Efficacy, Safety, and Tolerance of Gemtuzumab Ozogamicin Combined with FLAG/FLAG-Ida or Azacitidine in Relapsed/Refractory Acute Myeloblastic Leukemia

IG Budaeva, DV Zaitsev, AA Shatilova, EN Tochenaya, AV Petrov, RI Vabishchevich, DV Motorin, RSh Badaev, DB Zammoeva, VV Ivanov, SV Efremova, KV Bogdanov, YuV Mirolyubova, TS Nikulina, YuA Alekseeva, AYu Zaritskey, LL Girshova

VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Irina Garmaevna Budaeva, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(931)351-07-06; e-mail: irina2005179@mail.ru

For citation: Budaeva IG, Zaitsev DV, Shatilova AA, et al. Efficacy, Safety, and Tolerance of Gemtuzumab Ozogamicin Combined with FLAG/FLAG-Ida or Azacitidine in Relapsed/Refractory Acute Myeloblastic Leukemia. Clinical oncohematology. 2021;14(3):299–307. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-299-307


ABSTRACT

Aim. To assess the efficacy, safety, and tolerance of gemtuzumab ozogamicin (GO) combined with FLAG/FLAG-Ida chemotherapy or azacitidine in patients with relapsed/refractory acute myeloblastic leukemia (AML) in clinical practice.

Materials & Methods. The study included 32 patients (16 men and 16 women). The median age was 44 years (range 23–83 years). Among them there were 15 (46.8 %) patients with refractory and 17 (53.2 %) patients with relapsed AML. GO combined with FLAG/FLAG-Ida was administered to 15 (46.8 %) patients, whereas 17 (53.2 %) patients were treated with GO and azacitidine combination. Therapy safety was assessed according to CTCAE v. 5.0.

Results. Overall response rate including complete remission (CR), CR MRD–, CR with incomplete hematologic recovery, and morphologic leukemia-free status was 59.4 % (19/32). Refractoriness was observed in 31.25 % (10/32) of patients. Early mortality was 9.4 % (3/32). Overall response was 64.7 % (11/17) in the azacitidine and 53.3 % (8/15) in the FLAG/FLAG-Ida groups. In 4 (80 %) out of 5 patients with prior to FLAG treatment refractoriness, the response was achieved after GO + azacitidine therapy. In 58.9 % (10/17) of patients who received GO + azacitidine therapy, allogeneic hematopoietic stem cell transplantation (allo-HSCT) could be performed. The incidence of GO infusion complications in the tested groups did not significantly differ (= 0.72) and was 46.7 % (7/15) (40 % with grade 1/2 and 6.7 % with grade 3) in the GO + FLAG/FLAG-Ida group and 35.3 % (6/17) (29.4 % with grade 1/2 and 5.9 % with grade 4) in the GO + azacitidine group. In the GO + FLAG/FLAG-Ida group 5 (33.3 %) patients experienced serious adverse events (SAE) of sepsis. In the GO + azacitidine group SAEs were reported in 6 (35.3 %) patients: 4 (66.6 %) with sepsis, 1 (16.7 %) with acute cardiovascular failure, and 1 (16.7 %) with acute respiratory failure. The median (range) duration was 23 (10–39) days for neutropenia grade 4, 24 (11–38) days for neutropenia grade 3, 21 (11–41) days for thrombocytopenia grade 4, 26 (16–45) days for thrombocytopenia grade 3, and 25 (22–45) days for thrombocytopenia grade 1/2. Thrombocytopenia duration was longer in patients with GO + FLAG/FLAG-Ida therapy, however, no significant differences were identified. No cases of veno-occlusive liver disease were reported. Median overall survival (OS) for both groups (n = 32) was 31.4 months, median disease-free survival (n = 21) was 13.3 months. In the group of patients with effective treatment, the median OS was not reached. In non-responders, it was 18 months (= 0.0442).

Conclusion. GO combined with FLAG/FLAG-Ida chemotherapy or azacitidine proved effective in relapsed/refractory AML patients. Remission did not appear to be associated with ELN risk, gender, age, CD33 expression, number of prior therapy lines, or number of relapses. GO + azacitidine combination showed efficacy, safety, and good tolerance in patients with prior high-dose chemotherapy refractoriness as well as low ECOG performance status. That allowed for the subsequent allo-HSCT administration to these patients. There was no significant difference between the groups of patients in the incidence of hematologic, non-hematologic toxicity, and time to hematologic recovery. Thrombocytopenia duration was longer in patients with GO + FLAG/FLAG-Ida therapy which is consistent with literature data. GO-based effective treatment in relapsed/refractory AML considerably improves OS: during 36 months of follow-up the median was not reached.

Keywords: acute myeloblastic leukemia, relapse, refractoriness, gemtuzumab ozogamicin, FLAG/FLAG-Ida regimens, azacitidine, efficacy, safety, toxicity.

Received: February 5, 2021

Accepted: May 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Wang ES, Aplenc R, Chirnomas D, et al. Safety of gemtuzumab ozogamicin as monotherapy or combination therapy in an expanded-access protocol for patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma. 2020;61(12):1965–2973. doi: 10.1080/10428194.2020.1742897.
  2. Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. Blood. 2016;127(1):53–61. doi: 10.1182/blood-2015-08-604520.
  3. Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441. doi: 10.1038/bcj.2016.50.
  4. Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19(13):3244–54. doi: 10.1200/JCO.2001.19.13.3244.
  5. Zein N, Poncin M, Nilakantan R, et al. Calicheamicin gamma 1I and DNA: molecular recognition process responsible for site-specificity. Science. 1989;244(4905):697–9. doi: 10.1126/science.2717946.
  6. Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia. 2005;19(2):176–82. doi: 10.1038/sj.leu.2403598.
  7. Sievers EL, Appelbaum FR, Spielberger RT, et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: A phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood. 1999;93(11):3678–84. doi: 10.1182/blood.v93.11.3678.411k24_3678_3684.
  8. Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.
  9. Deangelo DJ, Liu D, Stone R, et al. Preliminary report of a phase 2 study of gemtuzumab ozogamicin in combination with cytarabine and daunorubicin in patients < 60 years of age with de novo acute myeloid leukemia. Proceed Am Soc Clin Oncol. 2003: Abstract 2325.
  10. Petersdorf SH, Kopecky KJ, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60. doi: 10.1182/blood-2013-01-466706.
  11. Caron PC, Jurcic JG, Scott AM, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood. 1994;83(7):1760–8. doi: 10.1182/blood.v83.7.1760.bloodjournal8371760.
  12. Castaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–16. doi: 10.1016/S0140-6736(12)60485-1.
  13. Lambert J, Pautas С. Terre Ch, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica. 2019;104(1):113–9. doi: 10.3324/haematol.2018.188888.
  14. Amadori S, Suciu S, Selleslag D, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9. doi: 10.1200/jco.2015.64.0060.
  15. Taksin AL, Legrand O, Raffoux E, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21(1):66–71. doi: 10.1038/sj.leu.2404434.
  16. Debureaux P-E, Labopin М, Mamez A-C, et al. Fractionated gemtuzumab ozogamicin in association with high dose chemotherapy: a bridge to allogeneic stem cell transplantation in refractory and relapsed acute myeloid leukemia. Bone Marrow Transplant. 2019;55(2):452–60. doi: 10.1038/s41409-019-0690-2.
  17. Chevallier P, Delaunay J, Turlure P, et al. Long-term disease-free survival after gemtuzumab, intermediate-dose cytarabine, and mitoxantrone in patients with CD33(+) primary resistant or relapsed acute myeloid leukemia. J Clin Oncol. 2008;26(32):5192–7. doi: 10.1200/jco.2007.15.9764.
  18. Medeiros BC, Tanaka TN, Balaian L, et al. A Phase I/II Trial of the Combination Azacitidine and Gemtuzumab Ozogamicin for Treatment of Relapsed Acute Myeloid Leukemia. Clin Lymphoma Myel Leuk. 2018;18(5):346–352.e5. doi: 10.1016/j.clml.2018.02.017.
  19. Walter RB, Medeiros BC, Gardner KM, et al. Gemtuzumab ozogamicin in combination with vorinostat and azacitidine in older patients with relapsed or refractory acute myeloid leukemia: a phase I/II study. Haematologica. 2013;99(1):54–9. doi: 10.3324/haematol.2013.096545.
  20. Arain S, Christian S, Patel PR. Safety and efficacy of gemtuzumab ozogamicin and venetoclax in patients with relapsed or refractory CD33+ acute myeloid leukemia: A phase Ib study. J Clin Oncol. 2020;38(15_suppl):TPS7566. doi: 10.1200/JCO.2020.38.15_suppl.TPS7566.
  21. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  22. Dohner H, Elihu H, Estey EH, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-235358.
  23. Зайцев Д.В., Гиршова Л.Л., Иванов В.В. и др. Гемтузумаб озогамицин в лечении пациентов с рефрактерным течением острого миелоидного лейкоза, находящихся в критическом состоянии (описание 3 клинических наблюдений). Клиническая онкогематология. 2020;13(1):67–74. doi: 10.21320/2500-2139-2020-13-1-67-74.
    [Zaitsev DV, Girshova LL, Ivanov VV, et al. Gemtuzumab Ozogamicin in the Treatment of Critical Patients with Refractory Acute Myeloid Leukemia (3 Case Reports). Clinical oncohematology. 2020;13(1):67–74. doi: 10.21320/2500-2139-2020-13-1-67-74. (In Russ)]
  24. Stone RM, Moser B, Sanford B, et al. High dose cytarabine plus gemtuzumab ozogamicin for patients with relapsed or refractory acute myeloid leukaemia: Cancer and Leukaemia Group B study 19902. Leuk Res. 2011;35(3):329–33. doi: 10.1016/j.leukres.2010.07.017.
  25. Hosono N, Ookura M, Araie H, et al. Clinical outcomes of gemtuzumab ozogamicin for relapsed acute myeloid leukemia: single-institution experience. Int J Hematol. 2020;113(3):362–9. doi: 10.1007/s12185-020-03023-4.
  26. Будаева И.Г., Гиршова Л.Л., Овсянникова Е.Г. и др. Прогнозирование эффективности режима FLAG ± Ida у пациентов с рецидивами и рефрактерным течением острых миелоидных лейкозов. Клиническая онкогематология. 2019;12(3):289–96. doi: 10.21320/2500-2139-2019-12-3-289-296.
    [Budaeva IG, Girshova LL, Ovsyannikova EG, et al. Prediction of FLAG ± Ida Regimen Efficacy in Patients with Relapsed/Refractory Acute Myeloid Leukemia. Clinical oncohematology. 2019;12(3):289–96. doi: 10.21320/2500-2139-2019-12-3-289-296. (In Russ)]
  27. Chantepie SP, Reboursiere E, Mear JB, et al. Gemtuzumab ozogamicin in combination with intensive chemotherapy in relapsed or refractory acute myeloid leukemia. Leuk Lymphoma. 2015;56(8):2326–30. doi: 3109/10428194.2014.986478.
  28. Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30(32):3924–31. doi: 10.1200/jco.2012.42.2964.

 

 

Pharmacokinetics, Safety, and Tolerance of Anagrelide, the First Domestic Generic, Compared with Reference Drug

SK Zyryanov1,2, VV Chistyakov1, OI Butranova1, ES Stepanova1, OG Potanina1, RA Abramovich1

1 RUDN University, 6 Miklukho-Maklaya str., Moscow, Russian Federation, 117198

2 Municipal Clinical Hospital No. 24, 10 Pistsovaya str., Moscow, Russian Federation, 127015

For correspondence: Olga Igorevna Butranova, MD PhD, 6 Miklukho-Maklaya str., Moscow, Russian Federation, 117198; Tel.: +7(903)376-71-40; e-mail: butranova-oi@rudn.ru, butranovaolga@mail.ru

For citation: Zyryanov SK, Chistyakov VV, Butranova OI, et al. Pharmacokinetics, Safety, and Tolerance of Anagrelide, the First Domestic Generic, Compared with Reference Drug. Clinical oncohematology. 2020;13(3):346–53. (In Russ).

DOI: 10.21320/2500-2139-2020-13-3-346-353


ABSTRACT

Background. Anagrelide is used for the treatment of essential thrombocythemia. This drug selectively affects thrombocytes without inducing pronounced myelosuppression, which provides a satisfactory safety profile.

Aim. To compare pharmacokinetics and to assess bioequivalence of two anagrelide drugs for oral administration in healthy volunteers.

Materials & Methods. Open, randomized, two-period, two-sequence, crossover study comparing pharmacokinetics and bioequivalence of anagrelide included 30 volunteers. The participants received a single dose of either test or reference drug, depending on the study period. Serial blood samples for pharmacokinetic analysis were collected within 12 hours after drug administration. Plasma anagrelide concentration was measured by high-performance liquid chromatography/mass spectrometry. Pharmacokinetic parameters were analyzed by non-compartmental method. ANOVA analysis of variance was used for assessing the difference between the mean values of the AUC0-t, AUC0-∞ and Cmax pharmacokinetic parameters at 5 % significance level.

Results. The mean values of maximum concentration (Сmax) after a single dose of anagrelide were 12.68 ± 2.99 ng/mL and 12.46 ± 3.15 ng/mL for test and reference drugs, respectively. Relative bioavailability was 1.16 ± 0.18. The AUC0-12 mean values calculated by anagrelide concentrations after a single dose of test and reference drugs were 30.38 ± 7.0 ng • h/mL and 28.78 ± 7.50 ng • h/mL, respectively, and the AUC0-∞ mean values were 31.13 ± 7.15 ng • h/mL and 29.55 ± 7.61 ng • h/mL, respectively. The assessment of main vital functions and laboratory parameters did not reveal any effect of the drugs on the health status of trial participants.

Conclusion. Pharmacokinetic profile of the test drug (generic anagrelide) did not considerably differ from that of reference drug, which indicates in vivo bioequivalence of it. The assessment of drug safety yielded satisfactory tolerance; no serious adverse events have been reported.

Keywords: anagrelide, generic, bioequivalence, essential thrombocythemia, safety, tolerance.

Received: February 19, 2020

Accepted: May 25, 2020

Read in PDF


REFERENCES

  1. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.). Гематология и трансфузиология. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001.[Melikyan AL, Kovrigina AM, Subortseva IN, et al. National clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2018). Russian Journal of Hematology and Transfusiology. 2018;63(3):275–315. doi: 25837/HAT.2019.51.88.001. (In Russ)]

  2. Mesa RA, Jamieson C, Bhatia R, et al. NCCN Guidelines Insights: Myeloproliferative Neoplasms, Version 2.2018. J Natl Compr Canc Netw. 2017;15(10):1193–207. doi: 10.6004/jnccn.2017.0157.

  3. Rungjirajittranon T, Owattanapanich W, Ungprasert P, et al. A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms. BMC Cancer. 2019;19(1):184. doi: 10.1186/s12885-019-5387-9.

  4. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2017;92(1):94–108. doi: 10.1002/ajh.24607.

  5. Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia treatment algorithm 2018. Blood Cancer J. 2018;8(1):2. doi: 10.1038/s41408-017-0041-8.

  6. Ianotto JC, Curto-Garcia N, Lauermanova M, et al. Characteristics and outcomes of patients with essential thrombocythemia or polycythemia vera diagnosed before 20 years of age: a systematic review. Haematologica. 2019;104(8):1580–8. doi: 10.3324/haematol.2018.200832.

  7. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis, risk‐stratification and management. Am J Hematol. 2019;94(1):133–43. doi: 10.1002/ajh.25303.

  8. Barbui T, Tefferi A, Vannucchi AM, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32(5):1057–69. doi: 10.1038/s41375-018-0077-1.

  9. Gisslinger H, Gotic M, Holowiecki J, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121(10):1720–8. doi: 10.1182/blood-2012-07-443770.

  10. Samuelson B, Chai-Adisaksopha C, Garcia D. Anagrelide compared with hydroxyurea in essential thrombocythemia: a meta-analysis. J Thromb Thrombolysis. 2015;40(4):474–9. doi: 10.1007/s11239-015-1218-2.

  11. Ito T, Hashimoto Y, Tanaka Y, et al. Efficacy and safety of anagrelide as a first-line drug in cytoreductive treatment-naive essential thrombocythemia patients in a real-world setting. Eur J Haematol. 2019;103(2):116–23. doi: 10.1111/ejh.13265.

  12. Besses C, Zeller W, Alvarez-Larran A, et al. Pharmacokinetics and tolerability of anagrelide hydrochloride in young (18–50 years) and elderly (≥ 65 years) patients with essential thrombocythemia. Int J Clin Pharmacol Ther. 2012;50(11):787–96. doi: 10.5414/CP201711.

  13. Petrides PE, Schoergenhofer C, Widmann R, et al. Pharmacokinetics of a Novel Anagrelide Extended-Release Formulation in Healthy Subjects: Food Intake and Comparison With a Reference Product. Clin Pharmacol Drug Dev. 2018;7(2):123–31. doi: 10.1002/cpdd.340.

  14. Petrides PE, Gisslinger H, Steurer M, et al. Pharmacokinetics, bioequivalence, tolerability, and effects on platelet counts of two formulations of anagrelide in healthy volunteers and patients with thrombocythemia associated with chronic myeloproliferation. Clin Ther. 2009;31(2):386–98. doi: 10.1016/j.clinthera.2009.02.008.

  15. Okamoto S, Miyakawa Y, Smith J, et al. Open-label, dose-titration and continuation study to assess efficacy, safety, and pharmacokinetics of anagrelide in treatment-naive Japanese patients with essential thrombocythemia. Int J Hematol. 2013;97(3):360–8. doi: 10.1007/s12185-013-1265-4.

Genfatinib® therapy for chronic-phase chronic myeloid leukemia in routine clinical practice

T.V. Chagorova1, V.V. Yablokova2, P.A. Borkina3, and N.A. Pryanikova3

1 Regional Oncology Clinic, Penza, Russian Federation

2 Yaroslavl Regional Clinical Hospital, Yaroslavl, Russian Federation

3 Moscow Representative Office of GENFA LTD (United Kingdom), Moscow, Russian Federation


ABSTRACT

The article describes the outcomes of Genfatinib® therapy in routine clinical practice at the Regional Oncology Clinic (Penza) and Yaroslavl Regional Clinical Hospital (Yaroslavl). 62 patients with chronic myeloid leukemia (chronic phase) were treated at the above institutions from April 2012 to April 2013. The patients were assigned into the following groups: the first treatment group, where Genfatinib® was prescribed as an initial therapy at the time of diagnosis of chronic-phase chronic myeloid leukemia; the second group, where Genfatinib® was prescribed after the initial therapy with Gleevek®. The main objectives were assessment of the Genfatinib® efficacy (rates of complete or partial clinico-hematological, cytogenetic, and molecular responses), toxicity, and safety. It was shown that Genfatinib® used after previous therapy with Gleevek® caused no negative influence of the rates of clinico-hematological, cytogenetic, and molecular responses. In the patients who received Genfatinib® as an initial therapy, the complete clinico-hematological and cytogenetic and molecular responses were achieved by 3–5 and 3–6 months of treatment, respectively. The spectrum of adverse events observed with Genfatinib® therapy was similar to the one of Gleevek®.


Keywords: chronic myeloid leukemia, chronic phase, Genfatinib®, efficacy, safety.

Read in PDF (RUS)pdficon


Refernces

  1. Туркина А.Г. Хронический миелолейкоз. Руководство по гематологии. М.: Ньюмед, 2003: 251–64. [Turkina A.G. Khronicheskiy miyeloleykoz. Rukovodstvo po gematologii (Chronic myeloid leukemia. Manual on hematology). M.: Nyumed, 2003: 251–64.]
  2. Хронический миелоидный лейкоз у взрослых. Национальный клини- ческий протокол. Кишинев, 2009: 7. [Khronicheskiy miyeloidnyy leykoz u vzroslykh. Natsionalnyy klinicheskiy protokol (Chronic myeloid leukemia in adults. National clinical protocol). Kishinev, 2009: 7]
  3. Туркина Г.А., Виноградова О.Ю., Хорошко Н.Д., Воробьев А.И. До- стижения в диагностике и лечении больных хроническим миелолейкозом в Российской Федерации (2004–2008 гг.). Бюлл. сибир. мед. 2008; 3: 76–80. Федерации (2004–2008 гг.). Бюлл. сибир. мед. 2008; 3: 76–80. [Turkina G.A., Vinogradova O.Yu., Khoroshko N.D., Vorobyev A.I. Dostizheniya v diagnostike i lechenii bolnykh khronicheskim miyeloleykozom v Rossiyskoy Federatsii (2004–2008 gg.) (Achievements in diagnosis and management of patients with chronic myeloid leukemia in Russian Federation (2004–2008). In: Bull. of Siber. med.). Byull. sibir. med. 2008; 3: 76–80]
  4. Виноградова О.Ю. Клиническая эволюция хронического миелолей- коза в процессе лечения ингибиторами тирозинкиназ: Автореф. дис. ¼ д-ра мед. наук. М., 2011: 7. [Vinogradova O.Yu. Klinicheskaya evolyutsiya khronicheskogo miyeloleykoza v protsesse lecheniya ingibitorami tirozinkinaz: Avtoref. dis. ¼ d-ra med. nauk (Clinical evolution of chronic myeloid leukemia during therapy with tyrosinekinase inhibitors: Author’s summary of dissertation for the degree of DSci). M., 2011: 7.]
  5. Виноградова О.Ю., Туркина А.Г., Хорошко Н.Д. Организация терапии хронического миелолейкоза. Первый общероссийский регистр больных хроническим миелолейкозом: анализ и перспективы. Журн. ONCOLOGY. RU® (Период. науч.-практ., реценз. электр. изд.) 2009: 1–17. [Vinogradova O.Yu., Turkina A.G., Khoroshko N.D. Organizatsiya terapii khronicheskogo miyeloleykoza. Pervyy obshcherossiyskiy registr bolnykh khronicheskim miyeloleykozom: analiz i perspektivy (Organization of therapy for chronic myeloid leukemia. First all-Russian register of patients with chronic myeloid leukemia: analysis and prospects. In: Journ. ONCOLOGY.RU® (Period. scientif-and-pract. peer-reveiwed ed.)). Zhurn. ONCOLOGY.RU® (Period. nauch.-prakt., retsenz. elektr. izd.) 2009: 1–17.]
  6. Куцев С.И. Генетический мониторинг таргетной терапии хрониче- ского миелоидного лейкоза: Автореф. дис. ¼ д-ра мед. наук. М., 2009: 3. [Kutsev S.I. Geneticheskiy monitoring targetnoy terapii khronicheskogo miyeloidnogo leykoza: Avtoref. dis. ¼ d-ra med. nauk (Genetic monitoring of target therapy for chronic myeloid leukemia: Author’s summary of dissertation for the degree of DSci). M., 2009: 3.]
  7. Стахина О.В., Туркина А.Г., Гусарова Г.А. и др. Отдаленные резуль- таты выживаемости больных в поздней хронической фазе Ph+ хрониче- ского миелолейкоза при лечении иматиниба мезилатом (Гливек®). Вестн. гематол. 2009; 5(2): 42. [Stakhina O.V., Turkina A.G., Gusarova G.A. i dr. Otdalennyye rezultaty vyzhivayemosti bolnykh v pozdney khronicheskoy faze Ph+ khronicheskogo miyeloleykoza pri lechenii imatiniba mezilatom (Glivek®) (Long-term survival of patients with late-stage chronic phase Ph+ chronic myeloid leukemia treated with imatinib mesylate (Gleevek®). In: Bull. of hematol.). Vestn. gematol. 2009; 5(2): 42.]
  8. Куцев С.И., Шатохин Ю.В. Влияние перерывов терапии иматинибом на достижение цитогенетического и молекулярного ответов у больных хроническим миелолейкозом. Казан. мед. журн. 2009; 90(6): 827–31. [Kutsev S.I., Shatokhin Yu.V. Vliyaniye pereryvov terapii imatinibom na dostizheniye tsitogeneticheskogo i molekulyarnogo otvetov u bolnykh khronicheskim miyeloleykozom (Impact of interruptions in imatinib therapy on achievement of cytogenetic and molecular responses in patients with chronic myeloid leukemia. In: Kazan. med. journ.). Kazan. med. zhurn. 2009; 90(6): 827–31.]
  9. Ковалева Л.Г., Соколова М.А., Виноградова О.Ю. и др. Результаты многоцентрового исследования терапии гливеком больных хроническим ми- елолейкозом в хронической фазе. Гематол. и трансфузиол. 2007; 52(2): 13–7. [Kovaleva L.G., Sokolova M.A., Vinogradova O.Yu. i dr. Rezultaty mnogo tsentrovogo issledovaniya terapii glivekom bolykh khronicheskim miyeloleykozom v khronicheskoy faze (Results of multicenter study of Gleevek therapy in patients with chronic phase chronic myeloid leukemia. In: Hematol. & transfusiol.). Gematol. i transfuziol. 2007; 52(2): 13–7.]