Current Issues of Targeted Therapy of Polycythemia Vera

AL Melikyan, IN Subortseva

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Anait Levonovna Melikyan, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: anoblood@ mail.ru

For citation: Melikyan AL, Subortseva IN. Current Issues of Targeted Therapy of Polycythemia Vera. Clinical oncohematology. 2021;14(3):355–60. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-355-360


ABSTRACT

The issues of therapy response criteria, first-line hydroxycarbamide intolerance and resistance to it as well as early changes in treatment strategy remain controversial and debatable in the management of polycythemia vera patients. The review outlines the results of literature data analysis related to the estimation of first-line therapy efficacy, it considers the spectrum and frequency of adverse events of hydroxycarbamide treatment, and focuses on the experience of using ruxolitinib, JAK2 inhibitor. The review provides results, including the long-term ones, of the comparative analysis of ruxolitinib use and the best available therapy of polycythemia vera patients with hydroxycarbamide resistance. The present review uses the materials of expert panel with the participation of Prof. Giuseppe A. Palumbo (University of Catania, Sicily, Italy) held on June 7, 2020.

Keywords: polycythemia vera, JAK2V617F, prognosis, hydroxycarbamide, ruxolitinib.

Received: December 22, 2020

Accepted: May 10, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Меликян А.Л., Туркина А.Г., Абдулкадыров К.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз). Гематология и трансфузиология. 2014;59(4):31–56.
    [Melikyan AL, Turkina AG, Abdulkadyrov KM, et al. Clinical recommendations for the diagnosis and therapy of Ph-negative myeloproliferative diseases (polycythemia vera, essential thrombocythemia, primary myelofibrosis). Gematologiya i transfuziologiya. 2014;59(4):31–56. (In Russ)]
  2. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;62(1):25–60.
    [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical recommendations for the diagnosis and therapy of Ph-negative myeloproliferative diseases (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2016). Gematologiya i transfuziologiya. 2017;62(1):25–60. (In Russ)]
  3. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.) Гематология и трансфузиология. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001.
    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2018). Gematologiya i transfuziologiya. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001. (In Russ)]
  4. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  5. Танашян М.М., Кузнецова П.И., Лагода О.В. и др. Миелопролиферативные заболевания и ишемический инсульт. Анналы клинической и экспериментальной неврологии. 2014;8(2):41–5.
    [Tanashyan MM, Kuznetsova PI, Lagoda OV, et al. Myeloproliferative diseases and ischemic stroke. Annaly klinicheskoi i eksperimental’noi nevrologii. 2014;8(2):41–5. (In Russ)]
  6. Танашян М.М., Кузнецова П.И., Суборцева И.Н. и др. Хроническая и острая цереброваскулярная патология при Ph-негативных миелопролиферативных заболеваниях. Гематология и трансфузиология. 2016;61(3):146–50. doi: 18821/0234-5730-2016-61-3-146-150.
    [Tanashyan MM, Kuznetsova PI, Subortseva IN, et al. Chronic and acute cerebrovascular pathology in patients with Ph-negative myeloproliferative diseases. Gematologiya i transfuziologiya. 2016;61(3):146–50. doi: 10.18821/0234-5730-2016-61-3-146-150. (In Russ)]
  7. Меликян А.Л., Суборцева И.Н., Суханова Г.А. Тромбогеморрагические осложнения у больных Ph-негативными миелопролиферативными заболеваниями. Кровь. 2014;2(18):21–5.
    [Melikyan AL, Subortseva IN, Sukhanova GA. Thrombohemorrhagic complications in patients with Ph-negative myeloproliferative diseases. Krov’. 2014;2(18):21–5. (In Russ)]
  8. Суборцева И.Н., Колошейнова Т.И., Пустовая Е.И. и др. Истинная полицитемия: обзор литературы и собственные данные. Клиническая онкогематология. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412.
    [Subortseva IN, Kolosheinova TI, Pustovaya EI, et al. Polycythemia Vera: Literature Review and Own Data. Clinical oncohematology. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412. (In Russ)]
  9. Falchi L, Newberry KJ, Verstovsek S. New Therapeutic Approaches in Polycythemia Vera. Clin Lymphoma Myel Leuk. 2015;15:27–33. doi: 10.1016/j.clml.2015.02.013.
  10. Barosi G, Mesa R, Finazzi G, et al. Revised response criteria for polycythemia vera and essential thrombocythemia: an ELN and IWG-MRT consensus project. Blood. 2013;121(23):4778–81. doi: 10.1182/blood-2013-01-478891.
  11. Меликян А.Л., Суборцева И.Н., Шуваев В.А. и др. Современный взгляд на диагностику и лечение классических Ph-негативных миелопролиферативных заболеваний. Клиническая онкогематология. 2021;14(1):129–37. doi: 10.21320/2500-2139-2021-14-1-129-137.
    [Melikyan AL, Subortseva IN, Shuvaev VA, et al. Current View on Diagnosis and Treatment of Classical Ph-Negative Myeloproliferative Neoplasms. Clinical oncohematology. 2021;14(1):129–37. doi: 10.21320/2500-2139-2021-14-1-129-137. (In Russ)]
  12. Barosi G, Birgegard G, Finazzi G, et al. Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood. 2009;113(20):4829–33. doi: 10.1182/blood-2008-09-176818.
  13. Palandri F, Elli ME, Benevolo G, et al. Clinical Outcomes Under Hydroxyurea and Impact of ELN Responses in Patients with Polycythemia Vera: A PV-NET Real World Study. Blood. 2019;134(1):4174. doi: 10.1182/blood-2019-125388.
  14. Barosi G, Birgegard G, Finazzi G, et al. A unified definition of clinical resistance and intolerance to hydroxycarbamide in polycythaemia vera and primary myelofibrosis: results of a European LeukemiaNet (ELN) consensus process. Br J Haematol. 2010;148(6):961–3. doi: 10.1111/j.1365-2141.2009.08019.x.
  15. Alvarez-Larran A, Kerguelen A, Hernandez-Boluda JC, et al.; Grupo Espanol de Enfermedades Mieloproliferativas Filadelfia Negativas (GEMFIN). Frequency and prognostic value of resistance/intolerance to hydroxycarbamide in 890 patients with polycythaemia vera. Br J Haematol. 2016;172(5):786–93. doi: 10.1111/bjh.13886.
  16. Kiladjian J-J, Pierre Z, Masayuki H, et al. Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE): 5-year follow up of a phase 3 study. Lancet Haematol. 2020;7(3):е226–е doi: 10.1016/S2352-3026(19)30207-8.
  17. Alvarez-Larran A, Verstovsek S, Perez-Encinas M, et al. Comparison of ruxolitinib and real-world best available therapy in terms of overall survival and thrombosis in patients with polycythemia vera who are resistant or intolerant to hydroxyurea. EHA Library. 2018;215071:PF628.
  18. Curto-Garcia N, Baxter J, Harris E, et al. Molecular analysis in MAJIC PV correlation with clinical endpoints. HemaSphere. 2019;3(S1):740. doi: 10.1097/01.HS9.0000564676.68330.b5.

Obesity as a Poor Prognostic Factor in Multiple Myeloma

ES Mikhailov1, GN Salogub1, SS Bessmeltsev2

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Evgenii Sergeevich Mikhailov, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(812)702-37-49; e-mail: mikhailov_md@bk.ru

For citation: Mikhailov ES, Salogub GN, Bessmeltsev SS. Obesity as a Poor Prognostic Factor in Multiple Myeloma. Clinical oncohematology. 2021;14(3):315–20. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-315-320


ABSTRACT

Aim. To assess the impact of obesity and overweight on the outcomes of multiple myeloma (MM) treatment.

Materials & Methods. The present retrospective study enrolled 214 patients with newly diagnosed MM. The median age was 59 years (range 29–89 years), male patients accounted for 40.2 %. The analysis focused on complication incidence, overall survival, and time to the second-line therapy depending on body mass index (BMI) at disease onset.

Results. In the groups of patients with BMI > 35 kg/m2 and BMI ≤ 35 kg/m2 the median overall survival was 42 and 95 months, respectively (hazard ratio [HR] 0.17; 95% confidence interval [95% CI] 0.08–0.37; < 0.05). In the group of patients with obesity ≥ grade 2 the median time to the second-line therapy was 25 months, being less than in the group of patients with BMI ≤ 35 kg/m2 (43 months; HR 0.58; 95% CI 0.31–0.99; < 0.05). As a result of therapy, the incidence of corticosteroid-associated hyperglycemia and infectious complications as well as the rate of delayed initiation of the next cycle and dose reduction of anticancer drugs were significantly higher in patients with BMI > 35 kg/m2 (< 0.05).

Conclusion. Obesity ≥ grade 2 is a poor prognostic factor for complications and is associated with diminishing outcomes of ММ treatment. Accompanying morbid obesity leads to a higher incidence of therapy complications longer intervals between chemotherapy courses and drug dose reduction.

Keywords: multiple myeloma, obesity, prognosis, survival.

Received: March 9, 2021

Accepted: June 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. World Health Organization. Obesity and overweight. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed 9.03.2021).
  2. Luma A, Ahmsd HA. Relationships between Obesity and Cardiovascular Diseases in Four Southern States and Colorado. J Health Care Poor Underserved. 2011;22(Suppl 4):61–72. doi: 10.1353/hpu.2011.0166.
  3. Barnes AS. The Epidemic of Obesity and Diabetes: trends and treatments. Tex Heart Inst J. 2011;38(2):142–4.
  4. De Pergola G, Silvestris F. Obesity as a Major Risk Factor for Cancer. J Obes. 2013;2013:291546. doi: 10.1155/2013/291546.
  5. Morris EV, Edwards CM. Adipokines, adiposity, and bone marrow adipocytes: Dangerous accomplices in multiple myeloma. J Cell Physiol. 2018;233(12):9159–66. doi: 10.1002/jcp.26884.
  6. Chang SH, Luo S, Thomas TS, et al. Obesity and the Transformation of Monoclonal Gammopathy of Undetermined Significance to Multiple Myeloma: A Population-Based Cohort Study. J Natl Cancer Inst. 2016;109(5):djw264. doi: 10.1093/jnci/djw264.
  7. Vivek R, Swaika A, Kumar S, et al. Influence of Obesity on Outcomes of Patients with Relapsed Refractory Multiple Myeloma. Clin Lymphoma Myel Leuk. 2016;17(1):e139–e140. doi: 10.1016/j.clml.2017.03.252.
  8. Sonderman JS, Bethea TN, Kitahara CM, et al. Multiple Myeloma Mortality in Relation to Obesity Among African Americans. J Natl Cancer Inst. 2016;108(10):djw120. doi: 10.1093/jnci/djw120.
  9. Harvey RD, Kaufman JL, Heffner LT, et al. Impact of obesity on response in 751 myeloma patients receiving lenalidomide, bortezomib, and dexamethasone (RVd) induction. J Clin Oncol. 2018;36(15);8046. doi: 10.1200/JCO.2018.36.15_suppl.8046.
  10. Li Q-F, Zhang Q-K, Wei X-F, et al. Correlation of Body Mass Index, ABO Blood Group with Multiple Myeloma. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2020;28(4):1261–6. doi: 10.19746/j.cnki.issn.1009-2137.2020.04.030.
  11. Moore DC, Ringley JT, Nix D, et al. Impact of Body Mass Index on the Incidence of Bortezomib-induced Peripheral Neuropathy in Patients With Newly Diagnosed Multiple Myeloma. Clin Lymphoma Myel Leuk. 2020;20(3):168–73. doi: 10.1016/j.clml.2019.08.012.
  12. Nath CE, Trotman J, Nivison-Smith I, et al. Melphalan exposure and outcome in obese and non-obese adults with myeloma. A study of pharmacokinetics and pharmacodynamics. Bone Marrow Transplant. 2020;55(9):1862–4. doi: 10.1038/s41409-020-0832-6.
  13. National Cancer Institute. Common Terminology Criteria for Adverse Events (version 5.0). 2017. Available from: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/СTCAE_v5_Quick_Reference_8.5х11.pdf (accessed 9.03.2021).
  14. Kinlen D, Cody D, O’Shea D. Complications of obesity. Int J Med. 2018;111(7):437–43. doi: 10.1093/qjmed/hcx152.
  15. Donihi AC, Raval D, Saul M, еt al. Prevalence and predictors of corticosteroid-related hyperglycemia in hospitalized patients. Endocr Pract. 2006;12(4):358–62. doi: 10.4158/EP.12.4.358.
  16. Huttunen R, Syrjanen J. Obesity and the risk and outcome of infection. Int J Obes. 2013;37(3):333–40. doi: 10.1038/ijo.2012.62.
  17. Griggs JJ, Mangu PB, Anderson H. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2012;30(13):1553–61. doi: 10.1200/JCO.2011.39.9436.
  18. Beason TS, Chang SH, Sanfilippo KM. Influence of body mass index on survival in veterans with multiple myeloma. Oncologist. 2013;18(10):1074–9. doi: 10.1634/theoncologist.2013-0015.
  19. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

National Clinical Guidelines on Diagnosis and Treatment of Ph-Negative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis) (Edition 2020)

AL Melikyan1, AM Kovrigina1, IN Subortseva1, VA Shuvaev2, EV Morozova3, EG Lomaia4, BV Afanasyev3, TA Ageeva5, VV Baikov3, OYu Vinogradova6, SV Gritsaev2, AYu Zaritskey4, TI Ionova7, KD Kaplanov6, IS Martynkevich2, TA Mitina8, ES Polushkina9, TI Pospelova5, MA Sokolova1, AB Sudarikov1, AG Turkina1, YuV Shatokhin10, RG Shmakov9, VG Savchenko1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

3 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

4 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

5 Novosibirsk State Medical University, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091

6 Moscow Municipal Center for Hematology, SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

7 NI Pirogov Clinic for High Medical Technology, Saint Petersburg State University, 7/9 Universitetskaya emb., Saint Petersburg, Russian Federation, 199034

8 NF Vladimirskii Moscow Regional Research Clinical Institute, 61/2 Shchepkina str., Moscow, Russian Federation, 129110

9 VI Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina str., Moscow, Russian Federation, 117997

10 ФГБОУ ВО «Ростовский государственный медицинский университет» Минздрава России, Нахичеванский пер., д. 29, Ростов-на-Дону, Российская Федерация, 344022

For correspondence: Anait Levonovna Melikyan, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: anoblood@ mail.ru

For citation: Melikyan AL, Kovrigina AM, Subortseva IN, et al. National Clinical Guidelines on Diagnosis and Treatment of Ph-Negative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis) (Edition 2020). Clinical oncohematology. 2021;14(2):262–98. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-262-298


ABSTRACT

The development of National clinical guidelines on diagnosis and treatment of Ph-negative myeloproliferative neoplasms comes in response to the need to standardize the approach to diagnosis and treatment. The availability of clinical guidelines can facilitate the choice of adequate treatment strategy, provides practicing physicians with exhaustive and up-to-date information on advantages and shortcomings of different treatment methods as well as lets health professionals better assess expected extents of treatment required by patients. In 2013 a working group was formed to develop and formulate clinical guidelines on the treatment of myeloproliferative neoplasms. These guidelines were first published in 2014, afterwards they were revised and republished. The dynamic development of current hematology presupposes constant updating of knowledge and implementation of new diagnosis and treatment methods in clinical practice. In this context clinical guidelines present a dynamic document to be continuously amended, expanded, and updated in accordance with scientific findings and new requirements of specialists who deal directly with this category of patients. The present edition is an upgraded version of clinical guidelines with updated information on the unification of constitutional symptoms assessment using MPN-SAF TSS questionnaire (MPN10), on applying prognostic scales in primary myelofibrosis, assessing therapy efficacy in myeloproliferative neoplasms, revising indications for prescription, on dose correction, and discontinuation of targeted drugs (ruxolitinib). The guidelines are intended for oncologists, hematologists, healthcare executives, and medical students.

Keywords: myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, primary myelofibrosis, JAK2V617F, CALR, MPL, prognosis, hydroxyurea, interferon-α, ruxolitinib, anagrelide.

Received: November 12, 2020

Accepted: February 23, 2021

Read in PDF

Статистика Plumx английский

 

Current View on Diagnosis and Treatment of Classical Ph-Negative Myeloproliferative Neoplasms

AL Melikyan1, IN Subortseva1, VA Shuvaev2,3, EG Lomaia4, EV Morozova5, LA Kuzmina1, OYu Vinogradova6,7,8, AYu Zaritskey4

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

3 VV Veresaev Municipal Clinical Hospital, 10 Lobnenskaya str., Moscow, Russian Federation, 127644

4 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

5 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

6 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

7 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117997

8 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Anait Levonovna Melikyan, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: anoblood@mail.ru

For citation: Melikyan AL, Subortseva IN, Shuvaev VA, et al. Current View on Diagnosis and Treatment of Classical Ph-Negative Myeloproliferative Neoplasms. Clinical oncohematology. 2021;14(1):129–37. (In Russ).

DOI: 10.21320/2500-2139-2021-14-1-129-137


ABSTRACT

Classical Ph-negative myeloproliferative neoplasms (MPN) constitute a group of diseases including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Over the past decade, the approaches to understanding of MPN pathogenesis and therapy have considerably changed. At the same time, etiological factors and pathophysiological mechanisms of disease progress are being thoroughly studied. The improvement of diagnosis methods and new approaches to therapy can reduce complications and mortality risks. The review outlines the current diagnosis methods, such as the molecular genetic one, and provides prognostic scores. Different methods of conservative therapy are assessed. Special attention is paid to quality of life measurement and targeted treatment of patients.

Keywords: myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, primary myelofibrosis, JAK2V617F, CALR, MPL, prognosis, constitutional symptoms, MPN10, ruxolitinib.

Received: September 1, 2020

Accepted: December 10, 2020

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Меликян А.Л., Туркина А.Г., Абдулкадыров К.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз). Гематология и трансфузиология. 2014;59:31–56.
    [Melikyan AL, Turkina AG, Abdulkadyrov KM, et al. Clinical guidelines on diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis). Gematologiya i transfuziologiya. 2014;59:31–56. (In Russ)]
  2. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.) Гематология и трансфузиология. 2018;63(3):275–315.
    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National clinical guidelines on diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2018). Gematologiya i transfuziologiya. 2018;63(3):275–315. (In Russ)]
  3. Абрамова А.В., Абдуллаев А.О., Азимова М.Х. и др. Алгоритмы диагностики и протоколы лечения заболеваний системы крови. В 2 томах. М.: Практика, 2018. Том 2.
    [Abramova AV, Abdullaev AO, Azimova MKh, et al. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. V 2 tomakh. (Diagnostic algorithms and treatment protocols in hematological diseases. 2 volumes.) Moscow: Praktika Publ.; 2018. 2. (In Russ)]
  4. Меликян А.Л., Суборцева И.Н., Галстян Г.М. Протокол дифференцированного посиндромного лечения больных первичным миелофиброзом. В кн.: Алгоритмы диагностики и протоколы лечения заболеваний системы крови. По ред. А.В. Абрамовой, А.О. Абдуллаева и др. В 2 томах. М.: Практика, 2018. Том 2. С. 777–802.
    [Melikyan AL, Subortseva IN, Galstyan GM. Protocol of differentiated syndromic treatment of patients with primary myelofibrosis. In: Abramova AV, Abdullaev AO, et al., eds. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. V 2 tomakh. (Diagnostic algorithms and treatment protocols in hematological diseases. 2 volumes.) Moscow: Praktika Publ.; 2018. Vol. 2. pр. 777–802. (In Russ)]
  5. Geyer H, Scherber R, Kosiorek H, et al. Symptomatic Profiles of Patients With Polycythemia Vera: Implications of Inadequately Controlled Disease. J Clin Oncol. 2016. 34(2):151–9. doi: 10.1200/JCO.2015.62.9337.
  6. Ионова Т.И., Анчукова Л.В., Виноградова О.Ю. и др. Качество жизни и спектр симптомов у больных миелофиброзом на фоне терапии: данные клинической практики. Гематология и трансфузиология. 2016;61(1):17–25. doi: 10.18821/0234-5730-2016-61-1-17-25.
    [Ionova TI, Anchukova LV, Vinogradova OYu, et al. Quality of life and symptom profile in patients with myelofibrosis undergoing treatment: Data of clinical practice. Gematologiya i transfuziologiya. 2016;61(1):17–25. doi: 10.18821/0234-5730-2016-61-1-17-25. (In Russ)]
  7. Xiao Z, Chang C-S, Morozova E, et al. Impact of myeloproliferative neoplasms (MPNS) and perceptions of treatment goals amongst physicians and patients in 6 countries: an expansion of the MPN landmark survey. 2019;3(s1):294–5. doi: 10.1097/01.hs9.0000561008.75001.e7.
  8. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  9. Passamonti F, Cervantes F, Vannucchi AM, et al. Dynamic International Prognostic Scoring System (DIPSS) predicts progression to acute myeloid leukemia in primary myelofibrosis. 2010;116(15):2857–8. doi: 10.1182/blood-2010-06-293415.
  10. Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/JCO.2010.32.2446.
  11. Vannucchi AM, Guglielmelli P, Rotunno G, et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for primary myelofibrosis: an AGIMM & IWG-MRT project. 2014;124(21):405. doi: 10.1182/blood.v124.21.405.405.
  12. Guglielmelli P, Lasho TL, Rotunno G, et al. MIPSS70: Mutation-Enhanced International Prognostic Score System for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018;36(4):310–8. doi: 10.1200/JCO.2017.76.4886.
  13. Passamonti F, Giorgino T, Mora B, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. 2017;31(12):2726–31. doi: 10.1038/leu.2017.169.
  14. Robin M, de Wreede LC, Wolschke C, et al. Long-term outcome after allogeneic hematopoietic cell transplantation for myelofibrosis. 2019;104(9):1782–8. doi: 10.3324/haematol.2018.205211.
  15. Барабанщикова М.В., Морозова Е.В., Байков В.В. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при миелофиброзе. Клиническая онкогематология. 2016;9(3):279–86. doi: 10.21320/2500-2139-2016-9-3-279-286.
    [Barabanshchikova MV, Morozova EV, Baykov VV, et al. Allogeneic Hematopoietic Stem Cell Transplantation in Myelofibrosis. Clinical oncohematology. 2016;9(3):279–86. doi: 10.21320/2500-2139-2016-9-3-279-286. (In Russ)]
  16. Виноградова О.Ю., Шуваев В.А., Мартынкевич И.С. и др. Таргетная терапия миелофиброза. Клиническая онкогематология. 2017;10(4):471–8. doi: 10.21320/2500-2139-2017-10-4-471-478.
    [Vinogradova OYu, Shuvaev VA, Martynkevich IS, et al. Targeted Therapy of Myelofibrosis. Clinical oncohematology. 2017;10(4):471–8. doi: 10.21320/2500-2139-2017-10-4-471-478. (In Russ)]
  17. Руксолитиниб (инструкция по медицинскому применению). Доступно по: https://www.vidal.ru/drugs/molecule/2304. Ссылка активна на 22.10.2020.
    [Ruxolitinib (package insert). Available from: https://www.vidal.ru/drugs/molecule/2304. (accessed 22.10.2020) (In Russ)]
  18. Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European Leukemia Net (ELN) consensus report. 2013;122(8):1395–8. doi: 10.1182/blood-2013-03-488098.
  19. Ломаиа Е.Г., Сиордия Н.Т., Сендерова О.М. и др. Ранний ответ и отдаленные результаты терапии миелофиброза руксолитинибом: многоцентровое ретроспективное исследование в 10 центрах Российской Федерации. Клиническая онкогематология. 2020;13(3):335–45. doi: 10.21320/2500-2139-2020-13-3-335-345.
    [Lomaia EG, Siordiya NT, Senderova OM, et al. Early Response and Long-Term Outcomes of Ruxolitinib Therapy in Myelofibrosis: Multicenter Retrospective Study in 10 Centers of the Russian Federation. Clinical oncohematology. 2020;13(3):335–45. doi: 10.21320/2500-2139-2020-13-3-335-345. (In Russ)]
  20. Lomaia E, Siordiya N, Dimov G, et al. Early spleen response is a good prognostic factor of ruxolinib outcome in patients with myelofibrosis. 2019;3(S1):989. doi: 10.1097/01.hs9.0000567308.09016.52.

Immunohistochemical Subtype and Parameters of International Prognostic Index in the New Prognostic Model of Diffuse Large B-Cell Lymphoma

SV Samarina1, AS Luchinin1, NV Minaeva1, IV Paramonov1, DA D’yakonov1, EV Vaneeva1, VA Rosin1, SV Gritsaev2

1 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Valer’evna Samarina, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; Tel.: +7(912)732-47-56; e-mail: samarinasv2010@mail.ru

For citation: Samarina SV, Luchinin AS, Minaeva NV, et al. Immunohistochemical Subtype and Parameters of International Prognostic Index in the New Prognostic Model of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(4):385–90 (In Russ).

DOI: 10.21320/2500-2139-2019-12-4-385-390


ABSTRACT

Aim. To develop an integrated prognostic model of diffuse large B-cell lymphoma (DLBCL) on the basis of immunohistochemical tumor subtype and parameters of International Prognostic Index (IPI).

Materials & Methods. Out of 104 DLBCL patients in the data base 81 (77.9 %) met the eligibility criteria. Median age was 58 years (range 23–83). All patients were treated with R-СНОР. The creation of overall survival (OS) prognostic model for DLBCL patients was based on machine learning with classification and regression trees. OS was analyzed using Kaplan-Meier method. Survival curves were compared by means of log rank test and hazard ratio (HR). Any test was considered significant if two-sided level of < 0.05 was reached.

Results. Following the developed model three groups of patients were identified: the 1st group of low risk (the combination of low, intermediate-low, and intermediate-high risks according to IPI and GCB subtype); the 2nd group of intermediate risk (the combination of low, intermediate-low, and intermediate-high risks according to IPI and non-GCB subtype); the 3d group of high risk (irrespective of subtype). In the group of low risk (n = 26) 2-year OS during the monitoring period was 100 %. In the group of intermediate risk (n = 34) median OS was not reached, 2-year OS was 74 %, and expected 5-year OS was 68 %. In the group of high risk (n = 21) median OS was 25 months, 2-year OS was 46 %, and expected 5-year OS was 37 % (log rank< 0.0001). HR calculated for the high-risk group compared with the low- and intermediate-risk groups was 5.1 (95% CI 2.1–12.1; p = 0.0003).

Conclusion. A new integrated system of DLBCL prognosis is suggested which includes IPI risk parameters and immunohistochemical subtype based on Hans algorithm. This prognostic system can be used in clinical practice for DLBCL patient stratification and risk-adapted therapy.

Keywords: diffuse large B-cell lymphoma, overall survival, prognosis, International Prognostic Index, machine learning.

Received: March 18, 2019

Accepted: August 27, 2019

Read in PDF


REFERENCES

  1. Martellia M, Ferrerib AJM, Agostinellic C, et al. Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 2013;87(2):146–71. doi: 10.1016/j.critrevonc.2012.12.009.

  2. Lynch RC, Gratzinger D, Advani RH. Clinical Impact of the 2016 Update to the WHO Lymphoma Classification. Curr Treat Options Oncol. 2017;18(7):45. doi: 10.1007/s11864-017-0483-z.

  3. Li X, Huang H, Xu B, et al. Dose-Dense Rituximab-CHOP versus Standard Rituximab-CHOP in Newly Diagnosed Chinese Patients with Diffuse Large B-Cell Lymphoma: A Randomized, Multicenter, Open-Label Phase 3 Trial. Cancer Res Treat. 2019;51(3):919–32. doi: 10.4143/crt.2018.230.

  4. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42. doi: 10.1056/NEJMoa011795.

  5. Castellino A, Chiappella A, LaPlant BR, et al. Lenalidomide plus R-CHOP21 in newly diagnosed diffuse large B-cell lymphoma (DLBCL): long-term follow-up results from a combined analysis from two phase 2 trials. Blood Cancer J. 2018;8(11):108. doi: 10.1038/s41408-018-0145-9.

  6. Sharman JP, Forero-Torres A, Costa LJ, et al. Obinutuzumab plus CHOP is effective and has a tolerable safety profile in previously untreated, advanced diffuse large B-cell lymphoma: the phase II GATHER study. Leuk Lymphoma. 2018;60(4):894–903. doi: 10.1080/10428194.2018.1515940.

  7. Kameoka Y, Akagi T, Murai K, et al. Safety and efficacy of high-dose ranimustine (MCNU) containing regimen followed by autologous stem cell transplantation for diffuse large B-cell lymphoma. Int J Hematol. 2018;108(5):510–5. doi: 10.1007/s12185-018-2508-1.

  8. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  9. Biccler J, Eloranta S, de Nully Brown P, et al. Simplicity at the cost of predictive accuracy in diffuse large B-cell lymphoma: a critical assessment of the R-IPI, IPI, and NCCN-IPI. Cancer Med. 2018;7(1):114–22. doi: 10.1002/cam4.1271.

  10. Shipp MA, Harrington DP, Anderson JR, et al. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.

  11. Li JM, Wang L, Shen Y, et al. Rituximab in combination with CHOP chemotherapy for the treatment of diffuse large B cell lymphoma in Chinese patients. Annals Hematol. 2007;86(9):639–45. doi: 10.1007/s00277-007-0320-8.

  12. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene-expression profiling. Nature. 2000;403(6769):503–51. doi: 10.1038/35000501.

  13. Wang KL, Chen C, Shi PF, et al. Prognostic Value of Morphology and Hans Classification in Diffuse Large B Cell Lymphoma. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018;26(4):1079–85. doi: 10.7534/j.issn.1009-2137.2018.04.023.

  14. Rashidi A, Oak E, Carson KR, et al. Outcomes with R-CEOP for R-CHOP-ineligible patients with diffuse large B-cell lymphoma are highly dependent on cell of origin defined by Hans criteria. Leuk Lymphoma. 2016;57(5):1191–3. doi: 10.3109/10428194.2015.1096356.

  1. Ye ZY, Cao YB, Lin TY, Lin HL. Subgrouping and outcome prediction of diffuse large B-cell lymphoma by immunohistochemistry. Zhonghua Bing Li Xue Za Zhi. 2007;36(10):654–9.

  1. Montalban C, Diaz-Lopez A, Martin A, et al. Differential prognostic impact of GELTAMO-IPI in cell of origin subtypes of Diffuse Large B Cell Lymphoma as defined by the Hans algorithm. Br J Haematol. 2018;182(4):534–41. doi: 10.1111/bjh.15446.

  2. Tibiletti MG, Martin V, Bernasconi B, et al. BCL2, BCL6, MYC, MALT 1, and BCL10 rearrangements in nodal diffuse large B-cell lymphomas: a multicenter evaluation of a new set of fluorescent in situ hybridization probes and correlation with clinical outcome. Hum Pathol. 2009;40(5):645–52. doi: 10.1016/j.humpath.2008.06.032.

  3. Jaglal MV, Peker D, Tao J, Cultrera JL. Double and Triple Hit Diffuse Large B Cell Lymphomas and First Line Therapy. Blood. 2012;120:4885 [abstract].

  4. Kim M, Suh C, Kim J, Hong JY. Difference of Clinical Parameters between GCB and Non-GCB Subtype DLBCL. Blood. 2017;130:5231 [abstract].

  5. Da Costa CBT. Machine Learning Provides an Accurate Classification of Diffuse Large B-Cell Lymphoma from Immunohistochemical Data. J Pathol Inform. 2018;9(1):21. doi: 10.4103/jpi.jpi_14_18.

  6. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2016.

    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders). Moscow: Buki Vedi Publ.; 2016. (In Russ)]

  7. Leval L, Harris NL. Variability in immunophenotype in diffuse large B-cell lymphoma and it‘s clinical relevance. Histopathol. 2003;43(6):509–28. doi: 10.1111/j.1365-2559.2003.01758.x.

  8. Skarbnik AP, Donato ML. Safety and Efficacy Data for Combined Checkpoint Inhibition with Ipilimumab (Ipi) and Nivolumab (Nivo) As Consolidation Following Autologous Stem Cell Transplantation (ASCT) for High-Risk Hematological Malignancies. Blood. 2018;132:256.

  9. Matsuki E, Younes A. Checkpoint Inhibitors and Other Immune Therapies for Hodgkin and Non-Hodgkin Lymphoma. Curr Treat Options Oncol. 2016;17(6):31. doi: 10.1007/s11864-016-0401-9.

  10. Kaneko H, Tsutsumi Y, Fujino T, et al. Favorable event free-survival of high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation for higher risk diffuse large B-cell lymphoma in first complete remission. Hematol Rep. 2015;7(2):5812 [abstract]. doi: 10.4081/hr.2015.5812.

Clinical Value of miR-3151 Overexpression in Synergistic Interaction with BAALC Host Gene in Patients with Acute Myeloid Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation

AI Shakirova, IM Barkhatov, AI Churkina, NN Mamaev, LS Zubarovskaya, BV Afanas’ev

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Alena Igorevna Shakirova, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)338-62-72; e-mail: alyona.i.shakirova@gmail.com

For citation: Shakirova AI, Barkhatov IM, Churkina AI, et al. Clinical Value of miR-3151 Overexpression in Synergistic Interaction with BAALC Host Gene in Patients with Acute Myeloid Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2019;12(3):303–8 (In Russ).

doi: 10.21320/2500-2139-2019-12-3-303-308


ABSTRACT

Background. Among a multitude of molecular genetic changes underlying acute myeloid leukemia (AML) disordered epigenetic regulation is of special importance. It includes expression change in miR-3151 gene forming a part of BAALC gene on chromosome 8 in q22.3 locus. At present BAALC gene overexpression is observed in a half of AML patients. A considerable part of them shows a combination of it with an increased transcriptional activity of miR-3151 gene, which is associated with the poorest AML prognosis.

Aim. To assess the prognostic value of miR-3151 overexpression in synergistic interaction with BAALC host gene in AML patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT).

Materials & Methods. The trial included bone marrow samples taken from 10 healthy SCT donors and 29 AML patients after receiving allo-HSCT. Relative miR-3151 expression level and relative BAALC copy number were measured by quantitative real-time polymerase chain reaction.

Results. The analysis yielded a poor correlation between miR-3151 expression level and blast cell count in bone marrow (r = 0.330; = 0.005) as well as between the expression levels of miR-3151 and BAALC (r = 0.273; = 0.020). In addition, a great prognostic value of miR-315 overexpression in post-transplantation period was confirmed (= 0.005). Patients with miR-315 and BAALC co-expression in post-transplantation period have also the poorest prognosis than the control group with regard to both disease-free survival and relapse risks within 2 years after allo-HSCT.

Conclusion. Monitoring expression level of miR-3151 and its host gene BAALC in AML patients after receiving allo-HSCT seems to be important not only in AML prognosis but also in therapy efficacy evaluation.

Keywords: acute myeloid leukemia, miR-3151, BAALC, prognosis, allogeneic hematopoietic stem cell transplantation.

Received: October 22, 2018

Accepted: June 7, 2019

Read in PDF 


REFERENCES

  1. Testa U, Pelosi E. MicroRNAs expressed in hematopoietic stem/progenitor cells are deregulated in acute myeloid leukemias. Leuk Lymphoma. 2015;56(5):1466–74. doi: 3109/10428194.2014.955019.

  2. Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. Oncotarget. 2017;8(2):3666–82. doi: 10.18632/oncotarget.12343.

  3. Ambros V. MicroRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–6. doi: 1016/S0092-8674(01)00616-X.

  4. Marcucci G, Haferlach T, Dohner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol. 2011;29(5):475–86. doi: 10.1200/JCO.2010.30.2554.

  5. Ehtesham N, Sharifi M. From conventional therapy toward microRNA-based therapy in acute promyelocytic leukemia. Adv Biomed Res. 2016;5:187. doi: 10.4103/2277-9175.190996.

  6. Li Z, Lu J, Sun M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci. 2008;105:15535–40. doi: 10.1073/pnas.0808266105.

  7. Dixon-McIver A, East P, Mein CA, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One. 2008;3(5):е2141. doi: 10.1371/journal.pone.0002141.

  8. Jongen-Lavrencic M, Sun SM, Dijkstra MK, et al. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood. 2008;111(10):5078–85. doi: 10.1182/blood-2008-01-133355.

  9. Stark M, Tyagi S, Nancarrow D, et al. Characterization of the Melanoma miRNAome by Deep Sequencing. PLoS One. 2010;5(3):e9685. doi: 10.1371/journal.pone.0009685.

  10. Eisfeld A-K, Schwind S, Patel R, et al. Intronic miR-3151 within BAALC drives leukemogenesis by deregulating the TP53 Pathway. Sci Signal. 2014;7(321):ra36. doi: 10.1126/scisignal.2004762.

  11. Eisfeld A-K, Marcucci G, Maharry K, et al. miR-3151 interplays with its host gene BAALC and independently affects outcome of patients with cytogenetically normal acute myeloid leukemia. Blood. 2012;120(2):249–58. doi: 10.1182/blood-2012-02-408492.

  12. Diaz-Beya M, Brunet S, Nomdedeu J, et al. The expression level of BAALC-associated microRNA miR-3151 is an independent prognostic factor in younger patients with cytogenetic intermediate-risk acute myeloid leukemia. Blood Cancer J. 2015;5(10):e352. doi: 10.1038/bcj.2015.76.

  13. Weber S, Haferlach T, Alpermann T, et al. Feasibility of BAALC gene expression for detection of minimal residual disease and risk stratification in normal karyotype acute myeloid leukaemia. Br J Haematol. 2016;175(5):904–16. doi: 10.1111/bjh.14343.

  14. Shakirova A, Barkhatov I, Churkina A, et al. Prognostic significance of BAALC overexpression in patients with AML during the posttransplant period. Cellular Therapy and Transplantation. 2018;7(2):54–63. doi: 10.18620/ctt-1866-8836-2018-7-2–54-63.

  15. Schnerch D, Yalcintepe J, Schmidts A, et al. Cell cycle control in acute myeloid leukemia. Am J Cancer Res. 2012;2(5):508–28.

  16. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–201. doi: 10.1200/JCO.2009.22.4865.

  17. Мамаев Н.Н., Горбунова А.В., Бархатов И.М. и др. Молекулярный мониторинг течения острых миелоидных лейкозов по уровню экспрессии гена WT1 после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология. 2015;8(3):309–20. doi: 10.21320/2500-2139-2015-8-3-309-320.

    [Mamaev NN, Gorbunova AV, Barkhatov IM, et al. Molecular Monitoring of WT1 Gene Expression Level in Acute Myeloid Leukemias after Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2015;8(3):309–20. doi: 21320/2500-2139-2015-8-3-309-320. (In Russ)]

  18. Hosen N, Sonoda Y, Oji Y, et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol. 2002;116(2):409–20. doi: 10.1046/j.1365-2141.2002.03261.x.

  19. Ellisen LW, Carlesso N, Cheng T, et al. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J. 2001;20(8):1897–909. doi: 10.1093/emboj/20.8.1897.

  20. Panyajai P, Amnajphook N, Keawsangthongcharoen S, et al. Study of Leukemic Stem Cell Population (CD34+/CD38-) and WT1 Protein Expression in Human Leukemic Cell Lines. J Assoc Med Sci. 2018;51(1):38–44. doi: 10.14456/jams.2018.5.

  21. Baldus C, Tanner S, Kusewitt D, et al. BAALC, a novel marker of human hematopoietic progenitor cells. Exp Hematol. 2003;31(11):1051–6. doi: 10.1016/j.exphem.2003.08.004.

  22. Najima Y, Ohashi K, Kawamura M, et al. Molecular monitoring of BAALC expression in patients with CD34-positive acute leukemia. Int J Hematol. 2010;91(4):636–45. doi: 10.1007/s12185-010-0550-8.

  23. Xiao S, Shen JZ, Huang JL, et al. Prognostic significance of the BAALC gene expression in adult patients with acute myeloid leukemia: A meta-analysis. Mol Clin Oncol. 2015;3(4):880–8. doi: 10.3892/mco.2015.562.

  24. Lucena-Araujo A, Pereira-Martins D, Koury L, et al. Clinical impact of BAALC expression in high-risk acute promyelocytic leukemia. Blood Adv. 2017;1(21):1807–14. doi: 10.1182/bloodadvances.2017005926.

Prognostic Value of Genetic Mutations in Patients with Acute Myeloid Leukemias: Results of a Cooperative Study of Hematology Clinics of Saint Petersburg (Russia) and Charite Clinic (Germany)

EV Motyko1, OV Blau2, LB Polushkina1, LS Martynenko1, MP Bakai1, NYu Tsybakova1, YuS Ruzhenkova1, EV Kleina1, NB Pavlenko1, AM Radzhabova1, EV Karyagina3, OS Uspenskaya4, SV Voloshin1, AV Chechetkin1, IS Martynkevich1

1 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

2 Charite Clinic, Berlin Medical University, 30 Hindenburgdamm, Berlin, Germany, 12200

3 Municipal Hospital No. 15, 4 Avangardnaya str., Saint Petersburg, Russian Federation, 198205

4 Leningrad Regional Clinical Hospital, 45–49 Lunacharskogo pr-t, Saint Petersburg, Russian Federation, 194291

For correspondence: Ekaterina Vadimovna Motyko, PhD in Biology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; Tel.: +7(812)925-05-62; e-mail: genetics.spb@mail.ru

For citation: Motyko EV, Blau OV, Polushkina LB, et al. Prognostic Value of Genetic Mutations in Patients with Acute Myeloid Leukemias: Results of a Cooperative Study of Hematology Clinics of Saint Petersburg (Russia) and Charite Clinic (Germany). Clinical oncohematology. 2019;12(2):211–9.

DOI: 10.21320/2500-2139-2019-12-2-211-219


ABSTRACT

Aim. To analyze the effect on prognosis of mutations that are typical of acute myeloid leukemia (AML) patients.

Materials & Methods. The study included 620 AML patients surveyed at Hematology Clinics of Saint Petersburg (Russia) and Charite Clinic (Berlin, Germany). G-banding of chromosomes was employed for cytogenetic testing. Aberration screening in DNMT3A, IDH1/2 genes was based on real-time polymerase chain reaction (PCR) with subsequent analysis of melting and sequencing profiles. Mutations in FLT3, NPM1 genes were revealed by PCR.

Results. Mutations were identified in 343 (55.3 %) out of 620 patients. Significantly more often mutations were discovered in patients with normal karyotype (NK) (= 0.001). FLT3-ITD mutation was associated with reduced medians of overall survival (OS) and disease-free (DFS) survival: 11.3 vs. 15.8 months with FLT3-ITD– (= 0.005) and 10.0 vs. 13.3 months with FLT3-ITD+ (= 0.009), respectively. The relation of FLT3-ITD allele burden to OS duration was also assessed. In the ITDlow/ITD– group the OS median was considerably longer than in the ITDhigh group (= 0.028). In the group of patients with 1 mutation in NPM1 gene OS and DFS were much better in comparison with other patients (medians of 27.4 and 13.9 months, respectively, = 0.040; 19.3 and 12.0 months, = 0.049). Negative impact of mutations in DNMT3A gene was noticed while assessing OS median: 12 (DNMT3A+) and 15 months (DNMT3A–), respectively (= 0.112). Mutations in IDH1 gene correlated with a better OS than in the group without mutations (= 0.092). The rs11554137 polymorphism in IDH1 gene was associated with worse OS in the group of patients with NK (= 0.186). In 144 patients various mutation combinations (from 2 to 5) were identified. It was demonstrated that mutations in FLT3 (FLT3-ITD), NPM1, DNMT3A, and IDH2 were identified significantly more often in combinations with other mutations (= 0.001): NPM1+/FLT3-ITD+ (20.8 %), NPM1+/FLT3-ITD+/DNMT3A+ (8.3 %), and FLT3-ITD+/DNMT3A+ (8.3 %). Patients with 1 mutation had a noticeably longer OS median compared with patients with 2 mutations (18.1 and 12.2 months; = 0.003). In patients with NPM1+ according to their OS the most unfavorable additional mutation was FLT3-ITD (median 27.4 vs. 9.2 months; = 0.019) and the combination of NPM1+/FLT3-ITD+/DNMT3A+ (median 27.4 vs. 14.6 months; = 0.141). OS of patients with DNMT3A+ showed a downward trend if FLT3-ITD additional mutation was identified (17.3 vs. 7.1 months; = 0.074).

Conclusion. Mutations in FLT3, DNMT3A, IDH1/2, NPM1 genes frequently occur in AML intermediate-risk patients, i.e. they determine the intermediate prognosis group in AML. The studied mutations considerably impact prognosis. It is important to take into consideration mutation type, its allele burden, and the presence of additional mutations. A patient with 2 mutations has a considerably worse OS compared with a patient with 1 mutation. The studied group of patients with the combination of NPM1+/FLT3-ITD+, NPM1+/FLT3-ITD+/DNMT3A+, DNMT3A+/FLT3-ITD+ mutations has the poorest prognosis. Comprehensive analysis of genetic damages in AML patients allows to most accurately predict the course and prognosis of the disease and to plan targeted therapy.

Keywords: acute myeloid leukemias, mutations in FLT3, NPM1, DNMT3A, IDH1/2 genes, karyotype, prognosis.

Received: July 13, 2018

Accepted: January 16, 2019

Read in PDF 


REFERENCES

  1. Schlenk RF, Dohner H. Genomic applications in the clinic: use in treatment paradigm of acute myeloid leukemia. Hematol Am Soc Hematol Educ Program. 2013;2013(1):324–30. doi: 10.1182/asheducation-2013.1.324.

  2. Sanders MA, Valk PJ. The evolving molecular genetic landscape in acute myeloid leukaemia. Curr Opin Hematol. 2013;20(2):79–85. doi: 10.1097/MOH.0b013e32835d821c.

  3. Preisler H, Davis RB, Kirshner J, et al. Comparison of three remission induction regimens and two postinduction strategies for the treatment of acute nonlymphocytic leukemia: a cancer and leukemic group B study. Blood. 1987;69(5):1441–9.

  4. Wiernik PH, Banks PLC, Case DC, et al. Cytarabine plus idarubicin or daunorubicin as induction and consolidation therapy for previously untreated adult patients with acute myeloid leukemia. 1992;79(2):313–9.

  5. Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2018. Т. 1. 1008 с.

    [Savchenko VG, ed. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols for blood system diseases.) Moscow: Praktika Publ.; 2018. Vol. 1. 1008 p. (In Russ)]

  6. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8. doi: 10.1111/j.1365-2141.1976.tb03563.x.

  7. Heim S, Mitelman F. Cancer Cytogenetics: chromosomal and molecular genetic aberrations of tumor cells. 4th ed. Wiley-Blackwell: 2015. рр. 632. doi: 10.1002/9781118795569.

  8. Jordan CT. Unique molecular and cellular features of acute myelogenous leukemia stem cells. 2002;16(4):559–62. doi: 10.1038/sj.leu.2402446.

  9. Ding L, Ley TJ, Larson DE, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506– doi: 10.1038/nature10738.

  10. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. doi: 10.1056/NEJMoa1113205.

  11. Campbell PJ, Pleasance ED, Stephens PJ, et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc Natl Acad Sci USA. 2008;105(35):13081–6. doi: 10.1073/pnas.0801523105.

  12. Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752– doi: 10.1182/blood.v98.6.1752.

  13. Santos FP, Jones D, Qiao W, et al. Prognostic value of FLT3 mutations among different cytogenetic subgroups in acute myeloid leukemia. Cancer. 2011;117(10):2145–55. doi: 10.1002/cncr.25670.

  14. Sallman DA, Lancet JE. What are the most promising new agents in acute myeloid leukemia? Curr Opin Hematol. 2017;24(2):99–107. doi: 10.1097/MOH.0000000000000319.

  15. Thiede C, Koch S, Creutzig E, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). 2006;107(10):4011–20. doi: 10.1182/blood-2005-08-3167.

  16. Dohner K, Schlenk RF, Habdank M, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740–6. doi: 10.1182/blood-2005-05-2164.

  17. Тилова Л.Р., Савинкова А.В., Жидкова Е.М. и др. Молекулярно-генетические нарушения в патогенезе опухолей системы крови и соответствующие им изменения сигнальных систем клетки. Клиническая онкогематология. 2017;10(2):235– doi: 10.21320/2500-2139-2017-10-2-235-249.

    [Tilova LR, Savinkova AV, Zhidkova EM, et al. Molecular Genetic Abnormalities in the Pathogenesis of Hematologic Malignancies and Corresponding Changes in Cell Signaling Systems. Clinical oncohematology. 2017;10(2):235–49. doi: 10.21320/2500-2139-2017-10-2-235-249. (In Russ)]

  18. Emadi A, Faramand R, Carter-Cooper B, et al. Presence of isocitrate dehydrogenase mutations may predict acute myeloid leukemia. Am J Hematol. 2015;90(5):E77–9. doi: 10.1002/ajh.23965.

  19. Patel JP, Gonen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079–89. doi: 10.1056/NEJMoa1112304.

  20. Renneville A, Boissel N, Nibourel O, et al. Prognostic significance of DNA methyltransferase 3A mutations in cytogenetically normal acute myeloid leukemia: a study by the Acute Leukemia French Association. Leukemia. 2012;26(6):1247–54. doi: 10.1038/leu.2011.382.

  21. Marcucci G, Maharry K, Wu Y-Z, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28(14):2348–55. doi: 10.1200/JCO.2009.27.3730.

  22. Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28(22):3636–43. doi: 10.1200/JCO.2010.28.3762.

  23. Abbas S, Lugthart S, Kavelaars FG, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116(12):2122–6. doi: 10.1182/blood-2009-11-250878.

  24. Thol F, Damm F, Ludeking A, et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol. 2011;29(21):2889– doi: 10.1200/JCO.2011.35.4894.

  25. Ley TJ, Miller C, Ding L, Raphael BJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059– doi: 10.1056/NEJMoa1301689.

  26. Kihara R, Nagata Y, Kiyoi H, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014;28(8):1586– doi: 10.1038/leu.2014.55.

  27. Ravandi F, Kantarjian H, Faderl S, et al. Outcome of patients with FLT3-mutated acute myeloid leukemia in first relapse. Leuk Res. 2010;34(6):752– doi: 10.1016/j.leukres.2009.10.001.

  28. Frohling S, Schlenk RF, Breitruck J, et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: A study of the AML study group Ulm. Blood. 2002;100(13):4372– doi: 10.1182/blood-2002-05-1440.

  29. Schlenk RF, Kayser S, Bullinger L, et al. Differential impact of allelic ratio and insertion site in FLT3-ITD–positive AML with respect to allogeneic transplantation. Blood. 2014;124(23):3441– doi: 10.1182/blood-2014-05-578070.

  30. Kim Y, Lee GD, Park J, et al. Quantitative fragment analysis of FLT3-ITD efficiently identifying poor prognostic group with high mutant allele burden or long ITD length. Blood Cancer J. 2015;5(8):e336. doi: 10.1038/bcj.2015.61.

  31. Linch DC, Hills RK, Burnett AK, et al. Impact of FLT3ITD mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood. 2014;124(2):273– doi: 10.1182/blood-2014-02-554667.

  32. Brunet S, Labopin M, Esteve J, et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J Clin Oncol. 2012;30(7):735– doi: 10.1200/JCO.2011.36.9868.

  33. DeZern AE, Sung A, Kim S, et al. Role of allogeneic transplantation for FLT3/ITD acute myeloid leukemia: outcomes from 133 consecutive newly diagnosed patients from a single institution. Biol Blood Marrow Transplant. 2011;17(9):1404– doi: 10.1016/j.bbmt.2011.02.003.

  34. Islam M, Mohamed Z, Assenov Y. Differential analysis of genetic, epigenetic, and cytogenetic abnormalities in AML. Int J Genom. 2017;2017:2913648. doi: 10.1155/2017/2913648.

  35. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;375(9):900– doi: 10.1056/NEJMc1608739.

  36. Dohner H, Estey E, Amadori S, et al. Diagnosis and Management of Acute Myeloid Leukemia in Adults: Recommendations from an International Expert Panel, on Behalf of the European LeukemiaNet. Blood. 2010;115(3):453– doi: 10.1182/blood-2009-07-235358.

  37. Gale RE, Green C, Allen C, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111(5):2776– doi: 10.1182/blood-2007-08-109090.

  38. Pratcorona M, Brunet S, Nomdedeu J, et al. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: Relevance to post-remission therapy. Blood. 2013;121(14):2734– doi: 10.1182/blood-2012-06-431122.

  39. Stone RM, Mandrekar S, Sanford BL, et al. The Multi-Kinase Inhibitor Midostaurin (M) Prolongs Survival Compared with Placebo (P) in Combination with Daunorubicin (D)/Cytarabine (C) Induction (ind), High-Dose C Consolidation (consol), and As Maintenance (maint) Therapy in Newly Diagnosed Acute Myeloid Leukemia (AML) Patients (pts) Age 18–60 with FLT3 Mutations (muts): An International Prospective Randomized (rand) P-Controlled Double- Blind Trial (CALGB 10603/RATIFY [Alliance]). Blood. 2015;126(23): 6, abstract.

  40. Ibrahem L, Mahfouz R, Elhelw L, et al. Prognostic significance of DNMT3A mutations in patients with acute myeloid leukemia. Blood Cells Mol Dis. 2015;54(1):84– doi: 10.1016/j.bcmd.2014.07.015.

  41. Ley T, Ding L, Walter M, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424– doi: 10.1056/NEJMoa1005143.

  42. Willander K, Falk I, Chaireti R, et al. Mutations in the isocitrate dehydrogenase 2 gene and IDH1 SNP 105C>T have a prognostic value in acute myeloid leukemia. Biomark Res. 2014;2(1):18. doi: 10.1186/2050-7771-2-18.

  43. Xu Q, Li Y, Lv N, et al. Correlation between isocitrate dehydrogenase gene aberrations and prognosis of patients with acute myeloid leukemia: a systematic review and meta-analysis. Clin Cancer Res. 2017;23(15):4511– doi: 10.1158/1078-0432.CCR-16-2628.

  44. Wagner K, Damm F, Gohring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol. 2010;28(14):2356– doi: 10.1200/JCO.2009.27.6899.

  45. Stein EM, Tallman MS. Emerging therapeutic drugs for AML. Blood. 2016;127(1):71– doi: 10.1182/blood-2015-07-604538.

  46. Ploen GG, Nederby L, Guldberg P, et al. Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol. 2014;167(4):478– doi: 10.1111/bjh.13062.

  47. Gaidzik V, Weber D, Paschka P, et al. Monitoring of minimal residual disease (MRD) of DNMT3A mutations (DNMT3Amut) in acute myeloid leukemia (AML): a study of the AML Study Group (AMLSG). Blood. 2015;126(23):226, abstract.

Clinical and Hematological Predictors of Response to First-Line Therapy in Patients with Diffuse Large B-Cell Lymphoma

SV Samarina1, EL Nazarova1, NV Minaeva1, EN Zotina1, IV Paramonov1, SV Gritsaev2

1 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Valer’evna Samarina, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; e-mail: samarinasv2010@mail.ru

For citation: Samarina SV, Nazarova EL, Minaeva NV, et al. Clinical and Hematological Predictors of Response to First-Line Therapy in Patients with Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(1):68–72.

DOI: 10.21320/2500-2139-2019-12-1-68-72


ABSTRACT

Aim. To assess the prognostic value of clinical and hematological parameters used by hematologists for risk stratification in diffuse large B-cell lymphoma (DLBCL), and to justify the need for discovering new prognostic factors.

Methods. The trial included 101 patients (48 men and 53 women) with newly diagnosed DLBCL at the age of 18–80 years (median age 58 years). The patients received R-CHOP as first-line therapy. Depending on their response all patients were stratified into 4 groups: with complete response (CR; n = 58), partial response (PR; n = 15), resistance to first-line therapy (n = 19), and early relapses (ER; n = 9). Median follow-up was 22 months (range 2–120 months).

Results. In terms of age influence on the efficacy of R-СНОР as first-line therapy no significant differences were established in regard to response in patients younger and older than 65 years. Statistically significant differences were observed while analyzing two parameters of International Prognostic Index (IPI; disease stage and extranodal lesions) and B-symptoms in the CR and therapy-resistant groups. With respect to the same parameters no significant differences were found in the CR and ER groups. Median 2-year disease-free survival was not achieved in patients with CR. In patients with PR it was 12 months. Median 2-year overall survival in patients with CR, PR, and ER was not achieved, and in patients with therapy-resistant DLBCL it was 10 months.

Conclusion. Results of the trial confirm prognostic value of factors applied for risk stratification in DLBCL. However, variability of clinical course of the disease, especially with a low IPI score, suggests the need for new prognostic parameters associated with the course of DLBCL.

Keywords: diffuse large B-cell lymphoma, prognosis, induction therapy, survival.

Received: June 5, 2018

Accepted: December 3, 2018

Read in PDF 


REFERENCES

  1. Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA: Cancer J Clin. 2016;66(6):443–59. doi: 10.3322/caac.21357.

  2. Tilly H, Vitolo U, Walewski J, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii78–82. doi: 10.1093/annonc/mds273.

  3. Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology. 2011;2011(1):498–505. doi: 10.1182/asheducation-2011.1.498.

  4. Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematology. 2016;2016(1):366–78. doi: 10.1182/asheducation-2016.1.366.

  5. Sant M, Minicozzi P, Mounier M, et al. Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: results of EUROCARE-5, a population-based study. Lancet Oncol. 2014;15(9):931–42. doi: 10.1016/S1470-2045(14)70282-7.

  6. Menard G, Dulong J, Nguyen TT, et al. Lenalidomide treatment restores in vivo T сell activity in relapsed/refractory FL and DLBCL. Blood. 2017;130(Suppl 1):729.

  7. Westin JR, Oki Y, Nastoupil L, et al. Lenalidomide and obinutuzumab with CHOP for newly diagnosed diffuse large B-cell lymphoma: final phase I/II results. Blood. 2017;130(Suppl 1):189.

  8. Петухов А.В., Маркова В.А., Моторин Д.В. и др. Получение CAR T-лимфоцитов, специфичных к CD19, и оценка их функциональной активности in vitro. Клиническая онкогематология. 2018;11(1):1–9. doi: 10.21320/2500-2139-2018-11-1-1-9.

    [Petukhov AV, Markova VA, Motorin DV, et al. Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro. Clinical oncohematology. 2018;11(1):1–9. doi: 10.21320/2500-2139-2018-11-1-1-9. (In Russ)]

  9. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  10. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/nejm199309303291402.

  11. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244. doi: 10.1200/jco.1999.17.4.1244.

  12. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/jco.2006.09.2403.

  13. Kurtz D, Scherer F, Jin M, et al. Development of a dynamic model for personalized risk assessment in large B-cell lymphoma. Blood. 2017;130(Suppl 1):826.

  14. Hamadani M, Hari PN, Zhang Y, et al. Early failure of frontline rituximab-containing chemoimmunotherapy in diffuse large B cell lymphoma does not predict futility of autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2014;20(11):1729–36.

  15. Crump M, Kuruvilla J, Couban S, et al. Randomized comparison of gemcitabine, dexamethasone, and cisplatin versus dexamethasone, cytarabine, and cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12. J Clin Oncol. 2014;32(31):3490–6. doi: 10.1200/jco.2013.53.9593.

  16. Van Den Neste E, Schmitz N, Mounier N, et al. Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the International CORAL study. Bone Marrow Transplant. 2016;51(1):51–7. doi: 10.1038/bmt.2015.213.

  17. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-03-769620.

  18. Fang X, Xiu B, Yang Z, et al. The expression and clinical relevance of PD-1, PD-L1, and TP63 in patients with diffuse large B-cell lymphoma. Medicine (Baltimore). 2017;96(15):e6398. doi: 10.1097/MD.0000000000006398.

  19. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684.

    [Klyuchagina YuI, Sokolova ZA, Baryshnikova MA. Role of PD-1 Receptor and Its Ligands PD-L1 and PD-L2 in Cancer Immunotherapy. Onkopediatria. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. (In Russ)]

  20. Hayano A, Komohara Y, Takashima Y, et al. Programmed cell death ligand 1 expression in primary central nervous system lymphomas: a clinicopathological study. Anticancer Res. 2017;37(10):5655–66. doi: 10.21873/anticanres.12001.

  21. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.

  22. Alizadeh AA, Gentles AJ, Alencar AJ, et al. Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood. 2011;118(5):1350–8. doi: 10.1182/blood-2011-03-345272.

  23. Amin AD, Peters TL, Li L, et al. Diffuse large B-cell lymphoma: can genomics improve treatment options for a curable cancer? Mol Case Stud. 2017;3(3):a001719. doi: 10.1101/mcs.a001719.

Evolution of Anti-Cancer Treatment and its Impact on Surrogate Prognostic Factors in Multiple Myeloma

AS Luchinin1, SV Semochkin2, NV Minaeva1, NM Pozdeev1, IV Paramonov1

1 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Aleksandr Sergeevich Luchinin, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; Tel.: +7(919)506-87-86; e-mail: glivec@mail.ru

For citation: Luchinin AS, Semochkin SV, Minaeva NV, et al. Evolution of Anti-Cancer Treatment and its Impact on Surrogate Prognostic Factors in Multiple Myeloma. Clinical oncohematology. 2018;11(2):175–81.

DOI: 10.21320/2500-2139-2018-11-2-175-181


ABSTRACT

Aim. To assess prognostic value of surrogate clinical and laboratory markers in current therapy of multiple myeloma (MM).

Materials & Methods. The analysis included 567 patients (215 men and 352 women), the Kirov region inhabitants with newly diagnosed MM over the period from January 1, 1994 to December 31, 2016. The median age was 64 years (range 29–90). Patients were divided into two groups: the first group received treatment from 1994 to 2005 (n = 269), the second group received treatment from 2006 to 2016 (n = 298). Impact of factors on overall survival (OS) was evaluated by multivariate logistic regression analysis using the Cox method.

Results. Over the period from 2006 to 2016 the number of patients treated with traditional chemotherapy decreased from 78.4 to 32.5 %. At the same time the number of patients treated with bortezomib-based regimens increased from 1.9 to 56.3 % and autologous hematopoietic stem cell transplantation (auto-HSCT) protocols — from 1.4 to 14.0 %. Median OS over the period from 1994 to 2005 was 27 months. It increased to 55 months in the period of 2006–2016. In the reference decades 5-year overall survival increased from 21 % (95% confidence interval [95% CI] 17–27 %) to 47 % (95% CI 39–55 %), respectively (hazard ratio [HR] 0.51; 95% CI 0.41–0.64; < 0,0001). In patients treated with bortezomib-based regimens over the period from 2006 to 2016 median OS increased to 73 months compared to 27 months in 1994–2005. In patients aged ≤ 65 years and treated with auto-HSCT median OS was not reached, and median OS in patients without auto-HSCT treatment was 54 months.

Conclusions. Surrogate prognostic markers, such as the age over 65, hemoglobin level < 100 g/L, β2-microglobulin ≥ 6 mg/L, serum creatinine ≥ 177 µmol/L and stage III according to ISS and Durie-Salmon, are unfavourable predictors of survival of MM patients.

Keywords: multiple myeloma, prognosis, bortezomib, auto-HSCT, overall survival.

Received: December 21, 2017

Accepted: February 25, 2018

Read in PDF 


REFERENCES

  1. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2).[Mendeleeva OP, Votyakova OM, Pokrovskaya OS, et al. National clinical recommendations in diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2). (In Russ)]
  2. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: МК, 2016. 504 с.[Bessmel’tsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: MK Publ.; 2016. 504 p. (In Russ)]
  3. Ghobrial IM, Landgren O. How I treat smoldering multiple myeloma. Blood. 2014;124(23):3380–8. doi: 10.1182/blood-2014-08-551549.
  4. Hsu P, Lin TW, Gau JP, et al. Risk of early mortality in patients with newly diagnosed multiple myeloma. Medicine. 2016;94(50):e2305. doi: 1097/MD.0000000000002305.
  5. Pulte D, Jansen L, Castro FA, et al. Trends in survival of multiple myeloma patients in Germany and the United States in the first decade of the 21st century. Br J Haematol. 2015;171(2):189–96. doi: 10.1111/bjh.13537.
  6. Libby E, Garcia D, Quintana D, et al. Disease-specific survival for patients with multiple myeloma: significant improvements over time in all age groups. Leuk Lymphoma. 2014;55(12):2850–7. doi: 10.3109/10428194.2014.89770
  7. Митина Т.А., Голенков А.К., Трифонова Е.В. и др. Эффективность леналидомида, бортезомиба и преднизолона при лечении пациентов с рецидивирующей и рефрактерной множественной миеломой. Онкогематология. 2015;4(10):8–14. doi: 10.17650/1818-8346-2015-10-4-8-14.[Mitina TA, Golenkov AK, Trifonova EV, et al. Efficacy of lenalidomide, bortezomib, and prednisolone in patients with relapsed or refractory multiple myeloma. Oncohematology. 2015;4(10):8–14. doi: 10.17650/1818-8346-2015-10-4-8-14. (In Russ)]
  8. Hungria VTМ, Maiolino A, Martinez G, et al. Confirmation of the utility of the International Staging System and identification of a unique pattern of disease in Brazilian patients with multiple myeloma. Haematologica. 2008;93(5):791–2. doi: 10.3324/haematol.11637.
  9. Lu J, Lu J, Liu A, et al. The applicability of the International Staging System in Chinese patients with multiple myeloma receiving bortezomib or thalidomide-based regimens as induction therapy: a multicenter analysis. Biomed Res Int. 2015;2015:1–7. doi: 10.1155/2015/856704.
  10. Dosani T, Covut F, Beck R, et al. Significance of the absolute lymphocyte/monocyte ratio as a prognostic immune biomarker in newly diagnosed multiple myeloma. Blood Cancer J. 2017;7(6):e579. doi: 10.1038/bcj.2017.60.
  11. Hanbali A, Hassanein M, Rasheed W, et al. The evolution of prognostic factors in multiple myeloma. Adv Hematol. 2017;2017:1–11. doi: 10.1155/2017/4812637.
  12. Chng WJ, Dispenzieri A, Chim CS, et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28(2):269–77. doi: 10.1038/leu.2013.247.
  13. Rajkumar SV, Kumar S. Multiple Myeloma: diagnosis and treatment. Mayo Clin Proc. 2016;91(1):101–18. doi: 10.1016/j.mayocp.2015.11.007.
  14. Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised International Staging System for multiple myeloma: a report from IMWG. J Clin Oncol. 2015;33(26):2863–6. doi: 10.1200/JCO.2015.61.2267.

Clinical Significance of the PRAME Gene Expression in Oncohematological Diseases

VA Misyurin

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Vsevolod Andreevich Misyurin, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(985)436-30-19; e-mail: vsevolod.misyurin@gmail.com

For citation: Misyurin AV. Clinical Significance of the PRAME Gene Expression in Oncohematological Diseases. Clinical oncohematology. 2018;11(1):26–33.

DOI: 10.21320/2500-2139-2018-11-1-26-33


ABSTRACT

Although the PRAME activity was first discovered in solid tumors, this gene is very frequently expressed in oncohematological diseases. PRAME can be regarded as a reliable biomarker of tumor cells. Determination of PRAME transcripts is used in residual disease monitoring and molecular relapse diagnostics. Experimentation with PRAME expressing lines of leukemia cells yielded controversial results. Therefore, it is hardly possible to estimate the prognostic value of PRAME activity in oncohematological diseases. In chronic myeloproliferative disease and chronic myeloid leukemia, however, PRAME activity proves to be a predictor of negative prognosis, and on the contrary, it can be regarded as a positive prognostic factor in acute myeloid or lymphoid leukemia. Despite many clinical studies prognostic value of PRAME expression in some diseases requires further investigation. The present literature review contains the data concerning PRAME expression in oncohematological diseases.

Keywords: PRAME, leukemia, lymphoma, prognosis.

Received: September 14, 2017

Accepted: December 2, 2017

Read in PDF 


REFERENCES

  1. Ikeda H, Lethe B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity. 1997;6(2):199–208. doi: 10.1016/S1074-7613(00)80426-4.
  2. Greiner J, Ringhoffer M, Simikopinko O, et al. Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Exp Hematol. 2000;28(12):1413–22. doi: 10.1016/S0301-472X(00)00550-6.
  3. Epping MT, Wang L, Edel MJ, et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell. 2005;122(6):835–47. doi: 10.1016/j.cell.2005.07.003.
  4. De Carvalho DD, Mello BP, Pereira WO, Amarante-Mendes GP. PRAME/EZH2-mediated regulation of TRAIL: a new target for cancer therapy. Curr Mol Med. 2013;13(2):296–304. doi: 10.2174/156652413804810727.
  5. Costessi A, Mahrour N, Tijchon E, et al. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters. EMBO J. 2011;30(18):3786–98. doi: 10.1038/emboj.2011.262.
  6. Kim HL, Seo YR. Molecular and genomic approach for understanding the gene-environment interaction between Nrf2 deficiency and carcinogenic nickel-induced DNA damage. Oncol Rep. 2012;28(6):1959–67. doi: 10.3892/or.2012.2057.
  7. Yao J, Caballero OL, Yung WK, et al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol Res. 2014;2(4):371–9. doi: 10.1158/2326-6066.CIR-13-0088.
  8. van Baren N, Chambost H, Ferrant A, et al. PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br J Haematol. 1998;102(5):1376–9. doi: 10.1046/j.1365-2141.1998.00982.x.
  9. Oehler VG, Guthrie KA, Cummings CL, et al. The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells. Blood. 2009;114(15):3299–308. doi: 10.1182/blood-2008-07-170282.
  10. Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Epigenetic regulation of PRAME gene in chronic myeloid leukemia. Leuk Res. 2007;31(11):1521–8. doi: 10.1016/j.leukres.2007.02.016.
  11. Ortmann CA, Eisele L, Nuckel H, et al. Aberrant hypomethylation of the cancer–testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol. 2008;87(10):809–18. doi: 10.1007/s00277-008-0514-8.
  12. Gutierrez-Cosio S, de la Rica L, Ballestar E, et al. Epigenetic regulation of PRAME in acute myeloid leukemia is different compared to CD34+ cells from healthy donors: Effect of 5-AZA treatment. Leuk Res. 2012;36(7):895–9. doi: 10.1016/j.leukres.2012.02.030.
  13. Arons E, Suntum T, Margulies I, et al. PRAME expression in Hairy Cell Leukemia. Leuk Res. 2008;32(9):1400–6. doi: 10.1016/j.leukres.2007.12.010.
  14. Steinbach D, Schramm A, Eggert A, et al. Identification of a Set of Seven Genes for the Monitoring of Minimal Residual Disease in Pediatric Acute Myeloid Leukemia. Clin Cancer Res. 2006;12(8):2434–41. doi: 10.1158/1078-0432.CCR-05-2552.
  15. Matsushita M, Ikeda H, Kizaki M, et al. Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br J Haematol. 2001;112(4):916–26. doi: 10.1046/j.1365-2141.2001.02670.x.
  16. Tajeddine N, Millard I, Gailly P, Gala JL. Real-time RT-PCR quantification of PRAME gene expression for monitoring minimal residual disease in acute myeloblastic leukaemia. Clin Chem Lab Med. 2006;44(5):548–55. doi: 10.1515/CCLM.2006.106.
  17. Schneider V, Zhang L, Rojewski M, et al. Leukemic progenitor cells are susceptible to targeting by stimulated cytotoxic T cells against immunogenic leukemia-associated antigens. Int J Cancer. 2015;137(9):2083–92. doi: 10.1002/ijc.29583.
  18. Гапонова Т.В., Менделеева Л.П., Мисюрин А.В. и др. Экспрессия опухолеассоциированных генов PRAME, WT1 и XIAP у больных множественной миеломой. Онкогематология. 2009;2:52–7. [Gaponova TV, Mendeleeva LP, Misyurin AV, et al. Expression of PRAME, WT1 and XIAP tumor-associated genes in patients with multiple myeloma. Onkogematologiya. 2009;2:52–7. (In Russ)]
  19. Абраменко И.В., Белоус Н.И., Крячок И.А. и др. Экспрессия гена PRAME при множественной миеломе. Терапевтический архив. 2004;74(7):77–81. [Abramenko IV, Belous NI, Kryachok IA, et al. Expression of PRAME gene in multiple myeloma. Terapevticheskii arkhiv. 2004;74(7):77–81. (In Russ)]
  20. Мисюрин В.А., Мисюрин А.В., Кесаева Л.А. и др. Новые маркеры прогрессирования хронического миелолейкоза. Клиническая онкогематология. 2014;7(2):206–12. [Misyurin VA, Misyurin AV, Kesayeva LA, et al. New molecular markers of CML progression. Klinicheskaya onkogematologiya. 2014;7(2):206–12. (In Russ)]
  21. van Baren N, Brasseur F, Godelaine D, et al. Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood. 1999;94(4):1156–64.
  22. Pellat-Deceunynck C, Mellerin M., Labarriere N, et al. The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. Eur J Immunol. 2000;30(3):803–9. doi: 10.1002/1521-4141(200003)30:3<803:AID-IMMU803>3.0.CO;2-P.
  23. Andrade VC, Vettore AL, Felix RS, et al. Prognostic impact of cancer/testis antigen expression in advanced stage multiple myeloma patients. Cancer Immun. 2008;8:2.
  24. Qin Y, Lu J, Bao L, et al. Bortezomib improves progression-free survival in multiple myeloma patients overexpressing preferentially expressed antigen of melanoma. Chin Med J (Engl). 2014;127(9):1666–71. doi: 10.3760/cma.j.issn.0366-6999.20132356.
  25. Proto-Siqueira R, Falcao RP, de Souza CA, et al. The expression of PRAME in chronic lymphoproliferative disorders. Leuk Res. 2003;27(5):393–6. doi: 10.1016/S0145-2126(02)00217-5.
  26. Proto-Siqueira R, Figueiredo-Pontes LL, Panepucci RA, et al. PRAME is a membrane and cytoplasmic protein aberrantly expressed in chronic lymphocytic leukemia and mantle cell lymphoma. Leuk Res. 2006;30(11):1333–39. doi: 10.1016/j.leukres.2006.02.031.
  27. Paydas S, Tanriverdi K, Yavuz S, Seydaoglu G. PRAME mRNA levels in cases with chronic leukemia: Clinical importance and review of the literature. Leuk Res. 2007;31(3):365–9. doi: 10.1016/j.leukres.2006.06.022.
  28. Kawano R, Karube K, Kikuchi M, et al. Oncogene associated cDNA microarray analysis shows PRAME gene expression is a marker for response to anthracycline containing chemotherapy in patients with diffuse large B-cell lymphoma. J Clin Exp Hematop. 2009;49(1):1–7. doi: 10.3960/jslrt.49.1.
  29. Mitsuhashi K, Masuda A, Wang YH, et al. Prognostic significance of PRAME expression based on immunohistochemistry for diffuse large B-cell lymphoma patients treated with R-CHOP therapy. Int J Hematol. 2014;100(1):88–95. doi: 10.1007/s12185-014-1593-z.
  30. Schmitt M, Li L, Giannopoulos K, et al. Chronic myeloid leukemia cells express tumor-associated antigens eliciting specific CD8+ T-cell responses and are lacking costimulatory molecules. Exp Hematol. 2006;34(12):1709–19. doi: 10.1016/j.exphem.2006.07.009.
  31. Qian J, Zhu Z.H, Lin J, et al. Hypomethylation of PRAME promoter is associated with poor prognosis in myelodysplastic syndrome. Br J Haematol. 2011;154(1):153–5. doi: 10.1111/j.1365-2141.2011.08585.x.
  32. Ding K, Wang XM, Fu R, et al. PRAME Gene Expression in Acute Leukemia and Its Clinical Significance. Cancer Biol Med. 2012;9(1):73–6. doi: 10.3969/j.issn.2095-3941.2012.01.013.
  33. Greiner J, Ringhoffer M, Taniguchi M, et al. mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer. 2004;108(5):704–11. doi: 10.1002/ijc.11623.
  34. Li L, Reinhardt P, Schmitt A, et al. Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother. 2005;54(7):685–93. doi: 10.1007/s00262-004-0631-8.
  35. Atanackovic D, Luetkens T, Kloth B, et al. Cancer-testis antigen expression and its epigenetic modulation in acute myeloid leukemia. Am J Hematol. 2011;86(11):918–22. doi: 10.1002/ajh.22141.
  36. Gerber JM, Qin L, Kowalski J, et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol. 2011;86(1):31–7. doi: 10.1002/ajh.21915.
  37. Qin YZ, Zhu HH, Liu YR, et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leuk Lymphoma. 2013;54(7):1442–9. doi: 10.3109/10428194.2012.743656.
  38. Steinbach D, Viehmann S, Zintl F, Gruhn B. PRAME gene expression in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet. 2002;138(1):89–91. doi: 10.1016/S0165-4608(02)00582-4.
  39. Steinbach D, Hermann J, Viehmann S, et al. Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet. 2002;133(2):118–23. doi: 10.1016/S0165-4608(01)00570-2.
  40. Spanaki A, Perdikogianni C, Linardakis E, Kalmanti M. Quantitative assessment of PRAME expression in diagnosis of childhood acute leukemia. Leuk Res. 2007;31(5):639–42. doi: 10.1016/j.leukres.2006.06.006.
  41. Steinbach D, Bader P, Willasch A, et al. Prospective Validation of a New Method of Monitoring Minimal Residual Disease in Childhood Acute Myelogenous Leukemia. Clin Cancer Res. 2015;21(6):1353–9. doi: 10.1158/1078-0432.CCR-14-1999.
  42. Paydas S, Tanriverdi K, Yavuz S, et al. PRAME mRNA levels in cases with chronic leukemia: Clinical Importance and Future Prospects. Am J Hematol. 2005;79(4):257–61. doi: 10.1002/ajh.20425.
  43. Steinbach D, Pfaffendorf N, Wittig S, Gruhn B. PRAME expression is not associated with down-regulation of retinoic acid signaling in primary acute myeloid leukemia. Cancer Genet Cytogenet. 2007;177(1):51–4. doi: 10.1016/j.cancergencyto.2007.05.011.
  44. Santamaria C, Chillon MC, Garcia-Sanz R, et al. The relevance of preferentially expressed antigen of melanoma (PRAME) as a marker of disease activity and prognosis in acute promyelocytic leukemia. Haematologica. 2008;93(12):1797–805. doi: 10.3324/haematol.13214.
  45. Qin Y, Zhu H, Jiang B, et al. Expression patterns of WT1 and PRAME in acute myeloid leukemia patients and their usefulness for monitoring minimal residual disease. Leuk Res. 2009;33(3):384–90. doi: 10.1016/j.leukres.2008.08.026.
  46. Мисюрин В.А., Лукина А.Е., Мисюрин А.В. и др. Особенности соотношения уровней экспрессии генов PRAME и PML/RARa в дебюте острого промиелоцитарного лейкоза. Российский биотерапевтический журнал. 2014;13(1):9–16. [Misyurin VA, Lukina AE, Misyurin AV, et al. A ratio between gene expression levels of PRAME and PML/RARA at the onset of acute promyelocytic leukemia and clinical features of the disease. Rossiiskii bioterapevticheskii zhurnal. 2014;13(1):9–16. (In Russ)]
  47. Liberante FG, Pellagatti A, Boncheva V, et al. High and low, but not intermediate, PRAME expression levels are poor prognostic markers in myelodysplastic syndrome at disease presentation. Br J Haematol. 2013;162(2):282–5. doi: 10.1111/bjh.12352.
  48. Goellner S, Steinbach D, Schenk T, et al. Childhood acute myelogenous leukaemia: Association between PRAME, apoptosis- and MDR-related gene expression. Eur J Cancer. 2006;42(16):2807–14. doi: 10.1016/j.ejca.2006.06.018.
  49. Tajeddine N, Louis M, Vermylen C, et al. Tumor associated antigen PRAME is a marker of favorable prognosis in childhood acute myeloid leukemia patients and modifies the expression of S100A4, Hsp 27, p21, IL-8 and IGFBP-2 in vitro and in vivo. Leuk Lymphoma. 2008;49(6):1123–31. doi: 10.1080/10428190802035933.
  50. Santamaria CM, Chillon MC, Garcia-Sanz R, et al. Molecular stratification model for prognosis in cytogenetically normal acute myeloid leukemia. Blood. 2009;114(1):148–52. doi: 10.1182/blood-2008-11-187724.
  51. Ercolak V, Paydas S, Bagir E, et al. PRAME Expression and Its Clinical Relevance in Hodgkin’s Lymphoma. Acta Haematol. 2015;134(4):199–207. doi: 10.1159/000381533.
  52. Luetkens T, Kobold S, Cao Y, et al. Functional autoantibodies against SSX‐2 and NY‐ESO‐1 in multiple myeloma patients after allogeneic stem cell transplantation. Cancer Immunol Immunother. 2014;63(11):1151–62. doi: 10.1007/s00262-014-1588-x.
  53. Gunn SR, Bolla AR, Barron LL, et al. Array CGH analysis of chronic lymphocytic leukemia reveals frequent cryptic monoallelic and biallelic deletions of chromosome 22q11 that include the PRAME gene. Leuk Res. 2009;33(9):1276–81. doi: 10.1016/j.leukres.2008.10.010.
  54. Mraz M, Stano Kozubik K, Plevova K, et al. The origin of deletion 22q11 in chronic lymphocytic leukemia is related to the rearrangement of immunoglobulin lambda light chain locus. Leuk Res. 2013;37(7):802–8. doi: 10.1016/j.leukres.2013.03.018.
  55. Staege MS, Banning-Eichenseer U, Weissflog G, et al. Gene expression profiles of Hodgkin’s lymphoma cell lines with different sensitivity to cytotoxic drugs. Exp Hematol. 2008;36(7):886–96. doi: 10.1016/j.exphem.2008.02.014.
  56. Kewitz S, Staege MS. Knock-Down of PRAME Increases Retinoic Acid Signaling and Cytotoxic Drug Sensitivity of Hodgkin Lymphoma Cells. PLoS One. 2013;8(2):e55897. doi: 10.1371/journal.pone.0055897.
  57. Bea S, Salaverria I, Armengol L, et al. Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood. 2009;113(13):3059–69. doi: 10.1182/blood-2008-07-170183.
  58. Liggins AP, Lim SH, Soilleux EJ, et al. A panel of cancer-testis genes exhibiting broadspectrum expression in haematological malignancies. Cancer Immun. 2010;10:8.
  59. Radich JP, Dai H, Mao M, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA. 2006;103(8):2794–9. doi: 10.1073/pnas.0510423103.
  60. Luetkens T, Schafhausen P, Uhlich F, et al. Expression, epigenetic regulation, and humoral immunogenicity of cancer-testis antigens in chronic myeloid leukemia. Leuk Res. 2010;34(12):1647–55. doi: 10.1016/j.leukres.2010.03.039.
  61. Hughes A, Clarson J, Tang C, et al. CML patients with deep molecular responses to TKI have restored immune effectors and decreased PD-1 and immune suppressors. Blood. 2017;129(9):1166–76. doi: 10.1182/blood-2016-10-745992.
  62. Khateeb EE, Morgan D. Preferentially Expressed Antigen of Melanoma (PRAME) and Wilms’ Tumor 1 (WT 1) Genes Expression in Childhood Acute Lymphoblastic Leukemia, Prognostic Role and Correlation with Survival. Open Access Maced J Med Sci. 2015;3(1):57–62. doi: 10.3889/oamjms.2015.001.
  63. Zhang YH, Lu AD, Yang L, et al. PRAME overexpression predicted good outcome in pediatric B-cell acute lymphoblastic leukemia patients receiving chemotherapy. Leuk Res. 2017;52):43–9. doi: 10.1016/j.leukres.2016.11.005.
  64. McElwaine S, Mulligan C, Groet J, et al. Microarray transcript profiling distinguishes the transient from the acute type of megakaryoblastic leukaemia (M7) in Down’s syndrome, revealing PRAME as a specific discriminating marker. Br J Haematol. 2004;125(6):729–42. doi: 10.1111/j.1365-2141.2004.04982.x.
  65. Tanaka N, Wang YH, Shiseki M, et al. Inhibition of PRAME expression causes cell cycle arrest and apoptosis in leukemic cells. Leuk Res. 2011;35(9):1219–25. doi: 10.1016/j.leukres.2011.04.005.
  66. De Carvalho D.D, Binato R, Pereira W.O, et al. BCR-ABL-mediated upregulation of PRAME is responsible for knocking down TRAIL in CML patients. Oncogene. 2011;30(2):223–33. doi: 10.1038/onc.2010.409.
  67. Tajeddine N, Gala JL, Louis M, et al. Tumor-associated antigen preferentially expressed antigen of melanoma (PRAME) induces caspase-independent cell death in vitro and reduces tumorigenicity in vivo. Cancer Res. 2005;65(16):7348–55. doi: 10.1158/0008-5472.CAN-04-4011.
  68. Yan H, Zhao RM, Wang ZJ, et al. Knockdown of PRAME enhances adriamycin-induced apoptosis in chronic myeloid leukemia cells. Eur Rev Med Pharmacol Sci. 2015;19(24):4827–34. doi: 10.18632/oncotarget.9977.
  69. Xu Y, Yue Q, Wei H, Pan G. PRAME induces apoptosis and inhibits proliferation of leukemic cells in vitro and in vivo. Int J Clin Exp Pathol. 2015;8(11):14549–55.
  70. Xu Y, Rong LJ, Meng SL, et al. PRAME promotes in vitro leukemia cells death by regulating S100A4/p53 signaling. Eur Rev Med Pharmacol Sci. 2016;20(6):1057–63.
  71. Bullinger L, Schlenk RF, Gotz M, et al. PRAME-Induced Inhibition of Retinoic Acid Receptor Signaling-Mediated Differentiation – Possible Target for ATRA Response in AML without t(15;17). Clin Cancer Res. 2013;19(9):2562–71. doi: 10.1158/1078-0432.CCR-11-2524.