Haverkamp H, Kobe C, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. The Lancet. 2012;379(9828):1791–9. doi: 10.1016/s0140-6736(11)61940-5.
  126. Younes A, Connors JM, Park S, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol. 2013;14(13):1348–56. doi: 10.1016/s1470-2045(13)70501-1.
  127. Demina EA, Tumyan GS, Stroyakovskiy DL. Treatment results of six cycles EACOPP-14 ± RT in advanced stage Hodgkin lymphoma. Multicenters study in Russia. 9th International Symposium on Hodgkin Lymphoma, Cologne, Germany, October 12–15, 2013. Haematologica. 2013;98(2): Abstract P013.
  128. Демина Е.А. Дискуссионные вопросы лечения распространенных стадий лимфомы Ходжкина. Материалы XVII Российского онкологического конгресса, Москва, 12–14 ноября 2013 г. Злокачественные опухоли. 2013;2:19–22.
    [Demina EA. Controversial issues of treatment of advanced stage Hodgkin’s lymphoma. (Materials of XVII Russian oncological congress, Moscow, November 12–14, 2013.) Zlokachestvennye opukholi. 2013;2:19–22. (In Russ)]
  129. Younes A, Gopal AK, Smith SE. еt al. Smith еt al. Results of a Pivotal Phase II Study of Brentuximab Vedotin for Patients With Relapsed or Refractory Hodgkin’s Lymphoma. J Clin Oncol. 2012;30(18):2183–9. doi: 10.1200/jco.2011.38.0410.
  130. LaCasce A, Bociek RG, Matous J, et al. Brentuximab Vedotin in Combination with Bendamustine for Patients with Hodgkin Lymphoma who are Relapsed or Refractory after Frontline Therapy. Blood. 2014;124(21): Abstract 293.
  131. Connors J, Ansell S, Park SI, et al. Brentuximab Vedotin Combined with ABVD or AVD for Patients with Newly Diagnosed Advanced Stage Hodgkin Lymphoma: Long Term Outcomes. Blood. 2014;124(21): Abstract 292.
  132. Borchmann P, Eichenauer D, Pluetschow A, et al. Targeted BEACOPP variants in patients with newly diagnosed advanced stage classical Hodgkin lymphoma: interim results of a randomized phase II study. Blood. 2013;122(21): Abstract 4344.
  133. Armand P, Ansell SM, Lesokhin AM, et al. Nivolumab in Patients with Relapsed or Refractory Hodgkin Lymphoma – Preliminary Safety, Efficacy and Biomarker Results of a Phase I Study. Blood. 2014;124(21): Abstract 289.
  134. Moskowitz CH, Ribrag V, Michot J, et al. PD-1 Blockade with the Monoclonal Antibody Pembrolizumab (MK-3475) in Patients with Classical Hodgkin Lymphoma after Brentuximab Vedotin Failure: Preliminary Results from a Phase 1b Study. Blood. 2014;124(21): Abstract 290.
  135. Lesokhin AM, Ansell SM, Armand P, et al. Preliminary Results of a Phase I Study of Nivolumab (BMS-936558) in Patients with Relapsed or Refractory Lymphoid Malignancies. Blood. 2014;124(21): Abstract 291.