Obesity as a Poor Prognostic Factor in Multiple Myeloma

ES Mikhailov1, GN Salogub1, SS Bessmeltsev2

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Evgenii Sergeevich Mikhailov, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(812)702-37-49; e-mail: mikhailov_md@bk.ru

For citation: Mikhailov ES, Salogub GN, Bessmeltsev SS. Obesity as a Poor Prognostic Factor in Multiple Myeloma. Clinical oncohematology. 2021;14(3):315–20. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-315-320


ABSTRACT

Aim. To assess the impact of obesity and overweight on the outcomes of multiple myeloma (MM) treatment.

Materials & Methods. The present retrospective study enrolled 214 patients with newly diagnosed MM. The median age was 59 years (range 29–89 years), male patients accounted for 40.2 %. The analysis focused on complication incidence, overall survival, and time to the second-line therapy depending on body mass index (BMI) at disease onset.

Results. In the groups of patients with BMI > 35 kg/m2 and BMI ≤ 35 kg/m2 the median overall survival was 42 and 95 months, respectively (hazard ratio [HR] 0.17; 95% confidence interval [95% CI] 0.08–0.37; < 0.05). In the group of patients with obesity ≥ grade 2 the median time to the second-line therapy was 25 months, being less than in the group of patients with BMI ≤ 35 kg/m2 (43 months; HR 0.58; 95% CI 0.31–0.99; < 0.05). As a result of therapy, the incidence of corticosteroid-associated hyperglycemia and infectious complications as well as the rate of delayed initiation of the next cycle and dose reduction of anticancer drugs were significantly higher in patients with BMI > 35 kg/m2 (< 0.05).

Conclusion. Obesity ≥ grade 2 is a poor prognostic factor for complications and is associated with diminishing outcomes of ММ treatment. Accompanying morbid obesity leads to a higher incidence of therapy complications longer intervals between chemotherapy courses and drug dose reduction.

Keywords: multiple myeloma, obesity, prognosis, survival.

Received: March 9, 2021

Accepted: June 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. World Health Organization. Obesity and overweight. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed 9.03.2021).
  2. Luma A, Ahmsd HA. Relationships between Obesity and Cardiovascular Diseases in Four Southern States and Colorado. J Health Care Poor Underserved. 2011;22(Suppl 4):61–72. doi: 10.1353/hpu.2011.0166.
  3. Barnes AS. The Epidemic of Obesity and Diabetes: trends and treatments. Tex Heart Inst J. 2011;38(2):142–4.
  4. De Pergola G, Silvestris F. Obesity as a Major Risk Factor for Cancer. J Obes. 2013;2013:291546. doi: 10.1155/2013/291546.
  5. Morris EV, Edwards CM. Adipokines, adiposity, and bone marrow adipocytes: Dangerous accomplices in multiple myeloma. J Cell Physiol. 2018;233(12):9159–66. doi: 10.1002/jcp.26884.
  6. Chang SH, Luo S, Thomas TS, et al. Obesity and the Transformation of Monoclonal Gammopathy of Undetermined Significance to Multiple Myeloma: A Population-Based Cohort Study. J Natl Cancer Inst. 2016;109(5):djw264. doi: 10.1093/jnci/djw264.
  7. Vivek R, Swaika A, Kumar S, et al. Influence of Obesity on Outcomes of Patients with Relapsed Refractory Multiple Myeloma. Clin Lymphoma Myel Leuk. 2016;17(1):e139–e140. doi: 10.1016/j.clml.2017.03.252.
  8. Sonderman JS, Bethea TN, Kitahara CM, et al. Multiple Myeloma Mortality in Relation to Obesity Among African Americans. J Natl Cancer Inst. 2016;108(10):djw120. doi: 10.1093/jnci/djw120.
  9. Harvey RD, Kaufman JL, Heffner LT, et al. Impact of obesity on response in 751 myeloma patients receiving lenalidomide, bortezomib, and dexamethasone (RVd) induction. J Clin Oncol. 2018;36(15);8046. doi: 10.1200/JCO.2018.36.15_suppl.8046.
  10. Li Q-F, Zhang Q-K, Wei X-F, et al. Correlation of Body Mass Index, ABO Blood Group with Multiple Myeloma. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2020;28(4):1261–6. doi: 10.19746/j.cnki.issn.1009-2137.2020.04.030.
  11. Moore DC, Ringley JT, Nix D, et al. Impact of Body Mass Index on the Incidence of Bortezomib-induced Peripheral Neuropathy in Patients With Newly Diagnosed Multiple Myeloma. Clin Lymphoma Myel Leuk. 2020;20(3):168–73. doi: 10.1016/j.clml.2019.08.012.
  12. Nath CE, Trotman J, Nivison-Smith I, et al. Melphalan exposure and outcome in obese and non-obese adults with myeloma. A study of pharmacokinetics and pharmacodynamics. Bone Marrow Transplant. 2020;55(9):1862–4. doi: 10.1038/s41409-020-0832-6.
  13. National Cancer Institute. Common Terminology Criteria for Adverse Events (version 5.0). 2017. Available from: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/СTCAE_v5_Quick_Reference_8.5х11.pdf (accessed 9.03.2021).
  14. Kinlen D, Cody D, O’Shea D. Complications of obesity. Int J Med. 2018;111(7):437–43. doi: 10.1093/qjmed/hcx152.
  15. Donihi AC, Raval D, Saul M, еt al. Prevalence and predictors of corticosteroid-related hyperglycemia in hospitalized patients. Endocr Pract. 2006;12(4):358–62. doi: 10.4158/EP.12.4.358.
  16. Huttunen R, Syrjanen J. Obesity and the risk and outcome of infection. Int J Obes. 2013;37(3):333–40. doi: 10.1038/ijo.2012.62.
  17. Griggs JJ, Mangu PB, Anderson H. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2012;30(13):1553–61. doi: 10.1200/JCO.2011.39.9436.
  18. Beason TS, Chang SH, Sanfilippo KM. Influence of body mass index on survival in veterans with multiple myeloma. Oncologist. 2013;18(10):1074–9. doi: 10.1634/theoncologist.2013-0015.
  19. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.
    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

Value of PD-L1 Protein Expression in the Combined Prognostic Model of Diffuse Large B-Cell Lymphoma

SV Samarina1, NYu Semenova2, NV Minaeva1, DA Dyakonov1, VA Rosin1, EV Vaneeva1, SV Gritsaev2

1 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Valerevna Samarina, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; Tel.: +7(8332)25-46-88; e-mail: samarinasv2010@mail.ru

For citation: Samarina SV, Semenova NYu, Minaeva NV, et al. Value of PD-L1 Protein Expression in the Combined Prognostic Model of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2021;14(3):308–14. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-308-314


ABSTRACT

Aim. To study the value of PD-L1 protein expression in the combined model of diffuse large B-cell lymphoma (DLBCL) after administration of R-СHOP induction immunochemotherapy.

Materials & Methods. A retrospective analysis was based on the data of 85 DLBCL patients. The median age was 59 years (Q1–Q3: 29–83). Each patient received at least 2–6 courses of R-СHOP immunochemotherapy. The median follow-up period was 17 months. The optimal cut-off threshold for assessing the proportion of tumor cells expressing PD-L1 protein was determined by the САRT (Classification and Regression Tree) method.

Results. Patients were divided into three groups depending on IPI (International Prognostic Index) risk and immunohistochemical subtype (Hans algorithm) using CART. In group 1 with immunohistochemical GCB subtype and any IPI risk, except for the high one, low PD-L1 expression measured in terms of the DLBCL expressing tumor cell count, was identified in 21 (84 %) patients, 4 (16 %) patients showed overexpression. In case of low PD-L1 expression the 2-year progression-free survival (PFS) was 76 % (median not reached). In 4 patients with protein overexpression, the life duration after DLBCL diagnosed was 4, 16, 2, and 6 months, respectively. In group 2 with immunohistochemical non-GCB subtype and any IPI risk, except for the high one, 27 (67.5 %) patients showed low, and 13 (32.5 %) patients showed high PD-L1 expression. The analysis of the 2-year PFS resulted in no significant differences in groups with different relative counts of РD-L1 expressing tumor cells, i.e., 46 % and 49 %, respectively (= 0.803). In case of low (< 24.5 % tumor cells) PD-L1 expression, the 2-year overall survival (OS) was better than in patients with overexpression (≥ 24.5 % tumor cells), i.e., 87 % vs. 52 %, respectively (= 0.049). In group 3 with IPI high risk irrespective of immunohistochemical subtype, the proportion of PD-L1 expressing cells was higher than cut-off threshold (≥ 24.5 %) in 9 (45 %) patients, low protein expression was identified in 11 (55 %) patients. Deaths were reported in all patients of group 3 showing PD-L1 overexpression. In case of low protein expression the proportion of patients alive was 46 % (= 0.002). None of the patients with high PD-L1 expression lived longer than 2 years. In those with low PD-L1 expression the 2-year OS was 66 % (= 0.008).

Conclusion. Overexpression of PD-L1 by DLBCL tumor cells together with high IPI progression risk and non-GCB tumor subtype is associated with the worst OS and PFS. It can probably be accounted for by insufficient efficacy of R-СHOP induction immunochemotherapy in patients with high IPI risk. With this presumption, the PD-L1 expressing tumor cell count can be regarded as an important additional criterion for stratification of DLBCL patients into risk groups. Adding this new parameter to already established ones would probably contribute to differentiated approach to the choice of chemotherapy strategy at the onset of this aggressive lymphoma.

Keywords: diffuse large B-cell lymphoma, PD-L1 expression, overall survival, progression-free survival.

Received: January 29, 2021

Accepted: May 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. NCCN Clinical Practice Guidelines in Oncology. Non-Hodgkin’s lymphomas. Version 4. 2020. Available from: https://www.nccn.org/patients/guidelines/content/PDF/nhl-diffuse-patient.pdf (accessed 29.01.2021).
  2. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2018.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2018. (In Russ)]
  3. Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology Am Soc Hematol Educ Program. 2011;2011(1):498–505. doi: 10.1182/asheducation-2011.1.498.
  4. Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443–59. doi: 10.3322/caac.21357.
  5. Tilly H, Vitolo U, Walewski J, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii78–vii82. doi: 10.1093/annonc/mds273.
  6. Wight JC, Chong G, Grigg AP, et al. Prognostication of diffuse large B-cell lymphoma in the molecular era: moving beyond the IPI. Blood Rev. 2018;32(5):400–15. doi: 10.1016/j.blre.2018.03.005.
  7. Shipp MA, Harrington DP, Anderson JR, et al. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.
  8. Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematology Am Soc Hematol Educ Program. 2016;2016(1):366–78. doi: 10.1182/asheducation-2016.1.366.
  9. Vassilakopoulos TP, Chatzidimitriou C, Asimakopoulos JV, et al. Immunotherapy in Hodgkin Lymphoma: Present Status and Future Strategies. Cancers. 2019;11(8):1071. doi: 10.3390/cancers11081071.
  10. Vardhana S, Younes A. The immune microenvironment in Hodgkin lymphoma: T cells, B cells, and immune checkpoints. Haematologica. 2016;101(7):794–802. doi: 10.3324/haematol.2015.132761.
  11. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26(1):677–704. doi: 10.1146/annurev.immunol.26.021607.090331.
  12. Kiyasu J, Miyoshi H, Hirata A, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. 2015;126(19):2193–201. doi: 10.1182/blood-2015-02-629600.
  13. Kwon D, Kim S, Kim PJ, et al. Clinicopathological analysis of programmed cell death 1 and programmed cell death ligand 1 expression in the tumour microenvironments of diffuse large B cell lymphomas. Histopathology. 2016;68(7):1079–89. doi: 10.1111/his.12882.
  14. Wu C, Zhu Y, Jiang J, et al. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 2006;108(1):19–24. doi: 10.1016/j.acthis.2006.01.003.
  15. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv. doi: 10.1126/scitranslmed.aad7118.
  16. Hu L-Y, Xu X-L, Rao H-L, et al. Expression and clinical value of programmed cell death-ligand 1 (PD-L1) in diffuse large B cell lymphoma: a retrospective study. Chin J Cancer. 2017;36(1):94. doi: 10.1186/s40880-017-0262-z.
  17. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27(3):409–16. doi: 10.1093/annonc/mdv615.
  18. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия. 2017;4(1):49–55. doi: 10.15690/onco.v4i1684.
    [Klyuchagina YuI, Sokolova ZA, Baryshnikova MA. Role of PD-1 receptor and its ligands PD-L1 and PD-L2 in cancer immunotherapy. Onkopediatriya. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. (In Russ)]
  19. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi: 10.1038/nrc3239.
  20. Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–91. doi: 10.1093/annonc/mdv383.
  21. Thompson RH, Kuntz SM, Leibovich BC, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66(7):3381–5. doi: 10.1158/0008-5472.CAN-05-4303.
  22. Xie M, Huang X, Ye X, Qian W. Prognostic and clinicopathological significance of PD-1/PD-L1 expression in the tumor microenvironment and neoplastic cells for lymphoma. Intern Immunopharmacol. 2019;77:105999. doi: 10.1016/j.intimp.2019.105999.
  23. Самарина С.В., Лучинин А.С., Минаева Н.В. идр. Иммуногистохимический подтип и параметры международного прогностического индекса в новой модели прогноза диффузной B-крупноклеточной лимфомы. Клиническая онкогематология. 2019;12(4):385–90. doi: 10.21320/2500-2139-2019-12-4-385-390.
    [Samarina SV, Luchinin AS, Minaeva NV, et al. Immunohistochemical Subtype and Parameters of International Prognostic Index in the New Prognostic Model of Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(4):385–90. doi: 10.21320/2500-2139-2019-12-4-385-390. (In Russ)]
  24. Xing W, Dresser K, Zhang R, et al. PD-L1 expression in EBV-negative diffuse large B-cell lymphoma: clinicopathologic features and prognostic implications. Oncotarget. 201613;7(37):59976–86. doi: 10.18632/oncotarget.11045.
  25. Younes A, Burke J, Cheson B, et al. Safety and efficacy of atezolizumab in combination with rituximab plus chop in previously untreated patients with diffuse large B-cell lymphoma (DLBCL): updated analysis of a phase I/II study. 2018;132(Suppl 1):2969. doi: 10.1182/blood-2018-99-116678.

Efficacy, Safety, and Tolerance of Gemtuzumab Ozogamicin Combined with FLAG/FLAG-Ida or Azacitidine in Relapsed/Refractory Acute Myeloblastic Leukemia

IG Budaeva, DV Zaitsev, AA Shatilova, EN Tochenaya, AV Petrov, RI Vabishchevich, DV Motorin, RSh Badaev, DB Zammoeva, VV Ivanov, SV Efremova, KV Bogdanov, YuV Mirolyubova, TS Nikulina, YuA Alekseeva, AYu Zaritskey, LL Girshova

VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

For correspondence: Irina Garmaevna Budaeva, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(931)351-07-06; e-mail: irina2005179@mail.ru

For citation: Budaeva IG, Zaitsev DV, Shatilova AA, et al. Efficacy, Safety, and Tolerance of Gemtuzumab Ozogamicin Combined with FLAG/FLAG-Ida or Azacitidine in Relapsed/Refractory Acute Myeloblastic Leukemia. Clinical oncohematology. 2021;14(3):299–307. (In Russ).

DOI: 10.21320/2500-2139-2021-14-3-299-307


ABSTRACT

Aim. To assess the efficacy, safety, and tolerance of gemtuzumab ozogamicin (GO) combined with FLAG/FLAG-Ida chemotherapy or azacitidine in patients with relapsed/refractory acute myeloblastic leukemia (AML) in clinical practice.

Materials & Methods. The study included 32 patients (16 men and 16 women). The median age was 44 years (range 23–83 years). Among them there were 15 (46.8 %) patients with refractory and 17 (53.2 %) patients with relapsed AML. GO combined with FLAG/FLAG-Ida was administered to 15 (46.8 %) patients, whereas 17 (53.2 %) patients were treated with GO and azacitidine combination. Therapy safety was assessed according to CTCAE v. 5.0.

Results. Overall response rate including complete remission (CR), CR MRD–, CR with incomplete hematologic recovery, and morphologic leukemia-free status was 59.4 % (19/32). Refractoriness was observed in 31.25 % (10/32) of patients. Early mortality was 9.4 % (3/32). Overall response was 64.7 % (11/17) in the azacitidine and 53.3 % (8/15) in the FLAG/FLAG-Ida groups. In 4 (80 %) out of 5 patients with prior to FLAG treatment refractoriness, the response was achieved after GO + azacitidine therapy. In 58.9 % (10/17) of patients who received GO + azacitidine therapy, allogeneic hematopoietic stem cell transplantation (allo-HSCT) could be performed. The incidence of GO infusion complications in the tested groups did not significantly differ (= 0.72) and was 46.7 % (7/15) (40 % with grade 1/2 and 6.7 % with grade 3) in the GO + FLAG/FLAG-Ida group and 35.3 % (6/17) (29.4 % with grade 1/2 and 5.9 % with grade 4) in the GO + azacitidine group. In the GO + FLAG/FLAG-Ida group 5 (33.3 %) patients experienced serious adverse events (SAE) of sepsis. In the GO + azacitidine group SAEs were reported in 6 (35.3 %) patients: 4 (66.6 %) with sepsis, 1 (16.7 %) with acute cardiovascular failure, and 1 (16.7 %) with acute respiratory failure. The median (range) duration was 23 (10–39) days for neutropenia grade 4, 24 (11–38) days for neutropenia grade 3, 21 (11–41) days for thrombocytopenia grade 4, 26 (16–45) days for thrombocytopenia grade 3, and 25 (22–45) days for thrombocytopenia grade 1/2. Thrombocytopenia duration was longer in patients with GO + FLAG/FLAG-Ida therapy, however, no significant differences were identified. No cases of veno-occlusive liver disease were reported. Median overall survival (OS) for both groups (n = 32) was 31.4 months, median disease-free survival (n = 21) was 13.3 months. In the group of patients with effective treatment, the median OS was not reached. In non-responders, it was 18 months (= 0.0442).

Conclusion. GO combined with FLAG/FLAG-Ida chemotherapy or azacitidine proved effective in relapsed/refractory AML patients. Remission did not appear to be associated with ELN risk, gender, age, CD33 expression, number of prior therapy lines, or number of relapses. GO + azacitidine combination showed efficacy, safety, and good tolerance in patients with prior high-dose chemotherapy refractoriness as well as low ECOG performance status. That allowed for the subsequent allo-HSCT administration to these patients. There was no significant difference between the groups of patients in the incidence of hematologic, non-hematologic toxicity, and time to hematologic recovery. Thrombocytopenia duration was longer in patients with GO + FLAG/FLAG-Ida therapy which is consistent with literature data. GO-based effective treatment in relapsed/refractory AML considerably improves OS: during 36 months of follow-up the median was not reached.

Keywords: acute myeloblastic leukemia, relapse, refractoriness, gemtuzumab ozogamicin, FLAG/FLAG-Ida regimens, azacitidine, efficacy, safety, toxicity.

Received: February 5, 2021

Accepted: May 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Wang ES, Aplenc R, Chirnomas D, et al. Safety of gemtuzumab ozogamicin as monotherapy or combination therapy in an expanded-access protocol for patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma. 2020;61(12):1965–2973. doi: 10.1080/10428194.2020.1742897.
  2. Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. Blood. 2016;127(1):53–61. doi: 10.1182/blood-2015-08-604520.
  3. Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441. doi: 10.1038/bcj.2016.50.
  4. Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19(13):3244–54. doi: 10.1200/JCO.2001.19.13.3244.
  5. Zein N, Poncin M, Nilakantan R, et al. Calicheamicin gamma 1I and DNA: molecular recognition process responsible for site-specificity. Science. 1989;244(4905):697–9. doi: 10.1126/science.2717946.
  6. Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia. 2005;19(2):176–82. doi: 10.1038/sj.leu.2403598.
  7. Sievers EL, Appelbaum FR, Spielberger RT, et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: A phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood. 1999;93(11):3678–84. doi: 10.1182/blood.v93.11.3678.411k24_3678_3684.
  8. Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–6.
  9. Deangelo DJ, Liu D, Stone R, et al. Preliminary report of a phase 2 study of gemtuzumab ozogamicin in combination with cytarabine and daunorubicin in patients < 60 years of age with de novo acute myeloid leukemia. Proceed Am Soc Clin Oncol. 2003: Abstract 2325.
  10. Petersdorf SH, Kopecky KJ, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60. doi: 10.1182/blood-2013-01-466706.
  11. Caron PC, Jurcic JG, Scott AM, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood. 1994;83(7):1760–8. doi: 10.1182/blood.v83.7.1760.bloodjournal8371760.
  12. Castaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–16. doi: 10.1016/S0140-6736(12)60485-1.
  13. Lambert J, Pautas С. Terre Ch, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica. 2019;104(1):113–9. doi: 10.3324/haematol.2018.188888.
  14. Amadori S, Suciu S, Selleslag D, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9. doi: 10.1200/jco.2015.64.0060.
  15. Taksin AL, Legrand O, Raffoux E, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21(1):66–71. doi: 10.1038/sj.leu.2404434.
  16. Debureaux P-E, Labopin М, Mamez A-C, et al. Fractionated gemtuzumab ozogamicin in association with high dose chemotherapy: a bridge to allogeneic stem cell transplantation in refractory and relapsed acute myeloid leukemia. Bone Marrow Transplant. 2019;55(2):452–60. doi: 10.1038/s41409-019-0690-2.
  17. Chevallier P, Delaunay J, Turlure P, et al. Long-term disease-free survival after gemtuzumab, intermediate-dose cytarabine, and mitoxantrone in patients with CD33(+) primary resistant or relapsed acute myeloid leukemia. J Clin Oncol. 2008;26(32):5192–7. doi: 10.1200/jco.2007.15.9764.
  18. Medeiros BC, Tanaka TN, Balaian L, et al. A Phase I/II Trial of the Combination Azacitidine and Gemtuzumab Ozogamicin for Treatment of Relapsed Acute Myeloid Leukemia. Clin Lymphoma Myel Leuk. 2018;18(5):346–352.e5. doi: 10.1016/j.clml.2018.02.017.
  19. Walter RB, Medeiros BC, Gardner KM, et al. Gemtuzumab ozogamicin in combination with vorinostat and azacitidine in older patients with relapsed or refractory acute myeloid leukemia: a phase I/II study. Haematologica. 2013;99(1):54–9. doi: 10.3324/haematol.2013.096545.
  20. Arain S, Christian S, Patel PR. Safety and efficacy of gemtuzumab ozogamicin and venetoclax in patients with relapsed or refractory CD33+ acute myeloid leukemia: A phase Ib study. J Clin Oncol. 2020;38(15_suppl):TPS7566. doi: 10.1200/JCO.2020.38.15_suppl.TPS7566.
  21. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  22. Dohner H, Elihu H, Estey EH, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-235358.
  23. Зайцев Д.В., Гиршова Л.Л., Иванов В.В. и др. Гемтузумаб озогамицин в лечении пациентов с рефрактерным течением острого миелоидного лейкоза, находящихся в критическом состоянии (описание 3 клинических наблюдений). Клиническая онкогематология. 2020;13(1):67–74. doi: 10.21320/2500-2139-2020-13-1-67-74.
    [Zaitsev DV, Girshova LL, Ivanov VV, et al. Gemtuzumab Ozogamicin in the Treatment of Critical Patients with Refractory Acute Myeloid Leukemia (3 Case Reports). Clinical oncohematology. 2020;13(1):67–74. doi: 10.21320/2500-2139-2020-13-1-67-74. (In Russ)]
  24. Stone RM, Moser B, Sanford B, et al. High dose cytarabine plus gemtuzumab ozogamicin for patients with relapsed or refractory acute myeloid leukaemia: Cancer and Leukaemia Group B study 19902. Leuk Res. 2011;35(3):329–33. doi: 10.1016/j.leukres.2010.07.017.
  25. Hosono N, Ookura M, Araie H, et al. Clinical outcomes of gemtuzumab ozogamicin for relapsed acute myeloid leukemia: single-institution experience. Int J Hematol. 2020;113(3):362–9. doi: 10.1007/s12185-020-03023-4.
  26. Будаева И.Г., Гиршова Л.Л., Овсянникова Е.Г. и др. Прогнозирование эффективности режима FLAG ± Ida у пациентов с рецидивами и рефрактерным течением острых миелоидных лейкозов. Клиническая онкогематология. 2019;12(3):289–96. doi: 10.21320/2500-2139-2019-12-3-289-296.
    [Budaeva IG, Girshova LL, Ovsyannikova EG, et al. Prediction of FLAG ± Ida Regimen Efficacy in Patients with Relapsed/Refractory Acute Myeloid Leukemia. Clinical oncohematology. 2019;12(3):289–96. doi: 10.21320/2500-2139-2019-12-3-289-296. (In Russ)]
  27. Chantepie SP, Reboursiere E, Mear JB, et al. Gemtuzumab ozogamicin in combination with intensive chemotherapy in relapsed or refractory acute myeloid leukemia. Leuk Lymphoma. 2015;56(8):2326–30. doi: 3109/10428194.2014.986478.
  28. Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30(32):3924–31. doi: 10.1200/jco.2012.42.2964.

 

 

National Clinical Guidelines on Diagnosis and Treatment of Ph-Negative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis) (Edition 2020)

AL Melikyan1, AM Kovrigina1, IN Subortseva1, VA Shuvaev2, EV Morozova3, EG Lomaia4, BV Afanasyev3, TA Ageeva5, VV Baikov3, OYu Vinogradova6, SV Gritsaev2, AYu Zaritskey4, TI Ionova7, KD Kaplanov6, IS Martynkevich2, TA Mitina8, ES Polushkina9, TI Pospelova5, MA Sokolova1, AB Sudarikov1, AG Turkina1, YuV Shatokhin10, RG Shmakov9, VG Savchenko1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

3 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

4 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

5 Novosibirsk State Medical University, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091

6 Moscow Municipal Center for Hematology, SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

7 NI Pirogov Clinic for High Medical Technology, Saint Petersburg State University, 7/9 Universitetskaya emb., Saint Petersburg, Russian Federation, 199034

8 NF Vladimirskii Moscow Regional Research Clinical Institute, 61/2 Shchepkina str., Moscow, Russian Federation, 129110

9 VI Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina str., Moscow, Russian Federation, 117997

10 ФГБОУ ВО «Ростовский государственный медицинский университет» Минздрава России, Нахичеванский пер., д. 29, Ростов-на-Дону, Российская Федерация, 344022

For correspondence: Anait Levonovna Melikyan, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; e-mail: anoblood@ mail.ru

For citation: Melikyan AL, Kovrigina AM, Subortseva IN, et al. National Clinical Guidelines on Diagnosis and Treatment of Ph-Negative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis) (Edition 2020). Clinical oncohematology. 2021;14(2):262–98. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-262-298


ABSTRACT

The development of National clinical guidelines on diagnosis and treatment of Ph-negative myeloproliferative neoplasms comes in response to the need to standardize the approach to diagnosis and treatment. The availability of clinical guidelines can facilitate the choice of adequate treatment strategy, provides practicing physicians with exhaustive and up-to-date information on advantages and shortcomings of different treatment methods as well as lets health professionals better assess expected extents of treatment required by patients. In 2013 a working group was formed to develop and formulate clinical guidelines on the treatment of myeloproliferative neoplasms. These guidelines were first published in 2014, afterwards they were revised and republished. The dynamic development of current hematology presupposes constant updating of knowledge and implementation of new diagnosis and treatment methods in clinical practice. In this context clinical guidelines present a dynamic document to be continuously amended, expanded, and updated in accordance with scientific findings and new requirements of specialists who deal directly with this category of patients. The present edition is an upgraded version of clinical guidelines with updated information on the unification of constitutional symptoms assessment using MPN-SAF TSS questionnaire (MPN10), on applying prognostic scales in primary myelofibrosis, assessing therapy efficacy in myeloproliferative neoplasms, revising indications for prescription, on dose correction, and discontinuation of targeted drugs (ruxolitinib). The guidelines are intended for oncologists, hematologists, healthcare executives, and medical students.

Keywords: myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, primary myelofibrosis, JAK2V617F, CALR, MPL, prognosis, hydroxyurea, interferon-α, ruxolitinib, anagrelide.

Received: November 12, 2020

Accepted: February 23, 2021

Read in PDF

Статистика Plumx английский

 

Cardio-oncology and Oncohematology: Examination Algorithms, Prophylactic and Treatment of Cardiotoxicity, Trends in Rehabilitation

EI Emelina, GE Gendlin, IG Nikitin

NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Elena Ivanovna Emelina, MD, PhD, 1 Ostrovityanova str., Moscow, Russian Federation, 117997; Tel.: +7(916)412-59-78; e-mail: eei1210@mail.ru

For citation: Emelina EI, Gendlin GE, Nikitin IG. Cardio-oncology and Oncohematology: Examination Algorithms, Prophylactic and Treatment of Cardiotoxicity, Trends in Rehabilitation. Clinical oncohematology. 2021;14(2):239–61. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-239-261


ABSTRACT

Successful chemotherapy in the treatment of hematological diseases is determined not only by the efficacy of antitumor drugs, but by the timely correction of adverse events, among which especially important are cardiac complications associated with both already existing cardiovascular diseases and cardiotoxicity of cytostatic drugs. Of particular importance is also a frequent lack of systemic cardiological examination of oncohematological patients. The urgency of this issue was the reason for creating cardio-oncological clinics focused on the closest co-operation of cardiologists with drug chemotherapy experts. Hematological patients are a particular group among chemotherapy recipients. Potential curability of an oncohematological disease and achieving durable MRD-negative remission raise the importance of irreversible or long-term cardiac complications directly affecting the quality of life and life expectancy. Besides, in some cases long-term or life-long administration of certain cardiotoxic antitumor drugs requires a particular cardiological follow-up. A broad variety of cardiotoxic effects of antitumor drugs and peculiarities of their clinical manifestations call for the exact algorithms of cardiological examination to be observed for the timely detection and treatment of cardiovascular complications. The now available studies and interdisciplinary work of cardiologists and oncologists (oncohematologists) can yield such algorithms for examination and the approaches to prophylactic and treatment of cardiotoxicity as well as to rehabilitation of patients.

Keywords: oncohematology, cardio-oncology, cardiotoxicity, antitumor drugs, prophylactic of cardiac adverse events, cardio-oncological rehabilitation.

Received: November 19, 2020

Accepted: February 10, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Zamorano JL, Lancellotti P, Munoz DR, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J. 2016;37(36):2768–801. doi: 10.1093/eurheartj/ehw211.
  2. Lyon AR, Dent S, Stanway S, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur J Heart Fail. 2020;22(11):1945–60. doi: 10.1002/ejhf.1920.
  3. Curigliano G, Lenihan D, Fradley M, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. ESMO Guidelines Committee. Ann Oncol. 2020;31(2):171–90. doi: 10.1016/j.annonc.2019.10.023.
  4. S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE). Version 5.0, 2017. Available from: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5×11.pdf (accessed 10.02.2021).
  5. Кулиева А.А., Емелина Е.И., Гендлин Г.Е. и др. Сердечно-сосудистые осложнения терапии ингибиторами контрольных точек иммунитета. Качественная клиническая практика. 2019;4:55–65. doi: 10.1016/2588-0519-2019-4-55-65.
    [Kulieva AA, Emelina EI, Gendlin GE, et al. Cardiovascular complications of immune checkpoint inhibitors. Kachestvennaya klinicheskaya praktika. 2019;4:55–65. doi: 10.1016/2588-0519-2019-4-55-65. (In Russ)]
  6. Kim P, Zarifa A, Salih M, et al. Cardiotoxicity of FDA-approved immune checkpoint inhibitors: A rare but serious adverse event. J Immunother Precis Oncol. 2018;1(2):68–77. doi: 4103/JIPO.JIPO_15_18.
  7. Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med. 2018;378(2):158–68. doi: 10.1056/NEJMra1703481.
  8. Шубникова Е.В., Букатина Т.М., Вельц Н.Ю. и др. Ингибиторы контрольных точек иммунного ответа: новые риски нового класса противоопухолевых средств. Безопасность и риск фармакотерапии. 2020;8(1):9–22. doi: 10.30895/2312-7821-2020-8-1-9-22.
    [Shubnikova EV, Bukatina TM, Velts NYu, et al. Immune Response Checkpoint Inhibitors: New Risks of a New Class of Antitumor Agents. Safety and Risk of Pharmacotherapy. 2020;8(1):9–22. doi: 10.30895/2312-7821-2020-8-1-9-22. (In Russ)]
  9. Armand P. Immune checkpoint blockade in hematologic malignancies. Blood. 2015;125(22):3393–400. doi: 10.1182/blood-2015-02-567453.
  10. Лепик К.В. Ингибиторы иммунных контрольных точек в терапии лимфом. Клиническая онкогематология. 2018;11(4):303–12. doi: 10.21320/2500-2139-2018-11-4-303-312.
    [Lepik KV. Immune Checkpoint Inhibitors in the Treatment of Lymphomas. Clinical oncohematology. 2018;11(4):303–12. doi: 10.21320/2500-2139-2018-11-4-303-312. (In Russ)]
  11. Cardinale D, Colombo A, Sandri MT, et al. Prevention of High-Dose Chemotherapy-Induced Cardiotoxicity in High-Risk Patients by Angiotensin-Converting Enzyme Inhibition. Circulation. 2006;114(23):2474–81. doi: 10.1161/CIRCULATIONAHA.106.635144.
  12. Gilchrist SC, Barac A, Ades PA, et al. Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American Heart Association. 2019;139(21):997–1012. doi: 10.1161/CIR.0000000000000679.
  13. Larsen CM, Mulvagh SL. Cardio-oncology: what you need to know now for clinical practice and echocardiography. Echo Res Pract. 2017;4(1):R33–R41. doi: 10.1530/ERP-17-0013.
  14. Maia TN, Araujo GB, Teixeira JA, et al. Cardiotoxicity of Doxorubicin Treatment and Physical Activity: A Systematic Review. Int J Cardiovasc Sci. 2017;30(1):70–80. doi: 10.5935/2359-4802.20170004.
  15. Fischetti F, Greco G, Cataldi S, et al. Effects of Physical Exercise Intervention on Psychological and Physical Fitness in Lymphoma Patients. 2019;55(7):379. doi: 10.3390/medicina55070379.
  16. Lenneman AJ, Wang L, Wigger M, et al. Heart transplant survival outcomes for adriamycin-dilated cardiomyopathy. Am J Cardiol. 2013;111(4):609–12. doi: 10.1016/j.amjcard.2012.10.048.

Hemostasis Disorders in Patients with De Novo Acute Leukemias

OA Polevodova, GM Galstyan, VV Troitskaya, EB Orel, MYu Drokov, EN Parovichnikova

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Gennadii Martinovich Galstyan, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: 8(495)612-48-59; e-mail: gengalst@gmail.com

For citation: Polevodova OA, Galstyan GM, Troitskaya VV, et al. Hemostasis Disorders in Patients with De Novo Acute Leukemias. Clinical oncohematology. 2021;14(2):231–8. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-231-238


ABSTRACT

Aim. To study hemostasis disorders in patients with de novo acute leukemias (AL) prior to chemotherapy.

Materials & Methods. The study enrolled 107 patients with newly diagnosed AL, aged 18–80 years and treated at the National Research Center for Hematology. Acute lymphoblastic leukemia (ALL) was identified in 37 patients, acute myeloid leukemia (AML) was diagnosed in 46 patients, and acute promyelocytic leukemia (APL) was reported in 24 patients. Hemorrhagic and thrombotic complications were analyzed; platelet count, APPT, prothrombin and fibrinogen concentration were determined; thromboelastography (TEG; native tests, functional fibrinogen tests) and rotation thromboelastometry (ROTEM; EXTEM, INTEM, FIBTEM, APTEM) were performed. The data were statistically processed using SAS 9.4 software.

Results. At AL onset hemorrhagic syndrome was detected in 34 (32 %) out of 107 patients. It was manifested by petechia (n = 16), subcutaneous hematomas (n = 12), gingival (n = 10) and nose (n = 6) bleeding, uterine bleeding (n = 2), hematuria (n = 2), gastrointestinal bleeding (n = 1), brain hemorrhage (n = 6), and periorbital hematoma (n = 1). According to TEG and ROTEM hypocoagulation was more common in APL patients. Hyperfibrinolysis could be detected using only ROTEM in 54 % of APL patients, in 8 % of ALL and 4 % of AML patients. Compared to other AL patients those with APL showed different parameters of fibrinogen concentration of < 1.75 g/L (sensitivity 83.3 %, specificity 83.13 %), D-dimer concentration of > 2686 µg/L (sensitivity 72.73 %, specificity 64.79 %), MCFFIBTEM < 12.5 mm (sensitivity 80 %, specificity 80 %), and МАFF < 9.7 mm (sensitivity 86.96 %, specificity 90.12 %).

Conclusion. The parameters that distinguish APL from other categories of AL patients are hypofibrinogenemia, higher D-dimer concentration, ROTEM changes, and hyperfibrinolysis.

Keywords: hemostatic system, acute leukemia, hemorrhagic syndrome, thrombosis, integral tests, thromboelastometry, thromboelastography.

Received: December 2, 2020

Accepted: March 5, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Алгоритмы диагностики и протоколы лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2018. 1008 с.
    [Savchenko VG, ed. Algoritmy diagnostiki i protokoly lecheniya zabolevanii sistemy krovi. (Diagnostic algorithms and treatment protocols in hematological diseases.) Moscow: Praktika Publ.; 2018. 1008 p. (In Russ)]
  2. Rea B, Frank D. An uncommon manifestation of acute leukemia. Gastrointest Endosc. 2017;86(1):240–2. doi: 10.1016/j.gie.2016.12.010.
  3. Gallo G, Bigliardi S, Cesinaro A. A case of extramedullary hematopoiesis presenting as hemorrhagic panniculitis and evolving in acute myeloid leukemia. J Cutan Pathol. 2019;46(10):775–7. doi: 10.1111/cup.13498.
  4. Lieberman F, Villgran V, Normolle D, et al. Intracranial Hemorrhage in Patients Newly Diagnosed with Acute Myeloid Leukemia and Hyperleukocytosis. Acta Haematol. 2017;138(2):116–8. doi: 10.1159/000478690.
  5. Галстян Г.М., Кречетова А.В., Троицкая В.В. и др. Высокодозная терапия концентратом антитромбина III больных септическим шоком в состоянии агранулоцитоза. Анестезиология и реаниматология. 2014;59(4):39–45.
    [Galstyan GM, Krechetova AV, Troitskaya VV, et al. High-dose therapy with antithrombin III in agranulocytosis patients with septic shock. Anesteziologiya i reanimatologiya. 2014;59(4):39–45. (In Russ)]
  6. Mitrovic M, Suvajdzic N, Bogdanovic A, et al. International Society of Thrombosis and Hemostasis Scoring System for disseminated intravascular coagulation >6: a new predictor of hemorrhagic early death in acute promyelocytic leukemia. Med Oncol. 2013;30(1):478. doi: 10.1007/s12032-013-0478-y.
  7. Coombs CC, Tavakkoli M, Tallman MS. Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J. 2015;5(4):e304. doi: 10.1038/bcj.2015.25.
  8. Di Bona E, Avvisati G, Castaman G, et al. Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukaemia. Br J Haematol. 2000;108(4):689–95. doi: 10.1046/j.1365-2141.2000.01936.x.
  9. Breccia M, Latagliata R, Cannella L, et al. Early hemorrhagic death before starting therapy in acute promyelocytic leukemia: association with high WBC count, late diagnosis and delayed treatment initiation. Haematologica. 2010;95(5):853–4. doi: 10.3324/haematol.2009.017962.
  10. de la Serna J, Montesinos P, Vellenga E, et al. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. 2008;111(7):3395–402. doi: 10.1182/blood-2007-07-100669.
  11. Дементьева И.И., Морозов Ю.А., Чарная М.А. и др. Технологии POINT OF CARE в клинике неотложных состояний. Клиническая лабораторная диагностика. 2013;7:5–10.
    [Dement’eva II, Morozov YuA, Charnaya MA, et al. POINT OF CARE technologies under clinic emergency conditions. Klinicheskaya laboratornaya diagnostika. 2013;7:5–10. (In Russ)]
  12. Lang T, Bauters A, Braun SL, et al. Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul Fibrinol. 2005;16(4):301–10. doi: 10.1097/01.mbc.0000169225.31173.19.
  13. Rollig C, Ehninger G. How I treat hyperleukocytosis in acute myeloid leukemia. Blood. 2015;125(21):3246–52. doi: 10.1182/blood-2014-10-551507.
  14. Schochl H, Frietsch T, Pavelka M, et al. Hyperfibrinolysis After Major Trauma: Differential Diagnosis of Lysis Patterns and Prognostic Value of Thrombelastometry. J Trauma Inj Infect Crit Care. 2009;67(1):125–31. doi: 10.1097/TA.0b013e31818b2483.
  15. Баркаган З.С., Момот А.П. Диагностика и контролируемая терапия нарушений гемостаза. М.: Ньюдиамед, 2008. С. 103–13.
    [Barkagan ZS, Momot AP. Diagnostika i kontroliruemaya terapiya narushenii gemostaza. (Diagnosis and monitor therapy of hemostasis disorders.) Moscow: N’yudiamed Publ.; 2008. 103–13. (In Russ)]
  16. Буланов А.Ю., Яцков К.В., Буланова Е.Л. и др. Тромбоэластография: клиническая значимость теста на функциональный фибриноген. Вестник интенсивной терапии. 2017;1:5–11.
    [Bulanov AYu, Yatskov KV, Bulanova EL, et al. Thromboelastography: the clinical significance of the functional fibrinogen test. Vestnik intensivnoi terapii. 2017;1:5–11. (In Russ)]
  17. Chapman MP, Moore EE, Ramos CR, et al. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75(6):961–7. doi: 10.1097/TA.0b013e3182aa9c9f.
  18. Gonzalez E, Moore EE, Moore HB. Management of Trauma-Induced Coagulopathy with Thrombelastography. Crit Care Clin. 2017;33(1):119–34. doi: 10.1016/j.ccc.2016.09.002.
  19. Hemker HC, Giesen P, Al Dieri R, et al. Calibrated Automated Thrombin Generation Measurement in Clotting Plasma. Pathophysiol Haemost Thromb. 2003;33(1):4–15. doi: 10.1159/000071636.
  20. McCullough J, Vesole DH, Benjamin RJ, et al. Therapeutic efficacy and safety of platelets treated with a photochemical process for pathogen inactivation: The SPRINT trial. Blood. 2004;104(5):1534–41. doi: 10.1182/blood-2003-12-4443.
  21. Савченко В.Г., Паровичникова Е.Н., Соколов А.Н. и др. Клинические рекомендации по диагностике и лечению острого промиелоцитарного лейкоза у взрослых. Национальное гематологическое общество. 2014. (электронный документ) Доступно по: https://docplayer.ru/50397388-Klinicheskie-rekomendacii-po-diagnostike-i-lecheniyu-ostrogo-promielocitarnogo-leykoza-u-vzroslyh.html. Ссылка активна на 5.02.2021.
    [Savchenko VG, Parovichnikova EN, Sokolov AN, et al. Clinical guidelines on diagnosis and treatment of adult acute promyelocytic leukemia. National Society of Hematology. 201 [Internet] Available from: https://docplayer.ru/50397388-Klinicheskie-rekomendacii-po-diagnostike-i-lecheniyu-ostrogo-promielocitarnogo-leykoza-u-vzroslyh.html. (accessed 02.2021) (In Russ)]
  22. Воробьев А.И., Бронштейн М.И., Баранов А.Е. О промиелоцитарном варианте острого лейкоза. Вестник АМН СССР. 1968;4:36–45.
    [Vorob’ev AI, Bronshtein MI, Baranov AE. On promyelocytic variant of acute leukemia. Vestnik AMN SSSR. 1968;4:36–45. (In Russ)]
  23. Avvisati G, ten Cate JW, Sturk A, et al. Acquired alpha-2-antiplasmin deficiency in acute promyelocytic leukaemia. Br J Haematol. 1988;70(1):43–8. doi: 10.1111/j.1365-2141.1988.tb02432.x.
  24. Wijermans PW, Rebel VI, Ossenkoppele GJ, et al. Combined procoagulant activity and proteolytic activity of acute promyelocytic leukemic cells: reversal of the bleeding disorder by cell differentiation. Blood. 1989;73(3):800–5. doi: 10.1182/blood.V73.3.800.bloodjournal733800.
  25. Wada K, Takahashi H, Hanano M, et al. Plasma urokinase-type plasminogen activator in patients with leukemias. Leuk Lymphoma. 1994;15(5–6):499–502. doi: 10.3109/10428199409049754.
  26. Menell JS, Cesarman GM, Jacovina AT, et al. Annexin II and Bleeding in Acute Promyelocytic Leukemia. N Engl J Med. 1999;340(13):994–1004. doi: 10.1056/NEJM199904013401303.
  27. Longstaff C. Measuring fibrinolysis: from research to routine diagnostic assays. J Thromb Haemost. 2018;16(4):652–62. doi: 10.1111/jth.13957.
  28. Negrier C, Ninet J, Bordet J, et al. Use of calibrated automated thrombinography ± thrombomodulin to recognise the prothrombotic phenotype. Thromb Haemost. 2017;96(5):562–7. doi: 10.1160/th06-03-0179.
  29. Abuelkasem E, Lu S, Tanaka K, et al. Comparison between thrombelastography and thromboelastometry in hyperfibrinolysis detection during adult liver transplantation. Br J Anaesth. 2016;116(4):507–12. doi: 10.1093/bja/aew023.
  30. da Luz LT, Nascimento B, Rizoli S. Thrombelastography (TEG®): practical considerations on its clinical use in trauma resuscitation. Scand J Trauma Resusc Emerg Med. 2013;21(1):29. doi: 10.1186/1757-7241-21-29.
  31. Moore HB, Moore EE, Liras IN, et al. Acute Fibrinolysis Shutdown after Injury Occurs Frequently and Increases Mortality: A Multicenter Evaluation of 2,540 Severely Injured Patients. J Am Coll Surg. 2016;222(4):347–55. doi: 10.1016/J.JAMCOLLSURG.2016.01.006.
  32. Lou Y, Suo S, Tong H, et al. Hypofibrinogenemia as a clue in the presumptive diagnosis of acute promyelocytic leukemia. Leuk Res. 2016;50:11–6. doi: 10.1016/j.leukres.2016.09.006.
  33. Zhang X, Hu Y, Bao L, et al. Arsenic trioxide downregulates the expression of annexin II in bone marrow cells from patients with acute myelogenous leukemia. Chin Med J (Engl). 2009;122(17):1969–73. doi: 10.3760/cma.j.issn.0366-6999.2009.17.002.
  34. Stein EM, Tallman MS. Provocative pearls in diagnosing and treating acute promyelocytic leukemia. Oncology (Williston Park). 2012;26(7):636–41.
  35. Yanada M, Matsushita T, Asou N, et al. Severe hemorrhagic complications during remission induction therapy for acute promyelocytic leukemia: incidence, risk factors, and influence on outcome. Eur J Haematol. 2007;78(3):213–9. doi: 10.1111/j.1600-0609.2006.00803.x.
  36. Choudhry A, DeLoughery TG. Bleeding and thrombosis in acute promyelocytic leukemia. Am J Hematol. 2012;87(6):596–603. doi: 10.1002/ajh.23158.
  37. Grisariu S, Spectre G, Kalish Y, et al. Increased risk of central venous catheter–associated thrombosis in acute promyelocytic leukemia: a single-institution experience. 2013;90(5):397–403. doi: 10.1111/ejh.12087.

CAR-Т Cells for the Treatment of Chronic Lymphocytic Leukemia: Literature Review

IV Gribkova, AA Zav’yalov

Research Institute of Healthcare and Medical Management, 9 Sharikopodshipnikovskaya str., Moscow, Russian Federation, 115088

For correspondence: Irina Vladimirovna Gribkova, PhD in Biology, 9 Sharikopodshipnikovskaya str., Moscow, Russian Federation, 115088; Tel.: +7(916)078-73-90; e-mail: igribkova@yandex.ru

For citation: Gribkova IV, Zav’yalov AA. CAR-Т Cells for the Treatment of Chronic Lymphocytic Leukemia: Literature Review. Clinical oncohematology. 2021;14(2):225–30. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-225-230


ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common adult malignant lymphoid disease. Despite new highly effective targeted drugs, the prognosis of relapsed and resistant form of this disease is poor. CAR-Т cell therapy using T-lymphocytes with chimeric antigen receptor (CAR) demonstrated its efficacy in the treatment of such oncohematological diseases as В-cell non-Hodgkin’s lymphomas and acute lymphoblastic leukemia. The present literature review focuses on the experience of using CAR-Т cells for CLL therapy. It presents the advantages and drawbacks of this technique as well as the challenging issues to be solved for its implementation into broad clinical practice.

Keywords: chronic lymphocytic leukemia, CAR-Т cell therapy, chimeric antigen receptor, adoptive therapy, immunotherapy.

Received: December 15, 2020

Accepted: March 10, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Hallek M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am J Hematol. 2017;92(9):946–65. doi: 10.1002/ajh.24826.
  2. Fernandez-Martinez JL, de Andres-Galiana EJ, Sonis ST. Genomic data integration in chronic lymphocytic leukemia. J Gene Med. 2017;19(1–2):e2936. doi: 10.1002/jgm.2936.
  3. Kipps TJ, Stevenson FK, Wu CJ, et al. Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 2017;3(1):16096. doi: 10.1038/nrdp.2016.96.
  4. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23. doi: 10.1056/NEJMoa1400376.
  5. Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2016;374(4):311–22. doi: 10.1056/NEJMoa1513257.
  6. Bottcher S, Ritgen M, Fischer K, et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012;30(9):980–8. doi: 10.1200/JCO.2011.36.9348.
  7. Strati P, Keating MJ, O’Brien SM, et al. Outcomes of first-line treatment for chronic lymphocytic leukemia with 17p deletion. Haematologica. 2014;99(8):1350–5. doi: 10.3324/haematol.2014.104661.
  8. Mato AR, Nabhan C, Barr PM, et al. Outcomes of CLL patients treated with sequential kinase inhibitor therapy: a real world experience. Blood. 2016;128(18):2199–205. doi: 10.1182/blood-2016-05-716977.
  9. Anderson MA, Tam C, Lew TE, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25):3362–70. doi: 10.1182/blood-2017-01-763003.
  10. Dreger P, Schetelig J, Andersen N, et al. Managing high-risk CLL during transition to a new treatment era: Stem cell transplantation or novel agents? 2014;124(26):3841–9. doi: 10.1182/blood-2014-07-586826.
  11. June CH, O’Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. 2018;359(6382):1361–5. doi: 10.1126/science.aar6711.
  12. Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021. В печати.
    [Gribkova IV, Zav’yalov AA. Chimeric antigen receptor T‑cell therapy of B-cell non-Hodgkin’s lymphoma: opportunities and challenges. Voprosy onkologii. 2021. In print. (In Russ)]
  13. Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33. doi: 10.1056/NEJMoa1103849.
  14. Forconi F, Moss P. Perturbation of the normal immune system in patients with CLL. Blood. 2015;126(5):573–81. doi: 10.1182/blood-2015-03-567388.
  15. Pourgheysari B, Bruton R, Parry H, et al. The number of cytomegalovirus-specific CD4+ T cells is markedly expanded in patients with B-cell chronic lymphocytic leukemia and determines the total CD4+ T-cell repertoire. 2010;116(16):2968–74. doi: 10.1182/blood-2009-12-257147.
  16. Palma M, Gentilcore G, Heimersson K, et al. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers. 2017;102(3):562–72. doi: 10.3324/haematol.2016.151100.
  17. Riches JC, Davies JK, McClanahan F, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013;121(9):1612–21. doi: 10.1182/blood-2012-09-457531.
  18. Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: Establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120(7):1412–21. doi: 10.1182/blood-2012-02-411678.
  19. D’Arena G, Laurenti L, Minervini MM, et al. Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease. Leuk Res. 2011;35(3):363–8. doi: 10.1016/j.leukres.2010.08.010.
  20. Gorgun G, Holderried TA, Zahrieh D, et al. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest. 2005;115(7):1797–805. doi: 10.1172/JCI24176.
  21. Piper KP, Karanth M, McLarnon A, et al. Chronic lymphocytic leukaemia cells drive the global CD4+ T cell repertoire towards a regulatory phenotype and leads to the accumulation of CD4+ forkhead box P3+ T cells. Clin Exp Immunol. 2011;166(2):154–63. doi: 10.1111/j.1365-2249.2011.04466.x.
  22. Brentjens RJ, Riviere I, Park JH, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817–28. doi: 10.1182/blood-2011-04-348540.
  23. Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73. doi: 10.1126/scitranslmed.3002842.
  24. Kochenderfer JN, Dudley ME, Feldman SA, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. 2012;119(12):2709–20. doi: 10.1182/blood-2011-10-384388.
  25. Cruz CRY, Micklethwaite KP, Savoldo B, et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood. 2013;122(17):2965–73. doi: 10.1182/blood-2013-06-506741.
  26. Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9. doi: 10.1200/JCO.2014.56.2025.
  27. Porter DL, Hwang W-T, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. doi: 10.1126/scitranslmed.aac5415.
  28. Fraietta JA, Beckwith KA, Patel PR, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. 2016;127(9):1117–27. doi: 10.1182/blood-2015-11-679134.
  29. Brudno JN, Somerville RPT, Shi V, et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016;34(10):1112–21. doi: 10.1200/JCO.2015.64.5929.
  30. Ramos CA, Savoldo B, Torrano V, et al. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains. J Clin Invest. 2016;126(7):2588–96. doi: 10.1172/JCI86000.
  31. Turtle CJ, Hay KA, Hanafi L-A, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol. 2017;35(26):3010–20. doi: 10.1200/JCO.2017.72.8519.
  32. Geyer MB, Riviere I, Senechal B, et al. Autologous CD19-targeted CAR T cells in patients with residual CLL following initial purine analog-based therapy. Mol Ther J Am Soc Gene Ther. 2018;26(8):1896–905. doi: 10.1016/j.ymthe.2018.05.018.
  33. Gauthier J, Hirayama AV, Hay KA, et al. Comparison of efficacy and toxicity of CD19-specific chimeric antigen receptor T-cells alone or in combination with ibrutinib for relapsed and/or refractory CLL. Blood. 2018;132(Suppl 1):299. doi: 1182/blood-2018-99-111061.
  34. Gill SI, Vides V, Frey NV, et al. Prospective clinical trial of anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia shows a high response rate. Blood. 2018;132(Suppl 1):298. doi: 10.1182/blood-2018-99-115418.
  35. Siddiqi T, Soumerai JD, Wierda WG, et al. Rapid MRD-negative responses in patients with relapsed/refractory CLL treated with Liso-Cel, a CD19-directed CAR T-cell product: preliminary results from transcend CLL 004, a phase 1/2 study including patients with high-risk disease previously treated with ibrutinib. Blood. 2018;132(Suppl 1):300. doi: 10.1182/blood-2018-99-110462.
  36. Geyer MB, Riviere I, Senechal B, et al. Safety and tolerability of conditioning chemotherapy followed by CD19-targeted CAR T cells for relapsed/refractory CLL. JCI Insight. 2019;4(9):e122627. doi: 10.1172/jci.insight.122627.
  37. Fraietta JA, Lacey SF, Orlando EJ, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563–71. doi: 10.1038/s41591-018-0010-1.
  38. Porter DL, Frey NV, Melenhorst JJ, et al. Randomized, phase II dose optimization study of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed, refractory CLL. Blood. 2014;124(21):1982. doi: 10.1182/blood.V124.21.1982.1982.
  39. Porter DL, Frey NV, Melenhorst JJ, et al. Randomized, phase II dose optimization study of chimeric antigen receptor (CAR) modified T cells directed against CD19 in patients (pts) with relapsed, refractory (R/R) CLL. J Clin Oncol. 2016;34(15_Suppl):3009. doi: 10.1200/JCO.2016.34.15_suppl.3009.
  40. Hofland T, Eldering E, Kater AP, Tonino SH. Engaging Cytotoxic T and NK Cells for Immunotherapy in Chronic Lymphocytic Leukemia. Int J Mol Sci. 2019;20(17):4315. doi: 10.3390/ijms20174315.
  41. Zou Y, Xu W, Li J. Chimeric antigen receptor-modified T cell therapy in chronic lymphocytic leukemia. J Hematol Oncol. 2018;11(1):130. doi: 10.1186/s13045-018-0676-3.
  42. Bair SM, Porter DL. Accelerating chimeric antigen receptor therapy in chronic lymphocytic leukemia: The development and challenges of chimeric antigen receptor T-cell therapy for chronic lymphocytic leukemia. Am J Hematol. 2019;94(Suppl 1):S10–S17. doi: 10.1002/ajh.25457.
  43. Gattinoni L, Finkelstein SE, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12. doi: 10.1084/jem.20050732.
  44. Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol. 2005;23(10):2346–57. doi: 10.1200/JCO.2005.00.240.
  45. Yin Q, Sivina M, Robins H, et al. Ibrutinib therapy increases T cell repertoire diversity in patients with chronic lymphocytic leukemia. J Immunol. 2017;198(4):1740–7. doi: 10.4049/jimmunol.1601190.
  46. Geyer MB, Park JH, Riviere I, et al. Implications of concurrent ibrutinib therapy on CAR T cell manufacturing and phenotype and on clinical outcomes following CD19-targeted CAR T cell administration in adults with relapsed/refractory CLL. Blood. 2016;128(22):58. doi: 10.1182/blood.V128.22.58.58.
  47. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel). 2016;8(3):36. doi: 10.3390/cancers8030036.
  48. Hoffmann JM, Schubert ML, Wang L, et al. Differences in expansion potential of naive chimeric antigen receptor T cells from healthy donors and untreated chronic lymphocytic leukemia patients. Front Immunol. 2018;8: doi: 10.3389/fimmu.2017.01956.
  49. Sommermeyer D, Hudecek M, Kosasih PL, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30(2):492–500. doi: 10.1038/leu.2015.247.
  50. Hill JA, Li D, Hay KA, et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood. 2018;131(1):121–30. doi: 10.1182/blood-2017-07-793760.
  51. Hay KA, Hanafi LA, Li D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130(21):2295–306. doi: 10.1182/blood-2017-06-793141.
  52. Gust J, Hay KA, Hanafi LA, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7(12):1404–19. doi: 10.1158/2159-8290.CD-17-0698.
  53. Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25. doi: 10.1126/scitranslmed.3008226.
  54. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. doi: 10.1056/NEJMoa1407222.
  55. Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy – assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62. doi: 10.1038/nrclinonc.2017.148.

COVID-19 in Patients with Oncohematological Diseases

AA Danilenko, SV Shakhtarina, NA Falaleeva

AF Tsyb Medical Radiological Research Centre, branch of the NMRC of Radiology, 4 Koroleva str., Obninsk, Kaluga Region, Russian Federation, 249036

For correspondence: Anatolii Aleksandrovich Danilenko, MD, PhD, 4 Koroleva str., Obninsk, Kaluga Region, Russian Federation, 249036; Tel.: +7(909)250-18-10; e-mail: danilenkoanatol@mail.ru

For citation: Danilenko AA, Shakhtarina SV, Falaleeva NA. COVID-19 in Patients with Oncohematological Diseases. Clinical oncohematology. 2021;14(2):220–4. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-220-224


ABSTRACT

After initially appearing in Wuhan (China), the COVID-19 epidemic rapidly escalated to pandemic level. Due to its high mortality COVID-19 belongs to the group of the most dangerous viral infectious diseases of today. While elderly people are at greatest risk of death, some comorbidities, including also malignant tumors, considerably worsen the course of COVID-19. In view of inherent immunodeficiency exacerbated by immunosuppressive chemotherapy, oncohematological diseases most greatly affect the course of COVID-19. The review presents few published data on coronavirus disease affecting the prognosis of hematopoietic and lymphoid tumors. In addition, the control of mortality risk in these patients is discussed.

Keywords: SARS-CoV-2, COVID-19, hematological diseases, mortality rate.

Received: October 13, 2020

Accepted: February 15, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Johns Hopkins University of Medicine. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available from: https://coronavirus.jhu.edu/map.html. Accessed 02.2021.
  2. Rassy E, Khoury-Abboud R-M, Ibrahim N, et al. What the oncologist needs to know about COVID-19 infection in cancer patients. Fut Oncol. 2020;16(17):1153–6. doi: 10.2217/fon-2020-0312.
  3. Mina A, van Besien K, Platanias LC, et al. Hematological manifestations of COVID-19. Leuk Lymphoma. 2020;61(12):2790–8. doi: 10.1080/10428194.2020.1788017.
  4. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in critically ill patients in the Seattle Region – case series. N Engl J Med. 2020;382(21):2012–22. doi: 10.1056/nejmoa2004500.
  5. Wang F, Nie J, Wang H, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 2020;221(11):1762–69. doi: 10.1093/infdis/jiaa150.
  6. Guan W-J, Ni Z-Y, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20. doi: 10.1056/NEJMoa2002032.
  7. Maquet J, Lafaurie M, Sommet A, et al. Thrombocytopenia is independently associated with poor outcome in patients hospitalized for COVID-19. Br J Haematol. 2020;190(5):e276–е279. doi: 10.1111/bjh.16950.
  8. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145–8. doi: 10.1016/j.cca.2020.03.022.
  9. Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421–4. doi: 10.1111/jth.14830.
  10. Klok FA, Kruip MJ, van der Meer NJ, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–7. doi: 10.1016/j.thromres.2020.04.013.
  11. Friman V, Winqvist O, Blimark C, et al. Secondary immunodeficiency in lymphoproliferative malignancies. Hematol Oncol. 2016;34(3):121–32. doi: 10.1002/hon.2323.
  12. Yri OE, Torfoss D, Hungnes O, et al. Rituximab blocks protective serologic response to influenza a (H1N1) 2009 vaccination in lymphoma patients during or within 6 months after treatment. Blood. 2011;118(26):6769–71. doi: 10/1182/blood-2011-08-372649.
  13. Tepasse P-R, Hafezi W, Lutz M, et al. Persisting SARS-CoV-2 viraemia after rituximab therapy: two cases with fatal outcome and a review of the literature. Br J Haematol. 2020;190(2):185–8. doi: 10.1111/bjh.16896.
  14. Davids MS, Hallek M, Wierda W, et al. Comprehensive safety analysis of Venetoclax monotherapy for patients with relapsed/refractory chronic lymphocytic leukemia. Clin Cancer Res. 2018;24(18):4371–9. doi: 10.1158/1078-0432.CCR-17-3761.
  15. Van de Haar J, Hoes LR, Coles CE, et al. Caring for patients with cancer in the COVID-19 era. Nat Med. 2020;26(5):665–71. doi: 10.1038/s41591-020-0874-8.
  16. Lee LYW, Cazier J-B, Starkey T, et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study. Lancet Oncol. 2020;21(10):1309–16. doi: 10.1016/S1470-2045(20)30442-3.
  17. Yang K, Sheng Y, Huang C, et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020;21(7):904–13. doi: 10.1016/S1470-2045(20)30310-7.
  18. Booth S, Willan J, Wong H, et al. Regional outcomes of severe acute respiratory syndrome coronavirus 2 infection in hospitalised patients with haematological malignancy. Eur J Haematol. 2020;105(4):476–83. doi: 10.1111/ejh.13469.
  19. Wu Y, Chen W, Li W, et al. Clinical characteristics, therapeutic management, and prognostic factors of adult COVID-19 inpatients with hematological malignancies. Leuk Lymphoma. 2020;61(14):3440–50. doi: 10.1080/10428194.2020.1808204.
  20. Sanchez-Pina JM, Rodriguez RM, Castro Quismondo N, et al. Clinical course and risk factors for mortality from COVID-19 in patients with haematological malignancies. Eur J Haematol. 2020;105(5):597–607. doi: 10.1111/ejh.13493.
  21. Yigenoglu TN, Ata N, Altuntas F, et al. The Outcome of COVID-19 in Patients with Hematological Malignancy. J Med Virol. 2021;93(2):1099–104. doi: 10.1002/jmv.26404.
  22. He W, Chen L, Chen L, et al. COVID-19 in persons with haematological cancers. Leukemia. 2020;34(6):1637–45. doi: 10.1038/s41375-020-0836-7.
  23. Aries JA, Davies JK, Auer LR, et al. Clinical outcome of coronavirus disease 2019 in haemato-oncology patients. Br J Haematol. 2020;190(2):64–7. doi: 10.1111/bjh.16852.
  24. Passamonti F, Cattaneo C, Arcaini L, et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. Lancet Haematol. 2020;7(10):e737–e745. doi: 10.1016/S2352-3026(20)30251-9.
  25. Mato AR, Roeker LE, Lamanna N, et al. Outcomes of COVID-19 in patients with CLL: a multicenter international experience. Blood. 2020;136(10):1134–43. doi: 10.1182/blood.2020006965.
  26. Haroon A, Alassani M, Aljurf M, et al. COVID-19 post Hematopoietic Cell Transplant, a Report of 11 Cases from a Single Center. Mediterr J Hematol Infect Dis. 2020;12(1):e2020070. doi: 10.4084/MJHID.2020.070.
  27. Shah GL, De Wolf S, Lee YJ, et al. Favorable outcomes of COVID-19 in recipients of hematopoietic cell transplantation. J Clin Invest. 2020;130(12):6656–67. doi: 10.1172/jci141777.
  28. Perini GF, Fischer T, Gaiolla RD, et al. How to manage lymphoid malignancies during novel 2019 coronavirus (CoVid-19) outbreak: a Brazilian task force recommendation. Hematol Transfus Cell Ther. 2020;42(2):103–10. doi: 10.1016/j.htct.2020.04.002.
  29. Di Ciaccio P, McCaughan G, Trotman J, et al. Australian and New Zealand consensus statement on the management of lymphoma, chronic lymphocytic leukaemia and myeloma during the COVID-19 pandemic. Intern Med J. 2020;50(6):667–79. doi: 10.1111/imj.14859.
  30. De la Cruz-Benito B, Lazaro-Del Campo P, Ramirez-Lopez A, et al. Managing the front-line treatment for diffuse large B-cell lymphoma and high-grade B-cell lymphoma during the COVID-19 outbreak. Br J Haematol. 2020;191(3):386–9. doi: 10.1111/bjh.17066.
  31. Yahalom J, Dabaja BS, Ricardi U, et al. ILROG emergency guidelines for radiation therapy of hematological malignancies during the COVID-19 pandemic. Blood. 2020;135(21):1829–32. doi: 10.1182/blood.2020006028.
  32. Vordermark D. Shift in indications for radiotherapy during the COVID-19 pandemic? A review of organ-specific cancer management recommendations from multidisciplinary and surgical expert groups. Radiat Oncol. 2020;15(1):140. doi: 10.1186/s13014-020-01579-3.

Stable Chronology of Granulopoiesis under R(G)-DHAP Immunochemotherapy-Induced Cytotoxic Stress in Non-Hodgkin’s Lymphomas

In memory of Academician A.I. Vorob’ev,
Russian Academy of Medical Sciences and Russian Academy of Sciences

KA Sychevskaya, SK Kravchenko, FE Babaeva, AE Misyurina, AM Kremenetskaya, AI Vorob’ev

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Kseniya Andreevna Sychevskaya, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(910)409-79-44; e-mail: sychevskaya-ka@yandex.ru

For citation: Sychevskaya KA, Kravchenko SK, Babaeva FE, et al. Stable Chronology of Granulopoiesis under R(G)-DHAP Immunochemotherapy-Induced Cytotoxic Stress in Non-Hodgkin’s Lymphomas. Clinical oncohematology. 2021;14(2):204–19. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-204-219


ABSTRACT

Background. Chronology of granulopoiesis based on periodic hematopoiesis model has been thoroughly studied. However, the pattern of influence of chemotherapy- and immunotherapy-induced cytotoxic stress on the development rhythm of a stem cell requires further investigation. The interaction of antitumor drugs with normal hematopoietic cells is relevant for assessing the intensity of chemotherapy adverse events. Besides, there is a demand for studying hematopoiesis under cytotoxic stress to predict immunological reactivity as a condition for efficacy of immunotherapeutic agents, the effect of which is based on cell immunity.

Aim. To study the chronological pattern of leukocyte count dynamics after R(G)-DHAP immunochemotherapy in non-Hodgkin’s lymphomas.

Materials & Methods. The dynamics of leukocyte count changes after R(G)-DHAP immunochemotherapy was analyzed using the data of 39 treatment courses in 19 non-Hodgkin’s lymphomas patients. After 18 out of 39 cycles of treatment granulocyte colony-stimulating factor (G-CSF) was administered to prevent granulocytopenia, in other cases the previously planned hematopoietic stem cell mobilization was performed according to the accepted protocol.

Results. Time to activation of spontaneous granulopoiesis depends neither on G-CSF stimulation, nor on the total dose of growth-stimulating factor and corresponds on average to Day 10 or Day 11 of the break from the last day of immunochemotherapy. The tendency of shorter agranulocytosis duration on prophylactic use of G-CSF is associated with transient hyperleukocytosis at an early stage after completing immunochemotherapy. Regimens with platinum-based drugs, like R(G)-DHAP, are suggested to be combined with immunochemotherapeutic agents in patients with the failure of first-line chemotherapy. The time interval preceding myelopoiesis activation within the first days of the break between the courses is likely to contribute to the initiation of treatment with immunotherapeutic drugs after second-line chemotherapy.

Conclusion. The determination of granulopoiesis dynamics under R(G)-DHAP immunochemotherapy-induced cytotoxic stress enables to plan the optimum G-CSF regimen and to predict the optimum timing of immune antitumor effect combined with chemotherapy.

Keywords: periodic hematopoiesis, mathematical hematopoiesis model, non-Hodgkin’s lymphomas, chemotherapy, immunotherapy, G-CSF, antitumor immunity, R(G)-DHAP.

Received: November 15, 2020

Accepted: February 25, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Foley C, Mackey MC. Dynamic hematological disease: a review. J Math Biol. 2009;58(1–2):285–322. doi: 10.1007/s00285-008-0165-3.
  2. Morley AA. A neutrophil cycle in healthy individuals. Lancet. 1966;2(7475):1220–2. doi: 10.1016/s0140-6736(66)92303-8.
  3. Mackey MC, Glass L. Oscillation and chaos in physiological control systems. Science. 1977;197(4300):287–9. doi: 10.1126/science.267326.
  4. Mackey Cell kinetic status of haematopoietic stem cells. Cell Prolif. 2001;34(2):71–83. doi: 10.1046/j.1365-2184.2001.00195.x.
  5. Pujo-Menjouet L, Mackey MC. Contribution to the study of periodic chronic myelogenous leukemia. Compt Rend Biol. 2004;327(3):235–44. doi: 10.1016/j.crvi.2003.05.004.
  6. Schirm S, Engel C, Loeffler M, Scholz M. Modelling chemotherapy effects on granulopoiesis. BMC Syst Biol. 2014;8(1):138. doi: 10.1186/s12918-014-0138-7.
  7. Dale DC, Bolyard AA, Aprikyan A. Cyclic neutropenia. Semin Hematol. 2002;39(2):89–94. doi: 10.1053/shem.2002.31917.
  8. Levy EJ, Schetman D. Cyclic neutropenia. Arch Dermatol. 1961;84(3):429–33. doi: 10.1001/archderm.1961.01580150075012.
  9. Colijn C, Mackey MC. A mathematical model of hematopoiesis: II. Cyclical neutropenia. J Theor Biol. 2005;237(2):133–46. doi: 10.1016/j.jtbi.2005.03.034.
  10. Horwitz M, Benson KF, Person RE, et al. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet. 1999;23(4):433–6. doi: 10.1038/70544.
  11. Aprikyan AA, Liles WC, Rodger E, et al. Impaired survival of bone marrow hematopoietic progenitor cells in cyclic neutropenia. Blood. 2001;97(1):147–53. doi: 10.1182/blood.v97.1.147.
  12. Horwitz MS, Corey SJ, Grimes HL, Tidwell T. ELANE mutations in cyclic and severe congenital neutropenia: genetics and pathophysiology. Hematol Oncol Clin N Am. 2013;27(1):19-vii. doi: 10.1016/j.hoc.2012.10.004.
  13. Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol. 2006;43(3):189–95. doi: 10.1053/j.seminhematol.2006.04.004.
  14. Haurie C, Dale DC, Rudnicki R, Mackey MC. Modeling complex neutrophil dynamics in the grey collie. J Theor Biol. 2000;204(4):505–19. doi: 10.1006/jtbi.2000.2034.
  15. Horwitz MS, Duan Z, Korkmaz B, et al. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood. 2007;109(5):1817–24. doi: 10.1182/blood-2006-08-019166.
  16. Go RS. Idiopathic cyclic thrombocytopenia. Blood Rev. 2005;19(1):53–9. doi: 10.1016/j.blre.2004.05.001.
  17. Zhuge C, Mackey MC, Lei J. Origins of oscillation patterns in cyclical thrombocytopenia. J Theor Biol. 2019;462:432–45. doi: 10.1016/j.jtbi.2018.11.024.
  18. Apostu R, Mackey MC. Understanding cyclical thrombocytopenia: a mathematical modeling approach. J Theor Biol. 2008;251(2):297–316. doi: 10.1016/j.jtbi.2007.11.029.
  19. Colijn C, Mackey MC. A mathematical model of hematopoiesis–I. Periodic chronic myelogenous leukemia. J Theor Biol. 2005;237(2):117–32. doi: 10.1016/j.jtbi.2005.03.033.
  20. Fortin P, Mackey MC. Periodic chronic myelogenous leukaemia: spectral analysis of blood cell counts and aetiological implications. Br J Haematol. 1999;104(2):336–45. doi: 10.1046/j.1365-2141.1999.01168.x.
  21. Morley A, Stohlman F Jr. Cyclophosphamide-induced cyclical neutropenia. An animal model of a human periodic disease. N Engl J Med. 1970;282(12):643–6. doi: 10.1056/NEJM197003192821202.
  22. Kennedy Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxyurea therapy. Blood. 1970;35(6):751–60. doi: 10.1182/blood.v35.6.751.751.
  23. Zhuge C, Lei J, Mackey MC. Neutrophil dynamics in response to chemotherapy and G-CSF. J Theor Biol. 2012;293:111–20. doi: 10.1016/j.jtbi.2011.10.017.
  24. Price TH, Chatta GS, Dale DC. Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood. 1996;88(1):335–40. doi: 10.1182/blood.V88.1.335.335.
  25. Chatta GS, Price TH, Allen RC, Dale DC. Effects of in vivo recombinant methionyl human granulocyte colony-stimulating factor on the neutrophil response and peripheral blood colony-forming cells in healthy young and elderly adult volunteers. Blood. 1994;84(9):2923–9. doi: 10.1182/blood.V84.9.2923.2923.
  26. Dancey JT, Deubelbeiss KA, Harker LA, Finch CA. Neutrophil kinetics in man. J Clin Invest. 1976;58(3):705–15. doi: 10.1172/JCI108517.
  27. Kerrigan DP, Castillo A, Foucar K, et al. Peripheral blood morphologic changes after high-dose antineoplastic chemotherapy and recombinant human granulocyte colony-stimulating factor administration. Am J Clin Pathol. 1989;92(3):280–5. doi: 10.1093/ajcp/92.3.280.
  28. Hakansson L, Hoglund M, Jonsson UB, et al. Effects of in vivo administration of G-CSF on neutrophil and eosinophil adhesion. Br J Haematol. 1997;98(3):603–11. doi: 10.1046/j.1365-2141.1997.2723093.x.
  29. Ohsaka A, Saionji K, Sato N, et al. Granulocyte colony-stimulating factor down-regulates the surface expression of the human leucocyte adhesion molecule-1 on human neutrophils in vitro and in vivo. Br J Haematol. 1993;84(4):574–80. doi: 10.1111/j.1365-2141.1993.tb03130.x.
  30. Mehta HM, Malandra M, Corey SJ. G-CSF and GM-CSF in Neutropenia. J Immunol. 2015;195(4):1341–9. doi: 10.4049/jimmunol.1500861.
  31. Dale DC, Bonilla MA, Davis MW, et al. A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood. 1993;81(10):2496–502. doi: 10.1182/blood.V81.10.2496.2496.
  32. Shinjo K, Takeshita A, Ohnishi K, Ohno R. Granulocyte colony-stimulating factor receptor at various differentiation stages of normal and leukemic hematopoietic cells. Leuk Lymphoma. 1997;25(1–2):37–46. doi: 10.3109/10428199709042494.
  33. Clark OA, Lyman GH, Castro AA, et al. Colony-stimulating factors for chemotherapy-induced febrile neutropenia: a meta-analysis of randomized controlled trials. J Clin Oncol. 2005;23(18):4198–214. doi: 10.1200/JCO.2005.05.645.
  34. Garcia-Carbonero R, Mayordomo JI, Tornamira MV, et al. Granulocyte colony-stimulating factor in the treatment of high-risk febrile neutropenia: a multicenter randomized trial. J Natl Cancer Inst. 2001;93(1):31–8. doi: 10.1093/jnci/93.1.31.
  35. Maher DW, Lieschke GJ, Green M, et al. Filgrastim in patients with chemotherapy-induced febrile neutropenia. A double-blind, placebo-controlled trial. Ann Intern Med. 1994;121(7):492–501. doi: 10.7326/0003-4819-121-7-199410010-00004.
  36. Mitchell PL, Morland B, Stevens MC, et al. Granulocyte colony-stimulating factor in established febrile neutropenia: a randomized study of pediatric patients. J Clin Oncol. 1997;15(3):1163–70. doi: 10.1200/JCO.1997.15.3.1163.
  37. Trillet-Lenoir V, Green J, Manegold C, et al. Recombinant granulocyte colony stimulating factor reduces the infectious complications of cytotoxic chemotherapy. Eur J Cancer. 1993;29A(3):319–24. doi: 10.1016/0959-8049(93)90376-q.
  38. Crawford J, Ozer H, Stoller R, et al. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Engl J Med. 1991;325(3):164–70. doi: 10.1056/NEJM199107183250305.
  39. Crawford J, Becker PS, Armitage JO, et al. Myeloid Growth Factors, Version 2.2017. NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2017;15(12):1520–41. doi: 10.6004/jnccn.2017.0175.
  40. Aapro MS, Bohlius J, Cameron DA, et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer. 2011;47(1):8–32. doi: 10.1016/j.ejca.2010.10.013.
  41. Crawford J, Caserta C, Roila F, ESMO Guidelines Working Group. Hematopoietic growth factors: ESMO Clinical Practice Guidelines for the applications. Ann Oncol. 2010;21(Suppl 5):v248–v251. doi: 10.1093/annonc/mdq195.
  42. Lawrence SM, Corriden R, Nizet V. The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev. 2018;82(1):e00057–17. doi: 10.1128/MMBR.00057-17.
  43. Murphy P. The Neutrophil. Boston: Springer; 1976. pp. 33–67.
  44. Lord BI, Bronchud MH, Owens S, et al. The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc Natl Acad Sci USA. 1989;86(23):9499–503. doi: 10.1073/pnas.86.23.9499.
  45. Lie AK, Hui CH, Rawling T, et al. Granulocyte colony-stimulating factor (G-CSF) dose-dependent efficacy in peripheral blood stem cell mobilization in patients who had failed initial mobilization with chemotherapy and G-CSF. Bone Marrow Transplant. 1998;22(9):853–7. doi: 10.1038/sj.bmt.1701463.
  46. van Der Auwera P, Platzer E, Xu ZX, et al. Pharmacodynamics and pharmacokinetics of single doses of subcutaneous pegylated human G-CSF mutant (Ro 25-8315) in healthy volunteers: comparison with single and multiple daily doses of filgrastim. Am J Hematol. 2001;66(4):245–51. doi: 10.1002/ajh.1052.
  47. Morstyn G, Campbell L, Souza LM, et al. Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet. 1988;1(8587):667–72. doi: 10.1016/s0140-6736(88)91475-4.
  48. Shochat E, Rom-Kedar V, Segel LA. G-CSF control of neutrophils dynamics in the blood. Bull Math Biol. 2007;69(7):2299–338. doi: 10.1007/s11538-007-9221-1.
  49. Shochat E, Rom-Kedar V. Novel strategies for granulocyte colony-stimulating factor treatment of severe prolonged neutropenia suggested by mathematical modeling. Clin Cancer Res. 2008;14(20):6354–63. doi: 10.1158/1078-0432.CCR-08-0807.
  50. Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9(1):181–218. doi: 10.1146/annurev-pathol-020712-164023.
  51. Hayes MP, Enterline JC, Gerrard TL, Zoon KC. Regulation of interferon production by human monocytes: requirements for priming for lipopolysaccharide-induced production. J Leuk Biol. 1991;50(2):176–81. doi: 10.1002/jlb.50.2.176.
  52. Boneberg EM, Hareng L, Gantner F, et al. Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-γ. Blood. 2000;95(1):270–6. doi: 10.1182/blood.V95.1.270.
  53. de Kleijn S, Langereis JD, Leentjens J, et al. IFN-γ-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1. PLoS One. 2013;8(8):e72249. doi: 10.1371/journal.pone.0072249.
  54. Rutella S, Zavala F, Danese S, et al. Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol. 2005;175(11):7085– doi: 10.4049/jimmunol.175.11.7085.
  55. Ali N. Chimeric antigen T cell receptor treatment in hematological malignancies. Blood Res. 2019;54(2):81– doi: 10.5045/br.2019.54.2.81.
  56. Bais S, Bartee E, Rahman MM, et al. Oncolytic virotherapy for hematological malignancies. Adv Virol. 2012;2012:1–8. doi: 10.1155/2012/186512.
  57. Calton CM, Kelly KR, Anwer F, et al. Oncolytic Viruses for Multiple Myeloma Therapy. Cancers (Basel). 2018;10(6):198. doi: 10.3390/cancers10060198.
  58. Matveeva OV, Chumakov PM. Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses. Rev Med Virol. 2018;28(6):e2008. doi: 10.1002/rmv.2008.

Use of Blinatumomab in Acute Lymphoblastic Leukemia in Municipal Healthcare: A Case Report

VA Shuvaev1,2, OV Ushakova1, EI Mullo1, TV Tolstykh1, NZ Triputen1

1 VV Veresaev Municipal Clinical Hospital, 10 Lobnenskaya str., Moscow, Russian Federation, 127644

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Vasilii Anatolevich Shuvaev, MD, PhD, 10 Lobnenskaya str., Moscow, Russian Federation, 127644; e-mail: shuvaev77@mail.ru

For citation: Shuvaev VA, Ushakova OV, Mullo EI, et al. Use of Blinatumomab in Acute Lymphoblastic Leukemia in Municipal Healthcare: A Case Report. Clinical oncohematology. 2021;14(2):198–203. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-198-203


ABSTRACT

Acute lymphoblastic leukemia is one of the groups of most challenging malignant neoplasms of hematopoietic tissue. Despite the success in achieving remission induction in primary patients, later, most of them develop disease relapses. Overall and disease-free survivals have to be improved, which cannot be achieved solely with chemotherapy intensification. The new target drugs and cell technologies improve the treatment options for the resistant forms and relapses of acute lymphoblastic leukemia. The effective use of new drugs presupposes their timely assignment which can be ensured by their availability in routine clinical practice. The provided case report describes the successful use of bispecific antibody blinatumomab for treating an early relapse of acute lymphoblastic leukemia in the clinical practice within the municipal healthcare system.

Keywords: acute lymphoblastic leukemia, clinical practice, target therapy, blinatumomab.

Received: September 22, 2020

Accepted: February 3, 2021

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43. doi: 10.1016/s0140-6736(08)60457-2.
  2. Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–602. doi: 10.1016/S0140-6736(16)31678-6.
  3. Савченко В.Г., Паровичникова Е.Н., Афанасьев Б.В. и др. Клинические рекомендации по диагностике и лечению острых лимфобластных лейкозов взрослых 2018. (электронный ресурс) Доступно по: https://npngo.ru/uploads/media_document/293/556718e9–0ff5–46f3-bff8-bd592c83bpdf. Ссылка активна на 22.09.2020 г.
    [Savchenko VG, Parovichnikova EN, Afanasyev BV, et al. Clinical guidelines on diagnosis and treatment of adult acute lymphoblastic leukemia 2018. [Internet] Available from: https://npngo.ru/uploads/media_document/293/556718e9–0ff5–46f3-bff8-bd592c83b992.pdf. (accessed 22.09.2020) (In Russ)]
  4. Kantarjian HM, Walters RS, Keating MJ, et al. Results of the vincristine, doxorubicin, and dexamethasone regimen in adults with standard- and high-risk acute lymphocytic leukemia. J Clin Oncol. 1990;8(6):994–1004. doi: 10.1200/jco.1990.8.6.994.
  5. Паровичникова Е.Н., Соколов А.Н., Троицкая В.В. и др. Острые Ph-негативные лимфобластные лейкозы взрослых: факторы риска при использовании протокола ОЛЛ-2009. Терапевтический архив. 2016;88(7):15–24. doi: 10.17116/terarkh201688715-24.
    [Parovichnikova EN, Sokolov AN, Troitskaya VV, et al. Acute Ph-negative lymphoblastic leukemias in adults: risk factors in the use of the ALL-2009 protocol. Terapevticheskii arkhiv. 2016;88(7):15–24. doi: 10.17116/terarkh201688715-24. (In Russ)]
  6. Ciftciler R, Sevindik OG, Tekgunduz AIE, et al. Acute Lymphoblastic Leukemia in Routine Practice: A Turkish Multicenter Study. Turk J Haematol. 2019;36(3):169–77. doi: 10.4274/tjh.galenos.2019.2019.0008.
  7. Pehlivan KC, Duncan BB, Lee DW. CAR-T Cell Therapy for Acute Lymphoblastic Leukemia: Transforming the Treatment of Relapsed and Refractory Disease. Curr Hematol Malig Rep. 2018;13(5):396–406. doi: 10.1007/s11899-018-0470-x.
  8. Kantarjian H, Thomas D, Jorgensen J, et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119(15):2728–36. doi: 10.1002/cncr.28136.
  9. BLINCYTO® (blinatumomab) for injection, for intravenous use. Initial U.S. approval: 2014. Available from: https://www.pi.amgen.com/~/media/amgen/repositorysites/pi-amgen-com/blincyto/blincyto_pi_hcp_english.pdf. (accessed 21.09.2020).
  10. Kantarjian H, Stein A, Gokbuget N. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. New Engl J Med. 2017;376(9):836–47. doi: 10.1056/NEJMoa1609783.
  11. Martinelli G, Boissel N, Chevallier P, et al. Complete Hematologic and Molecular Response in Adult Patients With Relapsed/Refractory Philadelphia Chromosome-Positive B-Precursor Acute Lymphoblastic Leukemia Following Treatment With Blinatumomab: Results From a Phase II, Single-Arm, Multicenter Study. J Clin Oncol. 2017;35(16):1795–802. doi: 10.1200/jco.2016.69.3531.
  12. von Stackelberg A, Locatelli F, Zugmaier G, et al. Phase 1/2 Study in Pediatric Patients with Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) Receiving Blinatumomab Treatment. Blood. 2014;124(21):2292. doi: 10.1182/blood.V124.21.2292.2292.
  13. von Stackelberg A, Locatelli F, Zugmaier G. Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia. J Clin Oncol. 2016;34(36):4381–9. doi: 10.1200/jco.2016.67.3301.
  14. Topp MS, Gokbuget N, Zugmaier G, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol. 2014;32(36):4134–40. doi: 10.1200/jco.2014.56.3247.
  15. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi: 10.1016/s1470-2045(14)71170-2.
  16. Kantarjian H, Thomas D, O’Brien S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101(12):2788–801. doi: 10.1002/cncr.20668.
  17. Specchia G, Pastore D, Carluccio P, et al. FLAG-IDA in the treatment of refractory/relapsed adult acute lymphoblastic leukemia. Ann Hematol. 2005;84(12):792–5. doi: 10.1007/s00277-005-1090-9.
  18. Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373(16):1541–52. doi: 10.1056/NEJMra1400972.
  19. Pulte D, Gondos A, Brenner H. Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980s to the early 21st century. Blood. 2009;113(7):1408–11. doi: 10.1182/blood-2008-06-164863.
  20. Geyer MB, Hsu M, Devlin SM, et al. Overall survival among older US adults with ALL remains low despite modest improvement since 1980: SEER analysis. Blood. 2017;129(13):1878–81. doi: 10.1182/blood-2016-11-749507.
  21. Бондаренко С.Н., Паровичникова Е.Н., Масчан А.А. и др. Блинатумомаб в терапии острого лимфобластного лейкоза: Российское многоцентровое исследование. Клиническая онкогематология. 2019;12(2):145–53. doi: 10.21320/2500-2139-2019-12-2-145-153.
    [Bondarenko SN, Parovichnikova EN, Maschan AA, et al. Blinatumomab in the Treatment of Acute Lymphoblastic Leukemia: Russian Multicenter Clinical Trial. Clinical oncohematology. 2019;12(2):145–53. doi: 10.21320/2500-2139-2019-12-2-145-153. (In Russ)]
  22. Markova IV, Bondarenko SN, Paina OV, et al. Features of response to blinatumomab and inotuzumab ozogamicin therapy in patients with relapse/refractory B-cells acute lymphoblastic leukemia in real clinical practice. Cell Ther Transplant. 2020;9(1):47–52. doi: 10.18620/ctt-1866-8836-2020-9-1-47-52.